1 //---------------------------------------------------------------------------------
2 //
3 //  Little Color Management System
4 //  Copyright (c) 1998-2011 Marti Maria Saguer
5 //
6 // Permission is hereby granted, free of charge, to any person obtaining
7 // a copy of this software and associated documentation files (the "Software"),
8 // to deal in the Software without restriction, including without limitation
9 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 // and/or sell copies of the Software, and to permit persons to whom the Software
11 // is furnished to do so, subject to the following conditions:
12 //
13 // The above copyright notice and this permission notice shall be included in
14 // all copies or substantial portions of the Software.
15 //
16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 //
24 //---------------------------------------------------------------------------------
25 //
26 
27 #include "lcms2_internal.h"
28 
29 
30 //----------------------------------------------------------------------------------
31 
32 // Optimization for 8 bits, Shaper-CLUT (3 inputs only)
33 typedef struct {
34 
35     cmsContext ContextID;
36 
37     const cmsInterpParams* p;   // Tetrahedrical interpolation parameters. This is a not-owned pointer.
38 
39     cmsUInt16Number rx[256], ry[256], rz[256];
40     cmsUInt32Number X0[256], Y0[256], Z0[256];  // Precomputed nodes and offsets for 8-bit input data
41 
42 
43 } Prelin8Data;
44 
45 
46 // Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
47 typedef struct {
48 
49     cmsContext ContextID;
50 
51     // Number of channels
52     int nInputs;
53     int nOutputs;
54 
55     _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS];       // The maximum number of input channels is known in advance
56     cmsInterpParams*  ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
57 
58     _cmsInterpFn16 EvalCLUT;            // The evaluator for 3D grid
59     const cmsInterpParams* CLUTparams;  // (not-owned pointer)
60 
61 
62     _cmsInterpFn16* EvalCurveOut16;       // Points to an array of curve evaluators in 16 bits (not-owned pointer)
63     cmsInterpParams**  ParamsCurveOut16;  // Points to an array of references to interpolation params (not-owned pointer)
64 
65 
66 } Prelin16Data;
67 
68 
69 // Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
70 
71 typedef cmsInt32Number cmsS1Fixed14Number;   // Note that this may hold more than 16 bits!
72 
73 #define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
74 
75 typedef struct {
76 
77     cmsContext ContextID;
78 
79     cmsS1Fixed14Number Shaper1R[256];  // from 0..255 to 1.14  (0.0...1.0)
80     cmsS1Fixed14Number Shaper1G[256];
81     cmsS1Fixed14Number Shaper1B[256];
82 
83     cmsS1Fixed14Number Mat[3][3];     // n.14 to n.14 (needs a saturation after that)
84     cmsS1Fixed14Number Off[3];
85 
86     cmsUInt16Number Shaper2R[16385];    // 1.14 to 0..255
87     cmsUInt16Number Shaper2G[16385];
88     cmsUInt16Number Shaper2B[16385];
89 
90 } MatShaper8Data;
91 
92 // Curves, optimization is shared between 8 and 16 bits
93 typedef struct {
94 
95     cmsContext ContextID;
96 
97     int nCurves;                  // Number of curves
98     int nElements;                // Elements in curves
99     cmsUInt16Number** Curves;     // Points to a dynamically  allocated array
100 
101 } Curves16Data;
102 
103 
104 // Simple optimizations ----------------------------------------------------------------------------------------------------------
105 
106 
107 // Remove an element in linked chain
108 static
_RemoveElement(cmsStage ** head)109 void _RemoveElement(cmsStage** head)
110 {
111     cmsStage* mpe = *head;
112     cmsStage* next = mpe ->Next;
113     *head = next;
114     cmsStageFree(mpe);
115 }
116 
117 // Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
118 static
_Remove1Op(cmsPipeline * Lut,cmsStageSignature UnaryOp)119 cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
120 {
121     cmsStage** pt = &Lut ->Elements;
122     cmsBool AnyOpt = FALSE;
123 
124     while (*pt != NULL) {
125 
126         if ((*pt) ->Implements == UnaryOp) {
127             _RemoveElement(pt);
128             AnyOpt = TRUE;
129         }
130         else
131             pt = &((*pt) -> Next);
132     }
133 
134     return AnyOpt;
135 }
136 
137 // Same, but only if two adjacent elements are found
138 static
_Remove2Op(cmsPipeline * Lut,cmsStageSignature Op1,cmsStageSignature Op2)139 cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
140 {
141     cmsStage** pt1;
142     cmsStage** pt2;
143     cmsBool AnyOpt = FALSE;
144 
145     pt1 = &Lut ->Elements;
146     if (*pt1 == NULL) return AnyOpt;
147 
148     while (*pt1 != NULL) {
149 
150         pt2 = &((*pt1) -> Next);
151         if (*pt2 == NULL) return AnyOpt;
152 
153         if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
154             _RemoveElement(pt2);
155             _RemoveElement(pt1);
156             AnyOpt = TRUE;
157         }
158         else
159             pt1 = &((*pt1) -> Next);
160     }
161 
162     return AnyOpt;
163 }
164 
165 // Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
166 // by a v4 to v2 and vice-versa. The elements are then discarded.
