/external/opencv3/modules/flann/include/opencv2/flann/ |
D | all_indices.h | 52 …static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const Inde… in create() 59 nnIndex = new LinearIndex<Distance>(dataset, params, distance); in create() 62 nnIndex = new KDTreeSingleIndex<Distance>(dataset, params, distance); in create() 65 nnIndex = new KDTreeIndex<Distance>(dataset, params, distance); in create() 68 nnIndex = new KMeansIndex<Distance>(dataset, params, distance); in create() 71 nnIndex = new CompositeIndex<Distance>(dataset, params, distance); in create() 74 nnIndex = new AutotunedIndex<Distance>(dataset, params, distance); in create() 77 nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance); in create() 80 nnIndex = new LshIndex<Distance>(dataset, params, distance); in create() 93 …static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const Inde… [all …]
|
D | hierarchical_clustering_index.h | 127 … DistanceType sq = distance(dataset[centers[index]], dataset[centers[j]], dataset.cols); in chooseCentersRandom() 164 … DistanceType dist = distance(dataset[centers[0]],dataset[dsindices[j]],dataset.cols); in chooseCentersGonzales() 166 … DistanceType tmp_dist = distance(dataset[centers[i]],dataset[dsindices[j]],dataset.cols); in chooseCentersGonzales() 215 … closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols); in chooseCentersKMeanspp() 243 … DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols); in chooseCentersKMeanspp() 258 …DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols… in chooseCentersKMeanspp() 300 … closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols); in GroupWiseCenterChooser() 320 … newPot += std::min( distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols) in GroupWiseCenterChooser() 336 …closestDistSq[i] = std::min( distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dat… in GroupWiseCenterChooser() 359 : dataset(inputData), params(index_params), root(NULL), indices(NULL), distance(d) in dataset() function [all …]
|
D | hdf5.h | 76 void save_to_file(const cvflann::Matrix<T>& dataset, const String& filename, const String& name) in save_to_file() argument 94 dimsf[0] = dataset.rows; in save_to_file() 95 dimsf[1] = dataset.cols; in save_to_file() 116 …status = H5Dwrite(dataset_id, get_hdf5_type<T>(), memspace_id, space_id, H5P_DEFAULT, dataset.data… in save_to_file() 128 void load_from_file(cvflann::Matrix<T>& dataset, const String& filename, const String& name) in load_from_file() argument 147 dataset = cvflann::Matrix<T>(new T[dims_out[0]*dims_out[1]], dims_out[0], dims_out[1]); in load_from_file() 149 status = H5Dread(dataset_id, get_hdf5_type<T>(), H5S_ALL, H5S_ALL, H5P_DEFAULT, dataset[0]); in load_from_file() 169 void load_from_file(cvflann::Matrix<T>& dataset, const String& filename, const String& name) in load_from_file() argument 212 dataset.rows = count[0]; in load_from_file() 213 dataset.cols = count[1]; in load_from_file() [all …]
|
D | ground_truth.h | 42 void find_nearest(const Matrix<typename Distance::ElementType>& dataset, typename Distance::Element… 51 dists[0] = distance(dataset[0], query, dataset.cols); 55 for (size_t i=1; i<dataset.rows; ++i) { 56 DistanceType tmp = distance(dataset[i], query, dataset.cols); 83 void compute_ground_truth(const Matrix<typename Distance::ElementType>& dataset, const Matrix<typen… 87 find_nearest<Distance>(dataset, testset[i], matches[i], (int)matches.cols, skip, d);
|
D | flann_base.hpp | 73 NNIndex<Distance>* load_saved_index(const Matrix<typename Distance::ElementType>& dataset, const cv… in load_saved_index() argument 85 if ((size_t(header.rows) != dataset.rows)||(size_t(header.cols) != dataset.cols)) { in load_saved_index() 91 NNIndex<Distance>* nnIndex = create_index_by_type<Distance>(dataset, params, distance); in load_saved_index()
|
D | lsh_table.h | 195 void add(Matrix<ElementType> dataset) in add() argument 198 buckets_space_.rehash((buckets_space_.size() + dataset.rows) * 1.2); in add() 201 for (unsigned int i = 0; i < dataset.rows; ++i) add(i, dataset[i]); in add()
|
D | kmeans_index.h | 281 , dataset(_dataset) in KMeansDistanceComputer() 301 DistanceType sq_dist = distance(dataset[indices[i]], dcenters[0], veclen); in operator() 304 DistanceType new_sq_dist = distance(dataset[indices[i]], dcenters[j], veclen); in operator() 326 const Matrix<ElementType>& dataset; variable
