1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "intrinsics_x86_64.h"
18
19 #include <limits>
20
21 #include "arch/x86_64/instruction_set_features_x86_64.h"
22 #include "art_method-inl.h"
23 #include "base/bit_utils.h"
24 #include "code_generator_x86_64.h"
25 #include "entrypoints/quick/quick_entrypoints.h"
26 #include "intrinsics.h"
27 #include "intrinsics_utils.h"
28 #include "mirror/array-inl.h"
29 #include "mirror/string.h"
30 #include "thread.h"
31 #include "utils/x86_64/assembler_x86_64.h"
32 #include "utils/x86_64/constants_x86_64.h"
33
34 namespace art {
35
36 namespace x86_64 {
37
IntrinsicLocationsBuilderX86_64(CodeGeneratorX86_64 * codegen)38 IntrinsicLocationsBuilderX86_64::IntrinsicLocationsBuilderX86_64(CodeGeneratorX86_64* codegen)
39 : arena_(codegen->GetGraph()->GetArena()), codegen_(codegen) {
40 }
41
42
GetAssembler()43 X86_64Assembler* IntrinsicCodeGeneratorX86_64::GetAssembler() {
44 return down_cast<X86_64Assembler*>(codegen_->GetAssembler());
45 }
46
GetAllocator()47 ArenaAllocator* IntrinsicCodeGeneratorX86_64::GetAllocator() {
48 return codegen_->GetGraph()->GetArena();
49 }
50
TryDispatch(HInvoke * invoke)51 bool IntrinsicLocationsBuilderX86_64::TryDispatch(HInvoke* invoke) {
52 Dispatch(invoke);
53 LocationSummary* res = invoke->GetLocations();
54 if (res == nullptr) {
55 return false;
56 }
57 if (kEmitCompilerReadBarrier && res->CanCall()) {
58 // Generating an intrinsic for this HInvoke may produce an
59 // IntrinsicSlowPathX86_64 slow path. Currently this approach
60 // does not work when using read barriers, as the emitted
61 // calling sequence will make use of another slow path
62 // (ReadBarrierForRootSlowPathX86_64 for HInvokeStaticOrDirect,
63 // ReadBarrierSlowPathX86_64 for HInvokeVirtual). So we bail
64 // out in this case.
65 //
66 // TODO: Find a way to have intrinsics work with read barriers.
67 invoke->SetLocations(nullptr);
68 return false;
69 }
70 return res->Intrinsified();
71 }
72
MoveArguments(HInvoke * invoke,CodeGeneratorX86_64 * codegen)73 static void MoveArguments(HInvoke* invoke, CodeGeneratorX86_64* codegen) {
74 InvokeDexCallingConventionVisitorX86_64 calling_convention_visitor;
75 IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor);
76 }
77
78 using IntrinsicSlowPathX86_64 = IntrinsicSlowPath<InvokeDexCallingConventionVisitorX86_64>;
79
80 #define __ assembler->
81
CreateFPToIntLocations(ArenaAllocator * arena,HInvoke * invoke)82 static void CreateFPToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
83 LocationSummary* locations = new (arena) LocationSummary(invoke,
84 LocationSummary::kNoCall,
85 kIntrinsified);
86 locations->SetInAt(0, Location::RequiresFpuRegister());
87 locations->SetOut(Location::RequiresRegister());
88 }
89
CreateIntToFPLocations(ArenaAllocator * arena,HInvoke * invoke)90 static void CreateIntToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
91 LocationSummary* locations = new (arena) LocationSummary(invoke,
92 LocationSummary::kNoCall,
93 kIntrinsified);
94 locations->SetInAt(0, Location::RequiresRegister());
95 locations->SetOut(Location::RequiresFpuRegister());
96 }
97
MoveFPToInt(LocationSummary * locations,bool is64bit,X86_64Assembler * assembler)98 static void MoveFPToInt(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) {
99 Location input = locations->InAt(0);
100 Location output = locations->Out();
101 __ movd(output.AsRegister<CpuRegister>(), input.AsFpuRegister<XmmRegister>(), is64bit);
102 }
103
MoveIntToFP(LocationSummary * locations,bool is64bit,X86_64Assembler * assembler)104 static void MoveIntToFP(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) {
105 Location input = locations->InAt(0);
106 Location output = locations->Out();
107 __ movd(output.AsFpuRegister<XmmRegister>(), input.AsRegister<CpuRegister>(), is64bit);
108 }
109
VisitDoubleDoubleToRawLongBits(HInvoke * invoke)110 void IntrinsicLocationsBuilderX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
111 CreateFPToIntLocations(arena_, invoke);
112 }
VisitDoubleLongBitsToDouble(HInvoke * invoke)113 void IntrinsicLocationsBuilderX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
114 CreateIntToFPLocations(arena_, invoke);
115 }
116
VisitDoubleDoubleToRawLongBits(HInvoke * invoke)117 void IntrinsicCodeGeneratorX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
118 MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
119 }
VisitDoubleLongBitsToDouble(HInvoke * invoke)120 void IntrinsicCodeGeneratorX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
121 MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
122 }
123
VisitFloatFloatToRawIntBits(HInvoke * invoke)124 void IntrinsicLocationsBuilderX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
125 CreateFPToIntLocations(arena_, invoke);
126 }
VisitFloatIntBitsToFloat(HInvoke * invoke)127 void IntrinsicLocationsBuilderX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
128 CreateIntToFPLocations(arena_, invoke);
129 }
130
VisitFloatFloatToRawIntBits(HInvoke * invoke)131 void IntrinsicCodeGeneratorX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
132 MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
133 }
VisitFloatIntBitsToFloat(HInvoke * invoke)134 void IntrinsicCodeGeneratorX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
135 MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
136 }
137
CreateIntToIntLocations(ArenaAllocator * arena,HInvoke * invoke)138 static void CreateIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
139 LocationSummary* locations = new (arena) LocationSummary(invoke,
140 LocationSummary::kNoCall,
141 kIntrinsified);
142 locations->SetInAt(0, Location::RequiresRegister());
143 locations->SetOut(Location::SameAsFirstInput());
144 }
145
GenReverseBytes(LocationSummary * locations,Primitive::Type size,X86_64Assembler * assembler)146 static void GenReverseBytes(LocationSummary* locations,
147 Primitive::Type size,
148 X86_64Assembler* assembler) {
149 CpuRegister out = locations->Out().AsRegister<CpuRegister>();
150
151 switch (size) {
152 case Primitive::kPrimShort:
153 // TODO: Can be done with an xchg of 8b registers. This is straight from Quick.
154 __ bswapl(out);
155 __ sarl(out, Immediate(16));
156 break;
157 case Primitive::kPrimInt:
158 __ bswapl(out);
159 break;
160 case Primitive::kPrimLong:
161 __ bswapq(out);
162 break;
163 default:
164 LOG(FATAL) << "Unexpected size for reverse-bytes: " << size;
165 UNREACHABLE();
166 }
167 }
168
VisitIntegerReverseBytes(HInvoke * invoke)169 void IntrinsicLocationsBuilderX86_64::VisitIntegerReverseBytes(HInvoke* invoke) {
170 CreateIntToIntLocations(arena_, invoke);
171 }
172
VisitIntegerReverseBytes(HInvoke * invoke)173 void IntrinsicCodeGeneratorX86_64::VisitIntegerReverseBytes(HInvoke* invoke) {
174 GenReverseBytes(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler());
175 }
176
VisitLongReverseBytes(HInvoke * invoke)177 void IntrinsicLocationsBuilderX86_64::VisitLongReverseBytes(HInvoke* invoke) {
178 CreateIntToIntLocations(arena_, invoke);
179 }
180
VisitLongReverseBytes(HInvoke * invoke)181 void IntrinsicCodeGeneratorX86_64::VisitLongReverseBytes(HInvoke* invoke) {
182 GenReverseBytes(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler());
183 }
184
VisitShortReverseBytes(HInvoke * invoke)185 void IntrinsicLocationsBuilderX86_64::VisitShortReverseBytes(HInvoke* invoke) {
186 CreateIntToIntLocations(arena_, invoke);
187 }
188
VisitShortReverseBytes(HInvoke * invoke)189 void IntrinsicCodeGeneratorX86_64::VisitShortReverseBytes(HInvoke* invoke) {
190 GenReverseBytes(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler());
191 }
192
193
194 // TODO: Consider Quick's way of doing Double abs through integer operations, as the immediate we
195 // need is 64b.
196
CreateFloatToFloatPlusTemps(ArenaAllocator * arena,HInvoke * invoke)197 static void CreateFloatToFloatPlusTemps(ArenaAllocator* arena, HInvoke* invoke) {
198 // TODO: Enable memory operations when the assembler supports them.
199 LocationSummary* locations = new (arena) LocationSummary(invoke,
200 LocationSummary::kNoCall,
201 kIntrinsified);
202 locations->SetInAt(0, Location::RequiresFpuRegister());
203 locations->SetOut(Location::SameAsFirstInput());
204 locations->AddTemp(Location::RequiresFpuRegister()); // FP reg to hold mask.
205 }
206
MathAbsFP(LocationSummary * locations,bool is64bit,X86_64Assembler * assembler,CodeGeneratorX86_64 * codegen)207 static void MathAbsFP(LocationSummary* locations,
208 bool is64bit,
209 X86_64Assembler* assembler,
210 CodeGeneratorX86_64* codegen) {
211 Location output = locations->Out();
212
213 DCHECK(output.IsFpuRegister());
214 XmmRegister xmm_temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
215
216 // TODO: Can mask directly with constant area using pand if we can guarantee
217 // that the literal is aligned on a 16 byte boundary. This will avoid a
218 // temporary.
219 if (is64bit) {
220 __ movsd(xmm_temp, codegen->LiteralInt64Address(INT64_C(0x7FFFFFFFFFFFFFFF)));
221 __ andpd(output.AsFpuRegister<XmmRegister>(), xmm_temp);
222 } else {
223 __ movss(xmm_temp, codegen->LiteralInt32Address(INT32_C(0x7FFFFFFF)));
224 __ andps(output.AsFpuRegister<XmmRegister>(), xmm_temp);
225 }
226 }
227
VisitMathAbsDouble(HInvoke * invoke)228 void IntrinsicLocationsBuilderX86_64::VisitMathAbsDouble(HInvoke* invoke) {
229 CreateFloatToFloatPlusTemps(arena_, invoke);
230 }
231
VisitMathAbsDouble(HInvoke * invoke)232 void IntrinsicCodeGeneratorX86_64::VisitMathAbsDouble(HInvoke* invoke) {
233 MathAbsFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler(), codegen_);
234 }
235
VisitMathAbsFloat(HInvoke * invoke)236 void IntrinsicLocationsBuilderX86_64::VisitMathAbsFloat(HInvoke* invoke) {
237 CreateFloatToFloatPlusTemps(arena_, invoke);
238 }
239
VisitMathAbsFloat(HInvoke * invoke)240 void IntrinsicCodeGeneratorX86_64::VisitMathAbsFloat(HInvoke* invoke) {
241 MathAbsFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler(), codegen_);
242 }
243
CreateIntToIntPlusTemp(ArenaAllocator * arena,HInvoke * invoke)244 static void CreateIntToIntPlusTemp(ArenaAllocator* arena, HInvoke* invoke) {
245 LocationSummary* locations = new (arena) LocationSummary(invoke,
246 LocationSummary::kNoCall,
247 kIntrinsified);
248 locations->SetInAt(0, Location::RequiresRegister());
249 locations->SetOut(Location::SameAsFirstInput());
250 locations->AddTemp(Location::RequiresRegister());
251 }
252
GenAbsInteger(LocationSummary * locations,bool is64bit,X86_64Assembler * assembler)253 static void GenAbsInteger(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) {
254 Location output = locations->Out();
255 CpuRegister out = output.AsRegister<CpuRegister>();
256 CpuRegister mask = locations->GetTemp(0).AsRegister<CpuRegister>();
257
258 if (is64bit) {
259 // Create mask.
260 __ movq(mask, out);
261 __ sarq(mask, Immediate(63));
262 // Add mask.
263 __ addq(out, mask);
264 __ xorq(out, mask);
265 } else {
266 // Create mask.
267 __ movl(mask, out);
268 __ sarl(mask, Immediate(31));
269 // Add mask.
270 __ addl(out, mask);
271 __ xorl(out, mask);
272 }
273 }
274
VisitMathAbsInt(HInvoke * invoke)275 void IntrinsicLocationsBuilderX86_64::VisitMathAbsInt(HInvoke* invoke) {
276 CreateIntToIntPlusTemp(arena_, invoke);
277 }
278
VisitMathAbsInt(HInvoke * invoke)279 void IntrinsicCodeGeneratorX86_64::VisitMathAbsInt(HInvoke* invoke) {
280 GenAbsInteger(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
281 }
282
VisitMathAbsLong(HInvoke * invoke)283 void IntrinsicLocationsBuilderX86_64::VisitMathAbsLong(HInvoke* invoke) {
284 CreateIntToIntPlusTemp(arena_, invoke);
285 }
286
VisitMathAbsLong(HInvoke * invoke)287 void IntrinsicCodeGeneratorX86_64::VisitMathAbsLong(HInvoke* invoke) {
288 GenAbsInteger(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
289 }
290
GenMinMaxFP(LocationSummary * locations,bool is_min,bool is_double,X86_64Assembler * assembler,CodeGeneratorX86_64 * codegen)291 static void GenMinMaxFP(LocationSummary* locations,
292 bool is_min,
293 bool is_double,
294 X86_64Assembler* assembler,
295 CodeGeneratorX86_64* codegen) {
296 Location op1_loc = locations->InAt(0);
297 Location op2_loc = locations->InAt(1);
298 Location out_loc = locations->Out();
299 XmmRegister out = out_loc.AsFpuRegister<XmmRegister>();
300
301 // Shortcut for same input locations.
302 if (op1_loc.Equals(op2_loc)) {
303 DCHECK(out_loc.Equals(op1_loc));
304 return;
305 }
306
307 // (out := op1)
308 // out <=? op2
309 // if Nan jmp Nan_label
310 // if out is min jmp done
311 // if op2 is min jmp op2_label
312 // handle -0/+0
313 // jmp done
314 // Nan_label:
315 // out := NaN
316 // op2_label:
317 // out := op2
318 // done:
319 //
320 // This removes one jmp, but needs to copy one input (op1) to out.
321 //
322 // TODO: This is straight from Quick. Make NaN an out-of-line slowpath?
323
324 XmmRegister op2 = op2_loc.AsFpuRegister<XmmRegister>();
325
326 NearLabel nan, done, op2_label;
327 if (is_double) {
328 __ ucomisd(out, op2);
329 } else {
330 __ ucomiss(out, op2);
331 }
332
333 __ j(Condition::kParityEven, &nan);
334
335 __ j(is_min ? Condition::kAbove : Condition::kBelow, &op2_label);
336 __ j(is_min ? Condition::kBelow : Condition::kAbove, &done);
337
338 // Handle 0.0/-0.0.
339 if (is_min) {
340 if (is_double) {
341 __ orpd(out, op2);
342 } else {
343 __ orps(out, op2);
344 }
345 } else {
346 if (is_double) {
347 __ andpd(out, op2);
348 } else {
349 __ andps(out, op2);
350 }
351 }
352 __ jmp(&done);
353
354 // NaN handling.
355 __ Bind(&nan);
356 if (is_double) {
357 __ movsd(out, codegen->LiteralInt64Address(INT64_C(0x7FF8000000000000)));
358 } else {
359 __ movss(out, codegen->LiteralInt32Address(INT32_C(0x7FC00000)));
360 }
361 __ jmp(&done);
362
363 // out := op2;
364 __ Bind(&op2_label);
365 if (is_double) {
366 __ movsd(out, op2);
367 } else {
368 __ movss(out, op2);
369 }
370
371 // Done.
