1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "mark_sweep.h"
18 
19 #include <atomic>
20 #include <functional>
21 #include <numeric>
22 #include <climits>
23 #include <vector>
24 
25 #include "base/bounded_fifo.h"
26 #include "base/logging.h"
27 #include "base/macros.h"
28 #include "base/mutex-inl.h"
29 #include "base/systrace.h"
30 #include "base/time_utils.h"
31 #include "base/timing_logger.h"
32 #include "gc/accounting/card_table-inl.h"
33 #include "gc/accounting/heap_bitmap-inl.h"
34 #include "gc/accounting/mod_union_table.h"
35 #include "gc/accounting/space_bitmap-inl.h"
36 #include "gc/heap.h"
37 #include "gc/reference_processor.h"
38 #include "gc/space/large_object_space.h"
39 #include "gc/space/space-inl.h"
40 #include "mark_sweep-inl.h"
41 #include "mirror/object-inl.h"
42 #include "runtime.h"
43 #include "scoped_thread_state_change.h"
44 #include "thread-inl.h"
45 #include "thread_list.h"
46 
47 namespace art {
48 namespace gc {
49 namespace collector {
50 
51 // Performance options.
52 static constexpr bool kUseRecursiveMark = false;
53 static constexpr bool kUseMarkStackPrefetch = true;
54 static constexpr size_t kSweepArrayChunkFreeSize = 1024;
55 static constexpr bool kPreCleanCards = true;
56 
57 // Parallelism options.
58 static constexpr bool kParallelCardScan = true;
59 static constexpr bool kParallelRecursiveMark = true;
60 // Don't attempt to parallelize mark stack processing unless the mark stack is at least n
61 // elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
62 // having this can add overhead in ProcessReferences since we may end up doing many calls of
63 // ProcessMarkStack with very small mark stacks.
64 static constexpr size_t kMinimumParallelMarkStackSize = 128;
65 static constexpr bool kParallelProcessMarkStack = true;
66 
67 // Profiling and information flags.
68 static constexpr bool kProfileLargeObjects = false;
69 static constexpr bool kMeasureOverhead = false;
70 static constexpr bool kCountTasks = false;
71 static constexpr bool kCountMarkedObjects = false;
72 
73 // Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
74 static constexpr bool kCheckLocks = kDebugLocking;
75 static constexpr bool kVerifyRootsMarked = kIsDebugBuild;
76 
77 // If true, revoke the rosalloc thread-local buffers at the
78 // checkpoint, as opposed to during the pause.
79 static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true;
80 
BindBitmaps()81 void MarkSweep::BindBitmaps() {
82   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
83   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
84   // Mark all of the spaces we never collect as immune.
85   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
86     if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
87       immune_spaces_.AddSpace(space);
88     }
89   }
90 }
91 
MarkSweep(Heap * heap,bool is_concurrent,const std::string & name_prefix)92 MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
93     : GarbageCollector(heap,
94                        name_prefix +
95                        (is_concurrent ? "concurrent mark sweep": "mark sweep")),
96       current_space_bitmap_(nullptr),
97       mark_bitmap_(nullptr),
98       mark_stack_(nullptr),
99       gc_barrier_(new Barrier(0)),
100       mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
101       is_concurrent_(is_concurrent),
102       live_stack_freeze_size_(0) {
103   std::string error_msg;
104   MemMap* mem_map = MemMap::MapAnonymous(
105       "mark sweep sweep array free buffer", nullptr,
106       RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
107       PROT_READ | PROT_WRITE, false, false, &error_msg);
108   CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg;
109   sweep_array_free_buffer_mem_map_.reset(mem_map);
110 }
111 
InitializePhase()112 void MarkSweep::InitializePhase() {
113   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
114   mark_stack_ = heap_->GetMarkStack();
115   DCHECK(mark_stack_ != nullptr);
116   immune_spaces_.Reset();
117   no_reference_class_count_.StoreRelaxed(0);
118   normal_count_.StoreRelaxed(0);
119   class_count_.StoreRelaxed(0);
120   object_array_count_.StoreRelaxed(0);
121   other_count_.StoreRelaxed(0);
122   reference_count_.StoreRelaxed(0);
123   large_object_test_.StoreRelaxed(0);
124   large_object_mark_.StoreRelaxed(0);
125   overhead_time_ .StoreRelaxed(0);
126   work_chunks_created_.StoreRelaxed(0);
127   work_chunks_deleted_.StoreRelaxed(0);
128   mark_null_count_.StoreRelaxed(0);
129   mark_immune_count_.StoreRelaxed(0);
130   mark_fastpath_count_.StoreRelaxed(0);
131   mark_slowpath_count_.StoreRelaxed(0);
132   {
133     // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
134     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
135     mark_bitmap_ = heap_->GetMarkBitmap();
136   }
137   if (!GetCurrentIteration()->GetClearSoftReferences()) {
138     // Always clear soft references if a non-sticky collection.
139     GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky);
140   }
141 }
142 
RunPhases()143 void MarkSweep::RunPhases() {
144   Thread* self = Thread::Current();
145   InitializePhase();
146   Locks::mutator_lock_->AssertNotHeld(self);
147   if (IsConcurrent()) {
148     GetHeap()->PreGcVerification(this);
149     {
150       ReaderMutexLock mu(self, *Locks::mutator_lock_);
151       MarkingPhase();
152     }
153     ScopedPause pause(this);
154     GetHeap()->PrePauseRosAllocVerification(this);
155     PausePhase();
156     RevokeAllThreadLocalBuffers();
157   } else {
158     ScopedPause pause(this);
159     GetHeap()->PreGcVerificationPaused(this);
160     MarkingPhase();
161     GetHeap()->PrePauseRosAllocVerification(this);
162     PausePhase();
163     RevokeAllThreadLocalBuffers();
164   }
165   {
166     // Sweeping always done concurrently, even for non concurrent mark sweep.
167     ReaderMutexLock mu(self, *Locks::mutator_lock_);
168     ReclaimPhase();
169   }
170   GetHeap()->PostGcVerification(this);
171   FinishPhase();
172 }
173 
ProcessReferences(Thread * self)174 void MarkSweep::ProcessReferences(Thread* self) {
175   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
176   GetHeap()->GetReferenceProcessor()->ProcessReferences(
177       true,
178       GetTimings(),
179       GetCurrentIteration()->GetClearSoftReferences(),
180       this);
181 }
182 
PausePhase()183 void MarkSweep::PausePhase() {
184   TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings());
185   Thread* self = Thread::Current();
186   Locks::mutator_lock_->AssertExclusiveHeld(self);
187   if (IsConcurrent()) {
188     // Handle the dirty objects if we are a concurrent GC.
189     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
190     // Re-mark root set.
191     ReMarkRoots();
192     // Scan dirty objects, this is only required if we are not doing concurrent GC.
193     RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
194   }
195   {
196     TimingLogger::ScopedTiming t2("SwapStacks", GetTimings());
197     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
198     heap_->SwapStacks();
199     live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
200     // Need to revoke all the thread local allocation stacks since we just swapped the allocation
201     // stacks and don't want anybody to allocate into the live stack.
202     RevokeAllThreadLocalAllocationStacks(self);
203   }
204   heap_->PreSweepingGcVerification(this);
205   // Disallow new system weaks to prevent a race which occurs when someone adds a new system
206   // weak before we sweep them. Since this new system weak may not be marked, the GC may
207   // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
208   // reference to a string that is about to be swept.
