1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_BASE_HASH_SET_H_
18 #define ART_RUNTIME_BASE_HASH_SET_H_
19 
20 #include <functional>
21 #include <iterator>
22 #include <memory>
23 #include <stdint.h>
24 #include <utility>
25 
26 #include "bit_utils.h"
27 #include "logging.h"
28 
29 namespace art {
30 
31 // Returns true if an item is empty.
32 template <class T>
33 class DefaultEmptyFn {
34  public:
MakeEmpty(T & item)35   void MakeEmpty(T& item) const {
36     item = T();
37   }
IsEmpty(const T & item)38   bool IsEmpty(const T& item) const {
39     return item == T();
40   }
41 };
42 
43 template <class T>
44 class DefaultEmptyFn<T*> {
45  public:
MakeEmpty(T * & item)46   void MakeEmpty(T*& item) const {
47     item = nullptr;
48   }
IsEmpty(T * const & item)49   bool IsEmpty(T* const& item) const {
50     return item == nullptr;
51   }
52 };
53 
54 // Low memory version of a hash set, uses less memory than std::unordered_set since elements aren't
55 // boxed. Uses linear probing to resolve collisions.
56 // EmptyFn needs to implement two functions MakeEmpty(T& item) and IsEmpty(const T& item).
57 // TODO: We could get rid of this requirement by using a bitmap, though maybe this would be slower
58 // and more complicated.
59 template <class T, class EmptyFn = DefaultEmptyFn<T>, class HashFn = std::hash<T>,
60     class Pred = std::equal_to<T>, class Alloc = std::allocator<T>>
61 class HashSet {
62   template <class Elem, class HashSetType>
63   class BaseIterator : std::iterator<std::forward_iterator_tag, Elem> {
64    public:
65     BaseIterator(const BaseIterator&) = default;
66     BaseIterator(BaseIterator&&) = default;
BaseIterator(HashSetType * hash_set,size_t index)67     BaseIterator(HashSetType* hash_set, size_t index) : index_(index), hash_set_(hash_set) {
68     }
69     BaseIterator& operator=(const BaseIterator&) = default;
70     BaseIterator& operator=(BaseIterator&&) = default;
71 
72     bool operator==(const BaseIterator& other) const {
73       return hash_set_ == other.hash_set_ && this->index_ == other.index_;
74     }
75 
76     bool operator!=(const BaseIterator& other) const {
77       return !(*this == other);
78     }
79 
80     BaseIterator operator++() {  // Value after modification.
81       this->index_ = this->NextNonEmptySlot(this->index_, hash_set_);
82       return *this;
83     }
84 
85     BaseIterator operator++(int) {
86       BaseIterator temp = *this;
87       this->index_ = this->NextNonEmptySlot(this->index_, hash_set_);
88       return temp;
89     }
90 
91     Elem& operator*() const {
92       DCHECK(!hash_set_->IsFreeSlot(this->index_));
93       return hash_set_->ElementForIndex(this->index_);
94     }
95 
96     Elem* operator->() const {
97       return &**this;
98     }
99 
100     // TODO: Operator -- --(int)  (and use std::bidirectional_iterator_tag)
101 
102    private:
103     size_t index_;
104     HashSetType* hash_set_;
105 
NextNonEmptySlot(size_t index,const HashSet * hash_set)106     size_t NextNonEmptySlot(size_t index, const HashSet* hash_set) const {
107       const size_t num_buckets = hash_set->NumBuckets();
108       DCHECK_LT(index, num_buckets);
109       do {
110         ++index;
111       } while (index < num_buckets && hash_set->IsFreeSlot(index));
112       return index;
113     }
114 
115     friend class HashSet;
116   };
117 
118  public:
119   using value_type = T;
120   using allocator_type = Alloc;
121   using reference = T&;
122   using const_reference = const T&;
123   using pointer = T*;
124   using const_pointer = const T*;
125   using iterator = BaseIterator<T, HashSet>;
126   using const_iterator = BaseIterator<const T, const HashSet>;
127   using size_type = size_t;
128   using difference_type = ptrdiff_t;
129 
130   static constexpr double kDefaultMinLoadFactor = 0.4;
131   static constexpr double kDefaultMaxLoadFactor = 0.7;
132   static constexpr size_t kMinBuckets = 1000;
133 
134   // If we don't own the data, this will create a new array which owns the data.
