1 /* zhbmv.f -- translated by f2c (version 20100827).
2    You must link the resulting object file with libf2c:
3 	on Microsoft Windows system, link with libf2c.lib;
4 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
5 	or, if you install libf2c.a in a standard place, with -lf2c -lm
6 	-- in that order, at the end of the command line, as in
7 		cc *.o -lf2c -lm
8 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
9 
10 		http://www.netlib.org/f2c/libf2c.zip
11 */
12 
13 #include "datatypes.h"
14 
zhbmv_(char * uplo,integer * n,integer * k,doublecomplex * alpha,doublecomplex * a,integer * lda,doublecomplex * x,integer * incx,doublecomplex * beta,doublecomplex * y,integer * incy,ftnlen uplo_len)15 /* Subroutine */ int zhbmv_(char *uplo, integer *n, integer *k, doublecomplex
16 	*alpha, doublecomplex *a, integer *lda, doublecomplex *x, integer *
17 	incx, doublecomplex *beta, doublecomplex *y, integer *incy, ftnlen
18 	uplo_len)
19 {
20     /* System generated locals */
21     integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
22     doublereal d__1;
23     doublecomplex z__1, z__2, z__3, z__4;
24 
25     /* Builtin functions */
26     void d_cnjg(doublecomplex *, doublecomplex *);
27 
28     /* Local variables */
29     integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
30     doublecomplex temp1, temp2;
31     extern logical lsame_(char *, char *, ftnlen, ftnlen);
32     integer kplus1;
33     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
34 
35 /*     .. Scalar Arguments .. */
36 /*     .. */
37 /*     .. Array Arguments .. */
38 /*     .. */
39 
40 /*  Purpose */
41 /*  ======= */
42 
43 /*  ZHBMV  performs the matrix-vector  operation */
44 
45 /*     y := alpha*A*x + beta*y, */
46 
47 /*  where alpha and beta are scalars, x and y are n element vectors and */
48 /*  A is an n by n hermitian band matrix, with k super-diagonals. */
49 
50 /*  Arguments */
51 /*  ========== */
52 
53 /*  UPLO   - CHARACTER*1. */
54 /*           On entry, UPLO specifies whether the upper or lower */
55 /*           triangular part of the band matrix A is being supplied as */
56 /*           follows: */
57 
58 /*              UPLO = 'U' or 'u'   The upper triangular part of A is */
59 /*                                  being supplied. */
60 
61 /*              UPLO = 'L' or 'l'   The lower triangular part of A is */
62 /*                                  being supplied. */
63 
64 /*           Unchanged on exit. */
65 
66 /*  N      - INTEGER. */
67 /*           On entry, N specifies the order of the matrix A. */
68 /*           N must be at least zero. */
69 /*           Unchanged on exit. */
70 
71 /*  K      - INTEGER. */
72 /*           On entry, K specifies the number of super-diagonals of the */
73 /*           matrix A. K must satisfy  0 .le. K. */
74 /*           Unchanged on exit. */
75 
76 /*  ALPHA  - COMPLEX*16      . */
77 /*           On entry, ALPHA specifies the scalar alpha. */
78 /*           Unchanged on exit. */
79 
80 /*  A      - COMPLEX*16       array of DIMENSION ( LDA, n ). */
81 /*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
82 /*           by n part of the array A must contain the upper triangular */
83 /*           band part of the hermitian matrix, supplied column by */
84 /*           column, with the leading diagonal of the matrix in row */
85 /*           ( k + 1 ) of the array, the first super-diagonal starting at */
86 /*           position 2 in row k, and so on. The top left k by k triangle */
87 /*           of the array A is not referenced. */
88 /*           The following program segment will transfer the upper */
89 /*           triangular part of a hermitian band matrix from conventional */
90 /*           full matrix storage to band storage: */
91 
92 /*                 DO 20, J = 1, N */
93 /*                    M = K + 1 - J */
94 /*                    DO 10, I = MAX( 1, J - K ), J */
95 /*                       A( M + I, J ) = matrix( I, J ) */
96 /*              10    CONTINUE */
97 /*              20 CONTINUE */
98 
99 /*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
100 /*           by n part of the array A must contain the lower triangular */
101 /*           band part of the hermitian matrix, supplied column by */
