1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "thread_list.h"
18
19 #include <backtrace/BacktraceMap.h>
20 #include <dirent.h>
21 #include <ScopedLocalRef.h>
22 #include <ScopedUtfChars.h>
23 #include <sys/types.h>
24 #include <unistd.h>
25
26 #include <sstream>
27
28 #include "base/histogram-inl.h"
29 #include "base/mutex-inl.h"
30 #include "base/systrace.h"
31 #include "base/time_utils.h"
32 #include "base/timing_logger.h"
33 #include "debugger.h"
34 #include "gc/collector/concurrent_copying.h"
35 #include "jni_internal.h"
36 #include "lock_word.h"
37 #include "monitor.h"
38 #include "scoped_thread_state_change.h"
39 #include "thread.h"
40 #include "trace.h"
41 #include "well_known_classes.h"
42
43 #if ART_USE_FUTEXES
44 #include "linux/futex.h"
45 #include "sys/syscall.h"
46 #ifndef SYS_futex
47 #define SYS_futex __NR_futex
48 #endif
49 #endif // ART_USE_FUTEXES
50
51 namespace art {
52
53 static constexpr uint64_t kLongThreadSuspendThreshold = MsToNs(5);
54 static constexpr uint64_t kThreadSuspendTimeoutMs = 30 * 1000; // 30s.
55 // Use 0 since we want to yield to prevent blocking for an unpredictable amount of time.
56 static constexpr useconds_t kThreadSuspendInitialSleepUs = 0;
57 static constexpr useconds_t kThreadSuspendMaxYieldUs = 3000;
58 static constexpr useconds_t kThreadSuspendMaxSleepUs = 5000;
59
60 // Whether we should try to dump the native stack of unattached threads. See commit ed8b723 for
61 // some history.
62 // Turned off again. b/29248079
63 static constexpr bool kDumpUnattachedThreadNativeStack = false;
64
ThreadList()65 ThreadList::ThreadList()
66 : suspend_all_count_(0),
67 debug_suspend_all_count_(0),
68 unregistering_count_(0),
69 suspend_all_historam_("suspend all histogram", 16, 64),
70 long_suspend_(false) {
71 CHECK(Monitor::IsValidLockWord(LockWord::FromThinLockId(kMaxThreadId, 1, 0U)));
72 }
73
~ThreadList()74 ThreadList::~ThreadList() {
75 ScopedTrace trace(__PRETTY_FUNCTION__);
76 // Detach the current thread if necessary. If we failed to start, there might not be any threads.
77 // We need to detach the current thread here in case there's another thread waiting to join with
78 // us.
79 bool contains = false;
80 Thread* self = Thread::Current();
81 {
82 MutexLock mu(self, *Locks::thread_list_lock_);
83 contains = Contains(self);
84 }
85 if (contains) {
86 Runtime::Current()->DetachCurrentThread();
87 }
88 WaitForOtherNonDaemonThreadsToExit();
89 // Disable GC and wait for GC to complete in case there are still daemon threads doing
90 // allocations.
91 gc::Heap* const heap = Runtime::Current()->GetHeap();
92 heap->DisableGCForShutdown();
93 // In case a GC is in progress, wait for it to finish.
94 heap->WaitForGcToComplete(gc::kGcCauseBackground, Thread::Current());
95 // TODO: there's an unaddressed race here where a thread may attach during shutdown, see
96 // Thread::Init.