209   Runtime::Current()->DisallowNewSystemWeaks();
210   // Enable the reference processing slow path, needs to be done with mutators paused since there
211   // is no lock in the GetReferent fast path.
212   GetHeap()->GetReferenceProcessor()->EnableSlowPath();
213 }
214 
PreCleanCards()215 void MarkSweep::PreCleanCards() {
216   // Don't do this for non concurrent GCs since they don't have any dirty cards.
217   if (kPreCleanCards && IsConcurrent()) {
218     TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
219     Thread* self = Thread::Current();
220     CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
221     // Process dirty cards and add dirty cards to mod union tables, also ages cards.
222     heap_->ProcessCards(GetTimings(), false, true, false);
223     // The checkpoint root marking is required to avoid a race condition which occurs if the
224     // following happens during a reference write:
225     // 1. mutator dirties the card (write barrier)
226     // 2. GC ages the card (the above ProcessCards call)
227     // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
228     // 4. mutator writes the value (corresponding to the write barrier in 1.)
229     // This causes the GC to age the card but not necessarily mark the reference which the mutator
230     // wrote into the object stored in the card.
231     // Having the checkpoint fixes this issue since it ensures that the card mark and the
232     // reference write are visible to the GC before the card is scanned (this is due to locks being
233     // acquired / released in the checkpoint code).
234     // The other roots are also marked to help reduce the pause.
235     MarkRootsCheckpoint(self, false);
236     MarkNonThreadRoots();
237     MarkConcurrentRoots(
238         static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
239     // Process the newly aged cards.
240     RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
241     // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
242     // in the next GC.
243   }
244 }
245 
RevokeAllThreadLocalAllocationStacks(Thread * self)246 void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
247   if (kUseThreadLocalAllocationStack) {
248     TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
249     Locks::mutator_lock_->AssertExclusiveHeld(self);
250     heap_->RevokeAllThreadLocalAllocationStacks(self);
251   }
252 }
253 
MarkingPhase()254 void MarkSweep::MarkingPhase() {
255   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
256   Thread* self = Thread::Current();
257   BindBitmaps();
258   FindDefaultSpaceBitmap();
259   // Process dirty cards and add dirty cards to mod union tables.
260   // If the GC type is non sticky, then we just clear the cards instead of ageing them.
261   heap_->ProcessCards(GetTimings(), false, true, GetGcType() != kGcTypeSticky);
262   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
263   MarkRoots(self);
264   MarkReachableObjects();
265   // Pre-clean dirtied cards to reduce pauses.
266   PreCleanCards();
267 }
268 
269 class ScanObjectVisitor {
270  public:
ScanObjectVisitor(MarkSweep * const mark_sweep)271   explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
272       : mark_sweep_(mark_sweep) {}
273 
operator ()(mirror::Object * obj) const274   void operator()(mirror::Object* obj) const
275       ALWAYS_INLINE
276       REQUIRES(Locks::heap_bitmap_lock_)
277       SHARED_REQUIRES(Locks::mutator_lock_) {
278     if (kCheckLocks) {
279       Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
280       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
281     }
282     mark_sweep_->ScanObject(obj);
283   }
284 
285  private:
286   MarkSweep* const mark_sweep_;
287 };
288 
UpdateAndMarkModUnion()289 void MarkSweep::UpdateAndMarkModUnion() {
290   for (const auto& space : immune_spaces_.GetSpaces()) {
291     const char* name = space->IsZygoteSpace()
292         ? "UpdateAndMarkZygoteModUnionTable"
293         : "UpdateAndMarkImageModUnionTable";
294     DCHECK(space->IsZygoteSpace() || space->IsImageSpace()) << *space;
295     TimingLogger::ScopedTiming t(name, GetTimings());
296     accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
297     if (mod_union_table != nullptr) {
298       mod_union_table->UpdateAndMarkReferences(this);
299     } else {
300       // No mod-union table, scan all the live bits. This can only occur for app images.
301       space->GetLiveBitmap()->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
302                                                reinterpret_cast<uintptr_t>(space->End()),
303                                                ScanObjectVisitor(this));
304     }
305   }
306 }
307 
MarkReachableObjects()308 void MarkSweep::MarkReachableObjects() {
309   UpdateAndMarkModUnion();
310   // Recursively mark all the non-image bits set in the mark bitmap.
311   RecursiveMark();
312 }
313 
ReclaimPhase()314 void MarkSweep::ReclaimPhase() {
315   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
316   Thread* const self = Thread::Current();
317   // Process the references concurrently.
318   ProcessReferences(self);
319   SweepSystemWeaks(self);
320   Runtime* const runtime = Runtime::Current();
321   runtime->AllowNewSystemWeaks();
322   // Clean up class loaders after system weaks are swept since that is how we know if class
323   // unloading occurred.
324   runtime->GetClassLinker()->CleanupClassLoaders();
325   {
326     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
327     GetHeap()->RecordFreeRevoke();
328     // Reclaim unmarked objects.
329     Sweep(false);
330     // Swap the live and mark bitmaps for each space which we modified space. This is an
331     // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
332     // bitmaps.
333     SwapBitmaps();
334     // Unbind the live and mark bitmaps.
335     GetHeap()->UnBindBitmaps();
336   }
337 }
338 
FindDefaultSpaceBitmap()339 void MarkSweep::FindDefaultSpaceBitmap() {
340   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
341   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
342     accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap();
343     // We want to have the main space instead of non moving if possible.
344     if (bitmap != nullptr &&
345         space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
346       current_space_bitmap_ = bitmap;
347       // If we are not the non moving space exit the loop early since this will be good enough.
348       if (space != heap_->GetNonMovingSpace()) {
349         break;
350       }
351     }
352   }
353   CHECK(current_space_bitmap_ != nullptr) << "Could not find a default mark bitmap\n"
354       << heap_->DumpSpaces();
355 }
356 
ExpandMarkStack()357 void MarkSweep::ExpandMarkStack() {
358   ResizeMarkStack(mark_stack_->Capacity() * 2);
359 }
360 
ResizeMarkStack(size_t new_size)361 void MarkSweep::ResizeMarkStack(size_t new_size) {
362   // Rare case, no need to have Thread::Current be a parameter.
363   if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
364     // Someone else acquired the lock and expanded the mark stack before us.
365     return;
366   }
367   std::vector<StackReference<mirror::Object>> temp(mark_stack_->Begin(), mark_stack_->End());
368   CHECK_LE(mark_stack_->Size(), new_size);
369   mark_stack_->Resize(new_size);
370   for (auto& obj : temp) {
371     mark_stack_->PushBack(obj.AsMirrorPtr());
372   }
373 }
374 
MarkObject(mirror::Object * obj)375 mirror::Object* MarkSweep::MarkObject(mirror::Object* obj) {
376   MarkObject(obj, nullptr, MemberOffset(0));
377   return obj;
378 }
379 
MarkObjectNonNullParallel(mirror::Object * obj)380 inline void MarkSweep::MarkObjectNonNullParallel(mirror::Object* obj) {
381   DCHECK(obj != nullptr);
382   if (MarkObjectParallel(obj)) {
383     MutexLock mu(Thread::Current(), mark_stack_lock_);
384     if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
385       ExpandMarkStack();
386     }
387     // The object must be pushed on to the mark stack.