372 __ Bind(&done);
373 }
374
CreateFPFPToFP(ArenaAllocator * arena,HInvoke * invoke)375 static void CreateFPFPToFP(ArenaAllocator* arena, HInvoke* invoke) {
376 LocationSummary* locations = new (arena) LocationSummary(invoke,
377 LocationSummary::kNoCall,
378 kIntrinsified);
379 locations->SetInAt(0, Location::RequiresFpuRegister());
380 locations->SetInAt(1, Location::RequiresFpuRegister());
381 // The following is sub-optimal, but all we can do for now. It would be fine to also accept
382 // the second input to be the output (we can simply swap inputs).
383 locations->SetOut(Location::SameAsFirstInput());
384 }
385
VisitMathMinDoubleDouble(HInvoke * invoke)386 void IntrinsicLocationsBuilderX86_64::VisitMathMinDoubleDouble(HInvoke* invoke) {
387 CreateFPFPToFP(arena_, invoke);
388 }
389
VisitMathMinDoubleDouble(HInvoke * invoke)390 void IntrinsicCodeGeneratorX86_64::VisitMathMinDoubleDouble(HInvoke* invoke) {
391 GenMinMaxFP(
392 invoke->GetLocations(), /* is_min */ true, /* is_double */ true, GetAssembler(), codegen_);
393 }
394
VisitMathMinFloatFloat(HInvoke * invoke)395 void IntrinsicLocationsBuilderX86_64::VisitMathMinFloatFloat(HInvoke* invoke) {
396 CreateFPFPToFP(arena_, invoke);
397 }
398
VisitMathMinFloatFloat(HInvoke * invoke)399 void IntrinsicCodeGeneratorX86_64::VisitMathMinFloatFloat(HInvoke* invoke) {
400 GenMinMaxFP(
401 invoke->GetLocations(), /* is_min */ true, /* is_double */ false, GetAssembler(), codegen_);
402 }
403
VisitMathMaxDoubleDouble(HInvoke * invoke)404 void IntrinsicLocationsBuilderX86_64::VisitMathMaxDoubleDouble(HInvoke* invoke) {
405 CreateFPFPToFP(arena_, invoke);
406 }
407
VisitMathMaxDoubleDouble(HInvoke * invoke)408 void IntrinsicCodeGeneratorX86_64::VisitMathMaxDoubleDouble(HInvoke* invoke) {
409 GenMinMaxFP(
410 invoke->GetLocations(), /* is_min */ false, /* is_double */ true, GetAssembler(), codegen_);
411 }
412
VisitMathMaxFloatFloat(HInvoke * invoke)413 void IntrinsicLocationsBuilderX86_64::VisitMathMaxFloatFloat(HInvoke* invoke) {
414 CreateFPFPToFP(arena_, invoke);
415 }
416
VisitMathMaxFloatFloat(HInvoke * invoke)417 void IntrinsicCodeGeneratorX86_64::VisitMathMaxFloatFloat(HInvoke* invoke) {
418 GenMinMaxFP(
419 invoke->GetLocations(), /* is_min */ false, /* is_double */ false, GetAssembler(), codegen_);
420 }
421
GenMinMax(LocationSummary * locations,bool is_min,bool is_long,X86_64Assembler * assembler)422 static void GenMinMax(LocationSummary* locations, bool is_min, bool is_long,
423 X86_64Assembler* assembler) {
424 Location op1_loc = locations->InAt(0);
425 Location op2_loc = locations->InAt(1);
426
427 // Shortcut for same input locations.
428 if (op1_loc.Equals(op2_loc)) {
429 // Can return immediately, as op1_loc == out_loc.
430 // Note: if we ever support separate registers, e.g., output into memory, we need to check for
431 // a copy here.
432 DCHECK(locations->Out().Equals(op1_loc));
433 return;
434 }
435
436 CpuRegister out = locations->Out().AsRegister<CpuRegister>();
437 CpuRegister op2 = op2_loc.AsRegister<CpuRegister>();
438
439 // (out := op1)
440 // out <=? op2
441 // if out is min jmp done
442 // out := op2
443 // done:
444
445 if (is_long) {
446 __ cmpq(out, op2);
447 } else {
448 __ cmpl(out, op2);
449 }
450
451 __ cmov(is_min ? Condition::kGreater : Condition::kLess, out, op2, is_long);
452 }
453
CreateIntIntToIntLocations(ArenaAllocator * arena,HInvoke * invoke)454 static void CreateIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
455 LocationSummary* locations = new (arena) LocationSummary(invoke,
456 LocationSummary::kNoCall,
457 kIntrinsified);
458 locations->SetInAt(0, Location::RequiresRegister());
459 locations->SetInAt(1, Location::RequiresRegister());
460 locations->SetOut(Location::SameAsFirstInput());
461 }
462
VisitMathMinIntInt(HInvoke * invoke)463 void IntrinsicLocationsBuilderX86_64::VisitMathMinIntInt(HInvoke* invoke) {
464 CreateIntIntToIntLocations(arena_, invoke);
465 }
466
VisitMathMinIntInt(HInvoke * invoke)467 void IntrinsicCodeGeneratorX86_64::VisitMathMinIntInt(HInvoke* invoke) {
468 GenMinMax(invoke->GetLocations(), /* is_min */ true, /* is_long */ false, GetAssembler());
469 }
470
VisitMathMinLongLong(HInvoke * invoke)471 void IntrinsicLocationsBuilderX86_64::VisitMathMinLongLong(HInvoke* invoke) {
472 CreateIntIntToIntLocations(arena_, invoke);
473 }
474
VisitMathMinLongLong(HInvoke * invoke)475 void IntrinsicCodeGeneratorX86_64::VisitMathMinLongLong(HInvoke* invoke) {
476 GenMinMax(invoke->GetLocations(), /* is_min */ true, /* is_long */ true, GetAssembler());
477 }
478
VisitMathMaxIntInt(HInvoke * invoke)479 void IntrinsicLocationsBuilderX86_64::VisitMathMaxIntInt(HInvoke* invoke) {
480 CreateIntIntToIntLocations(arena_, invoke);
481 }
482
VisitMathMaxIntInt(HInvoke * invoke)483 void IntrinsicCodeGeneratorX86_64::VisitMathMaxIntInt(HInvoke* invoke) {
484 GenMinMax(invoke->GetLocations(), /* is_min */ false, /* is_long */ false, GetAssembler());
485 }
486
VisitMathMaxLongLong(HInvoke * invoke)487 void IntrinsicLocationsBuilderX86_64::VisitMathMaxLongLong(HInvoke* invoke) {
488 CreateIntIntToIntLocations(arena_, invoke);
489 }
490
VisitMathMaxLongLong(HInvoke * invoke)491 void IntrinsicCodeGeneratorX86_64::VisitMathMaxLongLong(HInvoke* invoke) {
492 GenMinMax(invoke->GetLocations(), /* is_min */ false, /* is_long */ true, GetAssembler());
493 }
494
CreateFPToFPLocations(ArenaAllocator * arena,HInvoke * invoke)495 static void CreateFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
496 LocationSummary* locations = new (arena) LocationSummary(invoke,
497 LocationSummary::kNoCall,
498 kIntrinsified);
499 locations->SetInAt(0, Location::RequiresFpuRegister());
500 locations->SetOut(Location::RequiresFpuRegister());
501 }
502
VisitMathSqrt(HInvoke * invoke)503 void IntrinsicLocationsBuilderX86_64::VisitMathSqrt(HInvoke* invoke) {
504 CreateFPToFPLocations(arena_, invoke);
505 }
506
VisitMathSqrt(HInvoke * invoke)507 void IntrinsicCodeGeneratorX86_64::VisitMathSqrt(HInvoke* invoke) {
508 LocationSummary* locations = invoke->GetLocations();
509 XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
510 XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
511
512 GetAssembler()->sqrtsd(out, in);
513 }
514
InvokeOutOfLineIntrinsic(CodeGeneratorX86_64 * codegen,HInvoke * invoke)515 static void InvokeOutOfLineIntrinsic(CodeGeneratorX86_64* codegen, HInvoke* invoke) {
516 MoveArguments(invoke, codegen);
517
518 DCHECK(invoke->IsInvokeStaticOrDirect());
519 codegen->GenerateStaticOrDirectCall(
520 invoke->AsInvokeStaticOrDirect(), Location::RegisterLocation(RDI));
521 codegen->RecordPcInfo(invoke, invoke->GetDexPc());
522
523 // Copy the result back to the expected output.
524 Location out = invoke->GetLocations()->Out();
525 if (out.IsValid()) {
526 DCHECK(out.IsRegister());
527 codegen->MoveFromReturnRegister(out, invoke->GetType());
528 }
529 }
530
CreateSSE41FPToFPLocations(ArenaAllocator * arena,HInvoke * invoke,CodeGeneratorX86_64 * codegen)531 static void CreateSSE41FPToFPLocations(ArenaAllocator* arena,
532 HInvoke* invoke,
533 CodeGeneratorX86_64* codegen) {
534 // Do we have instruction support?
535 if (codegen->GetInstructionSetFeatures().HasSSE4_1()) {
536 CreateFPToFPLocations(arena, invoke);
537 return;
538 }
539
540 // We have to fall back to a call to the intrinsic.
541 LocationSummary* locations = new (arena) LocationSummary(invoke,
542 LocationSummary::kCall);
543 InvokeRuntimeCallingConvention calling_convention;
544 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0)));
545 locations->SetOut(Location::FpuRegisterLocation(XMM0));
546 // Needs to be RDI for the invoke.
547 locations->AddTemp(Location::RegisterLocation(RDI));
548 }
549
GenSSE41FPToFPIntrinsic(CodeGeneratorX86_64 * codegen,HInvoke * invoke,X86_64Assembler * assembler,int round_mode)550 static void GenSSE41FPToFPIntrinsic(CodeGeneratorX86_64* codegen,
551 HInvoke* invoke,
552 X86_64Assembler* assembler,
553 int round_mode) {
554 LocationSummary* locations = invoke->GetLocations();
555 if (locations->WillCall()) {
556 InvokeOutOfLineIntrinsic(codegen, invoke);
557 } else {
558 XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
559 XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
560 __ roundsd(out, in, Immediate(round_mode));
561 }
562 }
563
VisitMathCeil(HInvoke * invoke)564 void IntrinsicLocationsBuilderX86_64::VisitMathCeil(HInvoke* invoke) {
565 CreateSSE41FPToFPLocations(arena_, invoke, codegen_);
566 }
567
VisitMathCeil(HInvoke * invoke)568 void IntrinsicCodeGeneratorX86_64::VisitMathCeil(HInvoke* invoke) {
569 GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 2);
570 }
571
VisitMathFloor(HInvoke * invoke)572 void IntrinsicLocationsBuilderX86_64::VisitMathFloor(HInvoke* invoke) {
573 CreateSSE41FPToFPLocations(arena_, invoke, codegen_);
574 }
575
VisitMathFloor(HInvoke * invoke)576 void IntrinsicCodeGeneratorX86_64::VisitMathFloor(HInvoke* invoke) {
577 GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 1);
578 }
579
VisitMathRint(HInvoke * invoke)580 void IntrinsicLocationsBuilderX86_64::VisitMathRint(HInvoke* invoke) {
581 CreateSSE41FPToFPLocations(arena_, invoke, codegen_);
582 }
583
VisitMathRint(HInvoke * invoke)584 void IntrinsicCodeGeneratorX86_64::VisitMathRint(HInvoke* invoke) {
585 GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 0);
586 }
587
CreateSSE41FPToIntLocations(ArenaAllocator * arena,HInvoke * invoke,CodeGeneratorX86_64 * codegen)588 static void CreateSSE41FPToIntLocations(ArenaAllocator* arena,
589 HInvoke* invoke,
590 CodeGeneratorX86_64* codegen) {
591 // Do we have instruction support?
592 if (codegen->GetInstructionSetFeatures().HasSSE4_1()) {
593 LocationSummary* locations = new (arena) LocationSummary(invoke,
594 LocationSummary::kNoCall,
595 kIntrinsified);
596 locations->SetInAt(0, Location::RequiresFpuRegister());
597 locations->SetOut(Location::RequiresRegister());
598 locations->AddTemp(Location::RequiresFpuRegister());
599 return;
600 }
601
602 // We have to fall back to a call to the intrinsic.
603 LocationSummary* locations = new (arena) LocationSummary(invoke,
604 LocationSummary::kCall);
605 InvokeRuntimeCallingConvention calling_convention;
606 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0)));
607 locations->SetOut(Location::RegisterLocation(RAX));
608 // Needs to be RDI for the invoke.
609 locations->AddTemp(Location::RegisterLocation(RDI));
610 }
611
VisitMathRoundFloat(HInvoke * invoke)612 void IntrinsicLocationsBuilderX86_64::VisitMathRoundFloat(HInvoke* invoke) {
613 // See intrinsics.h.
614 if (kRoundIsPlusPointFive) {
615 CreateSSE41FPToIntLocations(arena_, invoke, codegen_);
616 }
617 }
618
VisitMathRoundFloat(HInvoke * invoke)619 void IntrinsicCodeGeneratorX86_64::VisitMathRoundFloat(HInvoke* invoke) {
620 LocationSummary* locations = invoke->GetLocations();
621 if (locations->WillCall()) {
622 InvokeOutOfLineIntrinsic(codegen_, invoke);
623 return;
624 }
625
626 // Implement RoundFloat as t1 = floor(input + 0.5f); convert to int.
627 XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
628 CpuRegister out = locations->Out().AsRegister<CpuRegister>();
629 XmmRegister inPlusPointFive = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
630 NearLabel done, nan;
631 X86_64Assembler* assembler = GetAssembler();
632
633 // Load 0.5 into inPlusPointFive.
634 __ movss(inPlusPointFive, codegen_->LiteralFloatAddress(0.5f));
635
636 // Add in the input.
637 __ addss(inPlusPointFive, in);
638
639 // And truncate to an integer.
640 __ roundss(inPlusPointFive, inPlusPointFive, Immediate(1));
641
642 // Load maxInt into out.
643 codegen_->Load64BitValue(out, kPrimIntMax);
644
645 // if inPlusPointFive >= maxInt goto done
646 __ comiss(inPlusPointFive, codegen_->LiteralFloatAddress(static_cast<float>(kPrimIntMax)));
647 __ j(kAboveEqual, &done);
648
649 // if input == NaN goto nan
650 __ j(kUnordered, &nan);
651
652 // output = float-to-int-truncate(input)
653 __ cvttss2si(out, inPlusPointFive);
654 __ jmp(&done);
655 __ Bind(&nan);
656
657 // output = 0
658 __ xorl(out, out);
659 __ Bind(&done);
660 }
661
VisitMathRoundDouble(HInvoke * invoke)662 void IntrinsicLocationsBuilderX86_64::VisitMathRoundDouble(HInvoke* invoke) {
663 // See intrinsics.h.
664 if (kRoundIsPlusPointFive) {
665 CreateSSE41FPToIntLocations(arena_, invoke, codegen_);
666 }
667 }
668
VisitMathRoundDouble(HInvoke * invoke)669 void IntrinsicCodeGeneratorX86_64::VisitMathRoundDouble(HInvoke* invoke) {
670 LocationSummary* locations = invoke->GetLocations();
671 if (locations->WillCall()) {
672 InvokeOutOfLineIntrinsic(codegen_, invoke);
673 return;
674 }
675
676 // Implement RoundDouble as t1 = floor(input + 0.5); convert to long.
677 XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
678 CpuRegister out = locations->Out().AsRegister<CpuRegister>();
679 XmmRegister inPlusPointFive = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
680 NearLabel done, nan;
681 X86_64Assembler* assembler = GetAssembler();
682
683 // Load 0.5 into inPlusPointFive.
684 __ movsd(inPlusPointFive, codegen_->LiteralDoubleAddress(0.5));
685
686 // Add in the input.
687 __ addsd(inPlusPointFive, in);
688
689 // And truncate to an integer.