167 static
PreOptimize(cmsPipeline * Lut)168 cmsBool PreOptimize(cmsPipeline* Lut)
169 {
170     cmsBool AnyOpt = FALSE, Opt;
171 
172     do {
173 
174         Opt = FALSE;
175 
176         // Remove all identities
177         Opt |= _Remove1Op(Lut, cmsSigIdentityElemType);
178 
179         // Remove XYZ2Lab followed by Lab2XYZ
180         Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
181 
182         // Remove Lab2XYZ followed by XYZ2Lab
183         Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
184 
185         // Remove V4 to V2 followed by V2 to V4
186         Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
187 
188         // Remove V2 to V4 followed by V4 to V2
189         Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
190 
191         // Remove float pcs Lab conversions
192         Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
193 
194         // Remove float pcs Lab conversions
195         Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
196 
197         if (Opt) AnyOpt = TRUE;
198 
199     } while (Opt);
200 
201     return AnyOpt;
202 }
203 
204 static
Eval16nop1D(register const cmsUInt16Number Input[],register cmsUInt16Number Output[],register const struct _cms_interp_struc * p)205 void Eval16nop1D(register const cmsUInt16Number Input[],
206                  register cmsUInt16Number Output[],
207                  register const struct _cms_interp_struc* p)
208 {
209     Output[0] = Input[0];
210 
211     cmsUNUSED_PARAMETER(p);
212 }
213 
214 static
PrelinEval16(register const cmsUInt16Number Input[],register cmsUInt16Number Output[],register const void * D)215 void PrelinEval16(register const cmsUInt16Number Input[],
216                   register cmsUInt16Number Output[],
217                   register const void* D)
218 {
219     Prelin16Data* p16 = (Prelin16Data*) D;
220     cmsUInt16Number  StageABC[MAX_INPUT_DIMENSIONS];
221     cmsUInt16Number  StageDEF[cmsMAXCHANNELS];
222     int i;
223 
224     for (i=0; i < p16 ->nInputs; i++) {
225 
226         p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
227     }
228 
229     p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams);
230 
231     for (i=0; i < p16 ->nOutputs; i++) {
232 
233         p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
234     }
235 }
236 
237 
238 static
PrelinOpt16free(cmsContext ContextID,void * ptr)239 void PrelinOpt16free(cmsContext ContextID, void* ptr)
240 {
241     Prelin16Data* p16 = (Prelin16Data*) ptr;
242 
243     _cmsFree(ContextID, p16 ->EvalCurveOut16);
244     _cmsFree(ContextID, p16 ->ParamsCurveOut16);
245 
246     _cmsFree(ContextID, p16);
247 }
248 
249 static
Prelin16dup(cmsContext ContextID,const void * ptr)250 void* Prelin16dup(cmsContext ContextID, const void* ptr)
251 {
252     Prelin16Data* p16 = (Prelin16Data*) ptr;
253     Prelin16Data* Duped = _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
254 
255     if (Duped == NULL) return NULL;
256 
257     Duped ->EvalCurveOut16   = (_cmsInterpFn16*)_cmsDupMem(ContextID, p16 ->EvalCurveOut16, p16 ->nOutputs * sizeof(_cmsInterpFn16));
258     Duped ->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16 ->ParamsCurveOut16, p16 ->nOutputs * sizeof(cmsInterpParams* ));
259 
260     return Duped;
261 }
262 
263 
264 static
PrelinOpt16alloc(cmsContext ContextID,const cmsInterpParams * ColorMap,int nInputs,cmsToneCurve ** In,int nOutputs,cmsToneCurve ** Out)265 Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
266                                const cmsInterpParams* ColorMap,
267                                int nInputs, cmsToneCurve** In,
268                                int nOutputs, cmsToneCurve** Out )
269 {
270     int i;
271     Prelin16Data* p16 = _cmsMallocZero(ContextID, sizeof(Prelin16Data));
272     if (p16 == NULL) return NULL;
273 
274     p16 ->nInputs = nInputs;
275     p16 -> nOutputs = nOutputs;
276 
277 
278     for (i=0; i < nInputs; i++) {
279 
280         if (In == NULL) {
281             p16 -> ParamsCurveIn16[i] = NULL;
282             p16 -> EvalCurveIn16[i] = Eval16nop1D;
283 
284         }
285         else {
286             p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
287             p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
288         }
289     }
290 
291     p16 ->CLUTparams = ColorMap;
292     p16 ->EvalCLUT   = ColorMap ->Interpolation.Lerp16;
293 
294 
295     p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
296     p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
297 
298     for (i=0; i < nOutputs; i++) {
299 
300         if (Out == NULL) {
301             p16 ->ParamsCurveOut16[i] = NULL;
302             p16 -> EvalCurveOut16[i] = Eval16nop1D;
303         }
304         else {
305 
306             p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
307             p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
308         }
309     }
310 
311     return p16;
312 }
313 
314 
315 
316 // Resampling ---------------------------------------------------------------------------------
317 
318 #define PRELINEARIZATION_POINTS 4096
319 
320 // Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
321 // almost any transform. We use floating point precision and then convert from floating point to 16 bits.
322 static
XFormSampler16(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register void * Cargo)323 int XFormSampler16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo)
324 {
325     cmsPipeline* Lut = (cmsPipeline*) Cargo;
326     cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
327     cmsUInt32Number i;
328 
329     _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
330     _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
331 
332     // From 16 bit to floating point
333     for (i=0; i < Lut ->InputChannels; i++)
334         InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
335 
336     // Evaluate in floating point
337     cmsPipelineEvalFloat(InFloat, OutFloat, Lut);
338 
339     // Back to 16 bits representation
340     for (i=0; i < Lut ->OutputChannels; i++)
341         Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
342 
343     // Always succeed
344     return TRUE;
345 }
346 
347 // Try to see if the curves of a given MPE are linear
348 static
AllCurvesAreLinear(cmsStage * mpe)349 cmsBool AllCurvesAreLinear(cmsStage* mpe)
350 {
351     cmsToneCurve** Curves;
352     cmsUInt32Number i, n;
353 
354     Curves = _cmsStageGetPtrToCurveSet(mpe);
355     if (Curves == NULL) return FALSE;
356 
357     n = cmsStageOutputChannels(mpe);
358 
359     for (i=0; i < n; i++) {
360         if (!cmsIsToneCurveLinear(Curves[i])) return FALSE;
361     }
362 
363     return TRUE;
364 }
365 
366 // This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
367 // is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
368 static
PatchLUT(cmsStage * CLUT,cmsUInt16Number At[],cmsUInt16Number Value[],int nChannelsOut,int nChannelsIn)369 cmsBool  PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
370                   int nChannelsOut, int nChannelsIn)
371 {
372     _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
373     cmsInterpParams* p16  = Grid ->Params;
374     cmsFloat64Number px, py, pz, pw;
375     int        x0, y0, z0, w0;
376     int        i, index;
377 
378     if (CLUT -> Type != cmsSigCLutElemType) {
379         cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
380         return FALSE;
381     }
382 
383 	if (nChannelsIn != 1 && nChannelsIn != 3 && nChannelsIn != 4) {
384 		cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
385         return FALSE;
386 	}
387     if (nChannelsIn == 4) {
388 
389         px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
390         py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
391         pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
392         pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
393 
394         x0 = (int) floor(px);
395         y0 = (int) floor(py);
396         z0 = (int) floor(pz);
397         w0 = (int) floor(pw);
398 
399         if (((px - x0) != 0) ||
400             ((py - y0) != 0) ||
401             ((pz - z0) != 0) ||
402             ((pw - w0) != 0)) return FALSE; // Not on exact node
403 
404         index = p16 -> opta[3] * x0 +
405                 p16 -> opta[2] * y0 +
406                 p16 -> opta[1] * z0 +
407                 p16 -> opta[0] * w0;
408     }
409     else
410         if (nChannelsIn == 3) {
411 
412             px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
413             py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
414             pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
415 
416             x0 = (int) floor(px);
417             y0 = (int) floor(py);
418             z0 = (int) floor(pz);
419 
420             if (((px - x0) != 0) ||
421                 ((py - y0) != 0) ||
422                 ((pz - z0) != 0)) return FALSE;  // Not on exact node
423 
424             index = p16 -> opta[2] * x0 +
425                     p16 -> opta[1] * y0 +
426                     p16 -> opta[0] * z0;
427         }
428         else
429             if (nChannelsIn == 1) {
430 
431                 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
432 
433                 x0 = (int) floor(px);
434 
435                 if (((px - x0) != 0)) return FALSE; // Not on exact node
436 
437                 index = p16 -> opta[0] * x0;
438             }
439             else {
440                 cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
441                 return FALSE;
442             }
443 
444             for (i=0; i < nChannelsOut; i++)
445                 Grid -> Tab.T[index + i] = Value[i];
446 
447             return TRUE;
448 }
449 
450 // Auxiliar, to see if two values are equal or very different
451 static
WhitesAreEqual(int n,cmsUInt16Number White1[],cmsUInt16Number White2[])452 cmsBool WhitesAreEqual(int n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
453 {
454     int i;
455 
456     for (i=0; i < n; i++) {
457 
458         if (abs(White1[i] - White2[i]) > 0xf000) return TRUE;  // Values are so extremly different that the fixup should be avoided
459         if (White1[i] != White2[i]) return FALSE;
460     }
461     return TRUE;
462 }
463 
464 
465 // Locate the node for the white point and fix it to pure white in order to avoid scum dot.