Clear()135   void Clear() {
136     DeallocateStorage();
137     num_elements_ = 0;
138     elements_until_expand_ = 0;
139   }
140 
HashSet()141   HashSet() : HashSet(kDefaultMinLoadFactor, kDefaultMaxLoadFactor) {}
142 
HashSet(double min_load_factor,double max_load_factor)143   HashSet(double min_load_factor, double max_load_factor) noexcept
144       : num_elements_(0u),
145         num_buckets_(0u),
146         elements_until_expand_(0u),
147         owns_data_(false),
148         data_(nullptr),
149         min_load_factor_(min_load_factor),
150         max_load_factor_(max_load_factor) {
151     DCHECK_GT(min_load_factor, 0.0);
152     DCHECK_LT(max_load_factor, 1.0);
153   }
154 
HashSet(const allocator_type & alloc)155   explicit HashSet(const allocator_type& alloc) noexcept
156       : allocfn_(alloc),
157         hashfn_(),
158         emptyfn_(),
159         pred_(),
160         num_elements_(0u),
161         num_buckets_(0u),
162         elements_until_expand_(0u),
163         owns_data_(false),
164         data_(nullptr),
165         min_load_factor_(kDefaultMinLoadFactor),
166         max_load_factor_(kDefaultMaxLoadFactor) {
167   }
168 
HashSet(const HashSet & other)169   HashSet(const HashSet& other) noexcept
170       : allocfn_(other.allocfn_),
171         hashfn_(other.hashfn_),
172         emptyfn_(other.emptyfn_),
173         pred_(other.pred_),
174         num_elements_(other.num_elements_),
175         num_buckets_(0),
176         elements_until_expand_(other.elements_until_expand_),
177         owns_data_(false),
178         data_(nullptr),
179         min_load_factor_(other.min_load_factor_),
180         max_load_factor_(other.max_load_factor_) {
181     AllocateStorage(other.NumBuckets());
182     for (size_t i = 0; i < num_buckets_; ++i) {
183       ElementForIndex(i) = other.data_[i];
184     }
185   }
186 
187   // noexcept required so that the move constructor is used instead of copy constructor.
188   // b/27860101
HashSet(HashSet && other)189   HashSet(HashSet&& other) noexcept
190       : allocfn_(std::move(other.allocfn_)),
191         hashfn_(std::move(other.hashfn_)),
192         emptyfn_(std::move(other.emptyfn_)),
193         pred_(std::move(other.pred_)),
194         num_elements_(other.num_elements_),
195         num_buckets_(other.num_buckets_),
196         elements_until_expand_(other.elements_until_expand_),
197         owns_data_(other.owns_data_),
198         data_(other.data_),
199         min_load_factor_(other.min_load_factor_),
200         max_load_factor_(other.max_load_factor_) {
201     other.num_elements_ = 0u;
202     other.num_buckets_ = 0u;
203     other.elements_until_expand_ = 0u;
204     other.owns_data_ = false;
205     other.data_ = nullptr;
206   }
207 
208   // Construct from existing data.
209   // Read from a block of memory, if make_copy_of_data is false, then data_ points to within the
210   // passed in ptr_.
