1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "concurrent_copying.h"
18
19 #include "art_field-inl.h"
20 #include "base/stl_util.h"
21 #include "debugger.h"
22 #include "gc/accounting/heap_bitmap-inl.h"
23 #include "gc/accounting/space_bitmap-inl.h"
24 #include "gc/reference_processor.h"
25 #include "gc/space/image_space.h"
26 #include "gc/space/space-inl.h"
27 #include "image-inl.h"
28 #include "intern_table.h"
29 #include "mirror/class-inl.h"
30 #include "mirror/object-inl.h"
31 #include "scoped_thread_state_change.h"
32 #include "thread-inl.h"
33 #include "thread_list.h"
34 #include "well_known_classes.h"
35
36 namespace art {
37 namespace gc {
38 namespace collector {
39
40 static constexpr size_t kDefaultGcMarkStackSize = 2 * MB;
41
ConcurrentCopying(Heap * heap,const std::string & name_prefix)42 ConcurrentCopying::ConcurrentCopying(Heap* heap, const std::string& name_prefix)
43 : GarbageCollector(heap,
44 name_prefix + (name_prefix.empty() ? "" : " ") +
45 "concurrent copying + mark sweep"),
46 region_space_(nullptr), gc_barrier_(new Barrier(0)),
47 gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack",
48 kDefaultGcMarkStackSize,
49 kDefaultGcMarkStackSize)),
50 mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock),
51 thread_running_gc_(nullptr),
52 is_marking_(false), is_active_(false), is_asserting_to_space_invariant_(false),
53 heap_mark_bitmap_(nullptr), live_stack_freeze_size_(0), mark_stack_mode_(kMarkStackModeOff),
54 weak_ref_access_enabled_(true),
55 skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
56 rb_table_(heap_->GetReadBarrierTable()),
57 force_evacuate_all_(false) {
58 static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
59 "The region space size and the read barrier table region size must match");
60 cc_heap_bitmap_.reset(new accounting::HeapBitmap(heap));
61 Thread* self = Thread::Current();
62 {
63 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
64 // Cache this so that we won't have to lock heap_bitmap_lock_ in
65 // Mark() which could cause a nested lock on heap_bitmap_lock_
66 // when GC causes a RB while doing GC or a lock order violation
67 // (class_linker_lock_ and heap_bitmap_lock_).
68 heap_mark_bitmap_ = heap->GetMarkBitmap();
69 }
70 {
71 MutexLock mu(self, mark_stack_lock_);
72 for (size_t i = 0; i < kMarkStackPoolSize; ++i) {
73 accounting::AtomicStack<mirror::Object>* mark_stack =
74 accounting::AtomicStack<mirror::Object>::Create(
75 "thread local mark stack", kMarkStackSize, kMarkStackSize);
76 pooled_mark_stacks_.push_back(mark_stack);
77 }
78 }
79 }
80
MarkHeapReference(mirror::HeapReference<mirror::Object> * from_ref)81 void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* from_ref) {
82 // Used for preserving soft references, should be OK to not have a CAS here since there should be
83 // no other threads which can trigger read barriers on the same referent during reference
84 // processing.
85 from_ref->Assign(Mark(from_ref->AsMirrorPtr()));
86 DCHECK(!from_ref->IsNull());
87 }
88
~ConcurrentCopying()89 ConcurrentCopying::~ConcurrentCopying() {
90 STLDeleteElements(&pooled_mark_stacks_);
91 }
92
RunPhases()93 void ConcurrentCopying::RunPhases() {
94 CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
95 CHECK(!is_active_);
96 is_active_ = true;
97 Thread* self = Thread::Current();
98 thread_running_gc_ = self;
99 Locks::mutator_lock_->AssertNotHeld(self);
100 {
101 ReaderMutexLock mu(self, *Locks::mutator_lock_);
102 InitializePhase();
103 }
104 FlipThreadRoots();
105 {
106 ReaderMutexLock mu(self, *Locks::mutator_lock_);
107 MarkingPhase();
108 }
109 // Verify no from space refs. This causes a pause.
110 if (kEnableNoFromSpaceRefsVerification || kIsDebugBuild) {
111 TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
112 ScopedPause pause(this);
113 CheckEmptyMarkStack();
114 if (kVerboseMode) {
115 LOG(INFO) << "Verifying no from-space refs";
116 }
117 VerifyNoFromSpaceReferences();
118 if (kVerboseMode) {
119 LOG(INFO) << "Done verifying no from-space refs";
120 }
121 CheckEmptyMarkStack();
122 }
123 {
124 ReaderMutexLock mu(self, *Locks::mutator_lock_);
125 ReclaimPhase();
126 }
127 FinishPhase();
128 CHECK(is_active_);
129 is_active_ = false;
130 thread_running_gc_ = nullptr;
131 }
132
BindBitmaps()133 void ConcurrentCopying::BindBitmaps() {
134 Thread* self = Thread::Current();
135 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
136 // Mark all of the spaces we never collect as immune.
137 for (const auto& space : heap_->GetContinuousSpaces()) {
138 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
139 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
140 CHECK(space->IsZygoteSpace() || space->IsImageSpace());
141 immune_spaces_.AddSpace(space);
142 const char* bitmap_name = space->IsImageSpace() ? "cc image space bitmap" :
143 "cc zygote space bitmap";
144 // TODO: try avoiding using bitmaps for image/zygote to save space.
145 accounting::ContinuousSpaceBitmap* bitmap =
146 accounting::ContinuousSpaceBitmap::Create(bitmap_name, space->Begin(), space->Capacity());
147 cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
148 cc_bitmaps_.push_back(bitmap);
149 } else if (space == region_space_) {
150 accounting::ContinuousSpaceBitmap* bitmap =
151 accounting::ContinuousSpaceBitmap::Create("cc region space bitmap",
152 space->Begin(), space->Capacity());
153 cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
154 cc_bitmaps_.push_back(bitmap);
155 region_space_bitmap_ = bitmap;
156 }
157 }
158 }
159
InitializePhase()160 void ConcurrentCopying::InitializePhase() {
161 TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
162 if (kVerboseMode) {
163 LOG(INFO) << "GC InitializePhase";
164 LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
165 << reinterpret_cast<void*>(region_space_->Limit());
166 }
167 CheckEmptyMarkStack();
168 immune_spaces_.Reset();
169 bytes_moved_.StoreRelaxed(0);
170 objects_moved_.StoreRelaxed(0);
171 if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
172 GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
173 GetCurrentIteration()->GetClearSoftReferences()) {
174 force_evacuate_all_ = true;
175 } else {
176 force_evacuate_all_ = false;
177 }
178 BindBitmaps();
179 if (kVerboseMode) {
180 LOG(INFO) << "force_evacuate_all=" << force_evacuate_all_;
181 LOG(INFO) << "Largest immune region: " << immune_spaces_.GetLargestImmuneRegion().Begin()
182 << "-" << immune_spaces_.GetLargestImmuneRegion().End();
183 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
184 LOG(INFO) << "Immune space: " << *space;
185 }
186 LOG(INFO) << "GC end of InitializePhase";
187 }
188 }
189
190 // Used to switch the thread roots of a thread from from-space refs to to-space refs.
191 class ThreadFlipVisitor : public Closure {
192 public:
ThreadFlipVisitor(ConcurrentCopying * concurrent_copying,bool use_tlab)193 ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
194 : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
195 }
196
Run(Thread * thread)197 virtual void Run(Thread* thread) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
198 // Note: self is not necessarily equal to thread since thread may be suspended.
199 Thread* self = Thread::Current();
200 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
201 << thread->GetState() << " thread " << thread << " self " << self;
202 thread->SetIsGcMarking(true);
203 if (use_tlab_ && thread->HasTlab()) {
204 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
205 // This must come before the revoke.
206 size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
207 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
208 reinterpret_cast<Atomic<size_t>*>(&concurrent_copying_->from_space_num_objects_at_first_pause_)->
209 FetchAndAddSequentiallyConsistent(thread_local_objects);
210 } else {
211 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
212 }
213 }
214 if (kUseThreadLocalAllocationStack) {
215 thread->RevokeThreadLocalAllocationStack();
216 }
217 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
218 thread->VisitRoots(concurrent_copying_);
219 concurrent_copying_->GetBarrier().Pass(self);
220 }
221
222 private:
223 ConcurrentCopying* const concurrent_copying_;
224 const bool use_tlab_;
225 };
226
227 // Called back from Runtime::FlipThreadRoots() during a pause.
228 class FlipCallback : public Closure {
229 public:
FlipCallback(ConcurrentCopying * concurrent_copying)230 explicit FlipCallback(ConcurrentCopying* concurrent_copying)
231 : concurrent_copying_(concurrent_copying) {
232 }
233
Run(Thread * thread)234 virtual void Run(Thread* thread) OVERRIDE REQUIRES(Locks::mutator_lock_) {
235 ConcurrentCopying* cc = concurrent_copying_;
236 TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
237 // Note: self is not necessarily equal to thread since thread may be suspended.
238 Thread* self = Thread::Current();
239 CHECK(thread == self);
240 Locks::mutator_lock_->AssertExclusiveHeld(self);
241 cc->region_space_->SetFromSpace(cc->rb_table_, cc->force_evacuate_all_);
242 cc->SwapStacks();
243 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
244 cc->RecordLiveStackFreezeSize(self);
245 cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
246 cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
247 }
248 cc->is_marking_ = true;
249 cc->mark_stack_mode_.StoreRelaxed(ConcurrentCopying::kMarkStackModeThreadLocal);
250 if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
251 CHECK(Runtime::Current()->IsAotCompiler());
252 TimingLogger::ScopedTiming split2("(Paused)VisitTransactionRoots", cc->GetTimings());
253 Runtime::Current()->VisitTransactionRoots(cc);
254 }
255 }
256
257 private:
258 ConcurrentCopying* const concurrent_copying_;
259 };
260
261 // Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
FlipThreadRoots()262 void ConcurrentCopying::FlipThreadRoots() {
263 TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
264 if (kVerboseMode) {
265 LOG(INFO) << "time=" << region_space_->Time();
266 region_space_->DumpNonFreeRegions(LOG(INFO));
267 }
268 Thread* self = Thread::Current();
269 Locks::mutator_lock_->AssertNotHeld(self);
270 gc_barrier_->Init(self, 0);
271 ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
272 FlipCallback flip_callback(this);
273 heap_->ThreadFlipBegin(self); // Sync with JNI critical calls.