388     mark_stack_->PushBack(obj);
389   }
390 }
391 
IsMarkedHeapReference(mirror::HeapReference<mirror::Object> * ref)392 bool MarkSweep::IsMarkedHeapReference(mirror::HeapReference<mirror::Object>* ref) {
393   return IsMarked(ref->AsMirrorPtr());
394 }
395 
396 class MarkSweepMarkObjectSlowPath {
397  public:
MarkSweepMarkObjectSlowPath(MarkSweep * mark_sweep,mirror::Object * holder=nullptr,MemberOffset offset=MemberOffset (0))398   explicit MarkSweepMarkObjectSlowPath(MarkSweep* mark_sweep,
399                                        mirror::Object* holder = nullptr,
400                                        MemberOffset offset = MemberOffset(0))
401       : mark_sweep_(mark_sweep), holder_(holder), offset_(offset) {}
402 
operator ()(const mirror::Object * obj) const403   void operator()(const mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
404     if (kProfileLargeObjects) {
405       // TODO: Differentiate between marking and testing somehow.
406       ++mark_sweep_->large_object_test_;
407       ++mark_sweep_->large_object_mark_;
408     }
409     space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace();
410     if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) ||
411                  (kIsDebugBuild && large_object_space != nullptr &&
412                      !large_object_space->Contains(obj)))) {
413       LOG(INTERNAL_FATAL) << "Tried to mark " << obj << " not contained by any spaces";
414       if (holder_ != nullptr) {
415         size_t holder_size = holder_->SizeOf();
416         ArtField* field = holder_->FindFieldByOffset(offset_);
417         LOG(INTERNAL_FATAL) << "Field info: "
418                             << " holder=" << holder_
419                             << " holder is "
420                             << (mark_sweep_->GetHeap()->IsLiveObjectLocked(holder_)
421                                 ? "alive" : "dead")
422                             << " holder_size=" << holder_size
423                             << " holder_type=" << PrettyTypeOf(holder_)
424                             << " offset=" << offset_.Uint32Value()
425                             << " field=" << (field != nullptr ? field->GetName() : "nullptr")
426                             << " field_type="
427                             << (field != nullptr ? field->GetTypeDescriptor() : "")
428                             << " first_ref_field_offset="
429                             << (holder_->IsClass()
430                                 ? holder_->AsClass()->GetFirstReferenceStaticFieldOffset(
431                                     sizeof(void*))
432                                 : holder_->GetClass()->GetFirstReferenceInstanceFieldOffset())
433                             << " num_of_ref_fields="
434                             << (holder_->IsClass()
435                                 ? holder_->AsClass()->NumReferenceStaticFields()
436                                 : holder_->GetClass()->NumReferenceInstanceFields())
437                             << "\n";
438         // Print the memory content of the holder.
439         for (size_t i = 0; i < holder_size / sizeof(uint32_t); ++i) {
440           uint32_t* p = reinterpret_cast<uint32_t*>(holder_);
441           LOG(INTERNAL_FATAL) << &p[i] << ": " << "holder+" << (i * sizeof(uint32_t)) << " = "
442                               << std::hex << p[i];
443         }
444       }
445       PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL);
446       MemMap::DumpMaps(LOG(INTERNAL_FATAL), true);
447       {
448         LOG(INTERNAL_FATAL) << "Attempting see if it's a bad root";
449         Thread* self = Thread::Current();
450         if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
451           mark_sweep_->VerifyRoots();
452         } else {
453           const bool heap_bitmap_exclusive_locked =
454               Locks::heap_bitmap_lock_->IsExclusiveHeld(self);
455           if (heap_bitmap_exclusive_locked) {
456             Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
457           }
458           {
459             ScopedThreadSuspension(self, kSuspended);
460             ScopedSuspendAll ssa(__FUNCTION__);
461             mark_sweep_->VerifyRoots();
462           }
463           if (heap_bitmap_exclusive_locked) {
464             Locks::heap_bitmap_lock_->ExclusiveLock(self);
465           }
466         }
467       }
468       LOG(FATAL) << "Can't mark invalid object";
469     }
470   }
471 
472  private:
473   MarkSweep* const mark_sweep_;
474   mirror::Object* const holder_;
475   MemberOffset offset_;
476 };
477 
MarkObjectNonNull(mirror::Object * obj,mirror::Object * holder,MemberOffset offset)478 inline void MarkSweep::MarkObjectNonNull(mirror::Object* obj,
479                                          mirror::Object* holder,
480                                          MemberOffset offset) {
481   DCHECK(obj != nullptr);
482   if (kUseBakerOrBrooksReadBarrier) {
483     // Verify all the objects have the correct pointer installed.
484     obj->AssertReadBarrierPointer();
485   }
486   if (immune_spaces_.IsInImmuneRegion(obj)) {
487     if (kCountMarkedObjects) {
488       ++mark_immune_count_;
489     }
490     DCHECK(mark_bitmap_->Test(obj));
491   } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) {
492     if (kCountMarkedObjects) {
493       ++mark_fastpath_count_;
494     }
495     if (UNLIKELY(!current_space_bitmap_->Set(obj))) {
496       PushOnMarkStack(obj);  // This object was not previously marked.
497     }
498   } else {
499     if (kCountMarkedObjects) {
500       ++mark_slowpath_count_;
501     }
502     MarkSweepMarkObjectSlowPath visitor(this, holder, offset);
503     // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set
504     // will check again.
505     if (!mark_bitmap_->Set(obj, visitor)) {
506       PushOnMarkStack(obj);  // Was not already marked, push.
507     }
508   }
509 }
510 
PushOnMarkStack(mirror::Object * obj)511 inline void MarkSweep::PushOnMarkStack(mirror::Object* obj) {
512   if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
513     // Lock is not needed but is here anyways to please annotalysis.
514     MutexLock mu(Thread::Current(), mark_stack_lock_);
515     ExpandMarkStack();
516   }
517   // The object must be pushed on to the mark stack.
518   mark_stack_->PushBack(obj);
519 }
520 
MarkObjectParallel(mirror::Object * obj)521 inline bool MarkSweep::MarkObjectParallel(mirror::Object* obj) {
522   DCHECK(obj != nullptr);
523   if (kUseBakerOrBrooksReadBarrier) {
524     // Verify all the objects have the correct pointer installed.
525     obj->AssertReadBarrierPointer();
526   }
527   if (immune_spaces_.IsInImmuneRegion(obj)) {
528     DCHECK(IsMarked(obj) != nullptr);
529     return false;
530   }
531   // Try to take advantage of locality of references within a space, failing this find the space
532   // the hard way.
533   accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_;
534   if (LIKELY(object_bitmap->HasAddress(obj))) {
535     return !object_bitmap->AtomicTestAndSet(obj);
536   }
537   MarkSweepMarkObjectSlowPath visitor(this);
538   return !mark_bitmap_->AtomicTestAndSet(obj, visitor);
539 }
540 
MarkHeapReference(mirror::HeapReference<mirror::Object> * ref)541 void MarkSweep::MarkHeapReference(mirror::HeapReference<mirror::Object>* ref) {
542   MarkObject(ref->AsMirrorPtr(), nullptr, MemberOffset(0));
543 }
544 
545 // Used to mark objects when processing the mark stack. If an object is null, it is not marked.