97 SuspendAllDaemonThreadsForShutdown();
98 }
99
Contains(Thread * thread)100 bool ThreadList::Contains(Thread* thread) {
101 return find(list_.begin(), list_.end(), thread) != list_.end();
102 }
103
Contains(pid_t tid)104 bool ThreadList::Contains(pid_t tid) {
105 for (const auto& thread : list_) {
106 if (thread->GetTid() == tid) {
107 return true;
108 }
109 }
110 return false;
111 }
112
GetLockOwner()113 pid_t ThreadList::GetLockOwner() {
114 return Locks::thread_list_lock_->GetExclusiveOwnerTid();
115 }
116
DumpNativeStacks(std::ostream & os)117 void ThreadList::DumpNativeStacks(std::ostream& os) {
118 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
119 std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(getpid()));
120 for (const auto& thread : list_) {
121 os << "DUMPING THREAD " << thread->GetTid() << "\n";
122 DumpNativeStack(os, thread->GetTid(), map.get(), "\t");
123 os << "\n";
124 }
125 }
126
DumpForSigQuit(std::ostream & os)127 void ThreadList::DumpForSigQuit(std::ostream& os) {
128 {
129 ScopedObjectAccess soa(Thread::Current());
130 // Only print if we have samples.
131 if (suspend_all_historam_.SampleSize() > 0) {
132 Histogram<uint64_t>::CumulativeData data;
133 suspend_all_historam_.CreateHistogram(&data);
134 suspend_all_historam_.PrintConfidenceIntervals(os, 0.99, data); // Dump time to suspend.
135 }
136 }
137 bool dump_native_stack = Runtime::Current()->GetDumpNativeStackOnSigQuit();
138 Dump(os, dump_native_stack);
139 DumpUnattachedThreads(os, dump_native_stack);
140 }
141
DumpUnattachedThread(std::ostream & os,pid_t tid,bool dump_native_stack)142 static void DumpUnattachedThread(std::ostream& os, pid_t tid, bool dump_native_stack)
143 NO_THREAD_SAFETY_ANALYSIS {
144 // TODO: No thread safety analysis as DumpState with a null thread won't access fields, should
145 // refactor DumpState to avoid skipping analysis.
146 Thread::DumpState(os, nullptr, tid);
147 DumpKernelStack(os, tid, " kernel: ", false);
148 if (dump_native_stack && kDumpUnattachedThreadNativeStack) {
149 DumpNativeStack(os, tid, nullptr, " native: ");
150 }
151 os << "\n";
152 }
153
DumpUnattachedThreads(std::ostream & os,bool dump_native_stack)154 void ThreadList::DumpUnattachedThreads(std::ostream& os, bool dump_native_stack) {
155 DIR* d = opendir("/proc/self/task");
156 if (!d) {
157 return;
158 }
159
160 Thread* self = Thread::Current();
161 dirent* e;
162 while ((e = readdir(d)) != nullptr) {
163 char* end;
164 pid_t tid = strtol(e->d_name, &end, 10);
165 if (!*end) {
166 bool contains;
167 {
168 MutexLock mu(self, *Locks::thread_list_lock_);
169 contains = Contains(tid);
170 }
171 if (!contains) {
172 DumpUnattachedThread(os, tid, dump_native_stack);
173 }
174 }
175 }
176 closedir(d);
177 }
178
179 // Dump checkpoint timeout in milliseconds. Larger amount on the target, since the device could be
180 // overloaded with ANR dumps.
181 static constexpr uint32_t kDumpWaitTimeout = kIsTargetBuild ? 100000 : 20000;
182
183 // A closure used by Thread::Dump.
184 class DumpCheckpoint FINAL : public Closure {
185 public:
DumpCheckpoint(std::ostream * os,bool dump_native_stack)186 DumpCheckpoint(std::ostream* os, bool dump_native_stack)
187 : os_(os),
188 barrier_(0),
189 backtrace_map_(dump_native_stack ? BacktraceMap::Create(getpid()) : nullptr),
190 dump_native_stack_(dump_native_stack) {}
191
Run(Thread * thread)192 void Run(Thread* thread) OVERRIDE {
193 // Note thread and self may not be equal if thread was already suspended at the point of the
194 // request.