466 static
FixWhiteMisalignment(cmsPipeline * Lut,cmsColorSpaceSignature EntryColorSpace,cmsColorSpaceSignature ExitColorSpace)467 cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
468 {
469     cmsUInt16Number *WhitePointIn, *WhitePointOut;
470     cmsUInt16Number  WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
471     cmsUInt32Number i, nOuts, nIns;
472     cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
473 
474     if (!_cmsEndPointsBySpace(EntryColorSpace,
475         &WhitePointIn, NULL, &nIns)) return FALSE;
476 
477     if (!_cmsEndPointsBySpace(ExitColorSpace,
478         &WhitePointOut, NULL, &nOuts)) return FALSE;
479 
480     // It needs to be fixed?
481     if (Lut ->InputChannels != nIns) return FALSE;
482     if (Lut ->OutputChannels != nOuts) return FALSE;
483 
484     cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut);
485 
486     if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
487 
488     // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
489     if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
490         if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
491             if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
492                 if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT))
493                     return FALSE;
494 
495     // We need to interpolate white points of both, pre and post curves
496     if (PreLin) {
497 
498         cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
499 
500         for (i=0; i < nIns; i++) {
501             WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]);
502         }
503     }
504     else {
505         for (i=0; i < nIns; i++)
506             WhiteIn[i] = WhitePointIn[i];
507     }
508 
509     // If any post-linearization, we need to find how is represented white before the curve, do
510     // a reverse interpolation in this case.
511     if (PostLin) {
512 
513         cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
514 
515         for (i=0; i < nOuts; i++) {
516 
517             cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]);
518             if (InversePostLin == NULL) {
519                 WhiteOut[i] = WhitePointOut[i];
520 
521             } else {
522 
523                 WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]);
524                 cmsFreeToneCurve(InversePostLin);
525             }
526         }
527     }
528     else {
529         for (i=0; i < nOuts; i++)
530             WhiteOut[i] = WhitePointOut[i];
531     }
532 
533     // Ok, proceed with patching. May fail and we don't care if it fails
534     PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns);
535 
536     return TRUE;
537 }
538 
539 // -----------------------------------------------------------------------------------------------------------------------------------------------
540 // This function creates simple LUT from complex ones. The generated LUT has an optional set of
541 // prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
542 // These curves have to exist in the original LUT in order to be used in the simplified output.
543 // Caller may also use the flags to allow this feature.
544 // LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
545 // This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
546 // -----------------------------------------------------------------------------------------------------------------------------------------------
547 
548 static
OptimizeByResampling(cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)549 cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
550 {
551     cmsPipeline* Src = NULL;
552     cmsPipeline* Dest = NULL;
553     cmsStage* mpe;
554     cmsStage* CLUT;
555     cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
556     int nGridPoints;
557     cmsColorSpaceSignature ColorSpace, OutputColorSpace;
558     cmsStage *NewPreLin = NULL;
559     cmsStage *NewPostLin = NULL;
560     _cmsStageCLutData* DataCLUT;
561     cmsToneCurve** DataSetIn;
562     cmsToneCurve** DataSetOut;
563     Prelin16Data* p16;
564 
565     // This is a loosy optimization! does not apply in floating-point cases
566     if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
567 
568     ColorSpace       = _cmsICCcolorSpace(T_COLORSPACE(*InputFormat));
569     OutputColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*OutputFormat));
570     nGridPoints      = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
571 
572     // For empty LUTs, 2 points are enough
573     if (cmsPipelineStageCount(*Lut) == 0)
574         nGridPoints = 2;
575 
576     Src = *Lut;
577 
578     // Named color pipelines cannot be optimized either
579     for (mpe = cmsPipelineGetPtrToFirstStage(Src);
580         mpe != NULL;
581         mpe = cmsStageNext(mpe)) {
582             if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
583     }
584 
585     // Allocate an empty LUT
586     Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
587     if (!Dest) return FALSE;
588 
589     // Prelinearization tables are kept unless indicated by flags
590     if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
591 
592         // Get a pointer to the prelinearization element
593         cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src);
594 
595         // Check if suitable
596         if (PreLin ->Type == cmsSigCurveSetElemType) {
597 
598             // Maybe this is a linear tram, so we can avoid the whole stuff
599             if (!AllCurvesAreLinear(PreLin)) {
600 
601                 // All seems ok, proceed.
602                 NewPreLin = cmsStageDup(PreLin);
603                 if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin))
604                     goto Error;
605 
606                 // Remove prelinearization. Since we have duplicated the curve
607                 // in destination LUT, the sampling shoud be applied after this stage.
608                 cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin);
609             }
610         }
611     }
612 
613     // Allocate the CLUT
614     CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
615     if (CLUT == NULL) return FALSE;
616 
617     // Add the CLUT to the destination LUT
618     if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) {
619         goto Error;
620     }
621 
622     // Postlinearization tables are kept unless indicated by flags
623     if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
624 
625         // Get a pointer to the postlinearization if present
626         cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src);
627 
628         // Check if suitable
629         if (cmsStageType(PostLin) == cmsSigCurveSetElemType) {
630 
631             // Maybe this is a linear tram, so we can avoid the whole stuff
632             if (!AllCurvesAreLinear(PostLin)) {
633 
634                 // All seems ok, proceed.
635                 NewPostLin = cmsStageDup(PostLin);
636                 if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin))
637                     goto Error;
638 
639                 // In destination LUT, the sampling shoud be applied after this stage.
640                 cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin);
641             }
642         }
643     }
644 
645     // Now its time to do the sampling. We have to ignore pre/post linearization
646     // The source LUT whithout pre/post curves is passed as parameter.
647     if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) {
648 Error:
649         // Ops, something went wrong, Restore stages
650         if (KeepPreLin != NULL) {
651             if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) {
652                 _cmsAssert(0); // This never happens
653             }
654         }
655         if (KeepPostLin != NULL) {
656             if (!cmsPipelineInsertStage(Src, cmsAT_END,   KeepPostLin)) {
657                 _cmsAssert(0); // This never happens
658             }
659         }
660         cmsPipelineFree(Dest);
661         return FALSE;
662     }
663 
664     // Done.
665 
666     if (KeepPreLin != NULL) cmsStageFree(KeepPreLin);
667     if (KeepPostLin != NULL) cmsStageFree(KeepPostLin);
668     cmsPipelineFree(Src);
669 
670     DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
671 
672     if (NewPreLin == NULL) DataSetIn = NULL;
673     else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
674 
675     if (NewPostLin == NULL) DataSetOut = NULL;
676     else  DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
677 
678 
679     if (DataSetIn == NULL && DataSetOut == NULL) {
680 
681         _cmsPipelineSetOptimizationParameters(Dest, (_cmsOPTeval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
682     }
683     else {
684 
685         p16 = PrelinOpt16alloc(Dest ->ContextID,
686             DataCLUT ->Params,
687             Dest ->InputChannels,
688             DataSetIn,
689             Dest ->OutputChannels,
690             DataSetOut);
691 
692         _cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
693     }
694 
695 
696     // Don't fix white on absolute colorimetric
697     if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
698         *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
699 
700     if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
701 
702         FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace);
703     }
704 
705     *Lut = Dest;
706     return TRUE;
707 
708     cmsUNUSED_PARAMETER(Intent);
709 }
710 
711 
712 // -----------------------------------------------------------------------------------------------------------------------------------------------
713 // Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
714 // Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
715 // for RGB transforms. See the paper for more details
716 // -----------------------------------------------------------------------------------------------------------------------------------------------
717 
718 
719 // Normalize endpoints by slope limiting max and min. This assures endpoints as well.