MarkObject(mirror::Object * obj,mirror::Object * holder,MemberOffset offset)546 inline void MarkSweep::MarkObject(mirror::Object* obj,
547                                   mirror::Object* holder,
548                                   MemberOffset offset) {
549   if (obj != nullptr) {
550     MarkObjectNonNull(obj, holder, offset);
551   } else if (kCountMarkedObjects) {
552     ++mark_null_count_;
553   }
554 }
555 
556 class VerifyRootMarkedVisitor : public SingleRootVisitor {
557  public:
VerifyRootMarkedVisitor(MarkSweep * collector)558   explicit VerifyRootMarkedVisitor(MarkSweep* collector) : collector_(collector) { }
559 
VisitRoot(mirror::Object * root,const RootInfo & info)560   void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE
561       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
562     CHECK(collector_->IsMarked(root) != nullptr) << info.ToString();
563   }
564 
565  private:
566   MarkSweep* const collector_;
567 };
568 
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)569 void MarkSweep::VisitRoots(mirror::Object*** roots,
570                            size_t count,
571                            const RootInfo& info ATTRIBUTE_UNUSED) {
572   for (size_t i = 0; i < count; ++i) {
573     MarkObjectNonNull(*roots[i]);
574   }
575 }
576 
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)577 void MarkSweep::VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
578                            size_t count,
579                            const RootInfo& info ATTRIBUTE_UNUSED) {
580   for (size_t i = 0; i < count; ++i) {
581     MarkObjectNonNull(roots[i]->AsMirrorPtr());
582   }
583 }
584 
585 class VerifyRootVisitor : public SingleRootVisitor {
586  public:
VisitRoot(mirror::Object * root,const RootInfo & info)587   void VisitRoot(mirror::Object* root, const RootInfo& info) OVERRIDE
588       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
589     // See if the root is on any space bitmap.
590     auto* heap = Runtime::Current()->GetHeap();
591     if (heap->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) {
592       space::LargeObjectSpace* large_object_space = heap->GetLargeObjectsSpace();
593       if (large_object_space != nullptr && !large_object_space->Contains(root)) {
594         LOG(INTERNAL_FATAL) << "Found invalid root: " << root << " " << info;
595       }
596     }
597   }
598 };
599 
VerifyRoots()600 void MarkSweep::VerifyRoots() {
601   VerifyRootVisitor visitor;
602   Runtime::Current()->GetThreadList()->VisitRoots(&visitor);
603 }
604 
MarkRoots(Thread * self)605 void MarkSweep::MarkRoots(Thread* self) {
606   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
607   if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
608     // If we exclusively hold the mutator lock, all threads must be suspended.
609     Runtime::Current()->VisitRoots(this);
610     RevokeAllThreadLocalAllocationStacks(self);
611   } else {
612     MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint);
613     // At this point the live stack should no longer have any mutators which push into it.
614     MarkNonThreadRoots();
615     MarkConcurrentRoots(
616         static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
617   }
618 }
619 
MarkNonThreadRoots()620 void MarkSweep::MarkNonThreadRoots() {
621   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
622   Runtime::Current()->VisitNonThreadRoots(this);
623 }
624 
MarkConcurrentRoots(VisitRootFlags flags)625 void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
626   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
627   // Visit all runtime roots and clear dirty flags.
628   Runtime::Current()->VisitConcurrentRoots(
629       this, static_cast<VisitRootFlags>(flags | kVisitRootFlagNonMoving));
630 }
631 
632 class DelayReferenceReferentVisitor {
633  public:
DelayReferenceReferentVisitor(MarkSweep * collector)634   explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {}
635 
operator ()(mirror::Class * klass,mirror::Reference * ref) const636   void operator()(mirror::Class* klass, mirror::Reference* ref) const
637       REQUIRES(Locks::heap_bitmap_lock_)
638       SHARED_REQUIRES(Locks::mutator_lock_) {
639     collector_->DelayReferenceReferent(klass, ref);
640   }
641 
642  private:
643   MarkSweep* const collector_;
644 };
645 
646 template <bool kUseFinger = false>
647 class MarkStackTask : public Task {
648  public:
MarkStackTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,size_t mark_stack_size,StackReference<mirror::Object> * mark_stack)649   MarkStackTask(ThreadPool* thread_pool,
650                 MarkSweep* mark_sweep,
651                 size_t mark_stack_size,
652                 StackReference<mirror::Object>* mark_stack)
653       : mark_sweep_(mark_sweep),
654         thread_pool_(thread_pool),
655         mark_stack_pos_(mark_stack_size) {
656     // We may have to copy part of an existing mark stack when another mark stack overflows.
657     if (mark_stack_size != 0) {
658       DCHECK(mark_stack != nullptr);
659       // TODO: Check performance?
660       std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
661     }
662     if (kCountTasks) {
663       ++mark_sweep_->work_chunks_created_;
664     }
665   }
666 
667   static const size_t kMaxSize = 1 * KB;
668 
669  protected:
670   class MarkObjectParallelVisitor {
671    public:
MarkObjectParallelVisitor(MarkStackTask<kUseFinger> * chunk_task,MarkSweep * mark_sweep)672     ALWAYS_INLINE MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task,
673                                             MarkSweep* mark_sweep)
674         : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {}
675 
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const676     ALWAYS_INLINE void operator()(mirror::Object* obj,
677                     MemberOffset offset,
678                     bool is_static ATTRIBUTE_UNUSED) const
679         SHARED_REQUIRES(Locks::mutator_lock_) {
680       Mark(obj->GetFieldObject<mirror::Object>(offset));
681     }
682 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const683     void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
684         SHARED_REQUIRES(Locks::mutator_lock_) {
685       if (!root->IsNull()) {
686         VisitRoot(root);
687       }
688     }
689 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const690     void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
691         SHARED_REQUIRES(Locks::mutator_lock_) {
692       if (kCheckLocks) {
693         Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
694         Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
695       }
696       Mark(root->AsMirrorPtr());
697     }
698 
699    private:
Mark(mirror::Object * ref) const700     ALWAYS_INLINE void Mark(mirror::Object* ref) const SHARED_REQUIRES(Locks::mutator_lock_) {
701       if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) {
702         if (kUseFinger) {
703           std::atomic_thread_fence(std::memory_order_seq_cst);
704           if (reinterpret_cast<uintptr_t>(ref) >=
705               static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) {
706             return;
707           }
708         }
709         chunk_task_->MarkStackPush(ref);
710       }
711     }
712 
713     MarkStackTask<kUseFinger>* const chunk_task_;
714     MarkSweep* const mark_sweep_;
715   };
716 
717   class ScanObjectParallelVisitor {
718    public:
ScanObjectParallelVisitor(MarkStackTask<kUseFinger> * chunk_task)719     ALWAYS_INLINE explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task)
720         : chunk_task_(chunk_task) {}
721 
722     // No thread safety analysis since multiple threads will use this visitor.
operator ()(mirror::Object * obj) const723     void operator()(mirror::Object* obj) const
724         REQUIRES(Locks::heap_bitmap_lock_)
725         SHARED_REQUIRES(Locks::mutator_lock_) {
726       MarkSweep* const mark_sweep = chunk_task_->mark_sweep_;
727       MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep);
728       DelayReferenceReferentVisitor ref_visitor(mark_sweep);
729       mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor);
730     }
731 
732    private:
733     MarkStackTask<kUseFinger>* const chunk_task_;
734   };
735 
~MarkStackTask()736   virtual ~MarkStackTask() {
737     // Make sure that we have cleared our mark stack.
738     DCHECK_EQ(mark_stack_pos_, 0U);
739     if (kCountTasks) {
740       ++mark_sweep_->work_chunks_deleted_;
741     }
742   }
743 
744   MarkSweep* const mark_sweep_;
745   ThreadPool* const thread_pool_;
746   // Thread local mark stack for this task.