HashSet(const uint8_t * ptr,bool make_copy_of_data,size_t * read_count)211   HashSet(const uint8_t* ptr, bool make_copy_of_data, size_t* read_count) noexcept {
212     uint64_t temp;
213     size_t offset = 0;
214     offset = ReadFromBytes(ptr, offset, &temp);
215     num_elements_ = static_cast<uint64_t>(temp);
216     offset = ReadFromBytes(ptr, offset, &temp);
217     num_buckets_ = static_cast<uint64_t>(temp);
218     CHECK_LE(num_elements_, num_buckets_);
219     offset = ReadFromBytes(ptr, offset, &temp);
220     elements_until_expand_ = static_cast<uint64_t>(temp);
221     offset = ReadFromBytes(ptr, offset, &min_load_factor_);
222     offset = ReadFromBytes(ptr, offset, &max_load_factor_);
223     if (!make_copy_of_data) {
224       owns_data_ = false;
225       data_ = const_cast<T*>(reinterpret_cast<const T*>(ptr + offset));
226       offset += sizeof(*data_) * num_buckets_;
227     } else {
228       AllocateStorage(num_buckets_);
229       // Write elements, not that this may not be safe for cross compilation if the elements are
230       // pointer sized.
231       for (size_t i = 0; i < num_buckets_; ++i) {
232         offset = ReadFromBytes(ptr, offset, &data_[i]);
233       }
234     }
235     // Caller responsible for aligning.
236     *read_count = offset;
237   }
238 
239   // Returns how large the table is after being written. If target is null, then no writing happens
240   // but the size is still returned. Target must be 8 byte aligned.
WriteToMemory(uint8_t * ptr)241   size_t WriteToMemory(uint8_t* ptr) const {
242     size_t offset = 0;
243     offset = WriteToBytes(ptr, offset, static_cast<uint64_t>(num_elements_));
244     offset = WriteToBytes(ptr, offset, static_cast<uint64_t>(num_buckets_));
245     offset = WriteToBytes(ptr, offset, static_cast<uint64_t>(elements_until_expand_));
246     offset = WriteToBytes(ptr, offset, min_load_factor_);
247     offset = WriteToBytes(ptr, offset, max_load_factor_);
248     // Write elements, not that this may not be safe for cross compilation if the elements are
249     // pointer sized.
250     for (size_t i = 0; i < num_buckets_; ++i) {
251       offset = WriteToBytes(ptr, offset, data_[i]);
252     }
253     // Caller responsible for aligning.
254     return offset;
255   }
256 
~HashSet()257   ~HashSet() {
258     DeallocateStorage();
259   }
260 
261   HashSet& operator=(HashSet&& other) noexcept {
262     HashSet(std::move(other)).swap(*this);
263     return *this;
264   }
265 
266   HashSet& operator=(const HashSet& other) noexcept {
267     HashSet(other).swap(*this);  // NOLINT(runtime/explicit) - a case of lint gone mad.
268     return *this;
269   }
270 
271   // Lower case for c++11 for each.
begin()272   iterator begin() {
273     iterator ret(this, 0);
274     if (num_buckets_ != 0 && IsFreeSlot(ret.index_)) {
275       ++ret;  // Skip all the empty slots.
276     }
277     return ret;
278   }
279 
280   // Lower case for c++11 for each. const version.
begin()281   const_iterator begin() const {
282     const_iterator ret(this, 0);
283     if (num_buckets_ != 0 && IsFreeSlot(ret.index_)) {
284       ++ret;  // Skip all the empty slots.
285     }
286     return ret;
287   }
288 
289   // Lower case for c++11 for each.
end()290   iterator end() {
291     return iterator(this, NumBuckets());
292   }
293 
294   // Lower case for c++11 for each. const version.
end()295   const_iterator end() const {
296     return const_iterator(this, NumBuckets());
297   }
298 
Empty()299   bool Empty() {
300     return Size() == 0;
301   }
302 
303   // Return true if the hash set has ownership of the underlying data.
OwnsData()304   bool OwnsData() const {
305     return owns_data_;
306   }
307 
308   // Erase algorithm:
309   // Make an empty slot where the iterator is pointing.
310   // Scan forwards until we hit another empty slot.