690 __ roundsd(inPlusPointFive, inPlusPointFive, Immediate(1));
691
692 // Load maxLong into out.
693 codegen_->Load64BitValue(out, kPrimLongMax);
694
695 // if inPlusPointFive >= maxLong goto done
696 __ comisd(inPlusPointFive, codegen_->LiteralDoubleAddress(static_cast<double>(kPrimLongMax)));
697 __ j(kAboveEqual, &done);
698
699 // if input == NaN goto nan
700 __ j(kUnordered, &nan);
701
702 // output = double-to-long-truncate(input)
703 __ cvttsd2si(out, inPlusPointFive, /* is64bit */ true);
704 __ jmp(&done);
705 __ Bind(&nan);
706
707 // output = 0
708 __ xorl(out, out);
709 __ Bind(&done);
710 }
711
CreateFPToFPCallLocations(ArenaAllocator * arena,HInvoke * invoke)712 static void CreateFPToFPCallLocations(ArenaAllocator* arena,
713 HInvoke* invoke) {
714 LocationSummary* locations = new (arena) LocationSummary(invoke,
715 LocationSummary::kCall,
716 kIntrinsified);
717 InvokeRuntimeCallingConvention calling_convention;
718 locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
719 locations->SetOut(Location::FpuRegisterLocation(XMM0));
720
721 // We have to ensure that the native code doesn't clobber the XMM registers which are
722 // non-volatile for ART, but volatile for Native calls. This will ensure that they are
723 // saved in the prologue and properly restored.
724 for (auto fp_reg : non_volatile_xmm_regs) {
725 locations->AddTemp(Location::FpuRegisterLocation(fp_reg));
726 }
727 }
728
GenFPToFPCall(HInvoke * invoke,CodeGeneratorX86_64 * codegen,QuickEntrypointEnum entry)729 static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorX86_64* codegen,
730 QuickEntrypointEnum entry) {
731 LocationSummary* locations = invoke->GetLocations();
732 DCHECK(locations->WillCall());
733 DCHECK(invoke->IsInvokeStaticOrDirect());
734 X86_64Assembler* assembler = codegen->GetAssembler();
735
736 __ gs()->call(Address::Absolute(GetThreadOffset<kX86_64WordSize>(entry), true));
737 codegen->RecordPcInfo(invoke, invoke->GetDexPc());
738 }
739
VisitMathCos(HInvoke * invoke)740 void IntrinsicLocationsBuilderX86_64::VisitMathCos(HInvoke* invoke) {
741 CreateFPToFPCallLocations(arena_, invoke);
742 }
743
VisitMathCos(HInvoke * invoke)744 void IntrinsicCodeGeneratorX86_64::VisitMathCos(HInvoke* invoke) {
745 GenFPToFPCall(invoke, codegen_, kQuickCos);
746 }
747
VisitMathSin(HInvoke * invoke)748 void IntrinsicLocationsBuilderX86_64::VisitMathSin(HInvoke* invoke) {
749 CreateFPToFPCallLocations(arena_, invoke);
750 }
751
VisitMathSin(HInvoke * invoke)752 void IntrinsicCodeGeneratorX86_64::VisitMathSin(HInvoke* invoke) {
753 GenFPToFPCall(invoke, codegen_, kQuickSin);
754 }
755
VisitMathAcos(HInvoke * invoke)756 void IntrinsicLocationsBuilderX86_64::VisitMathAcos(HInvoke* invoke) {
757 CreateFPToFPCallLocations(arena_, invoke);
758 }
759
VisitMathAcos(HInvoke * invoke)760 void IntrinsicCodeGeneratorX86_64::VisitMathAcos(HInvoke* invoke) {
761 GenFPToFPCall(invoke, codegen_, kQuickAcos);
762 }
763
VisitMathAsin(HInvoke * invoke)764 void IntrinsicLocationsBuilderX86_64::VisitMathAsin(HInvoke* invoke) {
765 CreateFPToFPCallLocations(arena_, invoke);
766 }
767
VisitMathAsin(HInvoke * invoke)768 void IntrinsicCodeGeneratorX86_64::VisitMathAsin(HInvoke* invoke) {
769 GenFPToFPCall(invoke, codegen_, kQuickAsin);
770 }
771
VisitMathAtan(HInvoke * invoke)772 void IntrinsicLocationsBuilderX86_64::VisitMathAtan(HInvoke* invoke) {
773 CreateFPToFPCallLocations(arena_, invoke);
774 }
775
VisitMathAtan(HInvoke * invoke)776 void IntrinsicCodeGeneratorX86_64::VisitMathAtan(HInvoke* invoke) {
777 GenFPToFPCall(invoke, codegen_, kQuickAtan);
778 }
779
VisitMathCbrt(HInvoke * invoke)780 void IntrinsicLocationsBuilderX86_64::VisitMathCbrt(HInvoke* invoke) {
781 CreateFPToFPCallLocations(arena_, invoke);
782 }
783
VisitMathCbrt(HInvoke * invoke)784 void IntrinsicCodeGeneratorX86_64::VisitMathCbrt(HInvoke* invoke) {
785 GenFPToFPCall(invoke, codegen_, kQuickCbrt);
786 }
787
VisitMathCosh(HInvoke * invoke)788 void IntrinsicLocationsBuilderX86_64::VisitMathCosh(HInvoke* invoke) {
789 CreateFPToFPCallLocations(arena_, invoke);
790 }
791
VisitMathCosh(HInvoke * invoke)792 void IntrinsicCodeGeneratorX86_64::VisitMathCosh(HInvoke* invoke) {
793 GenFPToFPCall(invoke, codegen_, kQuickCosh);
794 }
795
VisitMathExp(HInvoke * invoke)796 void IntrinsicLocationsBuilderX86_64::VisitMathExp(HInvoke* invoke) {
797 CreateFPToFPCallLocations(arena_, invoke);
798 }
799
VisitMathExp(HInvoke * invoke)800 void IntrinsicCodeGeneratorX86_64::VisitMathExp(HInvoke* invoke) {
801 GenFPToFPCall(invoke, codegen_, kQuickExp);
802 }
803
VisitMathExpm1(HInvoke * invoke)804 void IntrinsicLocationsBuilderX86_64::VisitMathExpm1(HInvoke* invoke) {
805 CreateFPToFPCallLocations(arena_, invoke);
806 }
807
VisitMathExpm1(HInvoke * invoke)808 void IntrinsicCodeGeneratorX86_64::VisitMathExpm1(HInvoke* invoke) {
809 GenFPToFPCall(invoke, codegen_, kQuickExpm1);
810 }
811
VisitMathLog(HInvoke * invoke)812 void IntrinsicLocationsBuilderX86_64::VisitMathLog(HInvoke* invoke) {
813 CreateFPToFPCallLocations(arena_, invoke);
814 }
815
VisitMathLog(HInvoke * invoke)816 void IntrinsicCodeGeneratorX86_64::VisitMathLog(HInvoke* invoke) {
817 GenFPToFPCall(invoke, codegen_, kQuickLog);
818 }
819
VisitMathLog10(HInvoke * invoke)820 void IntrinsicLocationsBuilderX86_64::VisitMathLog10(HInvoke* invoke) {
821 CreateFPToFPCallLocations(arena_, invoke);
822 }
823
VisitMathLog10(HInvoke * invoke)824 void IntrinsicCodeGeneratorX86_64::VisitMathLog10(HInvoke* invoke) {
825 GenFPToFPCall(invoke, codegen_, kQuickLog10);
826 }
827
VisitMathSinh(HInvoke * invoke)828 void IntrinsicLocationsBuilderX86_64::VisitMathSinh(HInvoke* invoke) {
829 CreateFPToFPCallLocations(arena_, invoke);
830 }
831
VisitMathSinh(HInvoke * invoke)832 void IntrinsicCodeGeneratorX86_64::VisitMathSinh(HInvoke* invoke) {
833 GenFPToFPCall(invoke, codegen_, kQuickSinh);
834 }
835
VisitMathTan(HInvoke * invoke)836 void IntrinsicLocationsBuilderX86_64::VisitMathTan(HInvoke* invoke) {
837 CreateFPToFPCallLocations(arena_, invoke);
838 }
839
VisitMathTan(HInvoke * invoke)840 void IntrinsicCodeGeneratorX86_64::VisitMathTan(HInvoke* invoke) {
841 GenFPToFPCall(invoke, codegen_, kQuickTan);
842 }
843
VisitMathTanh(HInvoke * invoke)844 void IntrinsicLocationsBuilderX86_64::VisitMathTanh(HInvoke* invoke) {
845 CreateFPToFPCallLocations(arena_, invoke);
846 }
847
VisitMathTanh(HInvoke * invoke)848 void IntrinsicCodeGeneratorX86_64::VisitMathTanh(HInvoke* invoke) {
849 GenFPToFPCall(invoke, codegen_, kQuickTanh);
850 }
851
CreateFPFPToFPCallLocations(ArenaAllocator * arena,HInvoke * invoke)852 static void CreateFPFPToFPCallLocations(ArenaAllocator* arena,
853 HInvoke* invoke) {
854 LocationSummary* locations = new (arena) LocationSummary(invoke,
855 LocationSummary::kCall,
856 kIntrinsified);
857 InvokeRuntimeCallingConvention calling_convention;
858 locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
859 locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
860 locations->SetOut(Location::FpuRegisterLocation(XMM0));
861
862 // We have to ensure that the native code doesn't clobber the XMM registers which are
863 // non-volatile for ART, but volatile for Native calls. This will ensure that they are
864 // saved in the prologue and properly restored.
865 for (auto fp_reg : non_volatile_xmm_regs) {
866 locations->AddTemp(Location::FpuRegisterLocation(fp_reg));
867 }
868 }
869
VisitMathAtan2(HInvoke * invoke)870 void IntrinsicLocationsBuilderX86_64::VisitMathAtan2(HInvoke* invoke) {
871 CreateFPFPToFPCallLocations(arena_, invoke);
872 }
873
VisitMathAtan2(HInvoke * invoke)874 void IntrinsicCodeGeneratorX86_64::VisitMathAtan2(HInvoke* invoke) {
875 GenFPToFPCall(invoke, codegen_, kQuickAtan2);
876 }
877
VisitMathHypot(HInvoke * invoke)878 void IntrinsicLocationsBuilderX86_64::VisitMathHypot(HInvoke* invoke) {
879 CreateFPFPToFPCallLocations(arena_, invoke);
880 }
881
VisitMathHypot(HInvoke * invoke)882 void IntrinsicCodeGeneratorX86_64::VisitMathHypot(HInvoke* invoke) {
883 GenFPToFPCall(invoke, codegen_, kQuickHypot);
884 }
885
VisitMathNextAfter(HInvoke * invoke)886 void IntrinsicLocationsBuilderX86_64::VisitMathNextAfter(HInvoke* invoke) {
887 CreateFPFPToFPCallLocations(arena_, invoke);
888 }
889
VisitMathNextAfter(HInvoke * invoke)890 void IntrinsicCodeGeneratorX86_64::VisitMathNextAfter(HInvoke* invoke) {
891 GenFPToFPCall(invoke, codegen_, kQuickNextAfter);
892 }
893
VisitStringCharAt(HInvoke * invoke)894 void IntrinsicLocationsBuilderX86_64::VisitStringCharAt(HInvoke* invoke) {
895 // The inputs plus one temp.
896 LocationSummary* locations = new (arena_) LocationSummary(invoke,
897 LocationSummary::kCallOnSlowPath,
898 kIntrinsified);
899 locations->SetInAt(0, Location::RequiresRegister());
900 locations->SetInAt(1, Location::RequiresRegister());
901 locations->SetOut(Location::SameAsFirstInput());
902 locations->AddTemp(Location::RequiresRegister());
903 }
904
VisitStringCharAt(HInvoke * invoke)905 void IntrinsicCodeGeneratorX86_64::VisitStringCharAt(HInvoke* invoke) {
906 LocationSummary* locations = invoke->GetLocations();
907
908 // Location of reference to data array.
909 const int32_t value_offset = mirror::String::ValueOffset().Int32Value();
910 // Location of count.
911 const int32_t count_offset = mirror::String::CountOffset().Int32Value();
912
913 CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>();
914 CpuRegister idx = locations->InAt(1).AsRegister<CpuRegister>();
915 CpuRegister out = locations->Out().AsRegister<CpuRegister>();
916
917 // TODO: Maybe we can support range check elimination. Overall, though, I think it's not worth
918 // the cost.
919 // TODO: For simplicity, the index parameter is requested in a register, so different from Quick
920 // we will not optimize the code for constants (which would save a register).
921
922 SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke);
923 codegen_->AddSlowPath(slow_path);
924
925 X86_64Assembler* assembler = GetAssembler();
926
927 __ cmpl(idx, Address(obj, count_offset));
928 codegen_->MaybeRecordImplicitNullCheck(invoke);
929 __ j(kAboveEqual, slow_path->GetEntryLabel());
930
931 // out = out[2*idx].
932 __ movzxw(out, Address(out, idx, ScaleFactor::TIMES_2, value_offset));
933
934 __ Bind(slow_path->GetExitLabel());
935 }
936
VisitSystemArrayCopyChar(HInvoke * invoke)937 void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) {
938 // Check to see if we have known failures that will cause us to have to bail out
939 // to the runtime, and just generate the runtime call directly.
940 HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
941 HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
942
943 // The positions must be non-negative.
944 if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
945 (dest_pos != nullptr && dest_pos->GetValue() < 0)) {
946 // We will have to fail anyways.
947 return;
948 }
949
950 // The length must be > 0.
951 HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
952 if (length != nullptr) {
953 int32_t len = length->GetValue();
954 if (len < 0) {
955 // Just call as normal.
956 return;
957 }
958 }
959
960 LocationSummary* locations = new (arena_) LocationSummary(invoke,
961 LocationSummary::kCallOnSlowPath,
962 kIntrinsified);
963 // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
964 locations->SetInAt(0, Location::RequiresRegister());
965 locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
966 locations->SetInAt(2, Location::RequiresRegister());
967 locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
968 locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
969
970 // And we need some temporaries. We will use REP MOVSW, so we need fixed registers.
971 locations->AddTemp(Location::RegisterLocation(RSI));
972 locations->AddTemp(Location::RegisterLocation(RDI));
973 locations->AddTemp(Location::RegisterLocation(RCX));
974 }
975
CheckPosition(X86_64Assembler * assembler,Location pos,CpuRegister input,Location length,SlowPathCode * slow_path,CpuRegister input_len,CpuRegister temp,bool length_is_input_length=false)976 static void CheckPosition(X86_64Assembler* assembler,
977 Location pos,
978 CpuRegister input,
979 Location length,
980 SlowPathCode* slow_path,
981 CpuRegister input_len,
982 CpuRegister temp,
983 bool length_is_input_length = false) {
984 // Where is the length in the Array?
985 const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
986
987 if (pos.IsConstant()) {
988 int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue();
989 if (pos_const == 0) {
990 if (!length_is_input_length) {
991 // Check that length(input) >= length.
992 if (length.IsConstant()) {
993 __ cmpl(Address(input, length_offset),
994 Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
995 } else {
996 __ cmpl(Address(input, length_offset), length.AsRegister<CpuRegister>());
997 }
998 __ j(kLess, slow_path->GetEntryLabel());
999 }
1000 } else {
1001 // Check that length(input) >= pos.
1002 __ movl(input_len, Address(input, length_offset));
1003 __ cmpl(input_len, Immediate(pos_const));
1004 __ j(kLess, slow_path->GetEntryLabel());
1005
1006 // Check that (length(input) - pos) >= length.
1007 __ leal(temp, Address(input_len, -pos_const));
1008 if (length.IsConstant()) {
1009 __ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
1010 } else {
1011 __ cmpl(temp, length.AsRegister<CpuRegister>());
1012 }
1013 __ j(kLess, slow_path->GetEntryLabel());
1014 }
1015 } else if (length_is_input_length) {
1016 // The only way the copy can succeed is if pos is zero.