747   StackReference<mirror::Object> mark_stack_[kMaxSize];
748   // Mark stack position.
749   size_t mark_stack_pos_;
750 
MarkStackPush(mirror::Object * obj)751   ALWAYS_INLINE void MarkStackPush(mirror::Object* obj)
752       SHARED_REQUIRES(Locks::mutator_lock_) {
753     if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
754       // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
755       mark_stack_pos_ /= 2;
756       auto* task = new MarkStackTask(thread_pool_,
757                                      mark_sweep_,
758                                      kMaxSize - mark_stack_pos_,
759                                      mark_stack_ + mark_stack_pos_);
760       thread_pool_->AddTask(Thread::Current(), task);
761     }
762     DCHECK(obj != nullptr);
763     DCHECK_LT(mark_stack_pos_, kMaxSize);
764     mark_stack_[mark_stack_pos_++].Assign(obj);
765   }
766 
Finalize()767   virtual void Finalize() {
768     delete this;
769   }
770 
771   // Scans all of the objects
Run(Thread * self ATTRIBUTE_UNUSED)772   virtual void Run(Thread* self ATTRIBUTE_UNUSED)
773       REQUIRES(Locks::heap_bitmap_lock_)
774       SHARED_REQUIRES(Locks::mutator_lock_) {
775     ScanObjectParallelVisitor visitor(this);
776     // TODO: Tune this.
777     static const size_t kFifoSize = 4;
778     BoundedFifoPowerOfTwo<mirror::Object*, kFifoSize> prefetch_fifo;
779     for (;;) {
780       mirror::Object* obj = nullptr;
781       if (kUseMarkStackPrefetch) {
782         while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
783           mirror::Object* const mark_stack_obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr();
784           DCHECK(mark_stack_obj != nullptr);
785           __builtin_prefetch(mark_stack_obj);
786           prefetch_fifo.push_back(mark_stack_obj);
787         }
788         if (UNLIKELY(prefetch_fifo.empty())) {
789           break;
790         }
791         obj = prefetch_fifo.front();
792         prefetch_fifo.pop_front();
793       } else {
794         if (UNLIKELY(mark_stack_pos_ == 0)) {
795           break;
796         }
797         obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr();
798       }
799       DCHECK(obj != nullptr);
800       visitor(obj);
801     }
802   }
803 };
804 
805 class CardScanTask : public MarkStackTask<false> {
806  public:
CardScanTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,accounting::ContinuousSpaceBitmap * bitmap,uint8_t * begin,uint8_t * end,uint8_t minimum_age,size_t mark_stack_size,StackReference<mirror::Object> * mark_stack_obj,bool clear_card)807   CardScanTask(ThreadPool* thread_pool,
808                MarkSweep* mark_sweep,
809                accounting::ContinuousSpaceBitmap* bitmap,
810                uint8_t* begin,
811                uint8_t* end,
812                uint8_t minimum_age,
813                size_t mark_stack_size,
814                StackReference<mirror::Object>* mark_stack_obj,
815                bool clear_card)
816       : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
817         bitmap_(bitmap),
818         begin_(begin),
819         end_(end),
820         minimum_age_(minimum_age),
821         clear_card_(clear_card) {}
822 
823  protected:
824   accounting::ContinuousSpaceBitmap* const bitmap_;
825   uint8_t* const begin_;
826   uint8_t* const end_;
827   const uint8_t minimum_age_;
828   const bool clear_card_;
829 
Finalize()830   virtual void Finalize() {
831     delete this;
832   }
833 
Run(Thread * self)834   virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
835     ScanObjectParallelVisitor visitor(this);
836     accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
837     size_t cards_scanned = clear_card_
838         ? card_table->Scan<true>(bitmap_, begin_, end_, visitor, minimum_age_)
839         : card_table->Scan<false>(bitmap_, begin_, end_, visitor, minimum_age_);
840     VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
841         << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
842     // Finish by emptying our local mark stack.
843     MarkStackTask::Run(self);
844   }
845 };
846 
GetThreadCount(bool paused) const847 size_t MarkSweep::GetThreadCount(bool paused) const {
848   // Use less threads if we are in a background state (non jank perceptible) since we want to leave
849   // more CPU time for the foreground apps.
850   if (heap_->GetThreadPool() == nullptr || !Runtime::Current()->InJankPerceptibleProcessState()) {
851     return 1;
852   }
853   return (paused ? heap_->GetParallelGCThreadCount() : heap_->GetConcGCThreadCount()) + 1;
854 }
855 
ScanGrayObjects(bool paused,uint8_t minimum_age)856 void MarkSweep::ScanGrayObjects(bool paused, uint8_t minimum_age) {
857   accounting::CardTable* card_table = GetHeap()->GetCardTable();
858   ThreadPool* thread_pool = GetHeap()->GetThreadPool();
859   size_t thread_count = GetThreadCount(paused);
860   // The parallel version with only one thread is faster for card scanning, TODO: fix.
861   if (kParallelCardScan && thread_count > 1) {
862     Thread* self = Thread::Current();
863     // Can't have a different split for each space since multiple spaces can have their cards being
864     // scanned at the same time.
865     TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__,
866         GetTimings());
867     // Try to take some of the mark stack since we can pass this off to the worker tasks.
868     StackReference<mirror::Object>* mark_stack_begin = mark_stack_->Begin();
869     StackReference<mirror::Object>* mark_stack_end = mark_stack_->End();
870     const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
871     // Estimated number of work tasks we will create.
872     const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
873     DCHECK_NE(mark_stack_tasks, 0U);
874     const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
875                                              mark_stack_size / mark_stack_tasks + 1);
876     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
877       if (space->GetMarkBitmap() == nullptr) {
878         continue;
879       }
880       uint8_t* card_begin = space->Begin();
881       uint8_t* card_end = space->End();
882       // Align up the end address. For example, the image space's end
883       // may not be card-size-aligned.
884       card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
885       DCHECK_ALIGNED(card_begin, accounting::CardTable::kCardSize);
886       DCHECK_ALIGNED(card_end, accounting::CardTable::kCardSize);
887       // Calculate how many bytes of heap we will scan,
888       const size_t address_range = card_end - card_begin;
889       // Calculate how much address range each task gets.
890       const size_t card_delta = RoundUp(address_range / thread_count + 1,
891                                         accounting::CardTable::kCardSize);
892       // If paused and the space is neither zygote nor image space, we could clear the dirty
893       // cards to avoid accumulating them to increase card scanning load in the following GC
894       // cycles. We need to keep dirty cards of image space and zygote space in order to track
895       // references to the other spaces.
896       bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace();
897       // Create the worker tasks for this space.
898       while (card_begin != card_end) {
899         // Add a range of cards.
900         size_t addr_remaining = card_end - card_begin;
901         size_t card_increment = std::min(card_delta, addr_remaining);
902         // Take from the back of the mark stack.
903         size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
904         size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
905         mark_stack_end -= mark_stack_increment;
906         mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
907         DCHECK_EQ(mark_stack_end, mark_stack_->End());
908         // Add the new task to the thread pool.
909         auto* task = new CardScanTask(thread_pool,
910                                       this,
911                                       space->GetMarkBitmap(),
912                                       card_begin,
913                                       card_begin + card_increment,
914                                       minimum_age,
915                                       mark_stack_increment,
916                                       mark_stack_end,
917                                       clear_card);
918         thread_pool->AddTask(self, task);
919         card_begin += card_increment;
920       }
921     }
922 
923     // Note: the card scan below may dirty new cards (and scan them)
924     // as a side effect when a Reference object is encountered and
925     // queued during the marking. See b/11465268.