102 /*           column, with the leading diagonal of the matrix in row 1 of */
103 /*           the array, the first sub-diagonal starting at position 1 in */
104 /*           row 2, and so on. The bottom right k by k triangle of the */
105 /*           array A is not referenced. */
106 /*           The following program segment will transfer the lower */
107 /*           triangular part of a hermitian band matrix from conventional */
108 /*           full matrix storage to band storage: */
109 
110 /*                 DO 20, J = 1, N */
111 /*                    M = 1 - J */
112 /*                    DO 10, I = J, MIN( N, J + K ) */
113 /*                       A( M + I, J ) = matrix( I, J ) */
114 /*              10    CONTINUE */
115 /*              20 CONTINUE */
116 
117 /*           Note that the imaginary parts of the diagonal elements need */
118 /*           not be set and are assumed to be zero. */
119 /*           Unchanged on exit. */
120 
121 /*  LDA    - INTEGER. */
122 /*           On entry, LDA specifies the first dimension of A as declared */
123 /*           in the calling (sub) program. LDA must be at least */
124 /*           ( k + 1 ). */
125 /*           Unchanged on exit. */
126 
127 /*  X      - COMPLEX*16       array of DIMENSION at least */
128 /*           ( 1 + ( n - 1 )*abs( INCX ) ). */
129 /*           Before entry, the incremented array X must contain the */
130 /*           vector x. */
131 /*           Unchanged on exit. */
132 
133 /*  INCX   - INTEGER. */
134 /*           On entry, INCX specifies the increment for the elements of */
135 /*           X. INCX must not be zero. */
136 /*           Unchanged on exit. */
137 
138 /*  BETA   - COMPLEX*16      . */
139 /*           On entry, BETA specifies the scalar beta. */
140 /*           Unchanged on exit. */
141 
142 /*  Y      - COMPLEX*16       array of DIMENSION at least */
143 /*           ( 1 + ( n - 1 )*abs( INCY ) ). */
144 /*           Before entry, the incremented array Y must contain the */
145 /*           vector y. On exit, Y is overwritten by the updated vector y. */
146 
147 /*  INCY   - INTEGER. */
148 /*           On entry, INCY specifies the increment for the elements of */
149 /*           Y. INCY must not be zero. */
150 /*           Unchanged on exit. */
151 
152 /*  Further Details */
153 /*  =============== */
154 
155 /*  Level 2 Blas routine. */
156 
157 /*  -- Written on 22-October-1986. */
158 /*     Jack Dongarra, Argonne National Lab. */
159 /*     Jeremy Du Croz, Nag Central Office. */
160 /*     Sven Hammarling, Nag Central Office. */
161 /*     Richard Hanson, Sandia National Labs. */
162 
163 /*  ===================================================================== */
164 
165 /*     .. Parameters .. */
166 /*     .. */
167 /*     .. Local Scalars .. */
168 /*     .. */
169 /*     .. External Functions .. */
170 /*     .. */
171 /*     .. External Subroutines .. */
172 /*     .. */
173 /*     .. Intrinsic Functions .. */
174 /*     .. */
175 
176 /*     Test the input parameters. */
177 
178     /* Parameter adjustments */
179     a_dim1 = *lda;
180     a_offset = 1 + a_dim1;
181     a -= a_offset;
182     --x;
183     --y;
184 
185     /* Function Body */
186     info = 0;
187     if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
188 	    ftnlen)1, (ftnlen)1)) {
189 	info = 1;
190     } else if (*n < 0) {
191 	info = 2;
192     } else if (*k < 0) {
193 	info = 3;
194     } else if (*lda < *k + 1) {
195 	info = 6;
196     } else if (*incx == 0) {
197 	info = 8;
198     } else if (*incy == 0) {
199 	info = 11;
200     }
201     if (info != 0) {
202 	xerbla_("ZHBMV ", &info, (ftnlen)6);
203 	return 0;
204     }
205 
206 /*     Quick return if possible. */
207 
208     if (*n == 0 || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. &&
209                                                          beta->i == 0.))) {
210 	return 0;
211     }
212 
213 /*     Set up the start points in  X  and  Y. */
214 
215     if (*incx > 0) {
216 	kx = 1;
217     } else {
218 	kx = 1 - (*n - 1) * *incx;
219     }
220     if (*incy > 0) {
221 	ky = 1;
222     } else {
223 	ky = 1 - (*n - 1) * *incy;
224     }
225 
226 /*     Start the operations. In this version the elements of the array A */
227 /*     are accessed sequentially with one pass through A. */
228 