1017 CpuRegister pos_reg = pos.AsRegister<CpuRegister>();
1018 __ testl(pos_reg, pos_reg);
1019 __ j(kNotEqual, slow_path->GetEntryLabel());
1020 } else {
1021 // Check that pos >= 0.
1022 CpuRegister pos_reg = pos.AsRegister<CpuRegister>();
1023 __ testl(pos_reg, pos_reg);
1024 __ j(kLess, slow_path->GetEntryLabel());
1025
1026 // Check that pos <= length(input).
1027 __ cmpl(Address(input, length_offset), pos_reg);
1028 __ j(kLess, slow_path->GetEntryLabel());
1029
1030 // Check that (length(input) - pos) >= length.
1031 __ movl(temp, Address(input, length_offset));
1032 __ subl(temp, pos_reg);
1033 if (length.IsConstant()) {
1034 __ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
1035 } else {
1036 __ cmpl(temp, length.AsRegister<CpuRegister>());
1037 }
1038 __ j(kLess, slow_path->GetEntryLabel());
1039 }
1040 }
1041
VisitSystemArrayCopyChar(HInvoke * invoke)1042 void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) {
1043 X86_64Assembler* assembler = GetAssembler();
1044 LocationSummary* locations = invoke->GetLocations();
1045
1046 CpuRegister src = locations->InAt(0).AsRegister<CpuRegister>();
1047 Location src_pos = locations->InAt(1);
1048 CpuRegister dest = locations->InAt(2).AsRegister<CpuRegister>();
1049 Location dest_pos = locations->InAt(3);
1050 Location length = locations->InAt(4);
1051
1052 // Temporaries that we need for MOVSW.
1053 CpuRegister src_base = locations->GetTemp(0).AsRegister<CpuRegister>();
1054 DCHECK_EQ(src_base.AsRegister(), RSI);
1055 CpuRegister dest_base = locations->GetTemp(1).AsRegister<CpuRegister>();
1056 DCHECK_EQ(dest_base.AsRegister(), RDI);
1057 CpuRegister count = locations->GetTemp(2).AsRegister<CpuRegister>();
1058 DCHECK_EQ(count.AsRegister(), RCX);
1059
1060 SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke);
1061 codegen_->AddSlowPath(slow_path);
1062
1063 // Bail out if the source and destination are the same.
1064 __ cmpl(src, dest);
1065 __ j(kEqual, slow_path->GetEntryLabel());
1066
1067 // Bail out if the source is null.
1068 __ testl(src, src);
1069 __ j(kEqual, slow_path->GetEntryLabel());
1070
1071 // Bail out if the destination is null.
1072 __ testl(dest, dest);
1073 __ j(kEqual, slow_path->GetEntryLabel());
1074
1075 // If the length is negative, bail out.
1076 // We have already checked in the LocationsBuilder for the constant case.
1077 if (!length.IsConstant()) {
1078 __ testl(length.AsRegister<CpuRegister>(), length.AsRegister<CpuRegister>());
1079 __ j(kLess, slow_path->GetEntryLabel());
1080 }
1081
1082 // Validity checks: source.
1083 CheckPosition(assembler, src_pos, src, length, slow_path, src_base, dest_base);
1084
1085 // Validity checks: dest.
1086 CheckPosition(assembler, dest_pos, dest, length, slow_path, src_base, dest_base);
1087
1088 // We need the count in RCX.
1089 if (length.IsConstant()) {
1090 __ movl(count, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
1091 } else {
1092 __ movl(count, length.AsRegister<CpuRegister>());
1093 }
1094
1095 // Okay, everything checks out. Finally time to do the copy.
1096 // Check assumption that sizeof(Char) is 2 (used in scaling below).
1097 const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
1098 DCHECK_EQ(char_size, 2u);
1099
1100 const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
1101
1102 if (src_pos.IsConstant()) {
1103 int32_t src_pos_const = src_pos.GetConstant()->AsIntConstant()->GetValue();
1104 __ leal(src_base, Address(src, char_size * src_pos_const + data_offset));
1105 } else {
1106 __ leal(src_base, Address(src, src_pos.AsRegister<CpuRegister>(),
1107 ScaleFactor::TIMES_2, data_offset));
1108 }
1109 if (dest_pos.IsConstant()) {
1110 int32_t dest_pos_const = dest_pos.GetConstant()->AsIntConstant()->GetValue();
1111 __ leal(dest_base, Address(dest, char_size * dest_pos_const + data_offset));
1112 } else {
1113 __ leal(dest_base, Address(dest, dest_pos.AsRegister<CpuRegister>(),
1114 ScaleFactor::TIMES_2, data_offset));
1115 }
1116
1117 // Do the move.
1118 __ rep_movsw();
1119
1120 __ Bind(slow_path->GetExitLabel());
1121 }
1122
1123
VisitSystemArrayCopy(HInvoke * invoke)1124 void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopy(HInvoke* invoke) {
1125 CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke);
1126 }
1127
1128 // TODO: Implement read barriers in the SystemArrayCopy intrinsic.
1129 // Note that this code path is not used (yet) because we do not
1130 // intrinsify methods that can go into the IntrinsicSlowPathX86_64
1131 // slow path.
VisitSystemArrayCopy(HInvoke * invoke)1132 void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopy(HInvoke* invoke) {
1133 X86_64Assembler* assembler = GetAssembler();
1134 LocationSummary* locations = invoke->GetLocations();
1135
1136 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
1137 uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
1138 uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
1139 uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
1140
1141 CpuRegister src = locations->InAt(0).AsRegister<CpuRegister>();
1142 Location src_pos = locations->InAt(1);
1143 CpuRegister dest = locations->InAt(2).AsRegister<CpuRegister>();
1144 Location dest_pos = locations->InAt(3);
1145 Location length = locations->InAt(4);
1146 CpuRegister temp1 = locations->GetTemp(0).AsRegister<CpuRegister>();
1147 CpuRegister temp2 = locations->GetTemp(1).AsRegister<CpuRegister>();
1148 CpuRegister temp3 = locations->GetTemp(2).AsRegister<CpuRegister>();
1149
1150 SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke);
1151 codegen_->AddSlowPath(slow_path);
1152
1153 NearLabel conditions_on_positions_validated;
1154 SystemArrayCopyOptimizations optimizations(invoke);
1155
1156 if (!optimizations.GetDestinationIsSource() &&
1157 (!src_pos.IsConstant() || !dest_pos.IsConstant())) {
1158 __ cmpl(src, dest);
1159 }
1160 // If source and destination are the same, we go to slow path if we need to do
1161 // forward copying.
1162 if (src_pos.IsConstant()) {
1163 int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
1164 if (dest_pos.IsConstant()) {
1165 // Checked when building locations.
1166 DCHECK(!optimizations.GetDestinationIsSource()
1167 || (src_pos_constant >= dest_pos.GetConstant()->AsIntConstant()->GetValue()));
1168 } else {
1169 if (!optimizations.GetDestinationIsSource()) {
1170 __ j(kNotEqual, &conditions_on_positions_validated);
1171 }
1172 __ cmpl(dest_pos.AsRegister<CpuRegister>(), Immediate(src_pos_constant));
1173 __ j(kGreater, slow_path->GetEntryLabel());
1174 }
1175 } else {
1176 if (!optimizations.GetDestinationIsSource()) {
1177 __ j(kNotEqual, &conditions_on_positions_validated);
1178 }
1179 if (dest_pos.IsConstant()) {
1180 int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
1181 __ cmpl(src_pos.AsRegister<CpuRegister>(), Immediate(dest_pos_constant));
1182 __ j(kLess, slow_path->GetEntryLabel());
1183 } else {
1184 __ cmpl(src_pos.AsRegister<CpuRegister>(), dest_pos.AsRegister<CpuRegister>());
1185 __ j(kLess, slow_path->GetEntryLabel());
1186 }
1187 }
1188
1189 __ Bind(&conditions_on_positions_validated);
1190
1191 if (!optimizations.GetSourceIsNotNull()) {
1192 // Bail out if the source is null.
1193 __ testl(src, src);
1194 __ j(kEqual, slow_path->GetEntryLabel());
1195 }
1196
1197 if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) {
1198 // Bail out if the destination is null.
1199 __ testl(dest, dest);
1200 __ j(kEqual, slow_path->GetEntryLabel());
1201 }
1202
1203 // If the length is negative, bail out.
1204 // We have already checked in the LocationsBuilder for the constant case.
1205 if (!length.IsConstant() &&
1206 !optimizations.GetCountIsSourceLength() &&
1207 !optimizations.GetCountIsDestinationLength()) {
1208 __ testl(length.AsRegister<CpuRegister>(), length.AsRegister<CpuRegister>());
1209 __ j(kLess, slow_path->GetEntryLabel());
1210 }
1211
1212 // Validity checks: source.
1213 CheckPosition(assembler,
1214 src_pos,
1215 src,
1216 length,
1217 slow_path,
1218 temp1,
1219 temp2,
1220 optimizations.GetCountIsSourceLength());
1221
1222 // Validity checks: dest.
1223 CheckPosition(assembler,
1224 dest_pos,
1225 dest,
1226 length,
1227 slow_path,
1228 temp1,
1229 temp2,
1230 optimizations.GetCountIsDestinationLength());
1231
1232 if (!optimizations.GetDoesNotNeedTypeCheck()) {
1233 // Check whether all elements of the source array are assignable to the component
1234 // type of the destination array. We do two checks: the classes are the same,
1235 // or the destination is Object[]. If none of these checks succeed, we go to the
1236 // slow path.
1237 __ movl(temp1, Address(dest, class_offset));
1238 __ movl(temp2, Address(src, class_offset));
1239 bool did_unpoison = false;
1240 if (!optimizations.GetDestinationIsNonPrimitiveArray() ||
1241 !optimizations.GetSourceIsNonPrimitiveArray()) {
1242 // One or two of the references need to be unpoisoned. Unpoison them
1243 // both to make the identity check valid.
1244 __ MaybeUnpoisonHeapReference(temp1);
1245 __ MaybeUnpoisonHeapReference(temp2);
1246 did_unpoison = true;
1247 }
1248
1249 if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
1250 // Bail out if the destination is not a non primitive array.
1251 // /* HeapReference<Class> */ TMP = temp1->component_type_
1252 __ movl(CpuRegister(TMP), Address(temp1, component_offset));
1253 __ testl(CpuRegister(TMP), CpuRegister(TMP));
1254 __ j(kEqual, slow_path->GetEntryLabel());
1255 __ MaybeUnpoisonHeapReference(CpuRegister(TMP));
1256 __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot));
1257 __ j(kNotEqual, slow_path->GetEntryLabel());
1258 }
1259
1260 if (!optimizations.GetSourceIsNonPrimitiveArray()) {
1261 // Bail out if the source is not a non primitive array.
1262 // /* HeapReference<Class> */ TMP = temp2->component_type_
1263 __ movl(CpuRegister(TMP), Address(temp2, component_offset));
1264 __ testl(CpuRegister(TMP), CpuRegister(TMP));
1265 __ j(kEqual, slow_path->GetEntryLabel());
1266 __ MaybeUnpoisonHeapReference(CpuRegister(TMP));
1267 __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot));
1268 __ j(kNotEqual, slow_path->GetEntryLabel());
1269 }
1270
1271 __ cmpl(temp1, temp2);
1272
1273 if (optimizations.GetDestinationIsTypedObjectArray()) {
1274 NearLabel do_copy;
1275 __ j(kEqual, &do_copy);
1276 if (!did_unpoison) {
1277 __ MaybeUnpoisonHeapReference(temp1);
1278 }
1279 // /* HeapReference<Class> */ temp1 = temp1->component_type_
1280 __ movl(temp1, Address(temp1, component_offset));
1281 __ MaybeUnpoisonHeapReference(temp1);
1282 // /* HeapReference<Class> */ temp1 = temp1->super_class_
1283 __ movl(temp1, Address(temp1, super_offset));
1284 // No need to unpoison the result, we're comparing against null.
1285 __ testl(temp1, temp1);
1286 __ j(kNotEqual, slow_path->GetEntryLabel());
1287 __ Bind(&do_copy);
1288 } else {
1289 __ j(kNotEqual, slow_path->GetEntryLabel());
1290 }
1291 } else if (!optimizations.GetSourceIsNonPrimitiveArray()) {
1292 DCHECK(optimizations.GetDestinationIsNonPrimitiveArray());
1293 // Bail out if the source is not a non primitive array.
1294 // /* HeapReference<Class> */ temp1 = src->klass_
1295 __ movl(temp1, Address(src, class_offset));
1296 __ MaybeUnpoisonHeapReference(temp1);
1297 // /* HeapReference<Class> */ TMP = temp1->component_type_
1298 __ movl(CpuRegister(TMP), Address(temp1, component_offset));
1299 __ testl(CpuRegister(TMP), CpuRegister(TMP));
1300 __ j(kEqual, slow_path->GetEntryLabel());
1301 __ MaybeUnpoisonHeapReference(CpuRegister(TMP));
1302 __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot));
1303 __ j(kNotEqual, slow_path->GetEntryLabel());
1304 }
1305
1306 // Compute base source address, base destination address, and end source address.
1307
1308 uint32_t element_size = sizeof(int32_t);
1309 uint32_t offset = mirror::Array::DataOffset(element_size).Uint32Value();
1310 if (src_pos.IsConstant()) {
1311 int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
1312 __ leal(temp1, Address(src, element_size * constant + offset));
1313 } else {
1314 __ leal(temp1, Address(src, src_pos.AsRegister<CpuRegister>(), ScaleFactor::TIMES_4, offset));
1315 }
1316
1317 if (dest_pos.IsConstant()) {
1318 int32_t constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
1319 __ leal(temp2, Address(dest, element_size * constant + offset));
1320 } else {
1321 __ leal(temp2, Address(dest, dest_pos.AsRegister<CpuRegister>(), ScaleFactor::TIMES_4, offset));
1322 }
1323
1324 if (length.IsConstant()) {
1325 int32_t constant = length.GetConstant()->AsIntConstant()->GetValue();
1326 __ leal(temp3, Address(temp1, element_size * constant));
1327 } else {
1328 __ leal(temp3, Address(temp1, length.AsRegister<CpuRegister>(), ScaleFactor::TIMES_4, 0));
1329 }
1330
1331 // Iterate over the arrays and do a raw copy of the objects. We don't need to
1332 // poison/unpoison, nor do any read barrier as the next uses of the destination
1333 // array will do it.
1334 NearLabel loop, done;
1335 __ cmpl(temp1, temp3);
1336 __ j(kEqual, &done);
1337 __ Bind(&loop);
1338 __ movl(CpuRegister(TMP), Address(temp1, 0));
1339 __ movl(Address(temp2, 0), CpuRegister(TMP));
1340 __ addl(temp1, Immediate(element_size));
1341 __ addl(temp2, Immediate(element_size));
1342 __ cmpl(temp1, temp3);
1343 __ j(kNotEqual, &loop);
1344 __ Bind(&done);
1345
1346 // We only need one card marking on the destination array.
1347 codegen_->MarkGCCard(temp1,
1348 temp2,
1349 dest,
1350 CpuRegister(kNoRegister),
1351 /* value_can_be_null */ false);
1352
1353 __ Bind(slow_path->GetExitLabel());
1354 }
1355
VisitStringCompareTo(HInvoke * invoke)1356 void IntrinsicLocationsBuilderX86_64::VisitStringCompareTo(HInvoke* invoke) {
1357 LocationSummary* locations = new (arena_) LocationSummary(invoke,
1358 LocationSummary::kCall,
1359 kIntrinsified);
1360 InvokeRuntimeCallingConvention calling_convention;
1361 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
1362 locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
1363 locations->SetOut(Location::RegisterLocation(RAX));
1364 }
1365
VisitStringCompareTo(HInvoke * invoke)1366 void IntrinsicCodeGeneratorX86_64::VisitStringCompareTo(HInvoke* invoke) {
1367 X86_64Assembler* assembler = GetAssembler();
1368 LocationSummary* locations = invoke->GetLocations();
1369
1370 // Note that the null check must have been done earlier.