926     thread_pool->SetMaxActiveWorkers(thread_count - 1);
927     thread_pool->StartWorkers(self);
928     thread_pool->Wait(self, true, true);
929     thread_pool->StopWorkers(self);
930   } else {
931     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
932       if (space->GetMarkBitmap() != nullptr) {
933         // Image spaces are handled properly since live == marked for them.
934         const char* name = nullptr;
935         switch (space->GetGcRetentionPolicy()) {
936         case space::kGcRetentionPolicyNeverCollect:
937           name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects";
938           break;
939         case space::kGcRetentionPolicyFullCollect:
940           name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects";
941           break;
942         case space::kGcRetentionPolicyAlwaysCollect:
943           name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects";
944           break;
945         default:
946           LOG(FATAL) << "Unreachable";
947           UNREACHABLE();
948         }
949         TimingLogger::ScopedTiming t(name, GetTimings());
950         ScanObjectVisitor visitor(this);
951         bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace();
952         if (clear_card) {
953           card_table->Scan<true>(space->GetMarkBitmap(),
954                                  space->Begin(),
955                                  space->End(),
956                                  visitor,
957                                  minimum_age);
958         } else {
959           card_table->Scan<false>(space->GetMarkBitmap(),
960                                   space->Begin(),
961                                   space->End(),
962                                   visitor,
963                                   minimum_age);
964         }
965       }
966     }
967   }
968 }
969 
970 class RecursiveMarkTask : public MarkStackTask<false> {
971  public:
RecursiveMarkTask(ThreadPool * thread_pool,MarkSweep * mark_sweep,accounting::ContinuousSpaceBitmap * bitmap,uintptr_t begin,uintptr_t end)972   RecursiveMarkTask(ThreadPool* thread_pool,
973                     MarkSweep* mark_sweep,
974                     accounting::ContinuousSpaceBitmap* bitmap,
975                     uintptr_t begin,
976                     uintptr_t end)
977       : MarkStackTask<false>(thread_pool, mark_sweep, 0, nullptr),
978         bitmap_(bitmap),
979         begin_(begin),
980         end_(end) {}
981 
982  protected:
983   accounting::ContinuousSpaceBitmap* const bitmap_;
984   const uintptr_t begin_;
985   const uintptr_t end_;
986 
Finalize()987   virtual void Finalize() {
988     delete this;
989   }
990 
991   // Scans all of the objects
Run(Thread * self)992   virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
993     ScanObjectParallelVisitor visitor(this);
994     bitmap_->VisitMarkedRange(begin_, end_, visitor);
995     // Finish by emptying our local mark stack.
996     MarkStackTask::Run(self);
997   }
998 };
999 
1000 // Populates the mark stack based on the set of marked objects and
1001 // recursively marks until the mark stack is emptied.
RecursiveMark()1002 void MarkSweep::RecursiveMark() {
1003   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1004   // RecursiveMark will build the lists of known instances of the Reference classes. See
1005   // DelayReferenceReferent for details.
1006   if (kUseRecursiveMark) {
1007     const bool partial = GetGcType() == kGcTypePartial;
1008     ScanObjectVisitor scan_visitor(this);
1009     auto* self = Thread::Current();
1010     ThreadPool* thread_pool = heap_->GetThreadPool();
1011     size_t thread_count = GetThreadCount(false);
1012     const bool parallel = kParallelRecursiveMark && thread_count > 1;
1013     mark_stack_->Reset();
1014     for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1015       if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
1016           (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
1017         current_space_bitmap_ = space->GetMarkBitmap();
1018         if (current_space_bitmap_ == nullptr) {
1019           continue;
1020         }
1021         if (parallel) {
1022           // We will use the mark stack the future.
1023           // CHECK(mark_stack_->IsEmpty());
1024           // This function does not handle heap end increasing, so we must use the space end.
1025           uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
1026           uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
1027           atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue());
1028 
1029           // Create a few worker tasks.
1030           const size_t n = thread_count * 2;
1031           while (begin != end) {
1032             uintptr_t start = begin;
1033             uintptr_t delta = (end - begin) / n;
1034             delta = RoundUp(delta, KB);
1035             if (delta < 16 * KB) delta = end - begin;
1036             begin += delta;
1037             auto* task = new RecursiveMarkTask(thread_pool,
1038                                                this,
1039                                                current_space_bitmap_,
1040                                                start,
1041                                                begin);
1042             thread_pool->AddTask(self, task);
1043           }
1044           thread_pool->SetMaxActiveWorkers(thread_count - 1);
1045           thread_pool->StartWorkers(self);
1046           thread_pool->Wait(self, true, true);
1047           thread_pool->StopWorkers(self);
1048         } else {
1049           // This function does not handle heap end increasing, so we must use the space end.
1050           uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
1051           uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
1052           current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
1053         }
1054       }
1055     }
1056   }
1057   ProcessMarkStack(false);
1058 }
1059 
RecursiveMarkDirtyObjects(bool paused,uint8_t minimum_age)1060 void MarkSweep::RecursiveMarkDirtyObjects(bool paused, uint8_t minimum_age) {
1061   ScanGrayObjects(paused, minimum_age);
1062   ProcessMarkStack(paused);
1063 }
1064 
ReMarkRoots()1065 void MarkSweep::ReMarkRoots() {
1066   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1067   Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
1068   Runtime::Current()->VisitRoots(this, static_cast<VisitRootFlags>(
1069       kVisitRootFlagNewRoots | kVisitRootFlagStopLoggingNewRoots | kVisitRootFlagClearRootLog));
1070   if (kVerifyRootsMarked) {
1071     TimingLogger::ScopedTiming t2("(Paused)VerifyRoots", GetTimings());
1072     VerifyRootMarkedVisitor visitor(this);
1073     Runtime::Current()->VisitRoots(&visitor);
1074   }
1075 }
1076 
SweepSystemWeaks(Thread * self)1077 void MarkSweep::SweepSystemWeaks(Thread* self) {
1078   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1079   ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1080   Runtime::Current()->SweepSystemWeaks(this);
1081 }
1082 
1083 class VerifySystemWeakVisitor : public IsMarkedVisitor {
1084  public:
VerifySystemWeakVisitor(MarkSweep * mark_sweep)1085   explicit VerifySystemWeakVisitor(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
1086 
IsMarked(mirror::Object * obj)1087   virtual mirror::Object* IsMarked(mirror::Object* obj)
1088       OVERRIDE
1089       SHARED_REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1090     mark_sweep_->VerifyIsLive(obj);
1091     return obj;
1092   }
1093 
1094   MarkSweep* const mark_sweep_;
1095 };
1096 
VerifyIsLive(const mirror::Object * obj)1097 void MarkSweep::VerifyIsLive(const mirror::Object* obj) {
1098   if (!heap_->GetLiveBitmap()->Test(obj)) {
1099     // TODO: Consider live stack? Has this code bitrotted?
1100     CHECK(!heap_->allocation_stack_->Contains(obj))
1101         << "Found dead object " << obj << "\n" << heap_->DumpSpaces();
1102   }
1103 }
1104 
VerifySystemWeaks()1105 void MarkSweep::VerifySystemWeaks() {
1106   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1107   // Verify system weaks, uses a special object visitor which returns the input object.