274 size_t barrier_count = Runtime::Current()->FlipThreadRoots(
275 &thread_flip_visitor, &flip_callback, this);
276 heap_->ThreadFlipEnd(self);
277 {
278 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
279 gc_barrier_->Increment(self, barrier_count);
280 }
281 is_asserting_to_space_invariant_ = true;
282 QuasiAtomic::ThreadFenceForConstructor();
283 if (kVerboseMode) {
284 LOG(INFO) << "time=" << region_space_->Time();
285 region_space_->DumpNonFreeRegions(LOG(INFO));
286 LOG(INFO) << "GC end of FlipThreadRoots";
287 }
288 }
289
SwapStacks()290 void ConcurrentCopying::SwapStacks() {
291 heap_->SwapStacks();
292 }
293
RecordLiveStackFreezeSize(Thread * self)294 void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
295 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
296 live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
297 }
298
299 // Used to visit objects in the immune spaces.
300 class ConcurrentCopyingImmuneSpaceObjVisitor {
301 public:
ConcurrentCopyingImmuneSpaceObjVisitor(ConcurrentCopying * cc)302 explicit ConcurrentCopyingImmuneSpaceObjVisitor(ConcurrentCopying* cc)
303 : collector_(cc) {}
304
operator ()(mirror::Object * obj) const305 void operator()(mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_)
306 SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
307 DCHECK(obj != nullptr);
308 DCHECK(collector_->immune_spaces_.ContainsObject(obj));
309 accounting::ContinuousSpaceBitmap* cc_bitmap =
310 collector_->cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
311 DCHECK(cc_bitmap != nullptr)
312 << "An immune space object must have a bitmap";
313 if (kIsDebugBuild) {
314 DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj))
315 << "Immune space object must be already marked";
316 }
317 // This may or may not succeed, which is ok.
318 if (kUseBakerReadBarrier) {
319 obj->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
320 }
321 if (cc_bitmap->AtomicTestAndSet(obj)) {
322 // Already marked. Do nothing.
323 } else {
324 // Newly marked. Set the gray bit and push it onto the mark stack.
325 CHECK(!kUseBakerReadBarrier || obj->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
326 collector_->PushOntoMarkStack(obj);
327 }
328 }
329
330 private:
331 ConcurrentCopying* const collector_;
332 };
333
334 class EmptyCheckpoint : public Closure {
335 public:
EmptyCheckpoint(ConcurrentCopying * concurrent_copying)336 explicit EmptyCheckpoint(ConcurrentCopying* concurrent_copying)
337 : concurrent_copying_(concurrent_copying) {
338 }
339
Run(Thread * thread)340 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
341 // Note: self is not necessarily equal to thread since thread may be suspended.
342 Thread* self = Thread::Current();
343 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
344 << thread->GetState() << " thread " << thread << " self " << self;
345 // If thread is a running mutator, then act on behalf of the garbage collector.
346 // See the code in ThreadList::RunCheckpoint.
347 concurrent_copying_->GetBarrier().Pass(self);
348 }
349
350 private:
351 ConcurrentCopying* const concurrent_copying_;
352 };
353
354 // Concurrently mark roots that are guarded by read barriers and process the mark stack.
MarkingPhase()355 void ConcurrentCopying::MarkingPhase() {
356 TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
357 if (kVerboseMode) {
358 LOG(INFO) << "GC MarkingPhase";
359 }
360 CHECK(weak_ref_access_enabled_);
361 {
362 // Mark the image root. The WB-based collectors do not need to
363 // scan the image objects from roots by relying on the card table,
364 // but it's necessary for the RB to-space invariant to hold.
365 TimingLogger::ScopedTiming split1("VisitImageRoots", GetTimings());
366 for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
367 if (space->IsImageSpace()) {
368 gc::space::ImageSpace* image = space->AsImageSpace();
369 if (image != nullptr) {
370 mirror::ObjectArray<mirror::Object>* image_root = image->GetImageHeader().GetImageRoots();
371 mirror::Object* marked_image_root = Mark(image_root);
372 CHECK_EQ(image_root, marked_image_root) << "An image object does not move";
373 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
374 AssertToSpaceInvariant(nullptr, MemberOffset(0), marked_image_root);
375 }
376 }
377 }
378 }
379 }
380 {
381 TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
382 Runtime::Current()->VisitConcurrentRoots(this, kVisitRootFlagAllRoots);
383 }
384 {
385 // TODO: don't visit the transaction roots if it's not active.
386 TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
387 Runtime::Current()->VisitNonThreadRoots(this);
388 }
389
390 // Immune spaces.
391 for (auto& space : immune_spaces_.GetSpaces()) {
392 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
393 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
394 ConcurrentCopyingImmuneSpaceObjVisitor visitor(this);
395 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
396 reinterpret_cast<uintptr_t>(space->Limit()),
397 visitor);
398 }
399
400 Thread* self = Thread::Current();
401 {
402 TimingLogger::ScopedTiming split7("ProcessMarkStack", GetTimings());
403 // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The
404 // primary reasons are the fact that we need to use a checkpoint to process thread-local mark
405 // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock
406 // issue because running threads potentially blocking at WaitHoldingLocks, and that once we
407 // reach the point where we process weak references, we can avoid using a lock when accessing
408 // the GC mark stack, which makes mark stack processing more efficient.
409
410 // Process the mark stack once in the thread local stack mode. This marks most of the live
411 // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and system
412 // weaks) that may happen concurrently while we processing the mark stack and newly mark/gray
413 // objects and push refs on the mark stack.
414 ProcessMarkStack();
415 // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks
416 // for the last time before transitioning to the shared mark stack mode, which would process new
417 // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack()
418 // call above. At the same time, disable weak ref accesses using a per-thread flag. It's
419 // important to do these together in a single checkpoint so that we can ensure that mutators
420 // won't newly gray objects and push new refs onto the mark stack due to weak ref accesses and
421 // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on
422 // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref
423 // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones.
424 SwitchToSharedMarkStackMode();
425 CHECK(!self->GetWeakRefAccessEnabled());
426 // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here
427 // (which may be non-empty if there were refs found on thread-local mark stacks during the above
428 // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators
429 // (via read barriers) have no way to produce any more refs to process. Marking converges once
430 // before we process weak refs below.
431 ProcessMarkStack();
432 CheckEmptyMarkStack();
433 // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a
434 // lock from this point on.
435 SwitchToGcExclusiveMarkStackMode();
436 CheckEmptyMarkStack();
437 if (kVerboseMode) {
438 LOG(INFO) << "ProcessReferences";
439 }
440 // Process weak references. This may produce new refs to process and have them processed via
441 // ProcessMarkStack (in the GC exclusive mark stack mode).
442 ProcessReferences(self);
443 CheckEmptyMarkStack();
444 if (kVerboseMode) {
445 LOG(INFO) << "SweepSystemWeaks";
446 }
447 SweepSystemWeaks(self);
448 if (kVerboseMode) {
449 LOG(INFO) << "SweepSystemWeaks done";
450 }
451 // Process the mark stack here one last time because the above SweepSystemWeaks() call may have
452 // marked some objects (strings alive) as hash_set::Erase() can call the hash function for
453 // arbitrary elements in the weak intern table in InternTable::Table::SweepWeaks().
454 ProcessMarkStack();
455 CheckEmptyMarkStack();
456 // Re-enable weak ref accesses.
457 ReenableWeakRefAccess(self);
458 // Free data for class loaders that we unloaded.
459 Runtime::Current()->GetClassLinker()->CleanupClassLoaders();
460 // Marking is done. Disable marking.
461 DisableMarking();
462 CheckEmptyMarkStack();
463 }
464
465 CHECK(weak_ref_access_enabled_);
466 if (kVerboseMode) {
467 LOG(INFO) << "GC end of MarkingPhase";
468 }
469 }
470
ReenableWeakRefAccess(Thread * self)471 void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) {
472 if (kVerboseMode) {
473 LOG(INFO) << "ReenableWeakRefAccess";
474 }
475 weak_ref_access_enabled_.StoreRelaxed(true); // This is for new threads.
476 QuasiAtomic::ThreadFenceForConstructor();
477 // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access.
478 {
479 MutexLock mu(self, *Locks::thread_list_lock_);
480 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
481 for (Thread* thread : thread_list) {
482 thread->SetWeakRefAccessEnabled(true);
483 }
484 }
485 // Unblock blocking threads.
486 GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
487 Runtime::Current()->BroadcastForNewSystemWeaks();
488 }
489
490 class DisableMarkingCheckpoint : public Closure {
491 public:
DisableMarkingCheckpoint(ConcurrentCopying * concurrent_copying)492 explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying)
493 : concurrent_copying_(concurrent_copying) {
494 }
495
Run(Thread * thread)496 void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
497 // Note: self is not necessarily equal to thread since thread may be suspended.
498 Thread* self = Thread::Current();
499 DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
500 << thread->GetState() << " thread " << thread << " self " << self;
501 // Disable the thread-local is_gc_marking flag.
502 // Note a thread that has just started right before this checkpoint may have already this flag
503 // set to false, which is ok.
504 thread->SetIsGcMarking(false);
505 // If thread is a running mutator, then act on behalf of the garbage collector.
506 // See the code in ThreadList::RunCheckpoint.
507 concurrent_copying_->GetBarrier().Pass(self);
508 }
509
510 private:
511 ConcurrentCopying* const concurrent_copying_;
512 };
513
IssueDisableMarkingCheckpoint()514 void ConcurrentCopying::IssueDisableMarkingCheckpoint() {
515 Thread* self = Thread::Current();
516 DisableMarkingCheckpoint check_point(this);
517 ThreadList* thread_list = Runtime::Current()->GetThreadList();
518 gc_barrier_->Init(self, 0);
519 size_t barrier_count = thread_list->RunCheckpoint(&check_point);
520 // If there are no threads to wait which implies that all the checkpoint functions are finished,
521 // then no need to release the mutator lock.
522 if (barrier_count == 0) {
523 return;
524 }
525 // Release locks then wait for all mutator threads to pass the barrier.
526 Locks::mutator_lock_->SharedUnlock(self);
527 {
528 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
529 gc_barrier_->Increment(self, barrier_count);
530 }
531 Locks::mutator_lock_->SharedLock(self);
532 }
533
DisableMarking()534 void ConcurrentCopying::DisableMarking() {
535 // Change the global is_marking flag to false. Do a fence before doing a checkpoint to update the
536 // thread-local flags so that a new thread starting up will get the correct is_marking flag.
537 is_marking_ = false;
538 QuasiAtomic::ThreadFenceForConstructor();
539 // Use a checkpoint to turn off the thread-local is_gc_marking flags and to ensure no threads are
540 // still in the middle of a read barrier which may have a from-space ref cached in a local
541 // variable.