1371 DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
1372
1373 CpuRegister argument = locations->InAt(1).AsRegister<CpuRegister>();
1374 __ testl(argument, argument);
1375 SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke);
1376 codegen_->AddSlowPath(slow_path);
1377 __ j(kEqual, slow_path->GetEntryLabel());
1378
1379 __ gs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pStringCompareTo),
1380 /* no_rip */ true));
1381 __ Bind(slow_path->GetExitLabel());
1382 }
1383
VisitStringEquals(HInvoke * invoke)1384 void IntrinsicLocationsBuilderX86_64::VisitStringEquals(HInvoke* invoke) {
1385 LocationSummary* locations = new (arena_) LocationSummary(invoke,
1386 LocationSummary::kNoCall,
1387 kIntrinsified);
1388 locations->SetInAt(0, Location::RequiresRegister());
1389 locations->SetInAt(1, Location::RequiresRegister());
1390
1391 // Request temporary registers, RCX and RDI needed for repe_cmpsq instruction.
1392 locations->AddTemp(Location::RegisterLocation(RCX));
1393 locations->AddTemp(Location::RegisterLocation(RDI));
1394
1395 // Set output, RSI needed for repe_cmpsq instruction anyways.
1396 locations->SetOut(Location::RegisterLocation(RSI), Location::kOutputOverlap);
1397 }
1398
VisitStringEquals(HInvoke * invoke)1399 void IntrinsicCodeGeneratorX86_64::VisitStringEquals(HInvoke* invoke) {
1400 X86_64Assembler* assembler = GetAssembler();
1401 LocationSummary* locations = invoke->GetLocations();
1402
1403 CpuRegister str = locations->InAt(0).AsRegister<CpuRegister>();
1404 CpuRegister arg = locations->InAt(1).AsRegister<CpuRegister>();
1405 CpuRegister rcx = locations->GetTemp(0).AsRegister<CpuRegister>();
1406 CpuRegister rdi = locations->GetTemp(1).AsRegister<CpuRegister>();
1407 CpuRegister rsi = locations->Out().AsRegister<CpuRegister>();
1408
1409 NearLabel end, return_true, return_false;
1410
1411 // Get offsets of count, value, and class fields within a string object.
1412 const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
1413 const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
1414 const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value();
1415
1416 // Note that the null check must have been done earlier.
1417 DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
1418
1419 // Check if input is null, return false if it is.
1420 __ testl(arg, arg);
1421 __ j(kEqual, &return_false);
1422
1423 // Instanceof check for the argument by comparing class fields.
1424 // All string objects must have the same type since String cannot be subclassed.
1425 // Receiver must be a string object, so its class field is equal to all strings' class fields.
1426 // If the argument is a string object, its class field must be equal to receiver's class field.
1427 __ movl(rcx, Address(str, class_offset));
1428 __ cmpl(rcx, Address(arg, class_offset));
1429 __ j(kNotEqual, &return_false);
1430
1431 // Reference equality check, return true if same reference.
1432 __ cmpl(str, arg);
1433 __ j(kEqual, &return_true);
1434
1435 // Load length of receiver string.
1436 __ movl(rcx, Address(str, count_offset));
1437 // Check if lengths are equal, return false if they're not.
1438 __ cmpl(rcx, Address(arg, count_offset));
1439 __ j(kNotEqual, &return_false);
1440 // Return true if both strings are empty.
1441 __ jrcxz(&return_true);
1442
1443 // Load starting addresses of string values into RSI/RDI as required for repe_cmpsq instruction.
1444 __ leal(rsi, Address(str, value_offset));
1445 __ leal(rdi, Address(arg, value_offset));
1446
1447 // Divide string length by 4 and adjust for lengths not divisible by 4.
1448 __ addl(rcx, Immediate(3));
1449 __ shrl(rcx, Immediate(2));
1450
1451 // Assertions that must hold in order to compare strings 4 characters at a time.
1452 DCHECK_ALIGNED(value_offset, 8);
1453 static_assert(IsAligned<8>(kObjectAlignment), "String is not zero padded");
1454
1455 // Loop to compare strings four characters at a time starting at the beginning of the string.
1456 __ repe_cmpsq();
1457 // If strings are not equal, zero flag will be cleared.
1458 __ j(kNotEqual, &return_false);
1459
1460 // Return true and exit the function.
1461 // If loop does not result in returning false, we return true.
1462 __ Bind(&return_true);
1463 __ movl(rsi, Immediate(1));
1464 __ jmp(&end);
1465
1466 // Return false and exit the function.
1467 __ Bind(&return_false);
1468 __ xorl(rsi, rsi);
1469 __ Bind(&end);
1470 }
1471
CreateStringIndexOfLocations(HInvoke * invoke,ArenaAllocator * allocator,bool start_at_zero)1472 static void CreateStringIndexOfLocations(HInvoke* invoke,
1473 ArenaAllocator* allocator,
1474 bool start_at_zero) {
1475 LocationSummary* locations = new (allocator) LocationSummary(invoke,
1476 LocationSummary::kCallOnSlowPath,
1477 kIntrinsified);
1478 // The data needs to be in RDI for scasw. So request that the string is there, anyways.
1479 locations->SetInAt(0, Location::RegisterLocation(RDI));
1480 // If we look for a constant char, we'll still have to copy it into RAX. So just request the
1481 // allocator to do that, anyways. We can still do the constant check by checking the parameter
1482 // of the instruction explicitly.
1483 // Note: This works as we don't clobber RAX anywhere.
1484 locations->SetInAt(1, Location::RegisterLocation(RAX));
1485 if (!start_at_zero) {
1486 locations->SetInAt(2, Location::RequiresRegister()); // The starting index.
1487 }
1488 // As we clobber RDI during execution anyways, also use it as the output.
1489 locations->SetOut(Location::SameAsFirstInput());
1490
1491 // repne scasw uses RCX as the counter.
1492 locations->AddTemp(Location::RegisterLocation(RCX));
1493 // Need another temporary to be able to compute the result.
1494 locations->AddTemp(Location::RequiresRegister());
1495 }
1496
GenerateStringIndexOf(HInvoke * invoke,X86_64Assembler * assembler,CodeGeneratorX86_64 * codegen,ArenaAllocator * allocator,bool start_at_zero)1497 static void GenerateStringIndexOf(HInvoke* invoke,
1498 X86_64Assembler* assembler,
1499 CodeGeneratorX86_64* codegen,
1500 ArenaAllocator* allocator,
1501 bool start_at_zero) {
1502 LocationSummary* locations = invoke->GetLocations();
1503
1504 // Note that the null check must have been done earlier.
1505 DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
1506
1507 CpuRegister string_obj = locations->InAt(0).AsRegister<CpuRegister>();
1508 CpuRegister search_value = locations->InAt(1).AsRegister<CpuRegister>();
1509 CpuRegister counter = locations->GetTemp(0).AsRegister<CpuRegister>();
1510 CpuRegister string_length = locations->GetTemp(1).AsRegister<CpuRegister>();
1511 CpuRegister out = locations->Out().AsRegister<CpuRegister>();
1512
1513 // Check our assumptions for registers.
1514 DCHECK_EQ(string_obj.AsRegister(), RDI);
1515 DCHECK_EQ(search_value.AsRegister(), RAX);
1516 DCHECK_EQ(counter.AsRegister(), RCX);
1517 DCHECK_EQ(out.AsRegister(), RDI);
1518
1519 // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
1520 // or directly dispatch if we have a constant.
1521 SlowPathCode* slow_path = nullptr;
1522 if (invoke->InputAt(1)->IsIntConstant()) {
1523 if (static_cast<uint32_t>(invoke->InputAt(1)->AsIntConstant()->GetValue()) >
1524 std::numeric_limits<uint16_t>::max()) {
1525 // Always needs the slow-path. We could directly dispatch to it, but this case should be
1526 // rare, so for simplicity just put the full slow-path down and branch unconditionally.
1527 slow_path = new (allocator) IntrinsicSlowPathX86_64(invoke);
1528 codegen->AddSlowPath(slow_path);
1529 __ jmp(slow_path->GetEntryLabel());
1530 __ Bind(slow_path->GetExitLabel());
1531 return;
1532 }
1533 } else {
1534 __ cmpl(search_value, Immediate(std::numeric_limits<uint16_t>::max()));
1535 slow_path = new (allocator) IntrinsicSlowPathX86_64(invoke);
1536 codegen->AddSlowPath(slow_path);
1537 __ j(kAbove, slow_path->GetEntryLabel());
1538 }
1539
1540 // From here down, we know that we are looking for a char that fits in 16 bits.
1541 // Location of reference to data array within the String object.
1542 int32_t value_offset = mirror::String::ValueOffset().Int32Value();
1543 // Location of count within the String object.
1544 int32_t count_offset = mirror::String::CountOffset().Int32Value();
1545
1546 // Load string length, i.e., the count field of the string.
1547 __ movl(string_length, Address(string_obj, count_offset));
1548
1549 // Do a length check.
1550 // TODO: Support jecxz.
1551 NearLabel not_found_label;
1552 __ testl(string_length, string_length);
1553 __ j(kEqual, ¬_found_label);
1554
1555 if (start_at_zero) {
1556 // Number of chars to scan is the same as the string length.
1557 __ movl(counter, string_length);
1558
1559 // Move to the start of the string.
1560 __ addq(string_obj, Immediate(value_offset));
1561 } else {
1562 CpuRegister start_index = locations->InAt(2).AsRegister<CpuRegister>();
1563
1564 // Do a start_index check.
1565 __ cmpl(start_index, string_length);
1566 __ j(kGreaterEqual, ¬_found_label);
1567
1568 // Ensure we have a start index >= 0;
1569 __ xorl(counter, counter);
1570 __ cmpl(start_index, Immediate(0));
1571 __ cmov(kGreater, counter, start_index, /* is64bit */ false); // 32-bit copy is enough.
1572
1573 // Move to the start of the string: string_obj + value_offset + 2 * start_index.
1574 __ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset));
1575
1576 // Now update ecx, the work counter: it's gonna be string.length - start_index.
1577 __ negq(counter); // Needs to be 64-bit negation, as the address computation is 64-bit.
1578 __ leaq(counter, Address(string_length, counter, ScaleFactor::TIMES_1, 0));
1579 }
1580
1581 // Everything is set up for repne scasw:
1582 // * Comparison address in RDI.
1583 // * Counter in ECX.
1584 __ repne_scasw();
1585
1586 // Did we find a match?
1587 __ j(kNotEqual, ¬_found_label);
1588
1589 // Yes, we matched. Compute the index of the result.
1590 __ subl(string_length, counter);
1591 __ leal(out, Address(string_length, -1));
1592
1593 NearLabel done;
1594 __ jmp(&done);
1595
1596 // Failed to match; return -1.
1597 __ Bind(¬_found_label);
1598 __ movl(out, Immediate(-1));
1599
1600 // And join up at the end.
1601 __ Bind(&done);
1602 if (slow_path != nullptr) {
1603 __ Bind(slow_path->GetExitLabel());
1604 }
1605 }
1606
VisitStringIndexOf(HInvoke * invoke)1607 void IntrinsicLocationsBuilderX86_64::VisitStringIndexOf(HInvoke* invoke) {
1608 CreateStringIndexOfLocations(invoke, arena_, /* start_at_zero */ true);
1609 }
1610
VisitStringIndexOf(HInvoke * invoke)1611 void IntrinsicCodeGeneratorX86_64::VisitStringIndexOf(HInvoke* invoke) {
1612 GenerateStringIndexOf(invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ true);
1613 }
1614
VisitStringIndexOfAfter(HInvoke * invoke)1615 void IntrinsicLocationsBuilderX86_64::VisitStringIndexOfAfter(HInvoke* invoke) {
1616 CreateStringIndexOfLocations(invoke, arena_, /* start_at_zero */ false);
1617 }
1618
VisitStringIndexOfAfter(HInvoke * invoke)1619 void IntrinsicCodeGeneratorX86_64::VisitStringIndexOfAfter(HInvoke* invoke) {
1620 GenerateStringIndexOf(
1621 invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ false);
1622 }
1623
VisitStringNewStringFromBytes(HInvoke * invoke)1624 void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) {
1625 LocationSummary* locations = new (arena_) LocationSummary(invoke,
1626 LocationSummary::kCall,
1627 kIntrinsified);
1628 InvokeRuntimeCallingConvention calling_convention;
1629 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
1630 locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
1631 locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
1632 locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
1633 locations->SetOut(Location::RegisterLocation(RAX));
1634 }
1635
VisitStringNewStringFromBytes(HInvoke * invoke)1636 void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) {
1637 X86_64Assembler* assembler = GetAssembler();
1638 LocationSummary* locations = invoke->GetLocations();
1639
1640 CpuRegister byte_array = locations->InAt(0).AsRegister<CpuRegister>();
1641 __ testl(byte_array, byte_array);
1642 SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke);
1643 codegen_->AddSlowPath(slow_path);
1644 __ j(kEqual, slow_path->GetEntryLabel());
1645
1646 __ gs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pAllocStringFromBytes),
1647 /* no_rip */ true));
1648 CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>();
1649 codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
1650 __ Bind(slow_path->GetExitLabel());
1651 }
1652
VisitStringNewStringFromChars(HInvoke * invoke)1653 void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromChars(HInvoke* invoke) {
1654 LocationSummary* locations = new (arena_) LocationSummary(invoke,
1655 LocationSummary::kCall,
1656 kIntrinsified);
1657 InvokeRuntimeCallingConvention calling_convention;
1658 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
1659 locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
1660 locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
1661 locations->SetOut(Location::RegisterLocation(RAX));
1662 }
1663
VisitStringNewStringFromChars(HInvoke * invoke)1664 void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromChars(HInvoke* invoke) {
1665 X86_64Assembler* assembler = GetAssembler();
1666
1667 // No need to emit code checking whether `locations->InAt(2)` is a null
1668 // pointer, as callers of the native method
1669 //
1670 // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
1671 //
1672 // all include a null check on `data` before calling that method.
1673 __ gs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pAllocStringFromChars),
1674 /* no_rip */ true));
1675 CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>();
1676 codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
1677 }
1678
VisitStringNewStringFromString(HInvoke * invoke)1679 void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromString(HInvoke* invoke) {
1680 LocationSummary* locations = new (arena_) LocationSummary(invoke,
1681 LocationSummary::kCall,
1682 kIntrinsified);
1683 InvokeRuntimeCallingConvention calling_convention;
1684 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
1685 locations->SetOut(Location::RegisterLocation(RAX));
1686 }
1687
VisitStringNewStringFromString(HInvoke * invoke)1688 void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromString(HInvoke* invoke) {
1689 X86_64Assembler* assembler = GetAssembler();
1690 LocationSummary* locations = invoke->GetLocations();
1691
1692 CpuRegister string_to_copy = locations->InAt(0).AsRegister<CpuRegister>();
1693 __ testl(string_to_copy, string_to_copy);
1694 SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke);
1695 codegen_->AddSlowPath(slow_path);
1696 __ j(kEqual, slow_path->GetEntryLabel());
1697
1698 __ gs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86_64WordSize, pAllocStringFromString),
1699 /* no_rip */ true));
1700 CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>();
1701 codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
1702 __ Bind(slow_path->GetExitLabel());
1703 }
1704
VisitStringGetCharsNoCheck(HInvoke * invoke)1705 void IntrinsicLocationsBuilderX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) {
1706 // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
1707 LocationSummary* locations = new (arena_) LocationSummary(invoke,
1708 LocationSummary::kNoCall,
1709 kIntrinsified);
1710 locations->SetInAt(0, Location::RequiresRegister());
1711 locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
1712 locations->SetInAt(2, Location::RequiresRegister());
1713 locations->SetInAt(3, Location::RequiresRegister());
1714 locations->SetInAt(4, Location::RequiresRegister());
1715
1716 // And we need some temporaries. We will use REP MOVSW, so we need fixed registers.