1108   VerifySystemWeakVisitor visitor(this);
1109   Runtime::Current()->SweepSystemWeaks(&visitor);
1110 }
1111 
1112 class CheckpointMarkThreadRoots : public Closure, public RootVisitor {
1113  public:
CheckpointMarkThreadRoots(MarkSweep * mark_sweep,bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)1114   CheckpointMarkThreadRoots(MarkSweep* mark_sweep,
1115                             bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)
1116       : mark_sweep_(mark_sweep),
1117         revoke_ros_alloc_thread_local_buffers_at_checkpoint_(
1118             revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
1119   }
1120 
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1121   void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
1122       OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_)
1123       REQUIRES(Locks::heap_bitmap_lock_) {
1124     for (size_t i = 0; i < count; ++i) {
1125       mark_sweep_->MarkObjectNonNullParallel(*roots[i]);
1126     }
1127   }
1128 
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1129   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
1130                   size_t count,
1131                   const RootInfo& info ATTRIBUTE_UNUSED)
1132       OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_)
1133       REQUIRES(Locks::heap_bitmap_lock_) {
1134     for (size_t i = 0; i < count; ++i) {
1135       mark_sweep_->MarkObjectNonNullParallel(roots[i]->AsMirrorPtr());
1136     }
1137   }
1138 
Run(Thread * thread)1139   virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1140     ScopedTrace trace("Marking thread roots");
1141     // Note: self is not necessarily equal to thread since thread may be suspended.
1142     Thread* const self = Thread::Current();
1143     CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1144         << thread->GetState() << " thread " << thread << " self " << self;
1145     thread->VisitRoots(this);
1146     if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) {
1147       ScopedTrace trace2("RevokeRosAllocThreadLocalBuffers");
1148       mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread);
1149     }
1150     // If thread is a running mutator, then act on behalf of the garbage collector.
1151     // See the code in ThreadList::RunCheckpoint.
1152     mark_sweep_->GetBarrier().Pass(self);
1153   }
1154 
1155  private:
1156   MarkSweep* const mark_sweep_;
1157   const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_;
1158 };
1159 
MarkRootsCheckpoint(Thread * self,bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)1160 void MarkSweep::MarkRootsCheckpoint(Thread* self,
1161                                     bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
1162   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1163   CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint);
1164   ThreadList* thread_list = Runtime::Current()->GetThreadList();
1165   // Request the check point is run on all threads returning a count of the threads that must
1166   // run through the barrier including self.
1167   size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1168   // Release locks then wait for all mutator threads to pass the barrier.
1169   // If there are no threads to wait which implys that all the checkpoint functions are finished,
1170   // then no need to release locks.
1171   if (barrier_count == 0) {
1172     return;
1173   }
1174   Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1175   Locks::mutator_lock_->SharedUnlock(self);
1176   {
1177     ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1178     gc_barrier_->Increment(self, barrier_count);
1179   }
1180   Locks::mutator_lock_->SharedLock(self);
1181   Locks::heap_bitmap_lock_->ExclusiveLock(self);
1182 }
1183 
SweepArray(accounting::ObjectStack * allocations,bool swap_bitmaps)1184 void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1185   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1186   Thread* self = Thread::Current();
1187   mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
1188       sweep_array_free_buffer_mem_map_->BaseBegin());
1189   size_t chunk_free_pos = 0;
1190   ObjectBytePair freed;
1191   ObjectBytePair freed_los;
1192   // How many objects are left in the array, modified after each space is swept.
1193   StackReference<mirror::Object>* objects = allocations->Begin();
1194   size_t count = allocations->Size();
1195   // Change the order to ensure that the non-moving space last swept as an optimization.
1196   std::vector<space::ContinuousSpace*> sweep_spaces;
1197   space::ContinuousSpace* non_moving_space = nullptr;
1198   for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1199     if (space->IsAllocSpace() &&
1200         !immune_spaces_.ContainsSpace(space) &&
1201         space->GetLiveBitmap() != nullptr) {
1202       if (space == heap_->GetNonMovingSpace()) {
1203         non_moving_space = space;
1204       } else {
1205         sweep_spaces.push_back(space);
1206       }
1207     }
1208   }
1209   // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1210   // the other alloc spaces as an optimization.
1211   if (non_moving_space != nullptr) {
1212     sweep_spaces.push_back(non_moving_space);
1213   }
1214   // Start by sweeping the continuous spaces.
1215   for (space::ContinuousSpace* space : sweep_spaces) {
1216     space::AllocSpace* alloc_space = space->AsAllocSpace();
1217     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1218     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1219     if (swap_bitmaps) {
1220       std::swap(live_bitmap, mark_bitmap);
1221     }
1222     StackReference<mirror::Object>* out = objects;
1223     for (size_t i = 0; i < count; ++i) {
1224       mirror::Object* const obj = objects[i].AsMirrorPtr();
1225       if (kUseThreadLocalAllocationStack && obj == nullptr) {
1226         continue;
1227       }
1228       if (space->HasAddress(obj)) {
1229         // This object is in the space, remove it from the array and add it to the sweep buffer
1230         // if needed.
1231         if (!mark_bitmap->Test(obj)) {
1232           if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1233             TimingLogger::ScopedTiming t2("FreeList", GetTimings());
1234             freed.objects += chunk_free_pos;
1235             freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1236             chunk_free_pos = 0;
1237           }
1238           chunk_free_buffer[chunk_free_pos++] = obj;
1239         }
1240       } else {
1241         (out++)->Assign(obj);
1242       }
1243     }
1244     if (chunk_free_pos > 0) {
1245       TimingLogger::ScopedTiming t2("FreeList", GetTimings());
1246       freed.objects += chunk_free_pos;
1247       freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1248       chunk_free_pos = 0;
1249     }
1250     // All of the references which space contained are no longer in the allocation stack, update
1251     // the count.
1252     count = out - objects;
1253   }
1254   // Handle the large object space.
1255   space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1256   if (large_object_space != nullptr) {
1257     accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
1258     accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
1259     if (swap_bitmaps) {
1260       std::swap(large_live_objects, large_mark_objects);
1261     }
1262     for (size_t i = 0; i < count; ++i) {
1263       mirror::Object* const obj = objects[i].AsMirrorPtr();
1264       // Handle large objects.
1265       if (kUseThreadLocalAllocationStack && obj == nullptr) {
1266         continue;
1267       }
1268       if (!large_mark_objects->Test(obj)) {
1269         ++freed_los.objects;
1270         freed_los.bytes += large_object_space->Free(self, obj);
1271       }
1272     }
1273   }
1274   {
1275     TimingLogger::ScopedTiming t2("RecordFree", GetTimings());
1276     RecordFree(freed);
1277     RecordFreeLOS(freed_los);
1278     t2.NewTiming("ResetStack");
1279     allocations->Reset();
1280   }
1281   sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero();
1282 }
1283 
Sweep(bool swap_bitmaps)1284 void MarkSweep::Sweep(bool swap_bitmaps) {
1285   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1286   // Ensure that nobody inserted items in the live stack after we swapped the stacks.
1287   CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
1288   {
1289     TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings());
1290     // Mark everything allocated since the last as GC live so that we can sweep concurrently,
1291     // knowing that new allocations won't be marked as live.