542 IssueDisableMarkingCheckpoint();
543 if (kUseTableLookupReadBarrier) {
544 heap_->rb_table_->ClearAll();
545 DCHECK(heap_->rb_table_->IsAllCleared());
546 }
547 is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(1);
548 mark_stack_mode_.StoreSequentiallyConsistent(kMarkStackModeOff);
549 }
550
IssueEmptyCheckpoint()551 void ConcurrentCopying::IssueEmptyCheckpoint() {
552 Thread* self = Thread::Current();
553 EmptyCheckpoint check_point(this);
554 ThreadList* thread_list = Runtime::Current()->GetThreadList();
555 gc_barrier_->Init(self, 0);
556 size_t barrier_count = thread_list->RunCheckpoint(&check_point);
557 // If there are no threads to wait which implys that all the checkpoint functions are finished,
558 // then no need to release the mutator lock.
559 if (barrier_count == 0) {
560 return;
561 }
562 // Release locks then wait for all mutator threads to pass the barrier.
563 Locks::mutator_lock_->SharedUnlock(self);
564 {
565 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
566 gc_barrier_->Increment(self, barrier_count);
567 }
568 Locks::mutator_lock_->SharedLock(self);
569 }
570
ExpandGcMarkStack()571 void ConcurrentCopying::ExpandGcMarkStack() {
572 DCHECK(gc_mark_stack_->IsFull());
573 const size_t new_size = gc_mark_stack_->Capacity() * 2;
574 std::vector<StackReference<mirror::Object>> temp(gc_mark_stack_->Begin(),
575 gc_mark_stack_->End());
576 gc_mark_stack_->Resize(new_size);
577 for (auto& ref : temp) {
578 gc_mark_stack_->PushBack(ref.AsMirrorPtr());
579 }
580 DCHECK(!gc_mark_stack_->IsFull());
581 }
582
PushOntoMarkStack(mirror::Object * to_ref)583 void ConcurrentCopying::PushOntoMarkStack(mirror::Object* to_ref) {
584 CHECK_EQ(is_mark_stack_push_disallowed_.LoadRelaxed(), 0)
585 << " " << to_ref << " " << PrettyTypeOf(to_ref);
586 Thread* self = Thread::Current(); // TODO: pass self as an argument from call sites?
587 CHECK(thread_running_gc_ != nullptr);
588 MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
589 if (LIKELY(mark_stack_mode == kMarkStackModeThreadLocal)) {
590 if (LIKELY(self == thread_running_gc_)) {
591 // If GC-running thread, use the GC mark stack instead of a thread-local mark stack.
592 CHECK(self->GetThreadLocalMarkStack() == nullptr);
593 if (UNLIKELY(gc_mark_stack_->IsFull())) {
594 ExpandGcMarkStack();
595 }
596 gc_mark_stack_->PushBack(to_ref);
597 } else {
598 // Otherwise, use a thread-local mark stack.
599 accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack();
600 if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) {
601 MutexLock mu(self, mark_stack_lock_);
602 // Get a new thread local mark stack.
603 accounting::AtomicStack<mirror::Object>* new_tl_mark_stack;
604 if (!pooled_mark_stacks_.empty()) {
605 // Use a pooled mark stack.
606 new_tl_mark_stack = pooled_mark_stacks_.back();
607 pooled_mark_stacks_.pop_back();
608 } else {
609 // None pooled. Create a new one.
610 new_tl_mark_stack =
611 accounting::AtomicStack<mirror::Object>::Create(
612 "thread local mark stack", 4 * KB, 4 * KB);
613 }
614 DCHECK(new_tl_mark_stack != nullptr);
615 DCHECK(new_tl_mark_stack->IsEmpty());
616 new_tl_mark_stack->PushBack(to_ref);
617 self->SetThreadLocalMarkStack(new_tl_mark_stack);
618 if (tl_mark_stack != nullptr) {
619 // Store the old full stack into a vector.
620 revoked_mark_stacks_.push_back(tl_mark_stack);
621 }
622 } else {
623 tl_mark_stack->PushBack(to_ref);
624 }
625 }
626 } else if (mark_stack_mode == kMarkStackModeShared) {
627 // Access the shared GC mark stack with a lock.
628 MutexLock mu(self, mark_stack_lock_);
629 if (UNLIKELY(gc_mark_stack_->IsFull())) {
630 ExpandGcMarkStack();
631 }
632 gc_mark_stack_->PushBack(to_ref);
633 } else {
634 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
635 static_cast<uint32_t>(kMarkStackModeGcExclusive))
636 << "ref=" << to_ref
637 << " self->gc_marking=" << self->GetIsGcMarking()
638 << " cc->is_marking=" << is_marking_;
639 CHECK(self == thread_running_gc_)
640 << "Only GC-running thread should access the mark stack "
641 << "in the GC exclusive mark stack mode";
642 // Access the GC mark stack without a lock.
643 if (UNLIKELY(gc_mark_stack_->IsFull())) {
644 ExpandGcMarkStack();
645 }
646 gc_mark_stack_->PushBack(to_ref);
647 }
648 }
649
GetAllocationStack()650 accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
651 return heap_->allocation_stack_.get();
652 }
653
GetLiveStack()654 accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
655 return heap_->live_stack_.get();
656 }
657
658 // The following visitors are that used to verify that there's no
659 // references to the from-space left after marking.
660 class ConcurrentCopyingVerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
661 public:
ConcurrentCopyingVerifyNoFromSpaceRefsVisitor(ConcurrentCopying * collector)662 explicit ConcurrentCopyingVerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
663 : collector_(collector) {}
664
operator ()(mirror::Object * ref) const665 void operator()(mirror::Object* ref) const
666 SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
667 if (ref == nullptr) {
668 // OK.
669 return;
670 }
671 collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
672 if (kUseBakerReadBarrier) {
673 if (collector_->RegionSpace()->IsInToSpace(ref)) {
674 CHECK(ref->GetReadBarrierPointer() == nullptr)
675 << "To-space ref " << ref << " " << PrettyTypeOf(ref)
676 << " has non-white rb_ptr " << ref->GetReadBarrierPointer();
677 } else {
678 CHECK(ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
679 (ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
680 collector_->IsOnAllocStack(ref)))
681 << "Non-moving/unevac from space ref " << ref << " " << PrettyTypeOf(ref)
682 << " has non-black rb_ptr " << ref->GetReadBarrierPointer()
683 << " but isn't on the alloc stack (and has white rb_ptr)."
684 << " Is it in the non-moving space="
685 << (collector_->GetHeap()->GetNonMovingSpace()->HasAddress(ref));
686 }
687 }
688 }
689
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)690 void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
691 OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
692 DCHECK(root != nullptr);
693 operator()(root);
694 }
695
696 private:
697 ConcurrentCopying* const collector_;
698 };
699
700 class ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor {
701 public:
ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying * collector)702 explicit ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
703 : collector_(collector) {}
704
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const705 void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
706 SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
707 mirror::Object* ref =
708 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
709 ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector_);
710 visitor(ref);
711 }
operator ()(mirror::Class * klass,mirror::Reference * ref) const712 void operator()(mirror::Class* klass, mirror::Reference* ref) const
713 SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
714 CHECK(klass->IsTypeOfReferenceClass());
715 this->operator()(ref, mirror::Reference::ReferentOffset(), false);
716 }
717
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const718 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
719 SHARED_REQUIRES(Locks::mutator_lock_) {
720 if (!root->IsNull()) {
721 VisitRoot(root);
722 }
723 }
724
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const725 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
726 SHARED_REQUIRES(Locks::mutator_lock_) {
727 ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector_);
728 visitor(root->AsMirrorPtr());
729 }
730
731 private:
732 ConcurrentCopying* const collector_;
733 };
734
735 class ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor {
736 public:
ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying * collector)737 explicit ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying* collector)
738 : collector_(collector) {}
operator ()(mirror::Object * obj) const739 void operator()(mirror::Object* obj) const
740 SHARED_REQUIRES(Locks::mutator_lock_) {
741 ObjectCallback(obj, collector_);
742 }
ObjectCallback(mirror::Object * obj,void * arg)743 static void ObjectCallback(mirror::Object* obj, void *arg)
744 SHARED_REQUIRES(Locks::mutator_lock_) {
745 CHECK(obj != nullptr);
746 ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
747 space::RegionSpace* region_space = collector->RegionSpace();
748 CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
749 ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor visitor(collector);
750 obj->VisitReferences(visitor, visitor);
751 if (kUseBakerReadBarrier) {
752 if (collector->RegionSpace()->IsInToSpace(obj)) {
753 CHECK(obj->GetReadBarrierPointer() == nullptr)
754 << "obj=" << obj << " non-white rb_ptr " << obj->GetReadBarrierPointer();
755 } else {
756 CHECK(obj->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
757 (obj->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
758 collector->IsOnAllocStack(obj)))
759 << "Non-moving space/unevac from space ref " << obj << " " << PrettyTypeOf(obj)
760 << " has non-black rb_ptr " << obj->GetReadBarrierPointer()
761 << " but isn't on the alloc stack (and has white rb_ptr). Is it in the non-moving space="
762 << (collector->GetHeap()->GetNonMovingSpace()->HasAddress(obj));
763 }
764 }
765 }
766
767 private:
768 ConcurrentCopying* const collector_;
769 };
770
771 // Verify there's no from-space references left after the marking phase.
VerifyNoFromSpaceReferences()772 void ConcurrentCopying::VerifyNoFromSpaceReferences() {
773 Thread* self = Thread::Current();
774 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
775 // Verify all threads have is_gc_marking to be false
776 {
777 MutexLock mu(self, *Locks::thread_list_lock_);
778 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
779 for (Thread* thread : thread_list) {
780 CHECK(!thread->GetIsGcMarking());
781 }
782 }
783 ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor visitor(this);
784 // Roots.
785 {
786 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
787 ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this);
788 Runtime::Current()->VisitRoots(&ref_visitor);
789 }
790 // The to-space.
791 region_space_->WalkToSpace(ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor::ObjectCallback,
792 this);
793 // Non-moving spaces.
794 {
795 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
796 heap_->GetMarkBitmap()->Visit(visitor);
797 }
798 // The alloc stack.
799 {
800 ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this);
801 for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
802 it < end; ++it) {
803 mirror::Object* const obj = it->AsMirrorPtr();
804 if (obj != nullptr && obj->GetClass() != nullptr) {
805 // TODO: need to call this only if obj is alive?
806 ref_visitor(obj);
807 visitor(obj);
808 }
809 }
810 }
811 // TODO: LOS. But only refs in LOS are classes.
812 }
813
814 // The following visitors are used to assert the to-space invariant.
815 class ConcurrentCopyingAssertToSpaceInvariantRefsVisitor {
816 public:
ConcurrentCopyingAssertToSpaceInvariantRefsVisitor(ConcurrentCopying * collector)817 explicit ConcurrentCopyingAssertToSpaceInvariantRefsVisitor(ConcurrentCopying* collector)
818 : collector_(collector) {}
819
operator ()(mirror::Object * ref) const820 void operator()(mirror::Object* ref) const
821 SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
822 if (ref == nullptr) {
823 // OK.