195 Thread* self = Thread::Current();
196 std::ostringstream local_os;
197 {
198 ScopedObjectAccess soa(self);
199 thread->Dump(local_os, dump_native_stack_, backtrace_map_.get());
200 }
201 local_os << "\n";
202 {
203 // Use the logging lock to ensure serialization when writing to the common ostream.
204 MutexLock mu(self, *Locks::logging_lock_);
205 *os_ << local_os.str();
206 }
207 barrier_.Pass(self);
208 }
209
WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint)210 void WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint) {
211 Thread* self = Thread::Current();
212 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
213 bool timed_out = barrier_.Increment(self, threads_running_checkpoint, kDumpWaitTimeout);
214 if (timed_out) {
215 // Avoid a recursive abort.
216 LOG((kIsDebugBuild && (gAborting == 0)) ? FATAL : ERROR)
217 << "Unexpected time out during dump checkpoint.";
218 }
219 }
220
221 private:
222 // The common stream that will accumulate all the dumps.
223 std::ostream* const os_;
224 // The barrier to be passed through and for the requestor to wait upon.
225 Barrier barrier_;
226 // A backtrace map, so that all threads use a shared info and don't reacquire/parse separately.
227 std::unique_ptr<BacktraceMap> backtrace_map_;
228 // Whether we should dump the native stack.
229 const bool dump_native_stack_;
230 };
231
Dump(std::ostream & os,bool dump_native_stack)232 void ThreadList::Dump(std::ostream& os, bool dump_native_stack) {
233 {
234 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
235 os << "DALVIK THREADS (" << list_.size() << "):\n";
236 }
237 DumpCheckpoint checkpoint(&os, dump_native_stack);
238 size_t threads_running_checkpoint = RunCheckpoint(&checkpoint);
239 if (threads_running_checkpoint != 0) {
240 checkpoint.WaitForThreadsToRunThroughCheckpoint(threads_running_checkpoint);
241 }
242 }
243
AssertThreadsAreSuspended(Thread * self,Thread * ignore1,Thread * ignore2)244 void ThreadList::AssertThreadsAreSuspended(Thread* self, Thread* ignore1, Thread* ignore2) {
245 MutexLock mu(self, *Locks::thread_list_lock_);
246 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
247 for (const auto& thread : list_) {
248 if (thread != ignore1 && thread != ignore2) {
249 CHECK(thread->IsSuspended())
250 << "\nUnsuspended thread: <<" << *thread << "\n"
251 << "self: <<" << *Thread::Current();
252 }
253 }
254 }
255
256 #if HAVE_TIMED_RWLOCK
257 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForThreadSuspendAllTimeout()258 NO_RETURN static void UnsafeLogFatalForThreadSuspendAllTimeout() {
259 Runtime* runtime = Runtime::Current();
260 std::ostringstream ss;
261 ss << "Thread suspend timeout\n";
262 Locks::mutator_lock_->Dump(ss);
263 ss << "\n";
264 runtime->GetThreadList()->Dump(ss);
265 LOG(FATAL) << ss.str();
266 exit(0);
267 }
268 #endif
269
270 // Unlike suspending all threads where we can wait to acquire the mutator_lock_, suspending an
271 // individual thread requires polling. delay_us is the requested sleep wait. If delay_us is 0 then
272 // we use sched_yield instead of calling usleep.
ThreadSuspendSleep(useconds_t delay_us)273 static void ThreadSuspendSleep(useconds_t delay_us) {
274 if (delay_us == 0) {
275 sched_yield();
276 } else {
277 usleep(delay_us);
278 }
279 }
280
RunCheckpoint(Closure * checkpoint_function)281 size_t ThreadList::RunCheckpoint(Closure* checkpoint_function) {
282 Thread* self = Thread::Current();
283 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
284 Locks::thread_list_lock_->AssertNotHeld(self);
285 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
286
287 std::vector<Thread*> suspended_count_modified_threads;
288 size_t count = 0;
289 {
290 // Call a checkpoint function for each thread, threads which are suspend get their checkpoint
291 // manually called.