311   // If an element in between doesn't rehash to the range from the current empty slot to the
312   // iterator. It must be before the empty slot, in that case we can move it to the empty slot
313   // and set the empty slot to be the location we just moved from.
314   // Relies on maintaining the invariant that there's no empty slots from the 'ideal' index of an
315   // element to its actual location/index.
Erase(iterator it)316   iterator Erase(iterator it) {
317     // empty_index is the index that will become empty.
318     size_t empty_index = it.index_;
319     DCHECK(!IsFreeSlot(empty_index));
320     size_t next_index = empty_index;
321     bool filled = false;  // True if we filled the empty index.
322     while (true) {
323       next_index = NextIndex(next_index);
324       T& next_element = ElementForIndex(next_index);
325       // If the next element is empty, we are done. Make sure to clear the current empty index.
326       if (emptyfn_.IsEmpty(next_element)) {
327         emptyfn_.MakeEmpty(ElementForIndex(empty_index));
328         break;
329       }
330       // Otherwise try to see if the next element can fill the current empty index.
331       const size_t next_hash = hashfn_(next_element);
332       // Calculate the ideal index, if it is within empty_index + 1 to next_index then there is
333       // nothing we can do.
334       size_t next_ideal_index = IndexForHash(next_hash);
335       // Loop around if needed for our check.
336       size_t unwrapped_next_index = next_index;
337       if (unwrapped_next_index < empty_index) {
338         unwrapped_next_index += NumBuckets();
339       }
340       // Loop around if needed for our check.
341       size_t unwrapped_next_ideal_index = next_ideal_index;
342       if (unwrapped_next_ideal_index < empty_index) {
343         unwrapped_next_ideal_index += NumBuckets();
344       }
345       if (unwrapped_next_ideal_index <= empty_index ||
346           unwrapped_next_ideal_index > unwrapped_next_index) {
347         // If the target index isn't within our current range it must have been probed from before
348         // the empty index.
349         ElementForIndex(empty_index) = std::move(next_element);
350         filled = true;  // TODO: Optimize
351         empty_index = next_index;
352       }
353     }
354     --num_elements_;
355     // If we didn't fill the slot then we need go to the next non free slot.
356     if (!filled) {
357       ++it;
358     }
359     return it;
360   }
361 
362   // Find an element, returns end() if not found.
363   // Allows custom key (K) types, example of when this is useful:
364   // Set of Class* sorted by name, want to find a class with a name but can't allocate a dummy
365   // object in the heap for performance solution.
366   template <typename K>
Find(const K & key)367   iterator Find(const K& key) {
368     return FindWithHash(key, hashfn_(key));
369   }
370 
371   template <typename K>
Find(const K & key)372   const_iterator Find(const K& key) const {
373     return FindWithHash(key, hashfn_(key));
374   }
375 
376   template <typename K>
FindWithHash(const K & key,size_t hash)377   iterator FindWithHash(const K& key, size_t hash) {
378     return iterator(this, FindIndex(key, hash));
379   }
380 
381   template <typename K>
FindWithHash(const K & key,size_t hash)382   const_iterator FindWithHash(const K& key, size_t hash) const {
383     return const_iterator(this, FindIndex(key, hash));
384   }
385 
386   // Insert an element, allows duplicates.
Insert(const T & element)387   void Insert(const T& element) {
388     InsertWithHash(element, hashfn_(element));
389   }
390 
InsertWithHash(const T & element,size_t hash)391   void InsertWithHash(const T& element, size_t hash) {
392     DCHECK_EQ(hash, hashfn_(element));
393     if (num_elements_ >= elements_until_expand_) {
394       Expand();
395       DCHECK_LT(num_elements_, elements_until_expand_);
396     }
397     const size_t index = FirstAvailableSlot(IndexForHash(hash));
398     data_[index] = element;
399     ++num_elements_;
400   }
401 
Size()402   size_t Size() const {
403     return num_elements_;
404   }
405 
swap(HashSet & other)406   void swap(HashSet& other) {
407     // Use argument-dependent lookup with fall-back to std::swap() for function objects.