720 // Descending curves are handled as well.
721 static
SlopeLimiting(cmsToneCurve * g)722 void SlopeLimiting(cmsToneCurve* g)
723 {
724     int BeginVal, EndVal;
725     int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5);   // Cutoff at 2%
726     int AtEnd   = g ->nEntries - AtBegin - 1;                                  // And 98%
727     cmsFloat64Number Val, Slope, beta;
728     int i;
729 
730     if (cmsIsToneCurveDescending(g)) {
731         BeginVal = 0xffff; EndVal = 0;
732     }
733     else {
734         BeginVal = 0; EndVal = 0xffff;
735     }
736 
737     // Compute slope and offset for begin of curve
738     Val   = g ->Table16[AtBegin];
739     Slope = (Val - BeginVal) / AtBegin;
740     beta  = Val - Slope * AtBegin;
741 
742     for (i=0; i < AtBegin; i++)
743         g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
744 
745     // Compute slope and offset for the end
746     Val   = g ->Table16[AtEnd];
747     Slope = (EndVal - Val) / AtBegin;   // AtBegin holds the X interval, which is same in both cases
748     beta  = Val - Slope * AtEnd;
749 
750     for (i = AtEnd; i < (int) g ->nEntries; i++)
751         g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
752 }
753 
754 
755 // Precomputes tables for 8-bit on input devicelink.
756 static
PrelinOpt8alloc(cmsContext ContextID,const cmsInterpParams * p,cmsToneCurve * G[3])757 Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
758 {
759     int i;
760     cmsUInt16Number Input[3];
761     cmsS15Fixed16Number v1, v2, v3;
762     Prelin8Data* p8;
763 
764     p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
765     if (p8 == NULL) return NULL;
766 
767     // Since this only works for 8 bit input, values comes always as x * 257,
768     // we can safely take msb byte (x << 8 + x)
769 
770     for (i=0; i < 256; i++) {
771 
772         if (G != NULL) {
773 
774             // Get 16-bit representation
775             Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i));
776             Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i));
777             Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i));
778         }
779         else {
780             Input[0] = FROM_8_TO_16(i);
781             Input[1] = FROM_8_TO_16(i);
782             Input[2] = FROM_8_TO_16(i);
783         }
784 
785 
786         // Move to 0..1.0 in fixed domain
787         v1 = _cmsToFixedDomain(Input[0] * p -> Domain[0]);
788         v2 = _cmsToFixedDomain(Input[1] * p -> Domain[1]);
789         v3 = _cmsToFixedDomain(Input[2] * p -> Domain[2]);
790 
791         // Store the precalculated table of nodes
792         p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
793         p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
794         p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
795 
796         // Store the precalculated table of offsets
797         p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
798         p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
799         p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
800     }
801 
802     p8 ->ContextID = ContextID;
803     p8 ->p = p;
804 
805     return p8;
806 }
807 
808 static
Prelin8free(cmsContext ContextID,void * ptr)809 void Prelin8free(cmsContext ContextID, void* ptr)
810 {
811     _cmsFree(ContextID, ptr);
812 }
813 
814 static
Prelin8dup(cmsContext ContextID,const void * ptr)815 void* Prelin8dup(cmsContext ContextID, const void* ptr)
816 {
817     return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
818 }
819 
820 
821 
822 // A optimized interpolation for 8-bit input.
823 #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
824 static
PrelinEval8(register const cmsUInt16Number Input[],register cmsUInt16Number Output[],register const void * D)825 void PrelinEval8(register const cmsUInt16Number Input[],
826                   register cmsUInt16Number Output[],
827                   register const void* D)
828 {
829 
830     cmsUInt8Number         r, g, b;
831     cmsS15Fixed16Number    rx, ry, rz;
832     cmsS15Fixed16Number    c0, c1, c2, c3, Rest;
833     int                    OutChan;
834     register cmsS15Fixed16Number    X0, X1, Y0, Y1, Z0, Z1;
835     Prelin8Data* p8 = (Prelin8Data*) D;
836     register const cmsInterpParams* p = p8 ->p;
837     int                    TotalOut = p -> nOutputs;
838     const cmsUInt16Number* LutTable = (const cmsUInt16Number*)p -> Table;
839 
840     r = Input[0] >> 8;
841     g = Input[1] >> 8;
842     b = Input[2] >> 8;
843 
844     X0 = X1 = p8->X0[r];
845     Y0 = Y1 = p8->Y0[g];
846     Z0 = Z1 = p8->Z0[b];
847 
848     rx = p8 ->rx[r];
849     ry = p8 ->ry[g];
850     rz = p8 ->rz[b];
851 
852     X1 = X0 + ((rx == 0) ? 0 : p ->opta[2]);
853     Y1 = Y0 + ((ry == 0) ? 0 : p ->opta[1]);
854     Z1 = Z0 + ((rz == 0) ? 0 : p ->opta[0]);
855 
856 
857     // These are the 6 Tetrahedral
858     for (OutChan=0; OutChan < TotalOut; OutChan++) {
859 
860         c0 = DENS(X0, Y0, Z0);
861 
862         if (rx >= ry && ry >= rz)
863         {
864             c1 = DENS(X1, Y0, Z0) - c0;
865             c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
866             c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
867         }
868         else
869             if (rx >= rz && rz >= ry)
870             {
871                 c1 = DENS(X1, Y0, Z0) - c0;
872                 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
873                 c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
874             }
875             else
876                 if (rz >= rx && rx >= ry)
877                 {
878                     c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
879                     c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
880                     c3 = DENS(X0, Y0, Z1) - c0;
881                 }
882                 else
883                     if (ry >= rx && rx >= rz)
884                     {
885                         c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
886                         c2 = DENS(X0, Y1, Z0) - c0;
887                         c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
888                     }
889                     else
890                         if (ry >= rz && rz >= rx)
891                         {
892                             c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
893                             c2 = DENS(X0, Y1, Z0) - c0;
894                             c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
895                         }
896                         else
897                             if (rz >= ry && ry >= rx)
898                             {
899                                 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
900                                 c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
901                                 c3 = DENS(X0, Y0, Z1) - c0;
902                             }
903                             else  {
904                                 c1 = c2 = c3 = 0;
905                             }
906 
907 
908                             Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
909                             Output[OutChan] = (cmsUInt16Number)c0 + ((Rest + (Rest>>16))>>16);
910 
911     }
912 }
913 
914 #undef DENS
915 
916 
917 // Curves that contain wide empty areas are not optimizeable
918 static
IsDegenerated(const cmsToneCurve * g)919 cmsBool IsDegenerated(const cmsToneCurve* g)
920 {
921     int i, Zeros = 0, Poles = 0;
922     int nEntries = g ->nEntries;
923 
924     for (i=0; i < nEntries; i++) {
925 
926         if (g ->Table16[i] == 0x0000) Zeros++;
927         if (g ->Table16[i] == 0xffff) Poles++;
928     }
929 
930     if (Zeros == 1 && Poles == 1) return FALSE;  // For linear tables
931     if (Zeros > (nEntries / 4)) return TRUE;  // Degenerated, mostly zeros
932     if (Poles > (nEntries / 4)) return TRUE;  // Degenerated, mostly poles
933 
934     return FALSE;
935 }
936 
937 // --------------------------------------------------------------------------------------------------------------
938 // We need xput over here
939 