824 return;
825 }
826 collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
827 }
828
829 private:
830 ConcurrentCopying* const collector_;
831 };
832
833 class ConcurrentCopyingAssertToSpaceInvariantFieldVisitor {
834 public:
ConcurrentCopyingAssertToSpaceInvariantFieldVisitor(ConcurrentCopying * collector)835 explicit ConcurrentCopyingAssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
836 : collector_(collector) {}
837
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const838 void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
839 SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
840 mirror::Object* ref =
841 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
842 ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector_);
843 visitor(ref);
844 }
operator ()(mirror::Class * klass,mirror::Reference * ref ATTRIBUTE_UNUSED) const845 void operator()(mirror::Class* klass, mirror::Reference* ref ATTRIBUTE_UNUSED) const
846 SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
847 CHECK(klass->IsTypeOfReferenceClass());
848 }
849
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const850 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
851 SHARED_REQUIRES(Locks::mutator_lock_) {
852 if (!root->IsNull()) {
853 VisitRoot(root);
854 }
855 }
856
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const857 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
858 SHARED_REQUIRES(Locks::mutator_lock_) {
859 ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector_);
860 visitor(root->AsMirrorPtr());
861 }
862
863 private:
864 ConcurrentCopying* const collector_;
865 };
866
867 class ConcurrentCopyingAssertToSpaceInvariantObjectVisitor {
868 public:
ConcurrentCopyingAssertToSpaceInvariantObjectVisitor(ConcurrentCopying * collector)869 explicit ConcurrentCopyingAssertToSpaceInvariantObjectVisitor(ConcurrentCopying* collector)
870 : collector_(collector) {}
operator ()(mirror::Object * obj) const871 void operator()(mirror::Object* obj) const
872 SHARED_REQUIRES(Locks::mutator_lock_) {
873 ObjectCallback(obj, collector_);
874 }
ObjectCallback(mirror::Object * obj,void * arg)875 static void ObjectCallback(mirror::Object* obj, void *arg)
876 SHARED_REQUIRES(Locks::mutator_lock_) {
877 CHECK(obj != nullptr);
878 ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
879 space::RegionSpace* region_space = collector->RegionSpace();
880 CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
881 collector->AssertToSpaceInvariant(nullptr, MemberOffset(0), obj);
882 ConcurrentCopyingAssertToSpaceInvariantFieldVisitor visitor(collector);
883 obj->VisitReferences(visitor, visitor);
884 }
885
886 private:
887 ConcurrentCopying* const collector_;
888 };
889
890 class RevokeThreadLocalMarkStackCheckpoint : public Closure {
891 public:
RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying * concurrent_copying,bool disable_weak_ref_access)892 RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying,
893 bool disable_weak_ref_access)
894 : concurrent_copying_(concurrent_copying),
895 disable_weak_ref_access_(disable_weak_ref_access) {
896 }
897
Run(Thread * thread)898 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
899 // Note: self is not necessarily equal to thread since thread may be suspended.
900 Thread* self = Thread::Current();
901 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
902 << thread->GetState() << " thread " << thread << " self " << self;
903 // Revoke thread local mark stacks.
904 accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
905 if (tl_mark_stack != nullptr) {
906 MutexLock mu(self, concurrent_copying_->mark_stack_lock_);
907 concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack);
908 thread->SetThreadLocalMarkStack(nullptr);
909 }
910 // Disable weak ref access.
911 if (disable_weak_ref_access_) {
912 thread->SetWeakRefAccessEnabled(false);
913 }
914 // If thread is a running mutator, then act on behalf of the garbage collector.
915 // See the code in ThreadList::RunCheckpoint.
916 concurrent_copying_->GetBarrier().Pass(self);
917 }
918
919 private:
920 ConcurrentCopying* const concurrent_copying_;
921 const bool disable_weak_ref_access_;
922 };
923
RevokeThreadLocalMarkStacks(bool disable_weak_ref_access)924 void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access) {
925 Thread* self = Thread::Current();
926 RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access);
927 ThreadList* thread_list = Runtime::Current()->GetThreadList();
928 gc_barrier_->Init(self, 0);
929 size_t barrier_count = thread_list->RunCheckpoint(&check_point);
930 // If there are no threads to wait which implys that all the checkpoint functions are finished,
931 // then no need to release the mutator lock.
932 if (barrier_count == 0) {
933 return;
934 }
935 Locks::mutator_lock_->SharedUnlock(self);
936 {
937 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
938 gc_barrier_->Increment(self, barrier_count);
939 }
940 Locks::mutator_lock_->SharedLock(self);
941 }
942
RevokeThreadLocalMarkStack(Thread * thread)943 void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) {
944 Thread* self = Thread::Current();
945 CHECK_EQ(self, thread);
946 accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
947 if (tl_mark_stack != nullptr) {
948 CHECK(is_marking_);
949 MutexLock mu(self, mark_stack_lock_);
950 revoked_mark_stacks_.push_back(tl_mark_stack);
951 thread->SetThreadLocalMarkStack(nullptr);
952 }
953 }
954
ProcessMarkStack()955 void ConcurrentCopying::ProcessMarkStack() {
956 if (kVerboseMode) {
957 LOG(INFO) << "ProcessMarkStack. ";
958 }
959 bool empty_prev = false;
960 while (true) {
961 bool empty = ProcessMarkStackOnce();
962 if (empty_prev && empty) {
963 // Saw empty mark stack for a second time, done.
964 break;
965 }
966 empty_prev = empty;
967 }
968 }
969
ProcessMarkStackOnce()970 bool ConcurrentCopying::ProcessMarkStackOnce() {
971 Thread* self = Thread::Current();
972 CHECK(thread_running_gc_ != nullptr);
973 CHECK(self == thread_running_gc_);
974 CHECK(self->GetThreadLocalMarkStack() == nullptr);
975 size_t count = 0;
976 MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
977 if (mark_stack_mode == kMarkStackModeThreadLocal) {
978 // Process the thread-local mark stacks and the GC mark stack.
979 count += ProcessThreadLocalMarkStacks(false);
980 while (!gc_mark_stack_->IsEmpty()) {
981 mirror::Object* to_ref = gc_mark_stack_->PopBack();
982 ProcessMarkStackRef(to_ref);
983 ++count;
984 }
985 gc_mark_stack_->Reset();
986 } else if (mark_stack_mode == kMarkStackModeShared) {
987 // Process the shared GC mark stack with a lock.
988 {
989 MutexLock mu(self, mark_stack_lock_);
990 CHECK(revoked_mark_stacks_.empty());
991 }
992 while (true) {
993 std::vector<mirror::Object*> refs;
994 {
995 // Copy refs with lock. Note the number of refs should be small.
996 MutexLock mu(self, mark_stack_lock_);
997 if (gc_mark_stack_->IsEmpty()) {
998 break;
999 }
1000 for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin();
1001 p != gc_mark_stack_->End(); ++p) {
1002 refs.push_back(p->AsMirrorPtr());
1003 }
1004 gc_mark_stack_->Reset();
1005 }
1006 for (mirror::Object* ref : refs) {
1007 ProcessMarkStackRef(ref);
1008 ++count;
1009 }
1010 }
1011 } else {
1012 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
1013 static_cast<uint32_t>(kMarkStackModeGcExclusive));
1014 {
1015 MutexLock mu(self, mark_stack_lock_);
1016 CHECK(revoked_mark_stacks_.empty());
1017 }
1018 // Process the GC mark stack in the exclusive mode. No need to take the lock.
1019 while (!gc_mark_stack_->IsEmpty()) {
1020 mirror::Object* to_ref = gc_mark_stack_->PopBack();
1021 ProcessMarkStackRef(to_ref);
1022 ++count;
1023 }
1024 gc_mark_stack_->Reset();
1025 }
1026
1027 // Return true if the stack was empty.
1028 return count == 0;
1029 }
1030
ProcessThreadLocalMarkStacks(bool disable_weak_ref_access)1031 size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access) {
1032 // Run a checkpoint to collect all thread local mark stacks and iterate over them all.
1033 RevokeThreadLocalMarkStacks(disable_weak_ref_access);
1034 size_t count = 0;
1035 std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks;
1036 {
1037 MutexLock mu(Thread::Current(), mark_stack_lock_);
1038 // Make a copy of the mark stack vector.
1039 mark_stacks = revoked_mark_stacks_;
1040 revoked_mark_stacks_.clear();
1041 }
1042 for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) {
1043 for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) {
1044 mirror::Object* to_ref = p->AsMirrorPtr();
1045 ProcessMarkStackRef(to_ref);
1046 ++count;
1047 }
1048 {
1049 MutexLock mu(Thread::Current(), mark_stack_lock_);
1050 if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) {
1051 // The pool has enough. Delete it.
1052 delete mark_stack;
1053 } else {
1054 // Otherwise, put it into the pool for later reuse.
1055 mark_stack->Reset();
1056 pooled_mark_stacks_.push_back(mark_stack);
1057 }
1058 }
1059 }
1060 return count;
1061 }
1062
ProcessMarkStackRef(mirror::Object * to_ref)1063 inline void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) {
1064 DCHECK(!region_space_->IsInFromSpace(to_ref));
1065 if (kUseBakerReadBarrier) {
1066 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
1067 << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
1068 << " is_marked=" << IsMarked(to_ref);
1069 }
1070 // Scan ref fields.
1071 Scan(to_ref);
1072 // Mark the gray ref as white or black.
1073 if (kUseBakerReadBarrier) {
1074 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
1075 << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
1076 << " is_marked=" << IsMarked(to_ref);
1077 }
1078 #ifdef USE_BAKER_OR_BROOKS_READ_BARRIER
1079 if (UNLIKELY((to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
1080 to_ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr &&
1081 !IsInToSpace(to_ref->AsReference()->GetReferent<kWithoutReadBarrier>())))) {
1082 // Leave this Reference gray in the queue so that GetReferent() will trigger a read barrier. We
1083 // will change it to black or white later in ReferenceQueue::DequeuePendingReference().
1084 DCHECK(to_ref->AsReference()->GetPendingNext() != nullptr) << "Left unenqueued ref gray " << to_ref;
1085 } else {
1086 // We may occasionally leave a Reference black or white in the queue if its referent happens to
1087 // be concurrently marked after the Scan() call above has enqueued the Reference, in which case
1088 // the above IsInToSpace() evaluates to true and we change the color from gray to black or white
1089 // here in this else block.
1090 if (kUseBakerReadBarrier) {
1091 if (region_space_->IsInToSpace(to_ref)) {
1092 // If to-space, change from gray to white.