408     using std::swap;
409     swap(allocfn_, other.allocfn_);
410     swap(hashfn_, other.hashfn_);
411     swap(emptyfn_, other.emptyfn_);
412     swap(pred_, other.pred_);
413     std::swap(data_, other.data_);
414     std::swap(num_buckets_, other.num_buckets_);
415     std::swap(num_elements_, other.num_elements_);
416     std::swap(elements_until_expand_, other.elements_until_expand_);
417     std::swap(min_load_factor_, other.min_load_factor_);
418     std::swap(max_load_factor_, other.max_load_factor_);
419     std::swap(owns_data_, other.owns_data_);
420   }
421 
get_allocator()422   allocator_type get_allocator() const {
423     return allocfn_;
424   }
425 
ShrinkToMaximumLoad()426   void ShrinkToMaximumLoad() {
427     Resize(Size() / max_load_factor_);
428   }
429 
430   // Reserve enough room to insert until Size() == num_elements without requiring to grow the hash
431   // set. No-op if the hash set is already large enough to do this.
Reserve(size_t num_elements)432   void Reserve(size_t num_elements) {
433     size_t num_buckets = num_elements / max_load_factor_;
434     // Deal with rounding errors. Add one for rounding.
435     while (static_cast<size_t>(num_buckets * max_load_factor_) <= num_elements + 1u) {
436       ++num_buckets;
437     }
438     if (num_buckets > NumBuckets()) {
439       Resize(num_buckets);
440     }
441   }
442 
443   // To distance that inserted elements were probed. Used for measuring how good hash functions
444   // are.
TotalProbeDistance()445   size_t TotalProbeDistance() const {
446     size_t total = 0;
447     for (size_t i = 0; i < NumBuckets(); ++i) {
448       const T& element = ElementForIndex(i);
449       if (!emptyfn_.IsEmpty(element)) {
450         size_t ideal_location = IndexForHash(hashfn_(element));
451         if (ideal_location > i) {
452           total += i + NumBuckets() - ideal_location;
453         } else {
454           total += i - ideal_location;
455         }
456       }
457     }
458     return total;
459   }
460 
461   // Calculate the current load factor and return it.
CalculateLoadFactor()462   double CalculateLoadFactor() const {
463     return static_cast<double>(Size()) / static_cast<double>(NumBuckets());
464   }
465 
466   // Make sure that everything reinserts in the right spot. Returns the number of errors.
Verify()467   size_t Verify() NO_THREAD_SAFETY_ANALYSIS {
468     size_t errors = 0;
469     for (size_t i = 0; i < num_buckets_; ++i) {
470       T& element = data_[i];
471       if (!emptyfn_.IsEmpty(element)) {
472         T temp;
473         emptyfn_.MakeEmpty(temp);
474         std::swap(temp, element);
475         size_t first_slot = FirstAvailableSlot(IndexForHash(hashfn_(temp)));
476         if (i != first_slot) {
477           LOG(ERROR) << "Element " << i << " should be in slot " << first_slot;
478           ++errors;
479         }
480         std::swap(temp, element);
481       }
482     }
483     return errors;
484   }
485 
GetMinLoadFactor()486   double GetMinLoadFactor() const {
487     return min_load_factor_;
488   }
489 
GetMaxLoadFactor()490   double GetMaxLoadFactor() const {
491     return max_load_factor_;
492   }
493 
494   // Change the load factor of the hash set. If the current load factor is greater than the max
495   // specified, then we resize the hash table storage.
SetLoadFactor(double min_load_factor,double max_load_factor)496   void SetLoadFactor(double min_load_factor, double max_load_factor) {
497     DCHECK_LT(min_load_factor, max_load_factor);
498     DCHECK_GT(min_load_factor, 0.0);
499     DCHECK_LT(max_load_factor, 1.0);
500     min_load_factor_ = min_load_factor;
501     max_load_factor_ = max_load_factor;
502     elements_until_expand_ = NumBuckets() * max_load_factor_;
503     // If the current load factor isn't in the range, then resize to the mean of the minimum and
504     // maximum load factor.