292 MutexLock mu(self, *Locks::thread_list_lock_);
293 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
294 count = list_.size();
295 for (const auto& thread : list_) {
296 if (thread != self) {
297 while (true) {
298 if (thread->RequestCheckpoint(checkpoint_function)) {
299 // This thread will run its checkpoint some time in the near future.
300 break;
301 } else {
302 // We are probably suspended, try to make sure that we stay suspended.
303 // The thread switched back to runnable.
304 if (thread->GetState() == kRunnable) {
305 // Spurious fail, try again.
306 continue;
307 }
308 thread->ModifySuspendCount(self, +1, nullptr, false);
309 suspended_count_modified_threads.push_back(thread);
310 break;
311 }
312 }
313 }
314 }
315 }
316
317 // Run the checkpoint on ourself while we wait for threads to suspend.
318 checkpoint_function->Run(self);
319
320 // Run the checkpoint on the suspended threads.
321 for (const auto& thread : suspended_count_modified_threads) {
322 if (!thread->IsSuspended()) {
323 if (ATRACE_ENABLED()) {
324 std::ostringstream oss;
325 thread->ShortDump(oss);
326 ATRACE_BEGIN((std::string("Waiting for suspension of thread ") + oss.str()).c_str());
327 }
328 // Busy wait until the thread is suspended.
329 const uint64_t start_time = NanoTime();
330 do {
331 ThreadSuspendSleep(kThreadSuspendInitialSleepUs);
332 } while (!thread->IsSuspended());
333 const uint64_t total_delay = NanoTime() - start_time;
334 // Shouldn't need to wait for longer than 1000 microseconds.
335 constexpr uint64_t kLongWaitThreshold = MsToNs(1);
336 ATRACE_END();
337 if (UNLIKELY(total_delay > kLongWaitThreshold)) {
338 LOG(WARNING) << "Long wait of " << PrettyDuration(total_delay) << " for "
339 << *thread << " suspension!";
340 }
341 }
342 // We know for sure that the thread is suspended at this point.
343 checkpoint_function->Run(thread);
344 {
345 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
346 thread->ModifySuspendCount(self, -1, nullptr, false);
347 }
348 }
349
350 {
351 // Imitate ResumeAll, threads may be waiting on Thread::resume_cond_ since we raised their
352 // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
353 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
354 Thread::resume_cond_->Broadcast(self);
355 }
356
357 return count;
358 }
359
360 // Request that a checkpoint function be run on all active (non-suspended)
361 // threads. Returns the number of successful requests.
RunCheckpointOnRunnableThreads(Closure * checkpoint_function)362 size_t ThreadList::RunCheckpointOnRunnableThreads(Closure* checkpoint_function) {
363 Thread* self = Thread::Current();
364 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
365 Locks::thread_list_lock_->AssertNotHeld(self);
366 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
367 CHECK_NE(self->GetState(), kRunnable);
368
369 size_t count = 0;
370 {
371 // Call a checkpoint function for each non-suspended thread.
372 MutexLock mu(self, *Locks::thread_list_lock_);
373 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
374 for (const auto& thread : list_) {
375 if (thread != self) {
376 if (thread->RequestCheckpoint(checkpoint_function)) {
377 // This thread will run its checkpoint some time in the near future.
378 count++;
379 }
380 }
381 }
382 }
383
384 // Return the number of threads that will run the checkpoint function.
385 return count;
386 }
387
388 // A checkpoint/suspend-all hybrid to switch thread roots from
389 // from-space to to-space refs. Used to synchronize threads at a point
390 // to mark the initiation of marking while maintaining the to-space
391 // invariant.