1093 bool success = to_ref->AtomicSetReadBarrierPointer</*kCasRelease*/true>(
1094 ReadBarrier::GrayPtr(),
1095 ReadBarrier::WhitePtr());
1096 DCHECK(success) << "Must succeed as we won the race.";
1097 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
1098 } else {
1099 // If non-moving space/unevac from space, change from gray
1100 // to black. We can't change gray to white because it's not
1101 // safe to use CAS if two threads change values in opposite
1102 // directions (A->B and B->A). So, we change it to black to
1103 // indicate non-moving objects that have been marked
1104 // through. Note we'd need to change from black to white
1105 // later (concurrently).
1106 bool success = to_ref->AtomicSetReadBarrierPointer</*kCasRelease*/true>(
1107 ReadBarrier::GrayPtr(),
1108 ReadBarrier::BlackPtr());
1109 DCHECK(success) << "Must succeed as we won the race.";
1110 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1111 }
1112 }
1113 }
1114 #else
1115 DCHECK(!kUseBakerReadBarrier);
1116 #endif
1117 if (ReadBarrier::kEnableToSpaceInvariantChecks || kIsDebugBuild) {
1118 ConcurrentCopyingAssertToSpaceInvariantObjectVisitor visitor(this);
1119 visitor(to_ref);
1120 }
1121 }
1122
SwitchToSharedMarkStackMode()1123 void ConcurrentCopying::SwitchToSharedMarkStackMode() {
1124 Thread* self = Thread::Current();
1125 CHECK(thread_running_gc_ != nullptr);
1126 CHECK_EQ(self, thread_running_gc_);
1127 CHECK(self->GetThreadLocalMarkStack() == nullptr);
1128 MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1129 CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
1130 static_cast<uint32_t>(kMarkStackModeThreadLocal));
1131 mark_stack_mode_.StoreRelaxed(kMarkStackModeShared);
1132 CHECK(weak_ref_access_enabled_.LoadRelaxed());
1133 weak_ref_access_enabled_.StoreRelaxed(false);
1134 QuasiAtomic::ThreadFenceForConstructor();
1135 // Process the thread local mark stacks one last time after switching to the shared mark stack
1136 // mode and disable weak ref accesses.
1137 ProcessThreadLocalMarkStacks(true);
1138 if (kVerboseMode) {
1139 LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access";
1140 }
1141 }
1142
SwitchToGcExclusiveMarkStackMode()1143 void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() {
1144 Thread* self = Thread::Current();
1145 CHECK(thread_running_gc_ != nullptr);
1146 CHECK_EQ(self, thread_running_gc_);
1147 CHECK(self->GetThreadLocalMarkStack() == nullptr);
1148 MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1149 CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
1150 static_cast<uint32_t>(kMarkStackModeShared));
1151 mark_stack_mode_.StoreRelaxed(kMarkStackModeGcExclusive);
1152 QuasiAtomic::ThreadFenceForConstructor();
1153 if (kVerboseMode) {
1154 LOG(INFO) << "Switched to GC exclusive mark stack mode";
1155 }
1156 }
1157
CheckEmptyMarkStack()1158 void ConcurrentCopying::CheckEmptyMarkStack() {
1159 Thread* self = Thread::Current();
1160 CHECK(thread_running_gc_ != nullptr);
1161 CHECK_EQ(self, thread_running_gc_);
1162 CHECK(self->GetThreadLocalMarkStack() == nullptr);
1163 MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1164 if (mark_stack_mode == kMarkStackModeThreadLocal) {
1165 // Thread-local mark stack mode.
1166 RevokeThreadLocalMarkStacks(false);
1167 MutexLock mu(Thread::Current(), mark_stack_lock_);
1168 if (!revoked_mark_stacks_.empty()) {
1169 for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) {
1170 while (!mark_stack->IsEmpty()) {
1171 mirror::Object* obj = mark_stack->PopBack();
1172 if (kUseBakerReadBarrier) {
1173 mirror::Object* rb_ptr = obj->GetReadBarrierPointer();
1174 LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj) << " rb_ptr=" << rb_ptr
1175 << " is_marked=" << IsMarked(obj);
1176 } else {
1177 LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj)
1178 << " is_marked=" << IsMarked(obj);
1179 }
1180 }
1181 }
1182 LOG(FATAL) << "mark stack is not empty";
1183 }
1184 } else {
1185 // Shared, GC-exclusive, or off.
1186 MutexLock mu(Thread::Current(), mark_stack_lock_);
1187 CHECK(gc_mark_stack_->IsEmpty());
1188 CHECK(revoked_mark_stacks_.empty());
1189 }
1190 }
1191
SweepSystemWeaks(Thread * self)1192 void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
1193 TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
1194 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1195 Runtime::Current()->SweepSystemWeaks(this);
1196 }
1197
Sweep(bool swap_bitmaps)1198 void ConcurrentCopying::Sweep(bool swap_bitmaps) {
1199 {
1200 TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
1201 accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1202 if (kEnableFromSpaceAccountingCheck) {
1203 CHECK_GE(live_stack_freeze_size_, live_stack->Size());
1204 }
1205 heap_->MarkAllocStackAsLive(live_stack);
1206 live_stack->Reset();
1207 }
1208 CheckEmptyMarkStack();
1209 TimingLogger::ScopedTiming split("Sweep", GetTimings());
1210 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1211 if (space->IsContinuousMemMapAllocSpace()) {
1212 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1213 if (space == region_space_ || immune_spaces_.ContainsSpace(space)) {
1214 continue;
1215 }
1216 TimingLogger::ScopedTiming split2(
1217 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
1218 RecordFree(alloc_space->Sweep(swap_bitmaps));
1219 }
1220 }
1221 SweepLargeObjects(swap_bitmaps);
1222 }
1223
SweepLargeObjects(bool swap_bitmaps)1224 void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
1225 TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
1226 RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
1227 }
1228
1229 class ConcurrentCopyingClearBlackPtrsVisitor {
1230 public:
ConcurrentCopyingClearBlackPtrsVisitor(ConcurrentCopying * cc)1231 explicit ConcurrentCopyingClearBlackPtrsVisitor(ConcurrentCopying* cc)
1232 : collector_(cc) {}
operator ()(mirror::Object * obj) const1233 void operator()(mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_)
1234 SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1235 DCHECK(obj != nullptr);
1236 DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj)) << obj;
1237 DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << obj;
1238 obj->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr());
1239 DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
1240 }
1241
1242 private:
1243 ConcurrentCopying* const collector_;
1244 };
1245
1246 // Clear the black ptrs in non-moving objects back to white.
ClearBlackPtrs()1247 void ConcurrentCopying::ClearBlackPtrs() {
1248 CHECK(kUseBakerReadBarrier);
1249 TimingLogger::ScopedTiming split("ClearBlackPtrs", GetTimings());
1250 ConcurrentCopyingClearBlackPtrsVisitor visitor(this);
1251 for (auto& space : heap_->GetContinuousSpaces()) {
1252 if (space == region_space_) {
1253 continue;
1254 }
1255 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1256 if (kVerboseMode) {
1257 LOG(INFO) << "ClearBlackPtrs: " << *space << " bitmap: " << *mark_bitmap;
1258 }
1259 mark_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
1260 reinterpret_cast<uintptr_t>(space->Limit()),
1261 visitor);
1262 }
1263 space::LargeObjectSpace* large_object_space = heap_->GetLargeObjectsSpace();
1264 large_object_space->GetMarkBitmap()->VisitMarkedRange(
1265 reinterpret_cast<uintptr_t>(large_object_space->Begin()),
1266 reinterpret_cast<uintptr_t>(large_object_space->End()),
1267 visitor);
1268 // Objects on the allocation stack?
1269 if (ReadBarrier::kEnableReadBarrierInvariantChecks || kIsDebugBuild) {
1270 size_t count = GetAllocationStack()->Size();
1271 auto* it = GetAllocationStack()->Begin();
1272 auto* end = GetAllocationStack()->End();
1273 for (size_t i = 0; i < count; ++i, ++it) {
1274 CHECK_LT(it, end);
1275 mirror::Object* obj = it->AsMirrorPtr();
1276 if (obj != nullptr) {
1277 // Must have been cleared above.
1278 CHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
1279 }
1280 }
1281 }
1282 }
1283
ReclaimPhase()1284 void ConcurrentCopying::ReclaimPhase() {
1285 TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
1286 if (kVerboseMode) {
1287 LOG(INFO) << "GC ReclaimPhase";
1288 }
1289 Thread* self = Thread::Current();
1290
1291 {
1292 // Double-check that the mark stack is empty.
1293 // Note: need to set this after VerifyNoFromSpaceRef().
1294 is_asserting_to_space_invariant_ = false;
1295 QuasiAtomic::ThreadFenceForConstructor();
1296 if (kVerboseMode) {
1297 LOG(INFO) << "Issue an empty check point. ";
1298 }
1299 IssueEmptyCheckpoint();
1300 // Disable the check.
1301 is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(0);
1302 CheckEmptyMarkStack();
1303 }
1304
1305 {
1306 // Record freed objects.
1307 TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
1308 // Don't include thread-locals that are in the to-space.
1309 uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
1310 uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
1311 uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
1312 uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
1313 uint64_t to_bytes = bytes_moved_.LoadSequentiallyConsistent();
1314 uint64_t to_objects = objects_moved_.LoadSequentiallyConsistent();
1315 if (kEnableFromSpaceAccountingCheck) {
1316 CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
1317 CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
1318 }
1319 CHECK_LE(to_objects, from_objects);
1320 CHECK_LE(to_bytes, from_bytes);
1321 int64_t freed_bytes = from_bytes - to_bytes;
1322 int64_t freed_objects = from_objects - to_objects;
1323 if (kVerboseMode) {
1324 LOG(INFO) << "RecordFree:"
1325 << " from_bytes=" << from_bytes << " from_objects=" << from_objects
1326 << " unevac_from_bytes=" << unevac_from_bytes << " unevac_from_objects=" << unevac_from_objects
1327 << " to_bytes=" << to_bytes << " to_objects=" << to_objects
1328 << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
1329 << " from_space size=" << region_space_->FromSpaceSize()
1330 << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
1331 << " to_space size=" << region_space_->ToSpaceSize();
1332 LOG(INFO) << "(before) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
1333 }
1334 RecordFree(ObjectBytePair(freed_objects, freed_bytes));
1335 if (kVerboseMode) {
1336 LOG(INFO) << "(after) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
1337 }
1338 }
1339
1340 {
1341 TimingLogger::ScopedTiming split3("ComputeUnevacFromSpaceLiveRatio", GetTimings());
1342 ComputeUnevacFromSpaceLiveRatio();
1343 }
1344
1345 {
1346 TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
1347 region_space_->ClearFromSpace();
1348 }
1349
1350 {
1351 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1352 if (kUseBakerReadBarrier) {
1353 ClearBlackPtrs();
1354 }
1355 Sweep(false);
1356 SwapBitmaps();
1357 heap_->UnBindBitmaps();
1358
1359 // Remove bitmaps for the immune spaces.