1717 locations->AddTemp(Location::RegisterLocation(RSI));
1718 locations->AddTemp(Location::RegisterLocation(RDI));
1719 locations->AddTemp(Location::RegisterLocation(RCX));
1720 }
1721
VisitStringGetCharsNoCheck(HInvoke * invoke)1722 void IntrinsicCodeGeneratorX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) {
1723 X86_64Assembler* assembler = GetAssembler();
1724 LocationSummary* locations = invoke->GetLocations();
1725
1726 size_t char_component_size = Primitive::ComponentSize(Primitive::kPrimChar);
1727 // Location of data in char array buffer.
1728 const uint32_t data_offset = mirror::Array::DataOffset(char_component_size).Uint32Value();
1729 // Location of char array data in string.
1730 const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
1731
1732 // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
1733 CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>();
1734 Location srcBegin = locations->InAt(1);
1735 int srcBegin_value =
1736 srcBegin.IsConstant() ? srcBegin.GetConstant()->AsIntConstant()->GetValue() : 0;
1737 CpuRegister srcEnd = locations->InAt(2).AsRegister<CpuRegister>();
1738 CpuRegister dst = locations->InAt(3).AsRegister<CpuRegister>();
1739 CpuRegister dstBegin = locations->InAt(4).AsRegister<CpuRegister>();
1740
1741 // Check assumption that sizeof(Char) is 2 (used in scaling below).
1742 const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
1743 DCHECK_EQ(char_size, 2u);
1744
1745 // Compute the address of the destination buffer.
1746 __ leaq(CpuRegister(RDI), Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset));
1747
1748 // Compute the address of the source string.
1749 if (srcBegin.IsConstant()) {
1750 // Compute the address of the source string by adding the number of chars from
1751 // the source beginning to the value offset of a string.
1752 __ leaq(CpuRegister(RSI), Address(obj, srcBegin_value * char_size + value_offset));
1753 } else {
1754 __ leaq(CpuRegister(RSI), Address(obj, srcBegin.AsRegister<CpuRegister>(),
1755 ScaleFactor::TIMES_2, value_offset));
1756 }
1757
1758 // Compute the number of chars (words) to move.
1759 __ movl(CpuRegister(RCX), srcEnd);
1760 if (srcBegin.IsConstant()) {
1761 if (srcBegin_value != 0) {
1762 __ subl(CpuRegister(RCX), Immediate(srcBegin_value));
1763 }
1764 } else {
1765 DCHECK(srcBegin.IsRegister());
1766 __ subl(CpuRegister(RCX), srcBegin.AsRegister<CpuRegister>());
1767 }
1768
1769 // Do the move.
1770 __ rep_movsw();
1771 }
1772
GenPeek(LocationSummary * locations,Primitive::Type size,X86_64Assembler * assembler)1773 static void GenPeek(LocationSummary* locations, Primitive::Type size, X86_64Assembler* assembler) {
1774 CpuRegister address = locations->InAt(0).AsRegister<CpuRegister>();
1775 CpuRegister out = locations->Out().AsRegister<CpuRegister>(); // == address, here for clarity.
1776 // x86 allows unaligned access. We do not have to check the input or use specific instructions
1777 // to avoid a SIGBUS.
1778 switch (size) {
1779 case Primitive::kPrimByte:
1780 __ movsxb(out, Address(address, 0));
1781 break;
1782 case Primitive::kPrimShort:
1783 __ movsxw(out, Address(address, 0));
1784 break;
1785 case Primitive::kPrimInt:
1786 __ movl(out, Address(address, 0));
1787 break;
1788 case Primitive::kPrimLong:
1789 __ movq(out, Address(address, 0));
1790 break;
1791 default:
1792 LOG(FATAL) << "Type not recognized for peek: " << size;
1793 UNREACHABLE();
1794 }
1795 }
1796
VisitMemoryPeekByte(HInvoke * invoke)1797 void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekByte(HInvoke* invoke) {
1798 CreateIntToIntLocations(arena_, invoke);
1799 }
1800
VisitMemoryPeekByte(HInvoke * invoke)1801 void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekByte(HInvoke* invoke) {
1802 GenPeek(invoke->GetLocations(), Primitive::kPrimByte, GetAssembler());
1803 }
1804
VisitMemoryPeekIntNative(HInvoke * invoke)1805 void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) {
1806 CreateIntToIntLocations(arena_, invoke);
1807 }
1808
VisitMemoryPeekIntNative(HInvoke * invoke)1809 void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) {
1810 GenPeek(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler());
1811 }
1812
VisitMemoryPeekLongNative(HInvoke * invoke)1813 void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) {
1814 CreateIntToIntLocations(arena_, invoke);
1815 }
1816
VisitMemoryPeekLongNative(HInvoke * invoke)1817 void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) {
1818 GenPeek(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler());
1819 }
1820
VisitMemoryPeekShortNative(HInvoke * invoke)1821 void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) {
1822 CreateIntToIntLocations(arena_, invoke);
1823 }
1824
VisitMemoryPeekShortNative(HInvoke * invoke)1825 void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) {
1826 GenPeek(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler());
1827 }
1828
CreateIntIntToVoidLocations(ArenaAllocator * arena,HInvoke * invoke)1829 static void CreateIntIntToVoidLocations(ArenaAllocator* arena, HInvoke* invoke) {
1830 LocationSummary* locations = new (arena) LocationSummary(invoke,
1831 LocationSummary::kNoCall,
1832 kIntrinsified);
1833 locations->SetInAt(0, Location::RequiresRegister());
1834 locations->SetInAt(1, Location::RegisterOrInt32Constant(invoke->InputAt(1)));
1835 }
1836
GenPoke(LocationSummary * locations,Primitive::Type size,X86_64Assembler * assembler)1837 static void GenPoke(LocationSummary* locations, Primitive::Type size, X86_64Assembler* assembler) {
1838 CpuRegister address = locations->InAt(0).AsRegister<CpuRegister>();
1839 Location value = locations->InAt(1);
1840 // x86 allows unaligned access. We do not have to check the input or use specific instructions
1841 // to avoid a SIGBUS.
1842 switch (size) {
1843 case Primitive::kPrimByte:
1844 if (value.IsConstant()) {
1845 __ movb(Address(address, 0),
1846 Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
1847 } else {
1848 __ movb(Address(address, 0), value.AsRegister<CpuRegister>());
1849 }
1850 break;
1851 case Primitive::kPrimShort:
1852 if (value.IsConstant()) {
1853 __ movw(Address(address, 0),
1854 Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
1855 } else {
1856 __ movw(Address(address, 0), value.AsRegister<CpuRegister>());
1857 }
1858 break;
1859 case Primitive::kPrimInt:
1860 if (value.IsConstant()) {
1861 __ movl(Address(address, 0),
1862 Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
1863 } else {
1864 __ movl(Address(address, 0), value.AsRegister<CpuRegister>());
1865 }
1866 break;
1867 case Primitive::kPrimLong:
1868 if (value.IsConstant()) {
1869 int64_t v = value.GetConstant()->AsLongConstant()->GetValue();
1870 DCHECK(IsInt<32>(v));
1871 int32_t v_32 = v;
1872 __ movq(Address(address, 0), Immediate(v_32));
1873 } else {
1874 __ movq(Address(address, 0), value.AsRegister<CpuRegister>());
1875 }
1876 break;
1877 default:
1878 LOG(FATAL) << "Type not recognized for poke: " << size;
1879 UNREACHABLE();
1880 }
1881 }
1882
VisitMemoryPokeByte(HInvoke * invoke)1883 void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeByte(HInvoke* invoke) {
1884 CreateIntIntToVoidLocations(arena_, invoke);
1885 }
1886
VisitMemoryPokeByte(HInvoke * invoke)1887 void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeByte(HInvoke* invoke) {
1888 GenPoke(invoke->GetLocations(), Primitive::kPrimByte, GetAssembler());
1889 }
1890
VisitMemoryPokeIntNative(HInvoke * invoke)1891 void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) {
1892 CreateIntIntToVoidLocations(arena_, invoke);
1893 }
1894
VisitMemoryPokeIntNative(HInvoke * invoke)1895 void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) {
1896 GenPoke(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler());
1897 }
1898
VisitMemoryPokeLongNative(HInvoke * invoke)1899 void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) {
1900 CreateIntIntToVoidLocations(arena_, invoke);
1901 }
1902
VisitMemoryPokeLongNative(HInvoke * invoke)1903 void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) {
1904 GenPoke(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler());
1905 }
1906
VisitMemoryPokeShortNative(HInvoke * invoke)1907 void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) {
1908 CreateIntIntToVoidLocations(arena_, invoke);
1909 }
1910
VisitMemoryPokeShortNative(HInvoke * invoke)1911 void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) {
1912 GenPoke(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler());
1913 }
1914
VisitThreadCurrentThread(HInvoke * invoke)1915 void IntrinsicLocationsBuilderX86_64::VisitThreadCurrentThread(HInvoke* invoke) {
1916 LocationSummary* locations = new (arena_) LocationSummary(invoke,
1917 LocationSummary::kNoCall,
1918 kIntrinsified);
1919 locations->SetOut(Location::RequiresRegister());
1920 }
1921
VisitThreadCurrentThread(HInvoke * invoke)1922 void IntrinsicCodeGeneratorX86_64::VisitThreadCurrentThread(HInvoke* invoke) {
1923 CpuRegister out = invoke->GetLocations()->Out().AsRegister<CpuRegister>();
1924 GetAssembler()->gs()->movl(out, Address::Absolute(Thread::PeerOffset<kX86_64WordSize>(),
1925 /* no_rip */ true));
1926 }
1927
GenUnsafeGet(HInvoke * invoke,Primitive::Type type,bool is_volatile ATTRIBUTE_UNUSED,CodeGeneratorX86_64 * codegen)1928 static void GenUnsafeGet(HInvoke* invoke,
1929 Primitive::Type type,
1930 bool is_volatile ATTRIBUTE_UNUSED,
1931 CodeGeneratorX86_64* codegen) {
1932 X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler());
1933 LocationSummary* locations = invoke->GetLocations();
1934 Location base_loc = locations->InAt(1);
1935 CpuRegister base = base_loc.AsRegister<CpuRegister>();
1936 Location offset_loc = locations->InAt(2);
1937 CpuRegister offset = offset_loc.AsRegister<CpuRegister>();
1938 Location output_loc = locations->Out();
1939 CpuRegister output = output_loc.AsRegister<CpuRegister>();
1940
1941 switch (type) {
1942 case Primitive::kPrimInt:
1943 __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
1944 break;
1945
1946 case Primitive::kPrimNot: {
1947 if (kEmitCompilerReadBarrier) {
1948 if (kUseBakerReadBarrier) {
1949 Location temp = locations->GetTemp(0);
1950 codegen->GenerateArrayLoadWithBakerReadBarrier(
1951 invoke, output_loc, base, 0U, offset_loc, temp, /* needs_null_check */ false);
1952 } else {
1953 __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
1954 codegen->GenerateReadBarrierSlow(
1955 invoke, output_loc, output_loc, base_loc, 0U, offset_loc);
1956 }
1957 } else {
1958 __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
1959 __ MaybeUnpoisonHeapReference(output);
1960 }
1961 break;
1962 }
1963
1964 case Primitive::kPrimLong:
1965 __ movq(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
1966 break;
1967
1968 default:
1969 LOG(FATAL) << "Unsupported op size " << type;
1970 UNREACHABLE();
1971 }
1972 }
1973
CreateIntIntIntToIntLocations(ArenaAllocator * arena,HInvoke * invoke,Primitive::Type type)1974 static void CreateIntIntIntToIntLocations(ArenaAllocator* arena,
1975 HInvoke* invoke,
1976 Primitive::Type type) {
1977 bool can_call = kEmitCompilerReadBarrier &&
1978 (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
1979 invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
1980 LocationSummary* locations = new (arena) LocationSummary(invoke,
1981 can_call ?
1982 LocationSummary::kCallOnSlowPath :
1983 LocationSummary::kNoCall,
1984 kIntrinsified);
1985 locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
1986 locations->SetInAt(1, Location::RequiresRegister());
1987 locations->SetInAt(2, Location::RequiresRegister());
1988 locations->SetOut(Location::RequiresRegister());
1989 if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1990 // We need a temporary register for the read barrier marking slow
1991 // path in InstructionCodeGeneratorX86_64::GenerateArrayLoadWithBakerReadBarrier.
1992 locations->AddTemp(Location::RequiresRegister());
1993 }
1994 }
1995
VisitUnsafeGet(HInvoke * invoke)1996 void IntrinsicLocationsBuilderX86_64::VisitUnsafeGet(HInvoke* invoke) {
1997 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt);
1998 }
VisitUnsafeGetVolatile(HInvoke * invoke)1999 void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) {
2000 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt);
2001 }
VisitUnsafeGetLong(HInvoke * invoke)2002 void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLong(HInvoke* invoke) {
2003 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong);
2004 }
VisitUnsafeGetLongVolatile(HInvoke * invoke)2005 void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
2006 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong);
2007 }
VisitUnsafeGetObject(HInvoke * invoke)2008 void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObject(HInvoke* invoke) {
2009 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot);
2010 }
VisitUnsafeGetObjectVolatile(HInvoke * invoke)2011 void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
2012 CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot);
2013 }
2014
2015
VisitUnsafeGet(HInvoke * invoke)2016 void IntrinsicCodeGeneratorX86_64::VisitUnsafeGet(HInvoke* invoke) {
2017 GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ false, codegen_);
2018 }
VisitUnsafeGetVolatile(HInvoke * invoke)2019 void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) {
2020 GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ true, codegen_);
2021 }
VisitUnsafeGetLong(HInvoke * invoke)2022 void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLong(HInvoke* invoke) {
2023 GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ false, codegen_);
2024 }
VisitUnsafeGetLongVolatile(HInvoke * invoke)2025 void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
2026 GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ true, codegen_);
2027 }
VisitUnsafeGetObject(HInvoke * invoke)2028 void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObject(HInvoke* invoke) {
2029 GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ false, codegen_);
2030 }
VisitUnsafeGetObjectVolatile(HInvoke * invoke)2031 void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
2032 GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ true, codegen_);
2033 }
2034
2035
CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator * arena,Primitive::Type type,HInvoke * invoke)2036 static void CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator* arena,
2037 Primitive::Type type,
2038 HInvoke* invoke) {
2039 LocationSummary* locations = new (arena) LocationSummary(invoke,
2040 LocationSummary::kNoCall,
2041 kIntrinsified);
2042 locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
2043 locations->SetInAt(1, Location::RequiresRegister());
2044 locations->SetInAt(2, Location::RequiresRegister());
2045 locations->SetInAt(3, Location::RequiresRegister());
2046 if (type == Primitive::kPrimNot) {
2047 // Need temp registers for card-marking.
2048 locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too.
2049 locations->AddTemp(Location::RequiresRegister());
2050 }
2051 }
2052
VisitUnsafePut(HInvoke * invoke)2053 void IntrinsicLocationsBuilderX86_64::VisitUnsafePut(HInvoke* invoke) {
2054 CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimInt, invoke);
2055 }
VisitUnsafePutOrdered(HInvoke * invoke)2056 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutOrdered(HInvoke* invoke) {
2057 CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimInt, invoke);
2058 }
VisitUnsafePutVolatile(HInvoke * invoke)2059 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutVolatile(HInvoke* invoke) {
2060 CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimInt, invoke);
2061 }
VisitUnsafePutObject(HInvoke * invoke)2062 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObject(HInvoke* invoke) {
2063 CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimNot, invoke);
2064 }
VisitUnsafePutObjectOrdered(HInvoke * invoke)2065 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
2066 CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimNot, invoke);
2067 }
VisitUnsafePutObjectVolatile(HInvoke * invoke)2068 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
2069 CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimNot, invoke);
2070 }
VisitUnsafePutLong(HInvoke * invoke)2071 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLong(HInvoke* invoke) {
2072 CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimLong, invoke);
2073 }
VisitUnsafePutLongOrdered(HInvoke * invoke)2074 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
2075 CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimLong, invoke);
2076 }
VisitUnsafePutLongVolatile(HInvoke * invoke)2077 void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
2078 CreateIntIntIntIntToVoidPlusTempsLocations(arena_, Primitive::kPrimLong, invoke);
2079 }
2080
2081 // We don't care for ordered: it requires an AnyStore barrier, which is already given by the x86
2082 // memory model.