FlipThreadRoots(Closure * thread_flip_visitor,Closure * flip_callback,gc::collector::GarbageCollector * collector)392 size_t ThreadList::FlipThreadRoots(Closure* thread_flip_visitor,
393 Closure* flip_callback,
394 gc::collector::GarbageCollector* collector) {
395 TimingLogger::ScopedTiming split("ThreadListFlip", collector->GetTimings());
396 const uint64_t start_time = NanoTime();
397 Thread* self = Thread::Current();
398 Locks::mutator_lock_->AssertNotHeld(self);
399 Locks::thread_list_lock_->AssertNotHeld(self);
400 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
401 CHECK_NE(self->GetState(), kRunnable);
402
403 SuspendAllInternal(self, self, nullptr);
404
405 // Run the flip callback for the collector.
406 Locks::mutator_lock_->ExclusiveLock(self);
407 flip_callback->Run(self);
408 Locks::mutator_lock_->ExclusiveUnlock(self);
409 collector->RegisterPause(NanoTime() - start_time);
410
411 // Resume runnable threads.
412 std::vector<Thread*> runnable_threads;
413 std::vector<Thread*> other_threads;
414 {
415 MutexLock mu(self, *Locks::thread_list_lock_);
416 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
417 --suspend_all_count_;
418 for (const auto& thread : list_) {
419 if (thread == self) {
420 continue;
421 }
422 // Set the flip function for both runnable and suspended threads
423 // because Thread::DumpState/DumpJavaStack() (invoked by a
424 // checkpoint) may cause the flip function to be run for a
425 // runnable/suspended thread before a runnable threads runs it
426 // for itself or we run it for a suspended thread below.
427 thread->SetFlipFunction(thread_flip_visitor);
428 if (thread->IsSuspendedAtSuspendCheck()) {
429 // The thread will resume right after the broadcast.
430 thread->ModifySuspendCount(self, -1, nullptr, false);
431 runnable_threads.push_back(thread);
432 } else {
433 other_threads.push_back(thread);
434 }
435 }
436 Thread::resume_cond_->Broadcast(self);
437 }
438
439 // Run the closure on the other threads and let them resume.
440 {
441 ReaderMutexLock mu(self, *Locks::mutator_lock_);
442 for (const auto& thread : other_threads) {
443 Closure* flip_func = thread->GetFlipFunction();
444 if (flip_func != nullptr) {
445 flip_func->Run(thread);
446 }
447 }
448 // Run it for self.
449 thread_flip_visitor->Run(self);
450 }
451
452 // Resume other threads.
453 {
454 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
455 for (const auto& thread : other_threads) {
456 thread->ModifySuspendCount(self, -1, nullptr, false);
457 }
458 Thread::resume_cond_->Broadcast(self);
459 }
460
461 return runnable_threads.size() + other_threads.size() + 1; // +1 for self.
462 }
463
SuspendAll(const char * cause,bool long_suspend)464 void ThreadList::SuspendAll(const char* cause, bool long_suspend) {
465 Thread* self = Thread::Current();
466
467 if (self != nullptr) {
468 VLOG(threads) << *self << " SuspendAll for " << cause << " starting...";
469 } else {
470 VLOG(threads) << "Thread[null] SuspendAll for " << cause << " starting...";
471 }
472 {
473 ScopedTrace trace("Suspending mutator threads");
474 const uint64_t start_time = NanoTime();
475
476 SuspendAllInternal(self, self);
477 // All threads are known to have suspended (but a thread may still own the mutator lock)
478 // Make sure this thread grabs exclusive access to the mutator lock and its protected data.
479 #if HAVE_TIMED_RWLOCK
480 while (true) {
481 if (Locks::mutator_lock_->ExclusiveLockWithTimeout(self, kThreadSuspendTimeoutMs, 0)) {
482 break;
483 } else if (!long_suspend_) {
484 // Reading long_suspend without the mutator lock is slightly racy, in some rare cases, this
485 // could result in a thread suspend timeout.
486 // Timeout if we wait more than kThreadSuspendTimeoutMs seconds.