940 static
OptimizeByComputingLinearization(cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)941 cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
942 {
943     cmsPipeline* OriginalLut;
944     int nGridPoints;
945     cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
946     cmsUInt32Number t, i;
947     cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
948     cmsBool lIsSuitable, lIsLinear;
949     cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
950     cmsStage* OptimizedCLUTmpe;
951     cmsColorSpaceSignature ColorSpace, OutputColorSpace;
952     cmsStage* OptimizedPrelinMpe;
953     cmsStage* mpe;
954     cmsToneCurve**   OptimizedPrelinCurves;
955     _cmsStageCLutData*     OptimizedPrelinCLUT;
956 
957 
958     // This is a loosy optimization! does not apply in floating-point cases
959     if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
960 
961     // Only on RGB
962     if (T_COLORSPACE(*InputFormat)  != PT_RGB) return FALSE;
963     if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
964 
965 
966     // On 16 bits, user has to specify the feature
967     if (!_cmsFormatterIs8bit(*InputFormat)) {
968         if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
969     }
970 
971     OriginalLut = *Lut;
972 
973    // Named color pipelines cannot be optimized either
974    for (mpe = cmsPipelineGetPtrToFirstStage(OriginalLut);
975          mpe != NULL;
976          mpe = cmsStageNext(mpe)) {
977             if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
978     }
979 
980     ColorSpace       = _cmsICCcolorSpace(T_COLORSPACE(*InputFormat));
981     OutputColorSpace = _cmsICCcolorSpace(T_COLORSPACE(*OutputFormat));
982     nGridPoints      = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
983 
984     // Empty gamma containers
985     memset(Trans, 0, sizeof(Trans));
986     memset(TransReverse, 0, sizeof(TransReverse));
987 
988     for (t = 0; t < OriginalLut ->InputChannels; t++) {
989         Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL);
990         if (Trans[t] == NULL) goto Error;
991     }
992 
993     // Populate the curves
994     for (i=0; i < PRELINEARIZATION_POINTS; i++) {
995 
996         v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
997 
998         // Feed input with a gray ramp
999         for (t=0; t < OriginalLut ->InputChannels; t++)
1000             In[t] = v;
1001 
1002         // Evaluate the gray value
1003         cmsPipelineEvalFloat(In, Out, OriginalLut);
1004 
1005         // Store result in curve
1006         for (t=0; t < OriginalLut ->InputChannels; t++)
1007             Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
1008     }
1009 
1010     // Slope-limit the obtained curves
1011     for (t = 0; t < OriginalLut ->InputChannels; t++)
1012         SlopeLimiting(Trans[t]);
1013 
1014     // Check for validity
1015     lIsSuitable = TRUE;
1016     lIsLinear   = TRUE;
1017     for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
1018 
1019         // Exclude if already linear
1020         if (!cmsIsToneCurveLinear(Trans[t]))
1021             lIsLinear = FALSE;
1022 
1023         // Exclude if non-monotonic
1024         if (!cmsIsToneCurveMonotonic(Trans[t]))
1025             lIsSuitable = FALSE;
1026 
1027         if (IsDegenerated(Trans[t]))
1028             lIsSuitable = FALSE;
1029     }
1030 
1031     // If it is not suitable, just quit
1032     if (!lIsSuitable) goto Error;
1033 
1034     // Invert curves if possible
1035     for (t = 0; t < OriginalLut ->InputChannels; t++) {
1036         TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]);
1037         if (TransReverse[t] == NULL) goto Error;
1038     }
1039 
1040     // Now inset the reversed curves at the begin of transform
1041     LutPlusCurves = cmsPipelineDup(OriginalLut);
1042     if (LutPlusCurves == NULL) goto Error;
1043 
1044     if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse)))
1045         goto Error;
1046 
1047     // Create the result LUT
1048     OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
1049     if (OptimizedLUT == NULL) goto Error;
1050 
1051     OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans);
1052 
1053     // Create and insert the curves at the beginning
1054     if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
1055         goto Error;
1056 
1057     // Allocate the CLUT for result
1058     OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
1059 
1060     // Add the CLUT to the destination LUT
1061     if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
1062         goto Error;
1063 
1064     // Resample the LUT
1065     if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
1066 
1067     // Free resources
1068     for (t = 0; t < OriginalLut ->InputChannels; t++) {
1069 
1070         if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1071         if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1072     }
1073 
1074     cmsPipelineFree(LutPlusCurves);
1075 
1076 
1077     OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
1078     OptimizedPrelinCLUT   = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
1079 
1080     // Set the evaluator if 8-bit
1081     if (_cmsFormatterIs8bit(*InputFormat)) {
1082 
1083         Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
1084                                                 OptimizedPrelinCLUT ->Params,
1085                                                 OptimizedPrelinCurves);
1086         if (p8 == NULL) return FALSE;
1087 
1088         _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
1089 
1090     }
1091     else
1092     {
1093         Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
1094             OptimizedPrelinCLUT ->Params,
1095             3, OptimizedPrelinCurves, 3, NULL);
1096         if (p16 == NULL) return FALSE;
1097 
1098         _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
1099 
1100     }
1101 
1102     // Don't fix white on absolute colorimetric
1103     if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
1104         *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
1105 
1106     if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
1107 
1108         if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) {
1109 
1110             return FALSE;
1111         }
1112     }
1113 
1114     // And return the obtained LUT
1115 
1116     cmsPipelineFree(OriginalLut);
1117     *Lut = OptimizedLUT;
1118     return TRUE;
1119 
1120 Error:
1121 
1122     for (t = 0; t < OriginalLut ->InputChannels; t++) {
1123 
1124         if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1125         if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1126     }
1127 
1128     if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
1129     if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);
1130 
1131     return FALSE;
1132 
1133     cmsUNUSED_PARAMETER(Intent);
1134 }
1135 
1136 
1137 // Curves optimizer ------------------------------------------------------------------------------------------------------------------
1138 
1139 static
CurvesFree(cmsContext ContextID,void * ptr)1140 void CurvesFree(cmsContext ContextID, void* ptr)
1141 {
1142      Curves16Data* Data = (Curves16Data*) ptr;
1143      int i;
1144 
1145      for (i=0; i < Data -> nCurves; i++) {
1146 
1147          _cmsFree(ContextID, Data ->Curves[i]);
1148      }
1149 
1150      _cmsFree(ContextID, Data ->Curves);
1151      _cmsFree(ContextID, ptr);
1152 }
1153 
1154 static
CurvesDup(cmsContext ContextID,const void * ptr)1155 void* CurvesDup(cmsContext ContextID, const void* ptr)
1156 {
1157     Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
1158     int i;
1159 
1160     if (Data == NULL) return NULL;
1161 
1162     Data ->Curves = (cmsUInt16Number**)_cmsDupMem(ContextID, Data ->Curves, Data ->nCurves * sizeof(cmsUInt16Number*));
1163 
1164     for (i=0; i < Data -> nCurves; i++) {
1165         Data ->Curves[i] = (cmsUInt16Number*)_cmsDupMem(ContextID, Data ->Curves[i], Data -> nElements * sizeof(cmsUInt16Number));
1166     }
1167 
1168     return (void*) Data;
1169 }
1170 
1171 // Precomputes tables for 8-bit on input devicelink.