505     const double load_factor = CalculateLoadFactor();
506     if (load_factor > max_load_factor_) {
507       Resize(Size() / ((min_load_factor_ + max_load_factor_) * 0.5));
508     }
509   }
510 
511   // The hash set expands when Size() reaches ElementsUntilExpand().
ElementsUntilExpand()512   size_t ElementsUntilExpand() const {
513     return elements_until_expand_;
514   }
515 
NumBuckets()516   size_t NumBuckets() const {
517     return num_buckets_;
518   }
519 
520  private:
ElementForIndex(size_t index)521   T& ElementForIndex(size_t index) {
522     DCHECK_LT(index, NumBuckets());
523     DCHECK(data_ != nullptr);
524     return data_[index];
525   }
526 
ElementForIndex(size_t index)527   const T& ElementForIndex(size_t index) const {
528     DCHECK_LT(index, NumBuckets());
529     DCHECK(data_ != nullptr);
530     return data_[index];
531   }
532 
IndexForHash(size_t hash)533   size_t IndexForHash(size_t hash) const {
534     // Protect against undefined behavior (division by zero).
535     if (UNLIKELY(num_buckets_ == 0)) {
536       return 0;
537     }
538     return hash % num_buckets_;
539   }
540 
NextIndex(size_t index)541   size_t NextIndex(size_t index) const {
542     if (UNLIKELY(++index >= num_buckets_)) {
543       DCHECK_EQ(index, NumBuckets());
544       return 0;
545     }
546     return index;
547   }
548 
549   // Find the hash table slot for an element, or return NumBuckets() if not found.
550   // This value for not found is important so that iterator(this, FindIndex(...)) == end().
551   template <typename K>
FindIndex(const K & element,size_t hash)552   size_t FindIndex(const K& element, size_t hash) const {
553     // Guard against failing to get an element for a non-existing index.
554     if (UNLIKELY(NumBuckets() == 0)) {
555       return 0;
556     }
557     DCHECK_EQ(hashfn_(element), hash);
558     size_t index = IndexForHash(hash);
559     while (true) {
560       const T& slot = ElementForIndex(index);
561       if (emptyfn_.IsEmpty(slot)) {
562         return NumBuckets();
563       }
564       if (pred_(slot, element)) {
565         return index;
566       }
567       index = NextIndex(index);
568     }
569   }
570 
IsFreeSlot(size_t index)571   bool IsFreeSlot(size_t index) const {
572     return emptyfn_.IsEmpty(ElementForIndex(index));
573   }
574 
575   // Allocate a number of buckets.
AllocateStorage(size_t num_buckets)576   void AllocateStorage(size_t num_buckets) {
577     num_buckets_ = num_buckets;
578     data_ = allocfn_.allocate(num_buckets_);
579     owns_data_ = true;
580     for (size_t i = 0; i < num_buckets_; ++i) {
581       allocfn_.construct(allocfn_.address(data_[i]));
582       emptyfn_.MakeEmpty(data_[i]);
583     }
584   }
585 
DeallocateStorage()586   void DeallocateStorage() {
587     if (owns_data_) {
588       for (size_t i = 0; i < NumBuckets(); ++i) {
589         allocfn_.destroy(allocfn_.address(data_[i]));
590       }
591       if (data_ != nullptr) {
592         allocfn_.deallocate(data_, NumBuckets());
593       }
594       owns_data_ = false;
595     }
596     data_ = nullptr;
597     num_buckets_ = 0;
598   }
599 
600   // Expand the set based on the load factors.
Expand()601   void Expand() {
602     size_t min_index = static_cast<size_t>(Size() / min_load_factor_);
603     // Resize based on the minimum load factor.
