1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "reference_processor.h"
18 
19 #include "base/time_utils.h"
20 #include "collector/garbage_collector.h"
21 #include "mirror/class-inl.h"
22 #include "mirror/object-inl.h"
23 #include "mirror/reference-inl.h"
24 #include "reference_processor-inl.h"
25 #include "reflection.h"
26 #include "ScopedLocalRef.h"
27 #include "scoped_thread_state_change.h"
28 #include "task_processor.h"
29 #include "utils.h"
30 #include "well_known_classes.h"
31 
32 namespace art {
33 namespace gc {
34 
35 static constexpr bool kAsyncReferenceQueueAdd = false;
36 
ReferenceProcessor()37 ReferenceProcessor::ReferenceProcessor()
38     : collector_(nullptr),
39       preserving_references_(false),
40       condition_("reference processor condition", *Locks::reference_processor_lock_) ,
41       soft_reference_queue_(Locks::reference_queue_soft_references_lock_),
42       weak_reference_queue_(Locks::reference_queue_weak_references_lock_),
43       finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_),
44       phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_),
45       cleared_references_(Locks::reference_queue_cleared_references_lock_) {
46 }
47 
EnableSlowPath()48 void ReferenceProcessor::EnableSlowPath() {
49   mirror::Reference::GetJavaLangRefReference()->SetSlowPath(true);
50 }
51 
DisableSlowPath(Thread * self)52 void ReferenceProcessor::DisableSlowPath(Thread* self) {
53   mirror::Reference::GetJavaLangRefReference()->SetSlowPath(false);
54   condition_.Broadcast(self);
55 }
56 
BroadcastForSlowPath(Thread * self)57 void ReferenceProcessor::BroadcastForSlowPath(Thread* self) {
58   CHECK(kUseReadBarrier);
59   MutexLock mu(self, *Locks::reference_processor_lock_);
60   condition_.Broadcast(self);
61 }
62 
GetReferent(Thread * self,mirror::Reference * reference)63 mirror::Object* ReferenceProcessor::GetReferent(Thread* self, mirror::Reference* reference) {
64   if (!kUseReadBarrier || self->GetWeakRefAccessEnabled()) {
65     // Under read barrier / concurrent copying collector, it's not safe to call GetReferent() when
66     // weak ref access is disabled as the call includes a read barrier which may push a ref onto the
67     // mark stack and interfere with termination of marking.
68     mirror::Object* const referent = reference->GetReferent();
69     // If the referent is null then it is already cleared, we can just return null since there is no
70     // scenario where it becomes non-null during the reference processing phase.
71     if (UNLIKELY(!SlowPathEnabled()) || referent == nullptr) {
72       return referent;
73     }
74   }
75   MutexLock mu(self, *Locks::reference_processor_lock_);
76   while ((!kUseReadBarrier && SlowPathEnabled()) ||
77          (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) {
78     mirror::HeapReference<mirror::Object>* const referent_addr =
79         reference->GetReferentReferenceAddr();
80     // If the referent became cleared, return it. Don't need barrier since thread roots can't get
81     // updated until after we leave the function due to holding the mutator lock.
82     if (referent_addr->AsMirrorPtr() == nullptr) {
83       return nullptr;
84     }
85     // Try to see if the referent is already marked by using the is_marked_callback. We can return
86     // it to the mutator as long as the GC is not preserving references.
87     if (LIKELY(collector_ != nullptr)) {
88       // If it's null it means not marked, but it could become marked if the referent is reachable
89       // by finalizer referents. So we cannot return in this case and must block. Otherwise, we
90       // can return it to the mutator as long as the GC is not preserving references, in which
91       // case only black nodes can be safely returned. If the GC is preserving references, the
92       // mutator could take a white field from a grey or white node and move it somewhere else
93       // in the heap causing corruption since this field would get swept.