1172 static
CurvesAlloc(cmsContext ContextID,int nCurves,int nElements,cmsToneCurve ** G)1173 Curves16Data* CurvesAlloc(cmsContext ContextID, int nCurves, int nElements, cmsToneCurve** G)
1174 {
1175     int i, j;
1176     Curves16Data* c16;
1177 
1178     c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
1179     if (c16 == NULL) return NULL;
1180 
1181     c16 ->nCurves = nCurves;
1182     c16 ->nElements = nElements;
1183 
1184     c16 ->Curves = (cmsUInt16Number**)_cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
1185     if (c16 ->Curves == NULL) return NULL;
1186 
1187     for (i=0; i < nCurves; i++) {
1188 
1189         c16->Curves[i] = (cmsUInt16Number*)_cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
1190 
1191         if (c16->Curves[i] == NULL) {
1192 
1193             for (j=0; j < i; j++) {
1194                 _cmsFree(ContextID, c16->Curves[j]);
1195             }
1196             _cmsFree(ContextID, c16->Curves);
1197             _cmsFree(ContextID, c16);
1198             return NULL;
1199         }
1200 
1201         if (nElements == 256) {
1202 
1203             for (j=0; j < nElements; j++) {
1204 
1205                 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
1206             }
1207         }
1208         else {
1209 
1210             for (j=0; j < nElements; j++) {
1211                 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
1212             }
1213         }
1214     }
1215 
1216     return c16;
1217 }
1218 
1219 static
FastEvaluateCurves8(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1220 void FastEvaluateCurves8(register const cmsUInt16Number In[],
1221                           register cmsUInt16Number Out[],
1222                           register const void* D)
1223 {
1224     Curves16Data* Data = (Curves16Data*) D;
1225     cmsUInt8Number x;
1226     int i;
1227 
1228     for (i=0; i < Data ->nCurves; i++) {
1229 
1230          x = (In[i] >> 8);
1231          Out[i] = Data -> Curves[i][x];
1232     }
1233 }
1234 
1235 
1236 static
FastEvaluateCurves16(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1237 void FastEvaluateCurves16(register const cmsUInt16Number In[],
1238                           register cmsUInt16Number Out[],
1239                           register const void* D)
1240 {
1241     Curves16Data* Data = (Curves16Data*) D;
1242     int i;
1243 
1244     for (i=0; i < Data ->nCurves; i++) {
1245          Out[i] = Data -> Curves[i][In[i]];
1246     }
1247 }
1248 
1249 
1250 static
FastIdentity16(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1251 void FastIdentity16(register const cmsUInt16Number In[],
1252                     register cmsUInt16Number Out[],
1253                     register const void* D)
1254 {
1255     cmsPipeline* Lut = (cmsPipeline*) D;
1256     cmsUInt32Number i;
1257 
1258     for (i=0; i < Lut ->InputChannels; i++) {
1259          Out[i] = In[i];
1260     }
1261 }
1262 
1263 
1264 // If the target LUT holds only curves, the optimization procedure is to join all those
1265 // curves together. That only works on curves and does not work on matrices.
1266 static
OptimizeByJoiningCurves(cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1267 cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1268 {
1269     cmsToneCurve** GammaTables = NULL;
1270     cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
1271     cmsUInt32Number i, j;
1272     cmsPipeline* Src = *Lut;
1273     cmsPipeline* Dest = NULL;
1274     cmsStage* mpe;
1275     cmsStage* ObtainedCurves = NULL;
1276 
1277 
1278     // This is a loosy optimization! does not apply in floating-point cases
1279     if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1280 
1281     //  Only curves in this LUT?
1282     for (mpe = cmsPipelineGetPtrToFirstStage(Src);
1283          mpe != NULL;
1284          mpe = cmsStageNext(mpe)) {
1285             if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE;
1286     }
1287 
1288     // Allocate an empty LUT
1289     Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1290     if (Dest == NULL) return FALSE;
1291 
1292     // Create target curves
1293     GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
1294     if (GammaTables == NULL) goto Error;
1295 
1296     for (i=0; i < Src ->InputChannels; i++) {
1297         GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL);
1298         if (GammaTables[i] == NULL) goto Error;
1299     }
1300 
1301     // Compute 16 bit result by using floating point
1302     for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1303 
1304         for (j=0; j < Src ->InputChannels; j++)
1305             InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1306 
1307         cmsPipelineEvalFloat(InFloat, OutFloat, Src);
1308 
1309         for (j=0; j < Src ->InputChannels; j++)
1310             GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
1311     }
1312 
1313     ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables);
1314     if (ObtainedCurves == NULL) goto Error;
1315 
1316     for (i=0; i < Src ->InputChannels; i++) {
1317         cmsFreeToneCurve(GammaTables[i]);
1318         GammaTables[i] = NULL;
1319     }
1320 
1321     if (GammaTables != NULL) _cmsFree(Src ->ContextID, GammaTables);
1322 
1323     // Maybe the curves are linear at the end
1324     if (!AllCurvesAreLinear(ObtainedCurves)) {
1325 
1326         if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves))
1327             goto Error;
1328 
1329         // If the curves are to be applied in 8 bits, we can save memory
1330         if (_cmsFormatterIs8bit(*InputFormat)) {
1331 
1332             _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) ObtainedCurves ->Data;
1333              Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves);
1334 
1335              if (c16 == NULL) goto Error;
1336              *dwFlags |= cmsFLAGS_NOCACHE;
1337             _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
1338 
1339         }
1340         else {
1341 
1342             _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves);
1343              Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves);
1344 
1345              if (c16 == NULL) goto Error;
1346              *dwFlags |= cmsFLAGS_NOCACHE;
1347             _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
1348         }
1349     }
1350     else {
1351 
1352         // LUT optimizes to nothing. Set the identity LUT
1353         cmsStageFree(ObtainedCurves);
1354 
1355         if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels)))
1356             goto Error;
1357 
1358         *dwFlags |= cmsFLAGS_NOCACHE;
1359         _cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL);
1360     }
1361 
1362     // We are done.