229 /*     First form  y := beta*y. */
230 
231     if (beta->r != 1. || beta->i != 0.) {
232 	if (*incy == 1) {
233 	    if (beta->r == 0. && beta->i == 0.) {
234 		i__1 = *n;
235 		for (i__ = 1; i__ <= i__1; ++i__) {
236 		    i__2 = i__;
237 		    y[i__2].r = 0., y[i__2].i = 0.;
238 /* L10: */
239 		}
240 	    } else {
241 		i__1 = *n;
242 		for (i__ = 1; i__ <= i__1; ++i__) {
243 		    i__2 = i__;
244 		    i__3 = i__;
245 		    z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
246 			    z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
247 			    .r;
248 		    y[i__2].r = z__1.r, y[i__2].i = z__1.i;
249 /* L20: */
250 		}
251 	    }
252 	} else {
253 	    iy = ky;
254 	    if (beta->r == 0. && beta->i == 0.) {
255 		i__1 = *n;
256 		for (i__ = 1; i__ <= i__1; ++i__) {
257 		    i__2 = iy;
258 		    y[i__2].r = 0., y[i__2].i = 0.;
259 		    iy += *incy;
260 /* L30: */
261 		}
262 	    } else {
263 		i__1 = *n;
264 		for (i__ = 1; i__ <= i__1; ++i__) {
265 		    i__2 = iy;
266 		    i__3 = iy;
267 		    z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
268 			    z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
269 			    .r;
270 		    y[i__2].r = z__1.r, y[i__2].i = z__1.i;
271 		    iy += *incy;
272 /* L40: */
273 		}
274 	    }
275 	}
276     }
277     if (alpha->r == 0. && alpha->i == 0.) {
278 	return 0;
279     }
280     if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
281 
282 /*        Form  y  when upper triangle of A is stored. */
283 
284 	kplus1 = *k + 1;
285 	if (*incx == 1 && *incy == 1) {
286 	    i__1 = *n;
287 	    for (j = 1; j <= i__1; ++j) {
288 		i__2 = j;
289 		z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
290 			 alpha->r * x[i__2].i + alpha->i * x[i__2].r;
291 		temp1.r = z__1.r, temp1.i = z__1.i;
292 		temp2.r = 0., temp2.i = 0.;
293 		l = kplus1 - j;
294 /* Computing MAX */
295 		i__2 = 1, i__3 = j - *k;
296 		i__4 = j - 1;
297 		for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
298 		    i__2 = i__;
299 		    i__3 = i__;
300 		    i__5 = l + i__ + j * a_dim1;
301 		    z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
302 			    z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
303 			    .r;
304 		    z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
305 		    y[i__2].r = z__1.r, y[i__2].i = z__1.i;
306 		    d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
307 		    i__2 = i__;
308 		    z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i, z__2.i =
309 			     z__3.r * x[i__2].i + z__3.i * x[i__2].r;
310 		    z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
311 		    temp2.r = z__1.r, temp2.i = z__1.i;
312 /* L50: */
313 		}
314 		i__4 = j;
315 		i__2 = j;
316 		i__3 = kplus1 + j * a_dim1;
317 		d__1 = a[i__3].r;
318 		z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
319 		z__2.r = y[i__2].r + z__3.r, z__2.i = y[i__2].i + z__3.i;
320 		z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
321 			alpha->r * temp2.i + alpha->i * temp2.r;
322 		z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
323 		y[i__4].r = z__1.r, y[i__4].i = z__1.i;
324 /* L60: */
325 	    }
326 	} else {
327 	    jx = kx;
328 	    jy = ky;
329 	    i__1 = *n;
330 	    for (j = 1; j <= i__1; ++j) {
331 		i__4 = jx;
332 		z__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, z__1.i =
333 			 alpha->r * x[i__4].i + alpha->i * x[i__4].r;
334 		temp1.r = z__1.r, temp1.i = z__1.i;
335 		temp2.r = 0., temp2.i = 0.;
336 		ix = kx;
337 		iy = ky;
338 		l = kplus1 - j;
339 /* Computing MAX */
340 		i__4 = 1, i__2 = j - *k;
341 		i__3 = j - 1;
342 		for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
343 		    i__4 = iy;
344 		    i__2 = iy;
345 		    i__5 = l + i__ + j * a_dim1;
346 		    z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
347 			    z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
348 			    .r;
349 		    z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
350 		    y[i__4].r = z__1.r, y[i__4].i = z__1.i;
351 		    d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
352 		    i__4 = ix;
353 		    z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
354 			     z__3.r * x[i__4].i + z__3.i * x[i__4].r;
355 		    z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
356 		    temp2.r = z__1.r, temp2.i = z__1.i;