94       if (collector_->IsMarkedHeapReference(referent_addr)) {
95         if (!preserving_references_ ||
96            (LIKELY(!reference->IsFinalizerReferenceInstance()) && reference->IsUnprocessed())) {
97           return referent_addr->AsMirrorPtr();
98         }
99       }
100     }
101     condition_.WaitHoldingLocks(self);
102   }
103   return reference->GetReferent();
104 }
105 
StartPreservingReferences(Thread * self)106 void ReferenceProcessor::StartPreservingReferences(Thread* self) {
107   MutexLock mu(self, *Locks::reference_processor_lock_);
108   preserving_references_ = true;
109 }
110 
StopPreservingReferences(Thread * self)111 void ReferenceProcessor::StopPreservingReferences(Thread* self) {
112   MutexLock mu(self, *Locks::reference_processor_lock_);
113   preserving_references_ = false;
114   // We are done preserving references, some people who are blocked may see a marked referent.
115   condition_.Broadcast(self);
116 }
117 
118 // Process reference class instances and schedule finalizations.
ProcessReferences(bool concurrent,TimingLogger * timings,bool clear_soft_references,collector::GarbageCollector * collector)119 void ReferenceProcessor::ProcessReferences(bool concurrent, TimingLogger* timings,
120                                            bool clear_soft_references,
121                                            collector::GarbageCollector* collector) {
122   TimingLogger::ScopedTiming t(concurrent ? __FUNCTION__ : "(Paused)ProcessReferences", timings);
123   Thread* self = Thread::Current();
124   {
125     MutexLock mu(self, *Locks::reference_processor_lock_);
126     collector_ = collector;
127     if (!kUseReadBarrier) {
128       CHECK_EQ(SlowPathEnabled(), concurrent) << "Slow path must be enabled iff concurrent";
129     } else {
130       // Weak ref access is enabled at Zygote compaction by SemiSpace (concurrent == false).
131       CHECK_EQ(!self->GetWeakRefAccessEnabled(), concurrent);
132     }
133   }
134   // Unless required to clear soft references with white references, preserve some white referents.
135   if (!clear_soft_references) {
136     TimingLogger::ScopedTiming split(concurrent ? "ForwardSoftReferences" :
137         "(Paused)ForwardSoftReferences", timings);
138     if (concurrent) {
139       StartPreservingReferences(self);
140     }
141     // TODO: Add smarter logic for preserving soft references. The behavior should be a conditional
142     // mark if the SoftReference is supposed to be preserved.
143     soft_reference_queue_.ForwardSoftReferences(collector);
144     collector->ProcessMarkStack();
145     if (concurrent) {
146       StopPreservingReferences(self);
147     }
148   }
149   // Clear all remaining soft and weak references with white referents.
150   soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
151   weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
152   {
153     TimingLogger::ScopedTiming t2(concurrent ? "EnqueueFinalizerReferences" :
154         "(Paused)EnqueueFinalizerReferences", timings);
155     if (concurrent) {
156       StartPreservingReferences(self);
157     }
158     // Preserve all white objects with finalize methods and schedule them for finalization.
159     finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, collector);
160     collector->ProcessMarkStack();
161     if (concurrent) {
162       StopPreservingReferences(self);
163     }
164   }
165   // Clear all finalizer referent reachable soft and weak references with white referents.
166   soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
167   weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
168   // Clear all phantom references with white referents.
169   phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
170   // At this point all reference queues other than the cleared references should be empty.
171   DCHECK(soft_reference_queue_.IsEmpty());
172   DCHECK(weak_reference_queue_.IsEmpty());
173   DCHECK(finalizer_reference_queue_.IsEmpty());
174   DCHECK(phantom_reference_queue_.IsEmpty());
175   {
176     MutexLock mu(self, *Locks::reference_processor_lock_);
177     // Need to always do this since the next GC may be concurrent. Doing this for only concurrent
178     // could result in a stale is_marked_callback_ being called before the reference processing
179     // starts since there is a small window of time where slow_path_enabled_ is enabled but the
180     // callback isn't yet set.
181     collector_ = nullptr;
182     if (!kUseReadBarrier && concurrent) {
183       // Done processing, disable the slow path and broadcast to the waiters.
184       DisableSlowPath(self);
185     }
186   }
187 }
188 
189 // Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
190 // marked, put it on the appropriate list in the heap for later processing.