1363     cmsPipelineFree(Src);
1364     *Lut = Dest;
1365     return TRUE;
1366 
1367 Error:
1368 
1369     if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves);
1370     if (GammaTables != NULL) {
1371         for (i=0; i < Src ->InputChannels; i++) {
1372             if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]);
1373         }
1374 
1375         _cmsFree(Src ->ContextID, GammaTables);
1376     }
1377 
1378     if (Dest != NULL) cmsPipelineFree(Dest);
1379     return FALSE;
1380 
1381     cmsUNUSED_PARAMETER(Intent);
1382     cmsUNUSED_PARAMETER(InputFormat);
1383     cmsUNUSED_PARAMETER(OutputFormat);
1384     cmsUNUSED_PARAMETER(dwFlags);
1385 }
1386 
1387 // -------------------------------------------------------------------------------------------------------------------------------------
1388 // LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
1389 
1390 
1391 static
FreeMatShaper(cmsContext ContextID,void * Data)1392 void  FreeMatShaper(cmsContext ContextID, void* Data)
1393 {
1394     if (Data != NULL) _cmsFree(ContextID, Data);
1395 }
1396 
1397 static
DupMatShaper(cmsContext ContextID,const void * Data)1398 void* DupMatShaper(cmsContext ContextID, const void* Data)
1399 {
1400     return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
1401 }
1402 
1403 
1404 // A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point
1405 // to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
1406 // in total about 50K, and the performance boost is huge!
1407 static
MatShaperEval16(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1408 void MatShaperEval16(register const cmsUInt16Number In[],
1409                      register cmsUInt16Number Out[],
1410                      register const void* D)
1411 {
1412     MatShaper8Data* p = (MatShaper8Data*) D;
1413     cmsS1Fixed14Number l1, l2, l3, r, g, b;
1414     cmsUInt32Number ri, gi, bi;
1415 
1416     // In this case (and only in this case!) we can use this simplification since
1417     // In[] is assured to come from a 8 bit number. (a << 8 | a)
1418     ri = In[0] & 0xFF;
1419     gi = In[1] & 0xFF;
1420     bi = In[2] & 0xFF;
1421 
1422     // Across first shaper, which also converts to 1.14 fixed point
1423     r = p->Shaper1R[ri];
1424     g = p->Shaper1G[gi];
1425     b = p->Shaper1B[bi];
1426 
1427     // Evaluate the matrix in 1.14 fixed point
1428     l1 =  (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14;
1429     l2 =  (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14;
1430     l3 =  (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14;
1431 
1432     // Now we have to clip to 0..1.0 range
1433     ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384 : l1);
1434     gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384 : l2);
1435     bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384 : l3);
1436 
1437     // And across second shaper,
1438     Out[0] = p->Shaper2R[ri];
1439     Out[1] = p->Shaper2G[gi];
1440     Out[2] = p->Shaper2B[bi];
1441 
1442 }
1443 
1444 // This table converts from 8 bits to 1.14 after applying the curve
1445 static
FillFirstShaper(cmsS1Fixed14Number * Table,cmsToneCurve * Curve)1446 void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
1447 {
1448     int i;
1449     cmsFloat32Number R, y;
1450 
1451     for (i=0; i < 256; i++) {
1452 
1453         R   = (cmsFloat32Number) (i / 255.0);
1454         y   = cmsEvalToneCurveFloat(Curve, R);
1455 
1456         Table[i] = DOUBLE_TO_1FIXED14(y);
1457     }
1458 }
1459 
1460 // This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
1461 static
FillSecondShaper(cmsUInt16Number * Table,cmsToneCurve * Curve,cmsBool Is8BitsOutput)1462 void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
1463 {
1464     int i;
1465     cmsFloat32Number R, Val;
1466 
1467     for (i=0; i < 16385; i++) {
1468 
1469         R   = (cmsFloat32Number) (i / 16384.0);
1470         Val = cmsEvalToneCurveFloat(Curve, R);    // Val comes 0..1.0
1471 
1472         if (Is8BitsOutput) {
1473 
1474             // If 8 bits output, we can optimize further by computing the / 257 part.
1475             // first we compute the resulting byte and then we store the byte times
1476             // 257. This quantization allows to round very quick by doing a >> 8, but
1477             // since the low byte is always equal to msb, we can do a & 0xff and this works!
1478             cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
1479             cmsUInt8Number  b = FROM_16_TO_8(w);
1480 
1481             Table[i] = FROM_8_TO_16(b);
1482         }
1483         else Table[i]  = _cmsQuickSaturateWord(Val * 65535.0);
1484     }
1485 }
1486 
1487 // Compute the matrix-shaper structure
1488 static
SetMatShaper(cmsPipeline * Dest,cmsToneCurve * Curve1[3],cmsMAT3 * Mat,cmsVEC3 * Off,cmsToneCurve * Curve2[3],cmsUInt32Number * OutputFormat)1489 cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
1490 {
1491     MatShaper8Data* p;
1492     int i, j;
1493     cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
1494 
1495     // Allocate a big chuck of memory to store precomputed tables
1496     p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data));
1497     if (p == NULL) return FALSE;
1498 
1499     p -> ContextID = Dest -> ContextID;
1500 
1501     // Precompute tables
1502     FillFirstShaper(p ->Shaper1R, Curve1[0]);
1503     FillFirstShaper(p ->Shaper1G, Curve1[1]);
1504     FillFirstShaper(p ->Shaper1B, Curve1[2]);
1505 
1506     FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits);
1507     FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits);
1508     FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits);
1509 
1510     // Convert matrix to nFixed14. Note that those values may take more than 16 bits as
1511     for (i=0; i < 3; i++) {
1512         for (j=0; j < 3; j++) {
1513             p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
1514         }
1515     }
1516 
1517     for (i=0; i < 3; i++) {
1518 
1519         if (Off == NULL) {
1520             p ->Off[i] = 0;
1521         }
1522         else {
1523             p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
1524         }
1525     }
1526 
1527     // Mark as optimized for faster formatter
1528     if (Is8Bits)
1529         *OutputFormat |= OPTIMIZED_SH(1);
1530 
1531     // Fill function pointers
1532     _cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
1533     return TRUE;
1534 }
1535 
1536 //  8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
1537 // TODO: Allow a third matrix for abs. colorimetric
1538 static
OptimizeMatrixShaper(cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1539 cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1540 {
1541     cmsStage* Curve1, *Curve2;
1542     cmsStage* Matrix1, *Matrix2;
1543     _cmsStageMatrixData* Data1;
1544     _cmsStageMatrixData* Data2;
1545     cmsMAT3 res;
1546     cmsBool IdentityMat;
1547     cmsPipeline* Dest, *Src;
1548 
1549     // Only works on RGB to RGB
1550     if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
1551 
1552     // Only works on 8 bit input
1553     if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
1554 
1555     // Seems suitable, proceed
1556     Src = *Lut;
1557 
1558     // Check for shaper-matrix-matrix-shaper structure, that is what this optimizer stands for
1559     if (!cmsPipelineCheckAndRetreiveStages(Src, 4,
1560         cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1561         &Curve1, &Matrix1, &Matrix2, &Curve2)) return FALSE;
1562 
1563     // Get both matrices
1564     Data1 = (_cmsStageMatrixData*) cmsStageData(Matrix1);
1565     Data2 = (_cmsStageMatrixData*) cmsStageData(Matrix2);
1566 
1567     // Input offset should be zero
1568     if (Data1 ->Offset != NULL) return FALSE;
1569 
1570     // Multiply both matrices to get the result
1571     _cmsMAT3per(&res, (cmsMAT3*) Data2 ->Double, (cmsMAT3*) Data1 ->Double);
1572 
1573     // Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