604     Resize(min_index);
605   }
606 
607   // Expand / shrink the table to the new specified size.
Resize(size_t new_size)608   void Resize(size_t new_size) {
609     if (new_size < kMinBuckets) {
610       new_size = kMinBuckets;
611     }
612     DCHECK_GE(new_size, Size());
613     T* const old_data = data_;
614     size_t old_num_buckets = num_buckets_;
615     // Reinsert all of the old elements.
616     const bool owned_data = owns_data_;
617     AllocateStorage(new_size);
618     for (size_t i = 0; i < old_num_buckets; ++i) {
619       T& element = old_data[i];
620       if (!emptyfn_.IsEmpty(element)) {
621         data_[FirstAvailableSlot(IndexForHash(hashfn_(element)))] = std::move(element);
622       }
623       if (owned_data) {
624         allocfn_.destroy(allocfn_.address(element));
625       }
626     }
627     if (owned_data) {
628       allocfn_.deallocate(old_data, old_num_buckets);
629     }
630 
631     // When we hit elements_until_expand_, we are at the max load factor and must expand again.
632     elements_until_expand_ = NumBuckets() * max_load_factor_;
633   }
634 
FirstAvailableSlot(size_t index)635   ALWAYS_INLINE size_t FirstAvailableSlot(size_t index) const {
636     DCHECK_LT(index, NumBuckets());  // Don't try to get a slot out of range.
637     size_t non_empty_count = 0;
638     while (!emptyfn_.IsEmpty(data_[index])) {
639       index = NextIndex(index);
640       non_empty_count++;
641       DCHECK_LE(non_empty_count, NumBuckets());  // Don't loop forever.
642     }
643     return index;
644   }
645 
646   // Return new offset.
647   template <typename Elem>
WriteToBytes(uint8_t * ptr,size_t offset,Elem n)648   static size_t WriteToBytes(uint8_t* ptr, size_t offset, Elem n) {
649     DCHECK_ALIGNED(ptr + offset, sizeof(n));
650     if (ptr != nullptr) {
651       *reinterpret_cast<Elem*>(ptr + offset) = n;
652     }
653     return offset + sizeof(n);
654   }
655 
656   template <typename Elem>
ReadFromBytes(const uint8_t * ptr,size_t offset,Elem * out)657   static size_t ReadFromBytes(const uint8_t* ptr, size_t offset, Elem* out) {
658     DCHECK(ptr != nullptr);
659     DCHECK_ALIGNED(ptr + offset, sizeof(*out));
660     *out = *reinterpret_cast<const Elem*>(ptr + offset);
661     return offset + sizeof(*out);
662   }
663 
664   Alloc allocfn_;  // Allocator function.
665   HashFn hashfn_;  // Hashing function.
666   EmptyFn emptyfn_;  // IsEmpty/SetEmpty function.
667   Pred pred_;  // Equals function.
668   size_t num_elements_;  // Number of inserted elements.
669   size_t num_buckets_;  // Number of hash table buckets.
670   size_t elements_until_expand_;  // Maximum number of elements until we expand the table.
671   bool owns_data_;  // If we own data_ and are responsible for freeing it.
672   T* data_;  // Backing storage.
673   double min_load_factor_;
674   double max_load_factor_;
675 };
676 
677 template <class T, class EmptyFn, class HashFn, class Pred, class Alloc>
swap(HashSet<T,EmptyFn,HashFn,Pred,Alloc> & lhs,HashSet<T,EmptyFn,HashFn,Pred,Alloc> & rhs)678 void swap(HashSet<T, EmptyFn, HashFn, Pred, Alloc>& lhs,
679           HashSet<T, EmptyFn, HashFn, Pred, Alloc>& rhs) {
680   lhs.swap(rhs);
681 }
682 
683 }  // namespace art
684 
685 #endif  // ART_RUNTIME_BASE_HASH_SET_H_
686