1292     accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1293     heap_->MarkAllocStackAsLive(live_stack);
1294     live_stack->Reset();
1295     DCHECK(mark_stack_->IsEmpty());
1296   }
1297   for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1298     if (space->IsContinuousMemMapAllocSpace()) {
1299       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1300       TimingLogger::ScopedTiming split(
1301           alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace",
1302           GetTimings());
1303       RecordFree(alloc_space->Sweep(swap_bitmaps));
1304     }
1305   }
1306   SweepLargeObjects(swap_bitmaps);
1307 }
1308 
SweepLargeObjects(bool swap_bitmaps)1309 void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1310   space::LargeObjectSpace* los = heap_->GetLargeObjectsSpace();
1311   if (los != nullptr) {
1312     TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
1313     RecordFreeLOS(los->Sweep(swap_bitmaps));
1314   }
1315 }
1316 
1317 // Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
1318 // marked, put it on the appropriate list in the heap for later processing.
DelayReferenceReferent(mirror::Class * klass,mirror::Reference * ref)1319 void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) {
1320   heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, this);
1321 }
1322 
1323 class MarkVisitor {
1324  public:
MarkVisitor(MarkSweep * const mark_sweep)1325   ALWAYS_INLINE explicit MarkVisitor(MarkSweep* const mark_sweep) : mark_sweep_(mark_sweep) {}
1326 
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1327   ALWAYS_INLINE void operator()(mirror::Object* obj,
1328                                 MemberOffset offset,
1329                                 bool is_static ATTRIBUTE_UNUSED) const
1330       REQUIRES(Locks::heap_bitmap_lock_)
1331       SHARED_REQUIRES(Locks::mutator_lock_) {
1332     if (kCheckLocks) {
1333       Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1334       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1335     }
1336     mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset), obj, offset);
1337   }
1338 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1339   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1340       REQUIRES(Locks::heap_bitmap_lock_)
1341       SHARED_REQUIRES(Locks::mutator_lock_) {
1342     if (!root->IsNull()) {
1343       VisitRoot(root);
1344     }
1345   }
1346 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1347   void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1348       REQUIRES(Locks::heap_bitmap_lock_)
1349       SHARED_REQUIRES(Locks::mutator_lock_) {
1350     if (kCheckLocks) {
1351       Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1352       Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1353     }
1354     mark_sweep_->MarkObject(root->AsMirrorPtr());
1355   }
1356 
1357  private:
1358   MarkSweep* const mark_sweep_;
1359 };
1360 
1361 // Scans an object reference.  Determines the type of the reference
1362 // and dispatches to a specialized scanning routine.
ScanObject(mirror::Object * obj)1363 void MarkSweep::ScanObject(mirror::Object* obj) {
1364   MarkVisitor mark_visitor(this);
1365   DelayReferenceReferentVisitor ref_visitor(this);
1366   ScanObjectVisit(obj, mark_visitor, ref_visitor);
1367 }
1368 
ProcessMarkStackParallel(size_t thread_count)1369 void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1370   Thread* self = Thread::Current();
1371   ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1372   const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1373                                      static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1374   CHECK_GT(chunk_size, 0U);
1375   // Split the current mark stack up into work tasks.
1376   for (auto* it = mark_stack_->Begin(), *end = mark_stack_->End(); it < end; ) {
1377     const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1378     thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it));
1379     it += delta;
1380   }
1381   thread_pool->SetMaxActiveWorkers(thread_count - 1);
1382   thread_pool->StartWorkers(self);
1383   thread_pool->Wait(self, true, true);
1384   thread_pool->StopWorkers(self);
1385   mark_stack_->Reset();
1386   CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(),
1387            work_chunks_deleted_.LoadSequentiallyConsistent())
1388       << " some of the work chunks were leaked";
1389 }
1390 
1391 // Scan anything that's on the mark stack.
ProcessMarkStack(bool paused)1392 void MarkSweep::ProcessMarkStack(bool paused) {
1393   TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings());
1394   size_t thread_count = GetThreadCount(paused);
1395   if (kParallelProcessMarkStack && thread_count > 1 &&
1396       mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1397     ProcessMarkStackParallel(thread_count);
1398   } else {
1399     // TODO: Tune this.
1400     static const size_t kFifoSize = 4;
1401     BoundedFifoPowerOfTwo<mirror::Object*, kFifoSize> prefetch_fifo;
1402     for (;;) {
1403       mirror::Object* obj = nullptr;
1404       if (kUseMarkStackPrefetch) {
1405         while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1406           mirror::Object* mark_stack_obj = mark_stack_->PopBack();
1407           DCHECK(mark_stack_obj != nullptr);
1408           __builtin_prefetch(mark_stack_obj);
1409           prefetch_fifo.push_back(mark_stack_obj);
1410         }
1411         if (prefetch_fifo.empty()) {
1412           break;
1413         }
1414         obj = prefetch_fifo.front();
1415         prefetch_fifo.pop_front();
1416       } else {
1417         if (mark_stack_->IsEmpty()) {
1418           break;
1419         }
1420         obj = mark_stack_->PopBack();
1421       }
1422       DCHECK(obj != nullptr);
1423       ScanObject(obj);
1424     }
1425   }
1426 }
1427 
IsMarked(mirror::Object * object)1428 inline mirror::Object* MarkSweep::IsMarked(mirror::Object* object) {
1429   if (immune_spaces_.IsInImmuneRegion(object)) {
1430     return object;
1431   }
1432   if (current_space_bitmap_->HasAddress(object)) {
1433     return current_space_bitmap_->Test(object) ? object : nullptr;
1434   }
1435   return mark_bitmap_->Test(object) ? object : nullptr;
1436 }
1437 
FinishPhase()1438 void MarkSweep::FinishPhase() {
1439   TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1440   if (kCountScannedTypes) {
1441     VLOG(gc)
1442         << "MarkSweep scanned"
1443         << " no reference objects=" << no_reference_class_count_.LoadRelaxed()
1444         << " normal objects=" << normal_count_.LoadRelaxed()
1445         << " classes=" << class_count_.LoadRelaxed()
1446         << " object arrays=" << object_array_count_.LoadRelaxed()
1447         << " references=" << reference_count_.LoadRelaxed()
1448         << " other=" << other_count_.LoadRelaxed();
1449   }
1450   if (kCountTasks) {
1451     VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed();
1452   }
1453   if (kMeasureOverhead) {
1454     VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed());
1455   }
1456   if (kProfileLargeObjects) {
1457     VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed()
1458         << " marked " << large_object_mark_.LoadRelaxed();
1459   }
1460   if (kCountMarkedObjects) {
1461     VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed()
1462         << " immune=" <<  mark_immune_count_.LoadRelaxed()
1463         << " fastpath=" << mark_fastpath_count_.LoadRelaxed()
1464         << " slowpath=" << mark_slowpath_count_.LoadRelaxed();
1465   }
1466   CHECK(mark_stack_->IsEmpty());  // Ensure that the mark stack is empty.
1467   mark_stack_->Reset();
1468   Thread* const self = Thread::Current();
1469   ReaderMutexLock mu(self, *Locks::mutator_lock_);
1470   WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
1471   heap_->ClearMarkedObjects();
1472 }
1473 
RevokeAllThreadLocalBuffers()1474 void MarkSweep::RevokeAllThreadLocalBuffers() {
1475   if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) {
1476     // If concurrent, rosalloc thread-local buffers are revoked at the
1477     // thread checkpoint. Bump pointer space thread-local buffers must
1478     // not be in use.
1479     GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
1480   } else {
1481     TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1482     GetHeap()->RevokeAllThreadLocalBuffers();
1483   }
1484 }
1485 
1486 }  // namespace collector
1487 }  // namespace gc
1488 }  // namespace art
1489