DelayReferenceReferent(mirror::Class * klass,mirror::Reference * ref,collector::GarbageCollector * collector)191 void ReferenceProcessor::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref,
192                                                 collector::GarbageCollector* collector) {
193   // klass can be the class of the old object if the visitor already updated the class of ref.
194   DCHECK(klass != nullptr);
195   DCHECK(klass->IsTypeOfReferenceClass());
196   mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr();
197   if (referent->AsMirrorPtr() != nullptr && !collector->IsMarkedHeapReference(referent)) {
198     Thread* self = Thread::Current();
199     // TODO: Remove these locks, and use atomic stacks for storing references?
200     // We need to check that the references haven't already been enqueued since we can end up
201     // scanning the same reference multiple times due to dirty cards.
202     if (klass->IsSoftReferenceClass()) {
203       soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
204     } else if (klass->IsWeakReferenceClass()) {
205       weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
206     } else if (klass->IsFinalizerReferenceClass()) {
207       finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
208     } else if (klass->IsPhantomReferenceClass()) {
209       phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
210     } else {
211       LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex
212                  << klass->GetAccessFlags();
213     }
214   }
215 }
216 
UpdateRoots(IsMarkedVisitor * visitor)217 void ReferenceProcessor::UpdateRoots(IsMarkedVisitor* visitor) {
218   cleared_references_.UpdateRoots(visitor);
219 }
220 
221 class ClearedReferenceTask : public HeapTask {
222  public:
ClearedReferenceTask(jobject cleared_references)223   explicit ClearedReferenceTask(jobject cleared_references)
224       : HeapTask(NanoTime()), cleared_references_(cleared_references) {
225   }
Run(Thread * thread)226   virtual void Run(Thread* thread) {
227     ScopedObjectAccess soa(thread);
228     jvalue args[1];
229     args[0].l = cleared_references_;
230     InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args);
231     soa.Env()->DeleteGlobalRef(cleared_references_);
232   }
233 
234  private:
235   const jobject cleared_references_;
236 };
237 
EnqueueClearedReferences(Thread * self)238 void ReferenceProcessor::EnqueueClearedReferences(Thread* self) {
239   Locks::mutator_lock_->AssertNotHeld(self);
240   // When a runtime isn't started there are no reference queues to care about so ignore.
241   if (!cleared_references_.IsEmpty()) {
242     if (LIKELY(Runtime::Current()->IsStarted())) {
243       jobject cleared_references;
244       {
245         ReaderMutexLock mu(self, *Locks::mutator_lock_);
246         cleared_references = self->GetJniEnv()->vm->AddGlobalRef(
247             self, cleared_references_.GetList());
248       }
249       if (kAsyncReferenceQueueAdd) {
250         // TODO: This can cause RunFinalization to terminate before newly freed objects are
251         // finalized since they may not be enqueued by the time RunFinalization starts.
252         Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask(
253             self, new ClearedReferenceTask(cleared_references));
254       } else {
255         ClearedReferenceTask task(cleared_references);
256         task.Run(self);
257       }
258     }
259     cleared_references_.Clear();
260   }
261 }
262 
MakeCircularListIfUnenqueued(mirror::FinalizerReference * reference)263 bool ReferenceProcessor::MakeCircularListIfUnenqueued(mirror::FinalizerReference* reference) {
264   Thread* self = Thread::Current();
265   MutexLock mu(self, *Locks::reference_processor_lock_);
266   // Wait untul we are done processing reference.
267   while ((!kUseReadBarrier && SlowPathEnabled()) ||
268          (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) {
269     condition_.WaitHoldingLocks(self);
270   }
271   // At this point, since the sentinel of the reference is live, it is guaranteed to not be
272   // enqueued if we just finished processing references. Otherwise, we may be doing the main GC
273   // phase. Since we are holding the reference processor lock, it guarantees that reference
274   // processing can't begin. The GC could have just enqueued the reference one one of the internal
275   // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this
276   // race.
277   MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_);
278   if (reference->IsUnprocessed()) {
279     CHECK(reference->IsFinalizerReferenceInstance());
280     reference->SetPendingNext(reference);
281     return true;
282   }
283   return false;
284 }
285 
286 }  // namespace gc
287 }  // namespace art
288