357 		    ix += *incx;
358 		    iy += *incy;
359 /* L70: */
360 		}
361 		i__3 = jy;
362 		i__4 = jy;
363 		i__2 = kplus1 + j * a_dim1;
364 		d__1 = a[i__2].r;
365 		z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
366 		z__2.r = y[i__4].r + z__3.r, z__2.i = y[i__4].i + z__3.i;
367 		z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
368 			alpha->r * temp2.i + alpha->i * temp2.r;
369 		z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
370 		y[i__3].r = z__1.r, y[i__3].i = z__1.i;
371 		jx += *incx;
372 		jy += *incy;
373 		if (j > *k) {
374 		    kx += *incx;
375 		    ky += *incy;
376 		}
377 /* L80: */
378 	    }
379 	}
380     } else {
381 
382 /*        Form  y  when lower triangle of A is stored. */
383 
384 	if (*incx == 1 && *incy == 1) {
385 	    i__1 = *n;
386 	    for (j = 1; j <= i__1; ++j) {
387 		i__3 = j;
388 		z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i =
389 			 alpha->r * x[i__3].i + alpha->i * x[i__3].r;
390 		temp1.r = z__1.r, temp1.i = z__1.i;
391 		temp2.r = 0., temp2.i = 0.;
392 		i__3 = j;
393 		i__4 = j;
394 		i__2 = j * a_dim1 + 1;
395 		d__1 = a[i__2].r;
396 		z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
397 		z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
398 		y[i__3].r = z__1.r, y[i__3].i = z__1.i;
399 		l = 1 - j;
400 /* Computing MIN */
401 		i__4 = *n, i__2 = j + *k;
402 		i__3 = min(i__4,i__2);
403 		for (i__ = j + 1; i__ <= i__3; ++i__) {
404 		    i__4 = i__;
405 		    i__2 = i__;
406 		    i__5 = l + i__ + j * a_dim1;
407 		    z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
408 			    z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
409 			    .r;
410 		    z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
411 		    y[i__4].r = z__1.r, y[i__4].i = z__1.i;
412 		    d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
413 		    i__4 = i__;
414 		    z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
415 			     z__3.r * x[i__4].i + z__3.i * x[i__4].r;
416 		    z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
417 		    temp2.r = z__1.r, temp2.i = z__1.i;
418 /* L90: */
419 		}
420 		i__3 = j;
421 		i__4 = j;
422 		z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
423 			alpha->r * temp2.i + alpha->i * temp2.r;
424 		z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
425 		y[i__3].r = z__1.r, y[i__3].i = z__1.i;
426 /* L100: */
427 	    }
428 	} else {
429 	    jx = kx;
430 	    jy = ky;
431 	    i__1 = *n;
432 	    for (j = 1; j <= i__1; ++j) {
433 		i__3 = jx;
434 		z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i =
435 			 alpha->r * x[i__3].i + alpha->i * x[i__3].r;
436 		temp1.r = z__1.r, temp1.i = z__1.i;
437 		temp2.r = 0., temp2.i = 0.;
438 		i__3 = jy;
439 		i__4 = jy;
440 		i__2 = j * a_dim1 + 1;
441 		d__1 = a[i__2].r;
442 		z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
443 		z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
444 		y[i__3].r = z__1.r, y[i__3].i = z__1.i;
445 		l = 1 - j;
446 		ix = jx;
447 		iy = jy;
448 /* Computing MIN */
449 		i__4 = *n, i__2 = j + *k;
450 		i__3 = min(i__4,i__2);
451 		for (i__ = j + 1; i__ <= i__3; ++i__) {
452 		    ix += *incx;
453 		    iy += *incy;
454 		    i__4 = iy;
455 		    i__2 = iy;
456 		    i__5 = l + i__ + j * a_dim1;
457 		    z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
458 			    z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
459 			    .r;
460 		    z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
461 		    y[i__4].r = z__1.r, y[i__4].i = z__1.i;
462 		    d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
463 		    i__4 = ix;
464 		    z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
465 			     z__3.r * x[i__4].i + z__3.i * x[i__4].r;
466 		    z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
467 		    temp2.r = z__1.r, temp2.i = z__1.i;
468 /* L110: */
469 		}
470 		i__3 = jy;
471 		i__4 = jy;
472 		z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
473 			alpha->r * temp2.i + alpha->i * temp2.r;
474 		z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
475 		y[i__3].r = z__1.r, y[i__3].i = z__1.i;
476 		jx += *incx;
477 		jy += *incy;
478 /* L120: */
479 	    }
480 	}
481     }
482 
483     return 0;
484 
485 /*     End of ZHBMV . */
486 
487 } /* zhbmv_ */
488 
489