1360 while (!cc_bitmaps_.empty()) {
1361 accounting::ContinuousSpaceBitmap* cc_bitmap = cc_bitmaps_.back();
1362 cc_heap_bitmap_->RemoveContinuousSpaceBitmap(cc_bitmap);
1363 delete cc_bitmap;
1364 cc_bitmaps_.pop_back();
1365 }
1366 region_space_bitmap_ = nullptr;
1367 }
1368
1369 CheckEmptyMarkStack();
1370
1371 if (kVerboseMode) {
1372 LOG(INFO) << "GC end of ReclaimPhase";
1373 }
1374 }
1375
1376 class ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor {
1377 public:
ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor(ConcurrentCopying * cc)1378 explicit ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor(ConcurrentCopying* cc)
1379 : collector_(cc) {}
operator ()(mirror::Object * ref) const1380 void operator()(mirror::Object* ref) const SHARED_REQUIRES(Locks::mutator_lock_)
1381 SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1382 DCHECK(ref != nullptr);
1383 DCHECK(collector_->region_space_bitmap_->Test(ref)) << ref;
1384 DCHECK(collector_->region_space_->IsInUnevacFromSpace(ref)) << ref;
1385 if (kUseBakerReadBarrier) {
1386 DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << ref;
1387 // Clear the black ptr.
1388 ref->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr());
1389 DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << ref;
1390 }
1391 size_t obj_size = ref->SizeOf();
1392 size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1393 collector_->region_space_->AddLiveBytes(ref, alloc_size);
1394 }
1395
1396 private:
1397 ConcurrentCopying* const collector_;
1398 };
1399
1400 // Compute how much live objects are left in regions.
ComputeUnevacFromSpaceLiveRatio()1401 void ConcurrentCopying::ComputeUnevacFromSpaceLiveRatio() {
1402 region_space_->AssertAllRegionLiveBytesZeroOrCleared();
1403 ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor visitor(this);
1404 region_space_bitmap_->VisitMarkedRange(reinterpret_cast<uintptr_t>(region_space_->Begin()),
1405 reinterpret_cast<uintptr_t>(region_space_->Limit()),
1406 visitor);
1407 }
1408
1409 // Assert the to-space invariant.
AssertToSpaceInvariant(mirror::Object * obj,MemberOffset offset,mirror::Object * ref)1410 void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj, MemberOffset offset,
1411 mirror::Object* ref) {
1412 CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1413 if (is_asserting_to_space_invariant_) {
1414 if (region_space_->IsInToSpace(ref)) {
1415 // OK.
1416 return;
1417 } else if (region_space_->IsInUnevacFromSpace(ref)) {
1418 CHECK(region_space_bitmap_->Test(ref)) << ref;
1419 } else if (region_space_->IsInFromSpace(ref)) {
1420 // Not OK. Do extra logging.
1421 if (obj != nullptr) {
1422 LogFromSpaceRefHolder(obj, offset);
1423 }
1424 ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL));
1425 CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1426 } else {
1427 AssertToSpaceInvariantInNonMovingSpace(obj, ref);
1428 }
1429 }
1430 }
1431
1432 class RootPrinter {
1433 public:
RootPrinter()1434 RootPrinter() { }
1435
1436 template <class MirrorType>
VisitRootIfNonNull(mirror::CompressedReference<MirrorType> * root)1437 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
1438 SHARED_REQUIRES(Locks::mutator_lock_) {
1439 if (!root->IsNull()) {
1440 VisitRoot(root);
1441 }
1442 }
1443
1444 template <class MirrorType>
VisitRoot(mirror::Object ** root)1445 void VisitRoot(mirror::Object** root)
1446 SHARED_REQUIRES(Locks::mutator_lock_) {
1447 LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << *root;
1448 }
1449
1450 template <class MirrorType>
VisitRoot(mirror::CompressedReference<MirrorType> * root)1451 void VisitRoot(mirror::CompressedReference<MirrorType>* root)
1452 SHARED_REQUIRES(Locks::mutator_lock_) {
1453 LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << root->AsMirrorPtr();
1454 }
1455 };
1456
AssertToSpaceInvariant(GcRootSource * gc_root_source,mirror::Object * ref)1457 void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
1458 mirror::Object* ref) {
1459 CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1460 if (is_asserting_to_space_invariant_) {
1461 if (region_space_->IsInToSpace(ref)) {
1462 // OK.
1463 return;
1464 } else if (region_space_->IsInUnevacFromSpace(ref)) {
1465 CHECK(region_space_bitmap_->Test(ref)) << ref;
1466 } else if (region_space_->IsInFromSpace(ref)) {
1467 // Not OK. Do extra logging.
1468 if (gc_root_source == nullptr) {
1469 // No info.
1470 } else if (gc_root_source->HasArtField()) {
1471 ArtField* field = gc_root_source->GetArtField();
1472 LOG(INTERNAL_FATAL) << "gc root in field " << field << " " << PrettyField(field);
1473 RootPrinter root_printer;
1474 field->VisitRoots(root_printer);
1475 } else if (gc_root_source->HasArtMethod()) {
1476 ArtMethod* method = gc_root_source->GetArtMethod();
1477 LOG(INTERNAL_FATAL) << "gc root in method " << method << " " << PrettyMethod(method);
1478 RootPrinter root_printer;
1479 method->VisitRoots(root_printer, sizeof(void*));
1480 }
1481 ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL));
1482 region_space_->DumpNonFreeRegions(LOG(INTERNAL_FATAL));
1483 PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL);
1484 MemMap::DumpMaps(LOG(INTERNAL_FATAL), true);
1485 CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1486 } else {
1487 AssertToSpaceInvariantInNonMovingSpace(nullptr, ref);
1488 }
1489 }
1490 }
1491
LogFromSpaceRefHolder(mirror::Object * obj,MemberOffset offset)1492 void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
1493 if (kUseBakerReadBarrier) {
1494 LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj)
1495 << " holder rb_ptr=" << obj->GetReadBarrierPointer();
1496 } else {
1497 LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj);
1498 }
1499 if (region_space_->IsInFromSpace(obj)) {
1500 LOG(INFO) << "holder is in the from-space.";
1501 } else if (region_space_->IsInToSpace(obj)) {
1502 LOG(INFO) << "holder is in the to-space.";
1503 } else if (region_space_->IsInUnevacFromSpace(obj)) {
1504 LOG(INFO) << "holder is in the unevac from-space.";
1505 if (region_space_bitmap_->Test(obj)) {
1506 LOG(INFO) << "holder is marked in the region space bitmap.";
1507 } else {
1508 LOG(INFO) << "holder is not marked in the region space bitmap.";
1509 }
1510 } else {
1511 // In a non-moving space.
1512 if (immune_spaces_.ContainsObject(obj)) {
1513 LOG(INFO) << "holder is in an immune image or the zygote space.";
1514 accounting::ContinuousSpaceBitmap* cc_bitmap =
1515 cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
1516 CHECK(cc_bitmap != nullptr)
1517 << "An immune space object must have a bitmap.";
1518 if (cc_bitmap->Test(obj)) {
1519 LOG(INFO) << "holder is marked in the bit map.";
1520 } else {
1521 LOG(INFO) << "holder is NOT marked in the bit map.";
1522 }
1523 } else {
1524 LOG(INFO) << "holder is in a non-immune, non-moving (or main) space.";
1525 accounting::ContinuousSpaceBitmap* mark_bitmap =
1526 heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
1527 accounting::LargeObjectBitmap* los_bitmap =
1528 heap_mark_bitmap_->GetLargeObjectBitmap(obj);
1529 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1530 bool is_los = mark_bitmap == nullptr;
1531 if (!is_los && mark_bitmap->Test(obj)) {
1532 LOG(INFO) << "holder is marked in the mark bit map.";
1533 } else if (is_los && los_bitmap->Test(obj)) {
1534 LOG(INFO) << "holder is marked in the los bit map.";
1535 } else {
1536 // If ref is on the allocation stack, then it is considered
1537 // mark/alive (but not necessarily on the live stack.)
1538 if (IsOnAllocStack(obj)) {
1539 LOG(INFO) << "holder is on the alloc stack.";
1540 } else {
1541 LOG(INFO) << "holder is not marked or on the alloc stack.";
1542 }
1543 }
1544 }
1545 }
1546 LOG(INFO) << "offset=" << offset.SizeValue();
1547 }
1548
AssertToSpaceInvariantInNonMovingSpace(mirror::Object * obj,mirror::Object * ref)1549 void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
1550 mirror::Object* ref) {
1551 // In a non-moving spaces. Check that the ref is marked.
1552 if (immune_spaces_.ContainsObject(ref)) {
1553 accounting::ContinuousSpaceBitmap* cc_bitmap =
1554 cc_heap_bitmap_->GetContinuousSpaceBitmap(ref);
1555 CHECK(cc_bitmap != nullptr)
1556 << "An immune space ref must have a bitmap. " << ref;
1557 if (kUseBakerReadBarrier) {
1558 CHECK(cc_bitmap->Test(ref))
1559 << "Unmarked immune space ref. obj=" << obj << " rb_ptr="
1560 << obj->GetReadBarrierPointer() << " ref=" << ref;
1561 } else {
1562 CHECK(cc_bitmap->Test(ref))
1563 << "Unmarked immune space ref. obj=" << obj << " ref=" << ref;
1564 }
1565 } else {
1566 accounting::ContinuousSpaceBitmap* mark_bitmap =
1567 heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
1568 accounting::LargeObjectBitmap* los_bitmap =
1569 heap_mark_bitmap_->GetLargeObjectBitmap(ref);
1570 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1571 bool is_los = mark_bitmap == nullptr;
1572 if ((!is_los && mark_bitmap->Test(ref)) ||
1573 (is_los && los_bitmap->Test(ref))) {
1574 // OK.
1575 } else {
1576 // If ref is on the allocation stack, then it may not be
1577 // marked live, but considered marked/alive (but not
1578 // necessarily on the live stack).
1579 CHECK(IsOnAllocStack(ref)) << "Unmarked ref that's not on the allocation stack. "
1580 << "obj=" << obj << " ref=" << ref;
1581 }
1582 }
1583 }
1584
1585 // Used to scan ref fields of an object.
