Home
last modified time | relevance | path

Searched refs:matrixT (Results 1 – 25 of 25) sorted by relevance

/external/eigen/test/
Dschur_complex.cpp25 ComplexMatrixType T = schurOfA.matrixT(); in schur()
36 VERIFY_RAISES_ASSERT(csUninitialized.matrixT()); in schur()
47 VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT()); in schur()
54 VERIFY_IS_EQUAL(cs3.matrixT(), cs1.matrixT()); in schur()
64 VERIFY_IS_EQUAL(cs3.matrixT(), Atriangular.template cast<ComplexScalar>()); in schur()
70 VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT()); in schur()
Dschur_real.cpp48 MatrixType T = schurOfA.matrixT(); in schur()
55 VERIFY_RAISES_ASSERT(rsUninitialized.matrixT()); in schur()
66 VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT()); in schur()
73 VERIFY_IS_EQUAL(rs3.matrixT(), rs1.matrixT()); in schur()
85 VERIFY_IS_EQUAL(rs3.matrixT(), Atriangular); in schur()
91 VERIFY_IS_EQUAL(rs1.matrixT(), rsOnlyT.matrixT()); in schur()
Dreal_qz.cpp51 if (abs(qz.matrixT()(i,j))!=Scalar(0.0)) in real_qz()
60 VERIFY_IS_APPROX(qz.matrixQ()*qz.matrixT()*qz.matrixZ(), B); in real_qz()
Deigensolver_selfadjoint.cpp115 …pe(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * Matrix… in selfadjointeigensolver()
/external/eigen/Eigen/src/Eigenvalues/
DComplexEigenSolver.h271 m_eivalues = m_schur.matrixT().diagonal(); in compute()
297 m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k); in doComputeEigenvectors()
299 …m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k… in doComputeEigenvectors()
300 ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k); in doComputeEigenvectors()
DGeneralizedEigenSolver.h325 m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i); in compute()
335 m_betas.coeffRef(i) = m_realQZ.matrixT().coeff(i,i); in compute()
336 m_betas.coeffRef(i+1) = m_realQZ.matrixT().coeff(i,i); in compute()
DComplexSchur.h161 const ComplexMatrixType& matrixT() const in matrixT() function
DTridiagonalization.h263 MatrixTReturnType matrixT() const
DRealSchur.h143 const MatrixType& matrixT() const in matrixT() function
DEigenSolver.h385 m_matT = m_realSchur.matrixT(); in compute()
DRealQZ.h148 const MatrixType& matrixT() const { in matrixT() function
/external/eigen/doc/snippets/
DComplexSchur_compute.cpp4 cout << "The matrix T in the decomposition of A is:" << endl << schur.matrixT() << endl;
6 cout << "The matrix T in the decomposition of A^(-1) is:" << endl << schur.matrixT() << endl;
DRealSchur_compute.cpp4 cout << "The matrix T in the decomposition of A is:" << endl << schur.matrixT() << endl;
6 cout << "The matrix T in the decomposition of A^(-1) is:" << endl << schur.matrixT() << endl;
DTridiagonalization_compute.cpp6 cout << tri.matrixT() << endl;
9 cout << tri.matrixT() << endl;
DRealSchur_RealSchur_MatrixType.cpp6 cout << "The quasi-triangular matrix T is:" << endl << schur.matrixT() << endl << endl;
9 MatrixXd T = schur.matrixT();
DRealQZ_compute.cpp8 cout << "S:\n" << qz.matrixS() << "\n" << "T:\n" << qz.matrixT() << "\n";
14 << ", |B-QTZ|: " << (B-qz.matrixQ()*qz.matrixT()*qz.matrixZ()).norm()
DComplexSchur_matrixT.cpp4 cout << "The triangular matrix T is:" << endl << schurOfA.matrixT() << endl;
DTridiagonalization_packedMatrix.cpp8 << endl << triOfA.matrixT() << endl;
DTridiagonalization_Tridiagonalization_MatrixType.cpp7 MatrixXd T = triOfA.matrixT();
DTridiagonalization_diagonal.cpp6 MatrixXd T = triOfA.matrixT();
/external/eigen/test/eigen2/
Deigen2_qr.cpp35 VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint()); in qr()
40 VERIFY_IS_APPROX(tridiag.matrixT(), hess.matrixH()); in qr()
/external/eigen/unsupported/Eigen/src/MatrixFunctions/
DMatrixSquareRoot.h354 const MatrixType& T = schurOfA.matrixT(); in compute()
387 const MatrixType& T = schurOfA.matrixT(); in compute()
DMatrixPower.h381 m_T = schurOfA.matrixT(); in modfAndInit()
DMatrixFunction.h220 m_T = schurOfA.matrixT(); in computeSchurDecomposition()
/external/eigen/unsupported/Eigen/src/IterativeSolvers/
DDGMRES.h404 return schurofH.matrixT().diagonal();
411 const DenseMatrix& T = schurofH.matrixT();