1574     IdentityMat = FALSE;
1575     if (_cmsMAT3isIdentity(&res) && Data2 ->Offset == NULL) {
1576 
1577         // We can get rid of full matrix
1578         IdentityMat = TRUE;
1579     }
1580 
1581       // Allocate an empty LUT
1582     Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1583     if (!Dest) return FALSE;
1584 
1585     // Assamble the new LUT
1586     if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1)))
1587         goto Error;
1588 
1589     if (!IdentityMat)
1590         if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest ->ContextID, 3, 3, (const cmsFloat64Number*) &res, Data2 ->Offset)))
1591             goto Error;
1592     if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2)))
1593         goto Error;
1594 
1595     // If identity on matrix, we can further optimize the curves, so call the join curves routine
1596     if (IdentityMat) {
1597 
1598         OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
1599     }
1600     else {
1601         _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1);
1602         _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2);
1603 
1604         // In this particular optimization, cach?does not help as it takes more time to deal with
1605         // the cach?that with the pixel handling
1606         *dwFlags |= cmsFLAGS_NOCACHE;
1607 
1608         // Setup the optimizarion routines
1609         SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Data2 ->Offset, mpeC2->TheCurves, OutputFormat);
1610     }
1611 
1612     cmsPipelineFree(Src);
1613     *Lut = Dest;
1614     return TRUE;
1615 Error:
1616     // Leave Src unchanged
1617     cmsPipelineFree(Dest);
1618     return FALSE;
1619 }
1620 
1621 
1622 // -------------------------------------------------------------------------------------------------------------------------------------
1623 // Optimization plug-ins
1624 
1625 // List of optimizations
1626 typedef struct _cmsOptimizationCollection_st {
1627 
1628     _cmsOPToptimizeFn  OptimizePtr;
1629 
1630     struct _cmsOptimizationCollection_st *Next;
1631 
1632 } _cmsOptimizationCollection;
1633 
1634 
1635 // The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
1636 static _cmsOptimizationCollection DefaultOptimization[] = {
1637 
1638     { OptimizeByJoiningCurves,            &DefaultOptimization[1] },
1639     { OptimizeMatrixShaper,               &DefaultOptimization[2] },
1640     { OptimizeByComputingLinearization,   &DefaultOptimization[3] },
1641     { OptimizeByResampling,               NULL }
1642 };
1643 
1644 // The linked list head
1645 _cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
1646 
1647 
1648 // Duplicates the zone of memory used by the plug-in in the new context
1649 static
DupPluginOptimizationList(struct _cmsContext_struct * ctx,const struct _cmsContext_struct * src)1650 void DupPluginOptimizationList(struct _cmsContext_struct* ctx,
1651                                const struct _cmsContext_struct* src)
1652 {
1653    _cmsOptimizationPluginChunkType newHead = { NULL };
1654    _cmsOptimizationCollection*  entry;
1655    _cmsOptimizationCollection*  Anterior = NULL;
1656    _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
1657 
1658     _cmsAssert(ctx != NULL);
1659     _cmsAssert(head != NULL);
1660 
1661     // Walk the list copying all nodes
1662    for (entry = head->OptimizationCollection;
1663         entry != NULL;
1664         entry = entry ->Next) {
1665 
1666             _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
1667 
1668             if (newEntry == NULL)
1669                 return;
1670 
1671             // We want to keep the linked list order, so this is a little bit tricky
1672             newEntry -> Next = NULL;
1673             if (Anterior)
1674                 Anterior -> Next = newEntry;
1675 
1676             Anterior = newEntry;
1677 
1678             if (newHead.OptimizationCollection == NULL)
1679                 newHead.OptimizationCollection = newEntry;
1680     }
1681 
1682   ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
1683 }
1684 
_cmsAllocOptimizationPluginChunk(struct _cmsContext_struct * ctx,const struct _cmsContext_struct * src)1685 void  _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx,
1686                                          const struct _cmsContext_struct* src)
1687 {
1688   if (src != NULL) {
1689 
1690         // Copy all linked list
1691        DupPluginOptimizationList(ctx, src);
1692     }
1693     else {
1694         static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
1695         ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
1696     }
1697 }
1698 
1699 
1700 // Register new ways to optimize
_cmsRegisterOptimizationPlugin(cmsContext ContextID,cmsPluginBase * Data)1701 cmsBool  _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
1702 {
1703     cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
1704     _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1705     _cmsOptimizationCollection* fl;
1706 
1707     if (Data == NULL) {
1708 
1709         ctx->OptimizationCollection = NULL;
1710         return TRUE;
1711     }
1712 
1713     // Optimizer callback is required
1714     if (Plugin ->OptimizePtr == NULL) return FALSE;
1715 
1716     fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
1717     if (fl == NULL) return FALSE;
1718 
1719     // Copy the parameters
1720     fl ->OptimizePtr = Plugin ->OptimizePtr;
1721 
1722     // Keep linked list
1723     fl ->Next = ctx->OptimizationCollection;
1724 
1725     // Set the head
1726     ctx ->OptimizationCollection = fl;
1727 
1728     // All is ok
1729     return TRUE;
1730 }
1731 
1732 // The entry point for LUT optimization
_cmsOptimizePipeline(cmsContext ContextID,cmsPipeline ** PtrLut,int Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1733 cmsBool _cmsOptimizePipeline(cmsContext ContextID,
1734                              cmsPipeline**    PtrLut,
1735                              int              Intent,
1736                              cmsUInt32Number* InputFormat,
1737                              cmsUInt32Number* OutputFormat,
1738                              cmsUInt32Number* dwFlags)
1739 {
1740     _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1741     _cmsOptimizationCollection* Opts;
1742     cmsBool AnySuccess = FALSE;
1743 
1744     // A CLUT is being asked, so force this specific optimization
1745     if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
1746 
1747         PreOptimize(*PtrLut);
1748         return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
1749     }
1750 
1751     // Anything to optimize?
1752     if ((*PtrLut) ->Elements == NULL) {
1753         _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1754         return TRUE;
1755     }
1756 
1757     // Try to get rid of identities and trivial conversions.
1758     AnySuccess = PreOptimize(*PtrLut);
1759 
1760     // After removal do we end with an identity?
1761     if ((*PtrLut) ->Elements == NULL) {
1762         _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1763         return TRUE;
1764     }
1765 
1766     // Do not optimize, keep all precision
1767     if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
1768         return FALSE;
1769 
1770     // Try plug-in optimizations
1771     for (Opts = ctx->OptimizationCollection;
1772          Opts != NULL;
1773          Opts = Opts ->Next) {
1774 
1775             // If one schema succeeded, we are done
1776             if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1777 
1778                 return TRUE;    // Optimized!
1779             }
1780     }
1781 
1782    // Try built-in optimizations
1783     for (Opts = DefaultOptimization;
1784          Opts != NULL;
1785          Opts = Opts ->Next) {
1786 
1787             if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1788 
1789                 return TRUE;
1790             }
1791     }
1792 
1793     // Only simple optimizations succeeded
1794     return AnySuccess;
1795 }
1796