1586 class ConcurrentCopyingRefFieldsVisitor {
1587 public:
ConcurrentCopyingRefFieldsVisitor(ConcurrentCopying * collector)1588 explicit ConcurrentCopyingRefFieldsVisitor(ConcurrentCopying* collector)
1589 : collector_(collector) {}
1590
operator ()(mirror::Object * obj,MemberOffset offset,bool) const1591 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
1592 const ALWAYS_INLINE SHARED_REQUIRES(Locks::mutator_lock_)
1593 SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1594 collector_->Process(obj, offset);
1595 }
1596
operator ()(mirror::Class * klass,mirror::Reference * ref) const1597 void operator()(mirror::Class* klass, mirror::Reference* ref) const
1598 SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
1599 CHECK(klass->IsTypeOfReferenceClass());
1600 collector_->DelayReferenceReferent(klass, ref);
1601 }
1602
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1603 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1604 ALWAYS_INLINE
1605 SHARED_REQUIRES(Locks::mutator_lock_) {
1606 if (!root->IsNull()) {
1607 VisitRoot(root);
1608 }
1609 }
1610
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1611 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1612 ALWAYS_INLINE
1613 SHARED_REQUIRES(Locks::mutator_lock_) {
1614 collector_->MarkRoot(root);
1615 }
1616
1617 private:
1618 ConcurrentCopying* const collector_;
1619 };
1620
1621 // Scan ref fields of an object.
Scan(mirror::Object * to_ref)1622 inline void ConcurrentCopying::Scan(mirror::Object* to_ref) {
1623 DCHECK(!region_space_->IsInFromSpace(to_ref));
1624 ConcurrentCopyingRefFieldsVisitor visitor(this);
1625 // Disable the read barrier for a performance reason.
1626 to_ref->VisitReferences</*kVisitNativeRoots*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1627 visitor, visitor);
1628 }
1629
1630 // Process a field.
Process(mirror::Object * obj,MemberOffset offset)1631 inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
1632 mirror::Object* ref = obj->GetFieldObject<
1633 mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
1634 mirror::Object* to_ref = Mark(ref);
1635 if (to_ref == ref) {
1636 return;
1637 }
1638 // This may fail if the mutator writes to the field at the same time. But it's ok.
1639 mirror::Object* expected_ref = ref;
1640 mirror::Object* new_ref = to_ref;
1641 do {
1642 if (expected_ref !=
1643 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
1644 // It was updated by the mutator.
1645 break;
1646 }
1647 } while (!obj->CasFieldWeakRelaxedObjectWithoutWriteBarrier<
1648 false, false, kVerifyNone>(offset, expected_ref, new_ref));
1649 }
1650
1651 // Process some roots.
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1652 inline void ConcurrentCopying::VisitRoots(
1653 mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) {
1654 for (size_t i = 0; i < count; ++i) {
1655 mirror::Object** root = roots[i];
1656 mirror::Object* ref = *root;
1657 mirror::Object* to_ref = Mark(ref);
1658 if (to_ref == ref) {
1659 continue;
1660 }
1661 Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
1662 mirror::Object* expected_ref = ref;
1663 mirror::Object* new_ref = to_ref;
1664 do {
1665 if (expected_ref != addr->LoadRelaxed()) {
1666 // It was updated by the mutator.
1667 break;
1668 }
1669 } while (!addr->CompareExchangeWeakRelaxed(expected_ref, new_ref));
1670 }
1671 }
1672
MarkRoot(mirror::CompressedReference<mirror::Object> * root)1673 inline void ConcurrentCopying::MarkRoot(mirror::CompressedReference<mirror::Object>* root) {
1674 DCHECK(!root->IsNull());
1675 mirror::Object* const ref = root->AsMirrorPtr();
1676 mirror::Object* to_ref = Mark(ref);
1677 if (to_ref != ref) {
1678 auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
1679 auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
1680 auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
1681 // If the cas fails, then it was updated by the mutator.
1682 do {
1683 if (ref != addr->LoadRelaxed().AsMirrorPtr()) {
1684 // It was updated by the mutator.
1685 break;
1686 }
1687 } while (!addr->CompareExchangeWeakRelaxed(expected_ref, new_ref));
1688 }
1689 }
1690
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1691 inline void ConcurrentCopying::VisitRoots(
1692 mirror::CompressedReference<mirror::Object>** roots, size_t count,
1693 const RootInfo& info ATTRIBUTE_UNUSED) {
1694 for (size_t i = 0; i < count; ++i) {
1695 mirror::CompressedReference<mirror::Object>* const root = roots[i];
1696 if (!root->IsNull()) {
1697 MarkRoot(root);
1698 }
1699 }
1700 }
1701
1702 // Fill the given memory block with a dummy object. Used to fill in a
1703 // copy of objects that was lost in race.
FillWithDummyObject(mirror::Object * dummy_obj,size_t byte_size)1704 void ConcurrentCopying::FillWithDummyObject(mirror::Object* dummy_obj, size_t byte_size) {
1705 CHECK_ALIGNED(byte_size, kObjectAlignment);
1706 memset(dummy_obj, 0, byte_size);
1707 mirror::Class* int_array_class = mirror::IntArray::GetArrayClass();
1708 CHECK(int_array_class != nullptr);
1709 AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
1710 size_t component_size = int_array_class->GetComponentSize();
1711 CHECK_EQ(component_size, sizeof(int32_t));
1712 size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
1713 if (data_offset > byte_size) {
1714 // An int array is too big. Use java.lang.Object.
1715 mirror::Class* java_lang_Object = WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object);
1716 AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object);
1717 CHECK_EQ(byte_size, java_lang_Object->GetObjectSize());
1718 dummy_obj->SetClass(java_lang_Object);
1719 CHECK_EQ(byte_size, dummy_obj->SizeOf());
1720 } else {
1721 // Use an int array.
1722 dummy_obj->SetClass(int_array_class);
1723 CHECK(dummy_obj->IsArrayInstance());
1724 int32_t length = (byte_size - data_offset) / component_size;
1725 dummy_obj->AsArray()->SetLength(length);
1726 CHECK_EQ(dummy_obj->AsArray()->GetLength(), length)
1727 << "byte_size=" << byte_size << " length=" << length
1728 << " component_size=" << component_size << " data_offset=" << data_offset;
1729 CHECK_EQ(byte_size, dummy_obj->SizeOf())
1730 << "byte_size=" << byte_size << " length=" << length
1731 << " component_size=" << component_size << " data_offset=" << data_offset;
1732 }
1733 }
1734
1735 // Reuse the memory blocks that were copy of objects that were lost in race.
AllocateInSkippedBlock(size_t alloc_size)1736 mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(size_t alloc_size) {
1737 // Try to reuse the blocks that were unused due to CAS failures.
1738 CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
1739 Thread* self = Thread::Current();
1740 size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
1741 MutexLock mu(self, skipped_blocks_lock_);
1742 auto it = skipped_blocks_map_.lower_bound(alloc_size);
1743 if (it == skipped_blocks_map_.end()) {
1744 // Not found.
1745 return nullptr;
1746 }
1747 {
1748 size_t byte_size = it->first;
1749 CHECK_GE(byte_size, alloc_size);
1750 if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
1751 // If remainder would be too small for a dummy object, retry with a larger request size.
1752 it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
1753 if (it == skipped_blocks_map_.end()) {
1754 // Not found.
1755 return nullptr;
1756 }
1757 CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment);
1758 CHECK_GE(it->first - alloc_size, min_object_size)
1759 << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
1760 }
1761 }
1762 // Found a block.
1763 CHECK(it != skipped_blocks_map_.end());
1764 size_t byte_size = it->first;
1765 uint8_t* addr = it->second;
1766 CHECK_GE(byte_size, alloc_size);
1767 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
1768 CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment);
1769 if (kVerboseMode) {
1770 LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
1771 }
1772 skipped_blocks_map_.erase(it);
1773 memset(addr, 0, byte_size);
1774 if (byte_size > alloc_size) {
1775 // Return the remainder to the map.
1776 CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment);
1777 CHECK_GE(byte_size - alloc_size, min_object_size);
1778 FillWithDummyObject(reinterpret_cast<mirror::Object*>(addr + alloc_size),
1779 byte_size - alloc_size);
1780 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
1781 skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
1782 }
1783 return reinterpret_cast<mirror::Object*>(addr);
1784 }
1785
Copy(mirror::Object * from_ref)1786 mirror::Object* ConcurrentCopying::Copy(mirror::Object* from_ref) {
1787 DCHECK(region_space_->IsInFromSpace(from_ref));
1788 // No read barrier to avoid nested RB that might violate the to-space
1789 // invariant. Note that from_ref is a from space ref so the SizeOf()
1790 // call will access the from-space meta objects, but it's ok and necessary.
1791 size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags, kWithoutReadBarrier>();
1792 size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1793 size_t region_space_bytes_allocated = 0U;
1794 size_t non_moving_space_bytes_allocated = 0U;
1795 size_t bytes_allocated = 0U;
1796 size_t dummy;
1797 mirror::Object* to_ref = region_space_->AllocNonvirtual<true>(
1798 region_space_alloc_size, ®ion_space_bytes_allocated, nullptr, &dummy);
1799 bytes_allocated = region_space_bytes_allocated;
1800 if (to_ref != nullptr) {
1801 DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
1802 }
1803 bool fall_back_to_non_moving = false;
1804 if (UNLIKELY(to_ref == nullptr)) {
1805 // Failed to allocate in the region space. Try the skipped blocks.
1806 to_ref = AllocateInSkippedBlock(region_space_alloc_size);
1807 if (to_ref != nullptr) {
1808 // Succeeded to allocate in a skipped block.
1809 if (heap_->use_tlab_) {
1810 // This is necessary for the tlab case as it's not accounted in the space.
1811 region_space_->RecordAlloc(to_ref);
1812 }
1813 bytes_allocated = region_space_alloc_size;
1814 } else {
1815 // Fall back to the non-moving space.
1816 fall_back_to_non_moving = true;
1817 if (kVerboseMode) {
1818 LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
1819 << to_space_bytes_skipped_.LoadSequentiallyConsistent()
1820 << " skipped_objects=" << to_space_objects_skipped_.LoadSequentiallyConsistent();
1821 }
1822 fall_back_to_non_moving = true;
1823 to_ref = heap_->non_moving_space_->Alloc(Thread::Current(), obj_size,
1824 &non_moving_space_bytes_allocated, nullptr, &dummy);
1825 CHECK(to_ref != nullptr) << "Fall-back non-moving space allocation failed";
1826 bytes_allocated = non_moving_space_bytes_allocated;
1827 // Mark it in the mark bitmap.
1828 accounting::ContinuousSpaceBitmap* mark_bitmap =
1829 heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1830 CHECK(mark_bitmap != nullptr);
1831 CHECK(!mark_bitmap->AtomicTestAndSet(to_ref));
1832 }
1833 }
1834 DCHECK(to_ref != nullptr);
1835
1836 // Attempt to install the forward pointer. This is in a loop as the
1837 // lock word atomic write can fail.