GenUnsafePut(LocationSummary * locations,Primitive::Type type,bool is_volatile,CodeGeneratorX86_64 * codegen)2083 static void GenUnsafePut(LocationSummary* locations, Primitive::Type type, bool is_volatile,
2084 CodeGeneratorX86_64* codegen) {
2085 X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler());
2086 CpuRegister base = locations->InAt(1).AsRegister<CpuRegister>();
2087 CpuRegister offset = locations->InAt(2).AsRegister<CpuRegister>();
2088 CpuRegister value = locations->InAt(3).AsRegister<CpuRegister>();
2089
2090 if (type == Primitive::kPrimLong) {
2091 __ movq(Address(base, offset, ScaleFactor::TIMES_1, 0), value);
2092 } else if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
2093 CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>();
2094 __ movl(temp, value);
2095 __ PoisonHeapReference(temp);
2096 __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), temp);
2097 } else {
2098 __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value);
2099 }
2100
2101 if (is_volatile) {
2102 codegen->MemoryFence();
2103 }
2104
2105 if (type == Primitive::kPrimNot) {
2106 bool value_can_be_null = true; // TODO: Worth finding out this information?
2107 codegen->MarkGCCard(locations->GetTemp(0).AsRegister<CpuRegister>(),
2108 locations->GetTemp(1).AsRegister<CpuRegister>(),
2109 base,
2110 value,
2111 value_can_be_null);
2112 }
2113 }
2114
VisitUnsafePut(HInvoke * invoke)2115 void IntrinsicCodeGeneratorX86_64::VisitUnsafePut(HInvoke* invoke) {
2116 GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ false, codegen_);
2117 }
VisitUnsafePutOrdered(HInvoke * invoke)2118 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutOrdered(HInvoke* invoke) {
2119 GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ false, codegen_);
2120 }
VisitUnsafePutVolatile(HInvoke * invoke)2121 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutVolatile(HInvoke* invoke) {
2122 GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ true, codegen_);
2123 }
VisitUnsafePutObject(HInvoke * invoke)2124 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObject(HInvoke* invoke) {
2125 GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ false, codegen_);
2126 }
VisitUnsafePutObjectOrdered(HInvoke * invoke)2127 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
2128 GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ false, codegen_);
2129 }
VisitUnsafePutObjectVolatile(HInvoke * invoke)2130 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
2131 GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ true, codegen_);
2132 }
VisitUnsafePutLong(HInvoke * invoke)2133 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLong(HInvoke* invoke) {
2134 GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ false, codegen_);
2135 }
VisitUnsafePutLongOrdered(HInvoke * invoke)2136 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
2137 GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ false, codegen_);
2138 }
VisitUnsafePutLongVolatile(HInvoke * invoke)2139 void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
2140 GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ true, codegen_);
2141 }
2142
CreateIntIntIntIntIntToInt(ArenaAllocator * arena,Primitive::Type type,HInvoke * invoke)2143 static void CreateIntIntIntIntIntToInt(ArenaAllocator* arena, Primitive::Type type,
2144 HInvoke* invoke) {
2145 LocationSummary* locations = new (arena) LocationSummary(invoke,
2146 LocationSummary::kNoCall,
2147 kIntrinsified);
2148 locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
2149 locations->SetInAt(1, Location::RequiresRegister());
2150 locations->SetInAt(2, Location::RequiresRegister());
2151 // expected value must be in EAX/RAX.
2152 locations->SetInAt(3, Location::RegisterLocation(RAX));
2153 locations->SetInAt(4, Location::RequiresRegister());
2154
2155 locations->SetOut(Location::RequiresRegister());
2156 if (type == Primitive::kPrimNot) {
2157 // Need temp registers for card-marking.
2158 locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too.
2159 locations->AddTemp(Location::RequiresRegister());
2160 }
2161 }
2162
VisitUnsafeCASInt(HInvoke * invoke)2163 void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASInt(HInvoke* invoke) {
2164 CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimInt, invoke);
2165 }
2166
VisitUnsafeCASLong(HInvoke * invoke)2167 void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASLong(HInvoke* invoke) {
2168 CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimLong, invoke);
2169 }
2170
VisitUnsafeCASObject(HInvoke * invoke)2171 void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASObject(HInvoke* invoke) {
2172 // The UnsafeCASObject intrinsic is missing a read barrier, and
2173 // therefore sometimes does not work as expected (b/25883050).
2174 // Turn it off temporarily as a quick fix, until the read barrier is
2175 // implemented.
2176 //
2177 // TODO(rpl): Implement a read barrier in GenCAS below and re-enable
2178 // this intrinsic.
2179 if (kEmitCompilerReadBarrier) {
2180 return;
2181 }
2182
2183 CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimNot, invoke);
2184 }
2185
GenCAS(Primitive::Type type,HInvoke * invoke,CodeGeneratorX86_64 * codegen)2186 static void GenCAS(Primitive::Type type, HInvoke* invoke, CodeGeneratorX86_64* codegen) {
2187 X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler());
2188 LocationSummary* locations = invoke->GetLocations();
2189
2190 CpuRegister base = locations->InAt(1).AsRegister<CpuRegister>();
2191 CpuRegister offset = locations->InAt(2).AsRegister<CpuRegister>();
2192 CpuRegister expected = locations->InAt(3).AsRegister<CpuRegister>();
2193 // Ensure `expected` is in RAX (required by the CMPXCHG instruction).
2194 DCHECK_EQ(expected.AsRegister(), RAX);
2195 CpuRegister value = locations->InAt(4).AsRegister<CpuRegister>();
2196 CpuRegister out = locations->Out().AsRegister<CpuRegister>();
2197
2198 if (type == Primitive::kPrimNot) {
2199 // Mark card for object assuming new value is stored.
2200 bool value_can_be_null = true; // TODO: Worth finding out this information?
2201 codegen->MarkGCCard(locations->GetTemp(0).AsRegister<CpuRegister>(),
2202 locations->GetTemp(1).AsRegister<CpuRegister>(),
2203 base,
2204 value,
2205 value_can_be_null);
2206
2207 bool base_equals_value = (base.AsRegister() == value.AsRegister());
2208 Register value_reg = value.AsRegister();
2209 if (kPoisonHeapReferences) {
2210 if (base_equals_value) {
2211 // If `base` and `value` are the same register location, move
2212 // `value_reg` to a temporary register. This way, poisoning
2213 // `value_reg` won't invalidate `base`.
2214 value_reg = locations->GetTemp(0).AsRegister<CpuRegister>().AsRegister();
2215 __ movl(CpuRegister(value_reg), base);
2216 }
2217
2218 // Check that the register allocator did not assign the location
2219 // of `expected` (RAX) to `value` nor to `base`, so that heap
2220 // poisoning (when enabled) works as intended below.
2221 // - If `value` were equal to `expected`, both references would
2222 // be poisoned twice, meaning they would not be poisoned at
2223 // all, as heap poisoning uses address negation.
2224 // - If `base` were equal to `expected`, poisoning `expected`
2225 // would invalidate `base`.
2226 DCHECK_NE(value_reg, expected.AsRegister());
2227 DCHECK_NE(base.AsRegister(), expected.AsRegister());
2228
2229 __ PoisonHeapReference(expected);
2230 __ PoisonHeapReference(CpuRegister(value_reg));
2231 }
2232
2233 // TODO: Add a read barrier for the reference stored in the object
2234 // before attempting the CAS, similar to the one in the
2235 // art::Unsafe_compareAndSwapObject JNI implementation.
2236 //
2237 // Note that this code is not (yet) used when read barriers are
2238 // enabled (see IntrinsicLocationsBuilderX86_64::VisitUnsafeCASObject).
2239 DCHECK(!kEmitCompilerReadBarrier);
2240 __ LockCmpxchgl(Address(base, offset, TIMES_1, 0), CpuRegister(value_reg));
2241
2242 // LOCK CMPXCHG has full barrier semantics, and we don't need
2243 // scheduling barriers at this time.
2244
2245 // Convert ZF into the boolean result.
2246 __ setcc(kZero, out);
2247 __ movzxb(out, out);
2248
2249 // If heap poisoning is enabled, we need to unpoison the values
2250 // that were poisoned earlier.
2251 if (kPoisonHeapReferences) {
2252 if (base_equals_value) {
2253 // `value_reg` has been moved to a temporary register, no need
2254 // to unpoison it.
2255 } else {
2256 // Ensure `value` is different from `out`, so that unpoisoning
2257 // the former does not invalidate the latter.
2258 DCHECK_NE(value_reg, out.AsRegister());
2259 __ UnpoisonHeapReference(CpuRegister(value_reg));
2260 }
2261 // Ensure `expected` is different from `out`, so that unpoisoning
2262 // the former does not invalidate the latter.
2263 DCHECK_NE(expected.AsRegister(), out.AsRegister());
2264 __ UnpoisonHeapReference(expected);
2265 }
2266 } else {
2267 if (type == Primitive::kPrimInt) {
2268 __ LockCmpxchgl(Address(base, offset, TIMES_1, 0), value);
2269 } else if (type == Primitive::kPrimLong) {
2270 __ LockCmpxchgq(Address(base, offset, TIMES_1, 0), value);
2271 } else {
2272 LOG(FATAL) << "Unexpected CAS type " << type;
2273 }
2274
2275 // LOCK CMPXCHG has full barrier semantics, and we don't need
2276 // scheduling barriers at this time.
2277
2278 // Convert ZF into the boolean result.
2279 __ setcc(kZero, out);
2280 __ movzxb(out, out);
2281 }
2282 }
2283
VisitUnsafeCASInt(HInvoke * invoke)2284 void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASInt(HInvoke* invoke) {
2285 GenCAS(Primitive::kPrimInt, invoke, codegen_);
2286 }
2287
VisitUnsafeCASLong(HInvoke * invoke)2288 void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASLong(HInvoke* invoke) {
2289 GenCAS(Primitive::kPrimLong, invoke, codegen_);
2290 }
2291
VisitUnsafeCASObject(HInvoke * invoke)2292 void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASObject(HInvoke* invoke) {
2293 GenCAS(Primitive::kPrimNot, invoke, codegen_);
2294 }
2295
VisitIntegerReverse(HInvoke * invoke)2296 void IntrinsicLocationsBuilderX86_64::VisitIntegerReverse(HInvoke* invoke) {
2297 LocationSummary* locations = new (arena_) LocationSummary(invoke,
2298 LocationSummary::kNoCall,
2299 kIntrinsified);
2300 locations->SetInAt(0, Location::RequiresRegister());
2301 locations->SetOut(Location::SameAsFirstInput());
2302 locations->AddTemp(Location::RequiresRegister());
2303 }
2304
SwapBits(CpuRegister reg,CpuRegister temp,int32_t shift,int32_t mask,X86_64Assembler * assembler)2305 static void SwapBits(CpuRegister reg, CpuRegister temp, int32_t shift, int32_t mask,
2306 X86_64Assembler* assembler) {
2307 Immediate imm_shift(shift);
2308 Immediate imm_mask(mask);
2309 __ movl(temp, reg);
2310 __ shrl(reg, imm_shift);
2311 __ andl(temp, imm_mask);
2312 __ andl(reg, imm_mask);
2313 __ shll(temp, imm_shift);
2314 __ orl(reg, temp);
2315 }
2316
VisitIntegerReverse(HInvoke * invoke)2317 void IntrinsicCodeGeneratorX86_64::VisitIntegerReverse(HInvoke* invoke) {
2318 X86_64Assembler* assembler = GetAssembler();
2319 LocationSummary* locations = invoke->GetLocations();
2320
2321 CpuRegister reg = locations->InAt(0).AsRegister<CpuRegister>();
2322 CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>();
2323
2324 /*
2325 * Use one bswap instruction to reverse byte order first and then use 3 rounds of
2326 * swapping bits to reverse bits in a number x. Using bswap to save instructions
2327 * compared to generic luni implementation which has 5 rounds of swapping bits.
2328 * x = bswap x
2329 * x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555;
2330 * x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333;
2331 * x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F;
2332 */
2333 __ bswapl(reg);
2334 SwapBits(reg, temp, 1, 0x55555555, assembler);
2335 SwapBits(reg, temp, 2, 0x33333333, assembler);
2336 SwapBits(reg, temp, 4, 0x0f0f0f0f, assembler);
2337 }
2338
VisitLongReverse(HInvoke * invoke)2339 void IntrinsicLocationsBuilderX86_64::VisitLongReverse(HInvoke* invoke) {
2340 LocationSummary* locations = new (arena_) LocationSummary(invoke,
2341 LocationSummary::kNoCall,
2342 kIntrinsified);
2343 locations->SetInAt(0, Location::RequiresRegister());
2344 locations->SetOut(Location::SameAsFirstInput());
2345 locations->AddTemp(Location::RequiresRegister());
2346 locations->AddTemp(Location::RequiresRegister());
2347 }
2348
SwapBits64(CpuRegister reg,CpuRegister temp,CpuRegister temp_mask,int32_t shift,int64_t mask,X86_64Assembler * assembler)2349 static void SwapBits64(CpuRegister reg, CpuRegister temp, CpuRegister temp_mask,
2350 int32_t shift, int64_t mask, X86_64Assembler* assembler) {
2351 Immediate imm_shift(shift);
2352 __ movq(temp_mask, Immediate(mask));
2353 __ movq(temp, reg);
2354 __ shrq(reg, imm_shift);
2355 __ andq(temp, temp_mask);
2356 __ andq(reg, temp_mask);
2357 __ shlq(temp, imm_shift);
2358 __ orq(reg, temp);
2359 }
2360
VisitLongReverse(HInvoke * invoke)2361 void IntrinsicCodeGeneratorX86_64::VisitLongReverse(HInvoke* invoke) {
2362 X86_64Assembler* assembler = GetAssembler();
2363 LocationSummary* locations = invoke->GetLocations();
2364
2365 CpuRegister reg = locations->InAt(0).AsRegister<CpuRegister>();
2366 CpuRegister temp1 = locations->GetTemp(0).AsRegister<CpuRegister>();
2367 CpuRegister temp2 = locations->GetTemp(1).AsRegister<CpuRegister>();
2368
2369 /*
2370 * Use one bswap instruction to reverse byte order first and then use 3 rounds of
2371 * swapping bits to reverse bits in a long number x. Using bswap to save instructions
2372 * compared to generic luni implementation which has 5 rounds of swapping bits.
2373 * x = bswap x
2374 * x = (x & 0x5555555555555555) << 1 | (x >> 1) & 0x5555555555555555;
2375 * x = (x & 0x3333333333333333) << 2 | (x >> 2) & 0x3333333333333333;
2376 * x = (x & 0x0F0F0F0F0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F0F0F0F0F;
2377 */
2378 __ bswapq(reg);
2379 SwapBits64(reg, temp1, temp2, 1, INT64_C(0x5555555555555555), assembler);
2380 SwapBits64(reg, temp1, temp2, 2, INT64_C(0x3333333333333333), assembler);
2381 SwapBits64(reg, temp1, temp2, 4, INT64_C(0x0f0f0f0f0f0f0f0f), assembler);
2382 }
2383
CreateBitCountLocations(ArenaAllocator * arena,CodeGeneratorX86_64 * codegen,HInvoke * invoke)2384 static void CreateBitCountLocations(
2385 ArenaAllocator* arena, CodeGeneratorX86_64* codegen, HInvoke* invoke) {
2386 if (!codegen->GetInstructionSetFeatures().HasPopCnt()) {
2387 // Do nothing if there is no popcnt support. This results in generating
2388 // a call for the intrinsic rather than direct code.