|
/external/opencv3/modules/flann/include/opencv2/ |
D | flann.hpp | 251 GenericIndex<Distance>::GenericIndex(const Mat& dataset, const ::cvflann::IndexParams& params, Dist… in GenericIndex() argument 253 CV_Assert(dataset.type() == CvType<ElementType>::type()); in GenericIndex() 254 CV_Assert(dataset.isContinuous()); in GenericIndex() 255 …flann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, data… in GenericIndex() 405 Index_<T>::Index_(const Mat& dataset, const ::cvflann::IndexParams& params) in Index_() argument 409 CV_Assert(dataset.type() == CvType<ElementType>::type()); in Index_() 410 CV_Assert(dataset.isContinuous()); in Index_() 411 …flann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, data… in Index_()
|
/external/autotest/tko/ |
D | plotgraph.py | 96 for dataset in self.datasets: 99 if label in dataset: 100 data = dataset[label]
|
/external/skia/bench/ |
D | gen_bench_expectations.py | 93 for idx, dataset in extra_data: 94 for data in dataset:
|
/external/opencv3/modules/flann/src/ |
D | miniflann.cpp | 319 ::cvflann::Matrix<ElementType> dataset((ElementType*)data.data, data.rows, data.cols); in buildIndex_() 320 IndexType* _index = new IndexType(dataset, get_params(params), dist); in buildIndex_() 707 ::cvflann::Matrix<ElementType> dataset((ElementType*)data.data, data.rows, data.cols); in loadIndex_() 711 IndexType* _index = new IndexType(dataset, params, dist); in loadIndex_()
|
/external/opencv3/doc/tutorials/objdetect/ |
D | traincascade.markdown | 20 training: the quality of training dataset first of all and training parameters too. It's possible to 34 - opencv_createsamples is used to prepare a training dataset of positive and test samples. 35 opencv_createsamples produces dataset of positive samples in a format that is supported by 85 Please note that you need a large dataset of positive samples before you give it to the mentioned
|
/external/mockftpserver/tags/1.0/src/main/resources/ |
D | ReplyText.properties | 60 # Exceeded storage allocation (for current directory or dataset).
|
/external/mockftpserver/tags/1.2.4/src/main/resources/ |
D | ReplyText.properties | 60 # Exceeded storage allocation (for current directory or dataset).
|
/external/mockftpserver/branches/1.x_Branch/src/main/resources/ |
D | ReplyText.properties | 60 # Exceeded storage allocation (for current directory or dataset).
|
/external/mockftpserver/tags/1.2.2/src/main/resources/ |
D | ReplyText.properties | 60 # Exceeded storage allocation (for current directory or dataset).
|
/external/mockftpserver/tags/2.x_Before_IDEA/src/main/resources/ |
D | ReplyText.properties | 60 # Exceeded storage allocation (for current directory or dataset).
|
/external/mockftpserver/tags/1.2/src/main/resources/ |
D | ReplyText.properties | 60 # Exceeded storage allocation (for current directory or dataset).
|
/external/mockftpserver/tags/1.1/src/main/resources/ |
D | ReplyText.properties | 60 # Exceeded storage allocation (for current directory or dataset).
|
/external/mockftpserver/tags/1.2.1/src/main/resources/ |
D | ReplyText.properties | 60 # Exceeded storage allocation (for current directory or dataset).
|
/external/mockftpserver/tags/1.2.3/src/main/resources/ |
D | ReplyText.properties | 60 # Exceeded storage allocation (for current directory or dataset).
|
/external/opencv3/doc/tutorials/ml/introduction_to_pca/ |
D | introduction_to_pca.markdown | 14 …t Analysis (PCA) is a statistical procedure that extracts the most important features of a dataset. 18 …ion is the process of reducing the number of the dimensions of the given dataset. For example, in …
|
/external/opencv3/doc/tutorials/features2d/akaze_matching/ |
D | akaze_matching.markdown | 19 We are going to use images 1 and 3 from *Graffity* sequence of Oxford dataset.
|
/external/mockftpserver/tags/2.0-rc1/src/main/resources/ |
D | ReplyText.properties | 62 # Exceeded storage allocation (for current directory or dataset).
|
/external/mockftpserver/tags/2.3/src/main/resources/ |
D | ReplyText.properties | 63 # Exceeded storage allocation (for current directory or dataset).
|