1 /**************************************************************************
2  *
3  * Copyright 2009 Younes Manton.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include "util/u_math.h"
29 #include "util/u_debug.h"
30 
31 #include "vl_csc.h"
32 
33 /*
34  * Color space conversion formulas
35  *
36  * To convert YCbCr to RGB,
37  *    vec4  ycbcr, rgb
38  *    mat44 csc
39  *    rgb = csc * ycbcr
40  *
41  * To calculate the color space conversion matrix csc with ProcAmp adjustments,
42  *    mat44 csc, cstd, procamp, bias
43  *    csc = cstd * (procamp * bias)
44  *
45  * Where cstd is a matrix corresponding to one of the color standards (BT.601, BT.709, etc)
46  * adjusted for the kind of YCbCr -> RGB mapping wanted (1:1, full),
47  * bias is a matrix corresponding to the kind of YCbCr -> RGB mapping wanted (1:1, full)
48  *
49  * To calculate procamp,
50  *    mat44 procamp, hue, saturation, brightness, contrast
51  *    procamp = brightness * (saturation * (contrast * hue))
52  * Alternatively,
53  *    procamp = saturation * (brightness * (contrast * hue))
54  *
55  * contrast
56  * [ c, 0, 0, 0]
57  * [ 0, c, 0, 0]
58  * [ 0, 0, c, 0]
59  * [ 0, 0, 0, 1]
60  *
61  * brightness
62  * [ 1, 0, 0, b]
63  * [ 0, 1, 0, 0]
64  * [ 0, 0, 1, 0]
65  * [ 0, 0, 0, 1]
66  *
67  * saturation
68  * [ 1, 0, 0, 0]
69  * [ 0, s, 0, 0]
70  * [ 0, 0, s, 0]
71  * [ 0, 0, 0, 1]
72  *
73  * hue
74  * [ 1,       0,      0, 0]
75  * [ 0,  cos(h), sin(h), 0]
76  * [ 0, -sin(h), cos(h), 0]
77  * [ 0,       0,      0, 1]
78  *
79  * procamp
80  * [ c,           0,          0, b]
81  * [ 0,  c*s*cos(h), c*s*sin(h), 0]
82  * [ 0, -c*s*sin(h), c*s*cos(h), 0]
83  * [ 0,           0,          0, 1]
84  *
85  * bias
86  * [ 1, 0, 0,  ybias]
87  * [ 0, 1, 0, cbbias]
88  * [ 0, 0, 1, crbias]
89  * [ 0, 0, 0,      1]
90  *
91  * csc
92  * [ c*cstd[ 0], c*cstd[ 1]*s*cos(h) - c*cstd[ 2]*s*sin(h), c*cstd[ 2]*s*cos(h) + c*cstd[ 1]*s*sin(h), cstd[ 3] + cstd[ 0]*(b + c*ybias) + cstd[ 1]*(c*cbbias*s*cos(h) + c*crbias*s*sin(h)) + cstd[ 2]*(c*crbias*s*cos(h) - c*cbbias*s*sin(h))]
93  * [ c*cstd[ 4], c*cstd[ 5]*s*cos(h) - c*cstd[ 6]*s*sin(h), c*cstd[ 6]*s*cos(h) + c*cstd[ 5]*s*sin(h), cstd[ 7] + cstd[ 4]*(b + c*ybias) + cstd[ 5]*(c*cbbias*s*cos(h) + c*crbias*s*sin(h)) + cstd[ 6]*(c*crbias*s*cos(h) - c*cbbias*s*sin(h))]
94  * [ c*cstd[ 8], c*cstd[ 9]*s*cos(h) - c*cstd[10]*s*sin(h), c*cstd[10]*s*cos(h) + c*cstd[ 9]*s*sin(h), cstd[11] + cstd[ 8]*(b + c*ybias) + cstd[ 9]*(c*cbbias*s*cos(h) + c*crbias*s*sin(h)) + cstd[10]*(c*crbias*s*cos(h) - c*cbbias*s*sin(h))]
95  * [ c*cstd[12], c*cstd[13]*s*cos(h) - c*cstd[14]*s*sin(h), c*cstd[14]*s*cos(h) + c*cstd[13]*s*sin(h), cstd[15] + cstd[12]*(b + c*ybias) + cstd[13]*(c*cbbias*s*cos(h) + c*crbias*s*sin(h)) + cstd[14]*(c*crbias*s*cos(h) - c*cbbias*s*sin(h))]
96  */
97 
98 /*
99  * Converts ITU-R BT.601 YCbCr pixels to RGB pixels where:
100  * Y is in [16,235], Cb and Cr are in [16,240]
101  * R, G, and B are in [16,235]
102  */
103 static const vl_csc_matrix bt_601 =
104 {
105    { 1.0f,  0.0f,    1.371f, 0.0f, },
106    { 1.0f, -0.336f, -0.698f, 0.0f, },
107    { 1.0f,  1.732f,  0.0f,   0.0f, }
108 };
109 
110 /*
111  * Converts ITU-R BT.601 YCbCr pixels to RGB pixels where:
112  * Y is in [16,235], Cb and Cr are in [16,240]
113  * R, G, and B are in [0,255]
114  */
115 static const vl_csc_matrix bt_601_full =
116 {
117    { 1.164f,  0.0f,    1.596f, 0.0f, },
118    { 1.164f, -0.391f, -0.813f, 0.0f, },
119    { 1.164f,  2.018f,  0.0f,   0.0f, }
120 };
121 
122 /*
123  * Converts ITU-R BT.709 YCbCr pixels to RGB pixels where:
124  * Y is in [16,235], Cb and Cr are in [16,240]
125  * R, G, and B are in [16,235]
126  */
127 static const vl_csc_matrix bt_709 =
128 {
129    { 1.0f,  0.0f,    1.540f, 0.0f, },
130    { 1.0f, -0.183f, -0.459f, 0.0f, },
131    { 1.0f,  1.816f,  0.0f,   0.0f, }
132 };
133 
134 /*
135  * Converts ITU-R BT.709 YCbCr pixels to RGB pixels where:
136  * Y is in [16,235], Cb and Cr are in [16,240]
137  * R, G, and B are in [0,255]
138  */
139 static const vl_csc_matrix bt_709_full =
140 {
141    { 1.164f,  0.0f,    1.793f, 0.0f, },
142    { 1.164f, -0.213f, -0.534f, 0.0f, },
143    { 1.164f,  2.115f,  0.0f,   0.0f, }
144 };
145 
146 static const vl_csc_matrix smpte240m =
147 {
148    { 1.0f,  0.0f,    1.582f, 0.0f, },
149    { 1.0f, -0.228f, -0.478f, 0.0f, },
150    { 1.0f,  1.833f,  0.0f,   0.0f, }
151 };
152 
153 static const vl_csc_matrix smpte240m_full =
154 {
155    { 1.164f,  0.0f,    1.794f, 0.0f, },
156    { 1.164f, -0.258f, -0.543f, 0.0f, },
157    { 1.164f,  2.079f,  0.0f,   0.0f, }
158 };
159 
160 static const vl_csc_matrix identity =
161 {
162    { 1.0f, 0.0f, 0.0f, 0.0f, },
163    { 0.0f, 1.0f, 0.0f, 0.0f, },
164    { 0.0f, 0.0f, 1.0f, 0.0f, }
165 };
166 
167 const struct vl_procamp vl_default_procamp = {
168    0.0f,  /* brightness */
169    1.0f,  /* contrast   */
170    1.0f,  /* saturation */
171    0.0f   /* hue        */
172 };
173 
vl_csc_get_matrix(enum VL_CSC_COLOR_STANDARD cs,struct vl_procamp * procamp,bool full_range,vl_csc_matrix * matrix)174 void vl_csc_get_matrix(enum VL_CSC_COLOR_STANDARD cs,
175                        struct vl_procamp *procamp,
176                        bool full_range,
177                        vl_csc_matrix *matrix)
178 {
179    float ybias = full_range ? -16.0f/255.0f : 0.0f;
180    float cbbias = -128.0f/255.0f;
181    float crbias = -128.0f/255.0f;
182 
183    const struct vl_procamp *p = procamp ? procamp : &vl_default_procamp;
184    float c = p->contrast;
185    float s = p->saturation;
186    float b = p->brightness;
187    float h = p->hue;
188 
189    const vl_csc_matrix *cstd;
190 
191    assert(matrix);
192 
193    switch (cs) {
194       case VL_CSC_COLOR_STANDARD_BT_601:
195          cstd = full_range ? &bt_601_full : &bt_601;
196          break;
197       case VL_CSC_COLOR_STANDARD_BT_709:
198          cstd = full_range ? &bt_709_full : &bt_709;
199          break;
200       case VL_CSC_COLOR_STANDARD_SMPTE_240M:
201          cstd = full_range ? &smpte240m_full : &smpte240m;
202          break;
203       case VL_CSC_COLOR_STANDARD_IDENTITY:
204       default:
205          assert(cs == VL_CSC_COLOR_STANDARD_IDENTITY);
206          memcpy(matrix, identity, sizeof(vl_csc_matrix));
207          return;
208    }
209 
210    (*matrix)[0][0] = c * (*cstd)[0][0];
211    (*matrix)[0][1] = c * (*cstd)[0][1] * s * cosf(h) - c * (*cstd)[0][2] * s * sinf(h);
212    (*matrix)[0][2] = c * (*cstd)[0][2] * s * cosf(h) + c * (*cstd)[0][1] * s * sinf(h);
213    (*matrix)[0][3] = (*cstd)[0][3] + (*cstd)[0][0] * (b + c * ybias) +
214                      (*cstd)[0][1] * (c * cbbias * s * cosf(h) + c * crbias * s * sinf(h)) +
215                      (*cstd)[0][2] * (c * crbias * s * cosf(h) - c * cbbias * s * sinf(h));
216 
217    (*matrix)[1][0] = c * (*cstd)[1][0];
218    (*matrix)[1][1] = c * (*cstd)[1][1] * s * cosf(h) - c * (*cstd)[1][2] * s * sinf(h);
219    (*matrix)[1][2] = c * (*cstd)[1][2] * s * cosf(h) + c * (*cstd)[1][1] * s * sinf(h);
220    (*matrix)[1][3] = (*cstd)[1][3] + (*cstd)[1][0] * (b + c * ybias) +
221                      (*cstd)[1][1] * (c * cbbias * s * cosf(h) + c * crbias * s * sinf(h)) +
222                      (*cstd)[1][2] * (c * crbias * s * cosf(h) - c * cbbias * s * sinf(h));
223 
224    (*matrix)[2][0] = c * (*cstd)[2][0];
225    (*matrix)[2][1] = c * (*cstd)[2][1] * s * cosf(h) - c * (*cstd)[2][2] * s * sinf(h);
226    (*matrix)[2][2] = c * (*cstd)[2][2] * s * cosf(h) + c * (*cstd)[2][1] * s * sinf(h);
227    (*matrix)[2][3] = (*cstd)[2][3] + (*cstd)[2][0] * (b + c * ybias) +
228                      (*cstd)[2][1] * (c * cbbias * s * cosf(h) + c * crbias * s * sinf(h)) +
229                      (*cstd)[2][2] * (c * crbias * s * cosf(h) - c * cbbias * s * sinf(h));
230 }
231