1838 while (true) {
1839 // Copy the object. TODO: copy only the lockword in the second iteration and on?
1840 memcpy(to_ref, from_ref, obj_size);
1841
1842 LockWord old_lock_word = to_ref->GetLockWord(false);
1843
1844 if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
1845 // Lost the race. Another thread (either GC or mutator) stored
1846 // the forwarding pointer first. Make the lost copy (to_ref)
1847 // look like a valid but dead (dummy) object and keep it for
1848 // future reuse.
1849 FillWithDummyObject(to_ref, bytes_allocated);
1850 if (!fall_back_to_non_moving) {
1851 DCHECK(region_space_->IsInToSpace(to_ref));
1852 if (bytes_allocated > space::RegionSpace::kRegionSize) {
1853 // Free the large alloc.
1854 region_space_->FreeLarge(to_ref, bytes_allocated);
1855 } else {
1856 // Record the lost copy for later reuse.
1857 heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1858 to_space_bytes_skipped_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1859 to_space_objects_skipped_.FetchAndAddSequentiallyConsistent(1);
1860 MutexLock mu(Thread::Current(), skipped_blocks_lock_);
1861 skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
1862 reinterpret_cast<uint8_t*>(to_ref)));
1863 }
1864 } else {
1865 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1866 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1867 // Free the non-moving-space chunk.
1868 accounting::ContinuousSpaceBitmap* mark_bitmap =
1869 heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1870 CHECK(mark_bitmap != nullptr);
1871 CHECK(mark_bitmap->Clear(to_ref));
1872 heap_->non_moving_space_->Free(Thread::Current(), to_ref);
1873 }
1874
1875 // Get the winner's forward ptr.
1876 mirror::Object* lost_fwd_ptr = to_ref;
1877 to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
1878 CHECK(to_ref != nullptr);
1879 CHECK_NE(to_ref, lost_fwd_ptr);
1880 CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref));
1881 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1882 return to_ref;
1883 }
1884
1885 // Set the gray ptr.
1886 if (kUseBakerReadBarrier) {
1887 to_ref->SetReadBarrierPointer(ReadBarrier::GrayPtr());
1888 }
1889
1890 LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
1891
1892 // Try to atomically write the fwd ptr.
1893 bool success = from_ref->CasLockWordWeakSequentiallyConsistent(old_lock_word, new_lock_word);
1894 if (LIKELY(success)) {
1895 // The CAS succeeded.
1896 objects_moved_.FetchAndAddSequentiallyConsistent(1);
1897 bytes_moved_.FetchAndAddSequentiallyConsistent(region_space_alloc_size);
1898 if (LIKELY(!fall_back_to_non_moving)) {
1899 DCHECK(region_space_->IsInToSpace(to_ref));
1900 } else {
1901 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1902 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1903 }
1904 if (kUseBakerReadBarrier) {
1905 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1906 }
1907 DCHECK(GetFwdPtr(from_ref) == to_ref);
1908 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1909 PushOntoMarkStack(to_ref);
1910 return to_ref;
1911 } else {
1912 // The CAS failed. It may have lost the race or may have failed
1913 // due to monitor/hashcode ops. Either way, retry.
1914 }
1915 }
1916 }
1917
IsMarked(mirror::Object * from_ref)1918 mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
1919 DCHECK(from_ref != nullptr);
1920 space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
1921 if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
1922 // It's already marked.
1923 return from_ref;
1924 }
1925 mirror::Object* to_ref;
1926 if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
1927 to_ref = GetFwdPtr(from_ref);
1928 DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
1929 heap_->non_moving_space_->HasAddress(to_ref))
1930 << "from_ref=" << from_ref << " to_ref=" << to_ref;
1931 } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
1932 if (region_space_bitmap_->Test(from_ref)) {
1933 to_ref = from_ref;
1934 } else {
1935 to_ref = nullptr;
1936 }
1937 } else {
1938 // from_ref is in a non-moving space.
1939 if (immune_spaces_.ContainsObject(from_ref)) {
1940 accounting::ContinuousSpaceBitmap* cc_bitmap =
1941 cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
1942 DCHECK(cc_bitmap != nullptr)
1943 << "An immune space object must have a bitmap";
1944 if (kIsDebugBuild) {
1945 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
1946 << "Immune space object must be already marked";
1947 }
1948 if (cc_bitmap->Test(from_ref)) {
1949 // Already marked.
1950 to_ref = from_ref;
1951 } else {
1952 // Newly marked.
1953 to_ref = nullptr;
1954 }
1955 } else {
1956 // Non-immune non-moving space. Use the mark bitmap.
1957 accounting::ContinuousSpaceBitmap* mark_bitmap =
1958 heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
1959 accounting::LargeObjectBitmap* los_bitmap =
1960 heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
1961 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1962 bool is_los = mark_bitmap == nullptr;
1963 if (!is_los && mark_bitmap->Test(from_ref)) {
1964 // Already marked.
1965 to_ref = from_ref;
1966 } else if (is_los && los_bitmap->Test(from_ref)) {
1967 // Already marked in LOS.
1968 to_ref = from_ref;
1969 } else {
1970 // Not marked.
1971 if (IsOnAllocStack(from_ref)) {
1972 // If on the allocation stack, it's considered marked.
1973 to_ref = from_ref;
1974 } else {
1975 // Not marked.
1976 to_ref = nullptr;
1977 }
1978 }
1979 }
1980 }
1981 return to_ref;
1982 }
1983
IsOnAllocStack(mirror::Object * ref)1984 bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
1985 QuasiAtomic::ThreadFenceAcquire();
1986 accounting::ObjectStack* alloc_stack = GetAllocationStack();
1987 return alloc_stack->Contains(ref);
1988 }
1989
MarkNonMoving(mirror::Object * ref)1990 mirror::Object* ConcurrentCopying::MarkNonMoving(mirror::Object* ref) {
1991 // ref is in a non-moving space (from_ref == to_ref).
1992 DCHECK(!region_space_->HasAddress(ref)) << ref;
1993 if (immune_spaces_.ContainsObject(ref)) {
1994 accounting::ContinuousSpaceBitmap* cc_bitmap =
1995 cc_heap_bitmap_->GetContinuousSpaceBitmap(ref);
1996 DCHECK(cc_bitmap != nullptr)
1997 << "An immune space object must have a bitmap";
1998 if (kIsDebugBuild) {
1999 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref))
2000 << "Immune space object must be already marked";
2001 }
2002 // This may or may not succeed, which is ok.
2003 if (kUseBakerReadBarrier) {
2004 ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
2005 }
2006 if (cc_bitmap->AtomicTestAndSet(ref)) {
2007 // Already marked.
2008 } else {
2009 // Newly marked.
2010 if (kUseBakerReadBarrier) {
2011 DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::GrayPtr());
2012 }
2013 PushOntoMarkStack(ref);
2014 }
2015 } else {
2016 // Use the mark bitmap.
2017 accounting::ContinuousSpaceBitmap* mark_bitmap =
2018 heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
2019 accounting::LargeObjectBitmap* los_bitmap =
2020 heap_mark_bitmap_->GetLargeObjectBitmap(ref);
2021 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
2022 bool is_los = mark_bitmap == nullptr;
2023 if (!is_los && mark_bitmap->Test(ref)) {
2024 // Already marked.
2025 if (kUseBakerReadBarrier) {
2026 DCHECK(ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
2027 ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
2028 }
2029 } else if (is_los && los_bitmap->Test(ref)) {
2030 // Already marked in LOS.
2031 if (kUseBakerReadBarrier) {
2032 DCHECK(ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
2033 ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
2034 }
2035 } else {
2036 // Not marked.
2037 if (IsOnAllocStack(ref)) {
2038 // If it's on the allocation stack, it's considered marked. Keep it white.
2039 // Objects on the allocation stack need not be marked.
2040 if (!is_los) {
2041 DCHECK(!mark_bitmap->Test(ref));
2042 } else {
2043 DCHECK(!los_bitmap->Test(ref));
2044 }
2045 if (kUseBakerReadBarrier) {
2046 DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::WhitePtr());
2047 }
2048 } else {
2049 // Not marked or on the allocation stack. Try to mark it.
2050 // This may or may not succeed, which is ok.
2051 if (kUseBakerReadBarrier) {
2052 ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
2053 }
2054 if (!is_los && mark_bitmap->AtomicTestAndSet(ref)) {
2055 // Already marked.
2056 } else if (is_los && los_bitmap->AtomicTestAndSet(ref)) {
2057 // Already marked in LOS.
2058 } else {
2059 // Newly marked.
2060 if (kUseBakerReadBarrier) {
2061 DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::GrayPtr());
2062 }
2063 PushOntoMarkStack(ref);
2064 }
2065 }
2066 }
2067 }
2068 return ref;
2069 }
2070
FinishPhase()2071 void ConcurrentCopying::FinishPhase() {
2072 Thread* const self = Thread::Current();
2073 {
2074 MutexLock mu(self, mark_stack_lock_);
2075 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2076 }
2077 region_space_ = nullptr;
2078 {
2079 MutexLock mu(Thread::Current(), skipped_blocks_lock_);
2080 skipped_blocks_map_.clear();
2081 }
2082 ReaderMutexLock mu(self, *Locks::mutator_lock_);
2083 WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2084 heap_->ClearMarkedObjects();
2085 }
2086
IsMarkedHeapReference(mirror::HeapReference<mirror::Object> * field)2087 bool ConcurrentCopying::IsMarkedHeapReference(mirror::HeapReference<mirror::Object>* field) {
2088 mirror::Object* from_ref = field->AsMirrorPtr();
2089 mirror::Object* to_ref = IsMarked(from_ref);
2090 if (to_ref == nullptr) {
2091 return false;
2092 }
2093 if (from_ref != to_ref) {
2094 QuasiAtomic::ThreadFenceRelease();
2095 field->Assign(to_ref);
2096 QuasiAtomic::ThreadFenceSequentiallyConsistent();
2097 }
2098 return true;
2099 }
2100
MarkObject(mirror::Object * from_ref)2101 mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) {
2102 return Mark(from_ref);
2103 }
2104
DelayReferenceReferent(mirror::Class * klass,mirror::Reference * reference)2105 void ConcurrentCopying::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
2106 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
2107 }
2108
ProcessReferences(Thread * self)2109 void ConcurrentCopying::ProcessReferences(Thread* self) {
2110 TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
2111 // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps.
2112 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2113 GetHeap()->GetReferenceProcessor()->ProcessReferences(
2114 true /*concurrent*/, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this);
2115 }
2116
RevokeAllThreadLocalBuffers()2117 void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
2118 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
2119 region_space_->RevokeAllThreadLocalBuffers();
2120 }
2121
2122 } // namespace collector
2123 } // namespace gc
2124 } // namespace art
2125