2389 return;
2390 }
2391 LocationSummary* locations = new (arena) LocationSummary(invoke,
2392 LocationSummary::kNoCall,
2393 kIntrinsified);
2394 locations->SetInAt(0, Location::Any());
2395 locations->SetOut(Location::RequiresRegister());
2396 }
2397
GenBitCount(X86_64Assembler * assembler,CodeGeneratorX86_64 * codegen,HInvoke * invoke,bool is_long)2398 static void GenBitCount(X86_64Assembler* assembler,
2399 CodeGeneratorX86_64* codegen,
2400 HInvoke* invoke,
2401 bool is_long) {
2402 LocationSummary* locations = invoke->GetLocations();
2403 Location src = locations->InAt(0);
2404 CpuRegister out = locations->Out().AsRegister<CpuRegister>();
2405
2406 if (invoke->InputAt(0)->IsConstant()) {
2407 // Evaluate this at compile time.
2408 int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
2409 int32_t result = is_long
2410 ? POPCOUNT(static_cast<uint64_t>(value))
2411 : POPCOUNT(static_cast<uint32_t>(value));
2412 codegen->Load32BitValue(out, result);
2413 return;
2414 }
2415
2416 if (src.IsRegister()) {
2417 if (is_long) {
2418 __ popcntq(out, src.AsRegister<CpuRegister>());
2419 } else {
2420 __ popcntl(out, src.AsRegister<CpuRegister>());
2421 }
2422 } else if (is_long) {
2423 DCHECK(src.IsDoubleStackSlot());
2424 __ popcntq(out, Address(CpuRegister(RSP), src.GetStackIndex()));
2425 } else {
2426 DCHECK(src.IsStackSlot());
2427 __ popcntl(out, Address(CpuRegister(RSP), src.GetStackIndex()));
2428 }
2429 }
2430
VisitIntegerBitCount(HInvoke * invoke)2431 void IntrinsicLocationsBuilderX86_64::VisitIntegerBitCount(HInvoke* invoke) {
2432 CreateBitCountLocations(arena_, codegen_, invoke);
2433 }
2434
VisitIntegerBitCount(HInvoke * invoke)2435 void IntrinsicCodeGeneratorX86_64::VisitIntegerBitCount(HInvoke* invoke) {
2436 GenBitCount(GetAssembler(), codegen_, invoke, /* is_long */ false);
2437 }
2438
VisitLongBitCount(HInvoke * invoke)2439 void IntrinsicLocationsBuilderX86_64::VisitLongBitCount(HInvoke* invoke) {
2440 CreateBitCountLocations(arena_, codegen_, invoke);
2441 }
2442
VisitLongBitCount(HInvoke * invoke)2443 void IntrinsicCodeGeneratorX86_64::VisitLongBitCount(HInvoke* invoke) {
2444 GenBitCount(GetAssembler(), codegen_, invoke, /* is_long */ true);
2445 }
2446
CreateOneBitLocations(ArenaAllocator * arena,HInvoke * invoke,bool is_high)2447 static void CreateOneBitLocations(ArenaAllocator* arena, HInvoke* invoke, bool is_high) {
2448 LocationSummary* locations = new (arena) LocationSummary(invoke,
2449 LocationSummary::kNoCall,
2450 kIntrinsified);
2451 locations->SetInAt(0, Location::Any());
2452 locations->SetOut(Location::RequiresRegister());
2453 locations->AddTemp(is_high ? Location::RegisterLocation(RCX) // needs CL
2454 : Location::RequiresRegister()); // any will do
2455 }
2456
GenOneBit(X86_64Assembler * assembler,CodeGeneratorX86_64 * codegen,HInvoke * invoke,bool is_high,bool is_long)2457 static void GenOneBit(X86_64Assembler* assembler,
2458 CodeGeneratorX86_64* codegen,
2459 HInvoke* invoke,
2460 bool is_high, bool is_long) {
2461 LocationSummary* locations = invoke->GetLocations();
2462 Location src = locations->InAt(0);
2463 CpuRegister out = locations->Out().AsRegister<CpuRegister>();
2464
2465 if (invoke->InputAt(0)->IsConstant()) {
2466 // Evaluate this at compile time.
2467 int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
2468 if (value == 0) {
2469 __ xorl(out, out); // Clears upper bits too.
2470 return;
2471 }
2472 // Nonzero value.
2473 if (is_high) {
2474 value = is_long ? 63 - CLZ(static_cast<uint64_t>(value))
2475 : 31 - CLZ(static_cast<uint32_t>(value));
2476 } else {
2477 value = is_long ? CTZ(static_cast<uint64_t>(value))
2478 : CTZ(static_cast<uint32_t>(value));
2479 }
2480 if (is_long) {
2481 codegen->Load64BitValue(out, 1L << value);
2482 } else {
2483 codegen->Load32BitValue(out, 1 << value);
2484 }
2485 return;
2486 }
2487
2488 // Handle the non-constant cases.
2489 CpuRegister tmp = locations->GetTemp(0).AsRegister<CpuRegister>();
2490 if (is_high) {
2491 // Use architectural support: basically 1 << bsr.
2492 if (src.IsRegister()) {
2493 if (is_long) {
2494 __ bsrq(tmp, src.AsRegister<CpuRegister>());
2495 } else {
2496 __ bsrl(tmp, src.AsRegister<CpuRegister>());
2497 }
2498 } else if (is_long) {
2499 DCHECK(src.IsDoubleStackSlot());
2500 __ bsrq(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
2501 } else {
2502 DCHECK(src.IsStackSlot());
2503 __ bsrl(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
2504 }
2505 // BSR sets ZF if the input was zero.
2506 NearLabel is_zero, done;
2507 __ j(kEqual, &is_zero);
2508 __ movl(out, Immediate(1)); // Clears upper bits too.
2509 if (is_long) {
2510 __ shlq(out, tmp);
2511 } else {
2512 __ shll(out, tmp);
2513 }
2514 __ jmp(&done);
2515 __ Bind(&is_zero);
2516 __ xorl(out, out); // Clears upper bits too.
2517 __ Bind(&done);
2518 } else {
2519 // Copy input into temporary.
2520 if (src.IsRegister()) {
2521 if (is_long) {
2522 __ movq(tmp, src.AsRegister<CpuRegister>());
2523 } else {
2524 __ movl(tmp, src.AsRegister<CpuRegister>());
2525 }
2526 } else if (is_long) {
2527 DCHECK(src.IsDoubleStackSlot());
2528 __ movq(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
2529 } else {
2530 DCHECK(src.IsStackSlot());
2531 __ movl(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
2532 }
2533 // Do the bit twiddling: basically tmp & -tmp;
2534 if (is_long) {
2535 __ movq(out, tmp);
2536 __ negq(tmp);
2537 __ andq(out, tmp);
2538 } else {
2539 __ movl(out, tmp);
2540 __ negl(tmp);
2541 __ andl(out, tmp);
2542 }
2543 }
2544 }
2545
VisitIntegerHighestOneBit(HInvoke * invoke)2546 void IntrinsicLocationsBuilderX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) {
2547 CreateOneBitLocations(arena_, invoke, /* is_high */ true);
2548 }
2549
VisitIntegerHighestOneBit(HInvoke * invoke)2550 void IntrinsicCodeGeneratorX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) {
2551 GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ true, /* is_long */ false);
2552 }
2553
VisitLongHighestOneBit(HInvoke * invoke)2554 void IntrinsicLocationsBuilderX86_64::VisitLongHighestOneBit(HInvoke* invoke) {
2555 CreateOneBitLocations(arena_, invoke, /* is_high */ true);
2556 }
2557
VisitLongHighestOneBit(HInvoke * invoke)2558 void IntrinsicCodeGeneratorX86_64::VisitLongHighestOneBit(HInvoke* invoke) {
2559 GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ true, /* is_long */ true);
2560 }
2561
VisitIntegerLowestOneBit(HInvoke * invoke)2562 void IntrinsicLocationsBuilderX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) {
2563 CreateOneBitLocations(arena_, invoke, /* is_high */ false);
2564 }
2565
VisitIntegerLowestOneBit(HInvoke * invoke)2566 void IntrinsicCodeGeneratorX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) {
2567 GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ false, /* is_long */ false);
2568 }
2569
VisitLongLowestOneBit(HInvoke * invoke)2570 void IntrinsicLocationsBuilderX86_64::VisitLongLowestOneBit(HInvoke* invoke) {
2571 CreateOneBitLocations(arena_, invoke, /* is_high */ false);
2572 }
2573
VisitLongLowestOneBit(HInvoke * invoke)2574 void IntrinsicCodeGeneratorX86_64::VisitLongLowestOneBit(HInvoke* invoke) {
2575 GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ false, /* is_long */ true);
2576 }
2577
CreateLeadingZeroLocations(ArenaAllocator * arena,HInvoke * invoke)2578 static void CreateLeadingZeroLocations(ArenaAllocator* arena, HInvoke* invoke) {
2579 LocationSummary* locations = new (arena) LocationSummary(invoke,
2580 LocationSummary::kNoCall,
2581 kIntrinsified);
2582 locations->SetInAt(0, Location::Any());
2583 locations->SetOut(Location::RequiresRegister());
2584 }
2585
GenLeadingZeros(X86_64Assembler * assembler,CodeGeneratorX86_64 * codegen,HInvoke * invoke,bool is_long)2586 static void GenLeadingZeros(X86_64Assembler* assembler,
2587 CodeGeneratorX86_64* codegen,
2588 HInvoke* invoke, bool is_long) {
2589 LocationSummary* locations = invoke->GetLocations();
2590 Location src = locations->InAt(0);
2591 CpuRegister out = locations->Out().AsRegister<CpuRegister>();
2592
2593 int zero_value_result = is_long ? 64 : 32;
2594 if (invoke->InputAt(0)->IsConstant()) {
2595 // Evaluate this at compile time.
2596 int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
2597 if (value == 0) {
2598 value = zero_value_result;
2599 } else {
2600 value = is_long ? CLZ(static_cast<uint64_t>(value)) : CLZ(static_cast<uint32_t>(value));
2601 }
2602 codegen->Load32BitValue(out, value);
2603 return;
2604 }
2605
2606 // Handle the non-constant cases.
2607 if (src.IsRegister()) {
2608 if (is_long) {
2609 __ bsrq(out, src.AsRegister<CpuRegister>());
2610 } else {
2611 __ bsrl(out, src.AsRegister<CpuRegister>());
2612 }
2613 } else if (is_long) {
2614 DCHECK(src.IsDoubleStackSlot());
2615 __ bsrq(out, Address(CpuRegister(RSP), src.GetStackIndex()));
2616 } else {
2617 DCHECK(src.IsStackSlot());
2618 __ bsrl(out, Address(CpuRegister(RSP), src.GetStackIndex()));
2619 }
2620
2621 // BSR sets ZF if the input was zero, and the output is undefined.
2622 NearLabel is_zero, done;
2623 __ j(kEqual, &is_zero);
2624
2625 // Correct the result from BSR to get the CLZ result.
2626 __ xorl(out, Immediate(zero_value_result - 1));
2627 __ jmp(&done);
2628
2629 // Fix the zero case with the expected result.
2630 __ Bind(&is_zero);
2631 __ movl(out, Immediate(zero_value_result));
2632
2633 __ Bind(&done);
2634 }
2635
VisitIntegerNumberOfLeadingZeros(HInvoke * invoke)2636 void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
2637 CreateLeadingZeroLocations(arena_, invoke);
2638 }
2639
VisitIntegerNumberOfLeadingZeros(HInvoke * invoke)2640 void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
2641 GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long */ false);
2642 }
2643
VisitLongNumberOfLeadingZeros(HInvoke * invoke)2644 void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
2645 CreateLeadingZeroLocations(arena_, invoke);
2646 }
2647
VisitLongNumberOfLeadingZeros(HInvoke * invoke)2648 void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
2649 GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long */ true);
2650 }
2651
CreateTrailingZeroLocations(ArenaAllocator * arena,HInvoke * invoke)2652 static void CreateTrailingZeroLocations(ArenaAllocator* arena, HInvoke* invoke) {
2653 LocationSummary* locations = new (arena) LocationSummary(invoke,
2654 LocationSummary::kNoCall,
2655 kIntrinsified);
2656 locations->SetInAt(0, Location::Any());
2657 locations->SetOut(Location::RequiresRegister());
2658 }
2659
GenTrailingZeros(X86_64Assembler * assembler,CodeGeneratorX86_64 * codegen,HInvoke * invoke,bool is_long)2660 static void GenTrailingZeros(X86_64Assembler* assembler,
2661 CodeGeneratorX86_64* codegen,
2662 HInvoke* invoke, bool is_long) {
2663 LocationSummary* locations = invoke->GetLocations();
2664 Location src = locations->InAt(0);
2665 CpuRegister out = locations->Out().AsRegister<CpuRegister>();
2666
2667 int zero_value_result = is_long ? 64 : 32;
2668 if (invoke->InputAt(0)->IsConstant()) {
2669 // Evaluate this at compile time.
2670 int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
2671 if (value == 0) {
2672 value = zero_value_result;
2673 } else {
2674 value = is_long ? CTZ(static_cast<uint64_t>(value)) : CTZ(static_cast<uint32_t>(value));
2675 }
2676 codegen->Load32BitValue(out, value);
2677 return;
2678 }
2679
2680 // Handle the non-constant cases.
2681 if (src.IsRegister()) {
2682 if (is_long) {
2683 __ bsfq(out, src.AsRegister<CpuRegister>());
2684 } else {
2685 __ bsfl(out, src.AsRegister<CpuRegister>());
2686 }
2687 } else if (is_long) {
2688 DCHECK(src.IsDoubleStackSlot());
2689 __ bsfq(out, Address(CpuRegister(RSP), src.GetStackIndex()));
2690 } else {
2691 DCHECK(src.IsStackSlot());
2692 __ bsfl(out, Address(CpuRegister(RSP), src.GetStackIndex()));
2693 }
2694
2695 // BSF sets ZF if the input was zero, and the output is undefined.
2696 NearLabel done;
2697 __ j(kNotEqual, &done);
2698
2699 // Fix the zero case with the expected result.
2700 __ movl(out, Immediate(zero_value_result));
2701
2702 __ Bind(&done);
2703 }
2704
VisitIntegerNumberOfTrailingZeros(HInvoke * invoke)2705 void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
2706 CreateTrailingZeroLocations(arena_, invoke);
2707 }
2708
VisitIntegerNumberOfTrailingZeros(HInvoke * invoke)2709 void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
2710 GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long */ false);
2711 }
2712
VisitLongNumberOfTrailingZeros(HInvoke * invoke)2713 void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
2714 CreateTrailingZeroLocations(arena_, invoke);
2715 }
2716
VisitLongNumberOfTrailingZeros(HInvoke * invoke)2717 void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
2718 GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long */ true);
2719 }
2720
2721 UNIMPLEMENTED_INTRINSIC(X86_64, ReferenceGetReferent)
2722 UNIMPLEMENTED_INTRINSIC(X86_64, FloatIsInfinite)
2723 UNIMPLEMENTED_INTRINSIC(X86_64, DoubleIsInfinite)
2724
2725 // 1.8.
2726 UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndAddInt)
2727 UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndAddLong)
2728 UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetInt)
2729 UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetLong)
2730 UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetObject)
2731
2732 UNREACHABLE_INTRINSICS(X86_64)
2733
2734 #undef __
2735
2736 } // namespace x86_64
2737 } // namespace art
2738