487 UnsafeLogFatalForThreadSuspendAllTimeout();
488 }
489 }
490 #else
491 Locks::mutator_lock_->ExclusiveLock(self);
492 #endif
493
494 long_suspend_ = long_suspend;
495
496 const uint64_t end_time = NanoTime();
497 const uint64_t suspend_time = end_time - start_time;
498 suspend_all_historam_.AdjustAndAddValue(suspend_time);
499 if (suspend_time > kLongThreadSuspendThreshold) {
500 LOG(WARNING) << "Suspending all threads took: " << PrettyDuration(suspend_time);
501 }
502
503 if (kDebugLocking) {
504 // Debug check that all threads are suspended.
505 AssertThreadsAreSuspended(self, self);
506 }
507 }
508 ATRACE_BEGIN((std::string("Mutator threads suspended for ") + cause).c_str());
509
510 if (self != nullptr) {
511 VLOG(threads) << *self << " SuspendAll complete";
512 } else {
513 VLOG(threads) << "Thread[null] SuspendAll complete";
514 }
515 }
516
517 // Ensures all threads running Java suspend and that those not running Java don't start.
518 // Debugger thread might be set to kRunnable for a short period of time after the
519 // SuspendAllInternal. This is safe because it will be set back to suspended state before
520 // the SuspendAll returns.
SuspendAllInternal(Thread * self,Thread * ignore1,Thread * ignore2,bool debug_suspend)521 void ThreadList::SuspendAllInternal(Thread* self,
522 Thread* ignore1,
523 Thread* ignore2,
524 bool debug_suspend) {
525 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
526 Locks::thread_list_lock_->AssertNotHeld(self);
527 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
528 if (kDebugLocking && self != nullptr) {
529 CHECK_NE(self->GetState(), kRunnable);
530 }
531
532 // First request that all threads suspend, then wait for them to suspend before
533 // returning. This suspension scheme also relies on other behaviour:
534 // 1. Threads cannot be deleted while they are suspended or have a suspend-
535 // request flag set - (see Unregister() below).
536 // 2. When threads are created, they are created in a suspended state (actually
537 // kNative) and will never begin executing Java code without first checking
538 // the suspend-request flag.
539
540 // The atomic counter for number of threads that need to pass the barrier.
541 AtomicInteger pending_threads;
542 uint32_t num_ignored = 0;
543 if (ignore1 != nullptr) {
544 ++num_ignored;
545 }
546 if (ignore2 != nullptr && ignore1 != ignore2) {
547 ++num_ignored;
548 }
549 {
550 MutexLock mu(self, *Locks::thread_list_lock_);
551 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
552 // Update global suspend all state for attaching threads.
553 ++suspend_all_count_;
554 if (debug_suspend)
555 ++debug_suspend_all_count_;
556 pending_threads.StoreRelaxed(list_.size() - num_ignored);
557 // Increment everybody's suspend count (except those that should be ignored).
558 for (const auto& thread : list_) {
559 if (thread == ignore1 || thread == ignore2) {
560 continue;
561 }
562 VLOG(threads) << "requesting thread suspend: " << *thread;
563 while (true) {
564 if (LIKELY(thread->ModifySuspendCount(self, +1, &pending_threads, debug_suspend))) {
565 break;
566 } else {
567 // Failure means the list of active_suspend_barriers is full, we should release the
568 // thread_suspend_count_lock_ (to avoid deadlock) and wait till the target thread has
569 // executed Thread::PassActiveSuspendBarriers(). Note that we could not simply wait for
570 // the thread to change to a suspended state, because it might need to run checkpoint
571 // function before the state change, which also needs thread_suspend_count_lock_.
572
573 // This is very unlikely to happen since more than kMaxSuspendBarriers threads need to
574 // execute SuspendAllInternal() simultaneously, and target thread stays in kRunnable
575 // in the mean time.
576 Locks::thread_suspend_count_lock_->ExclusiveUnlock(self);
577 NanoSleep(100000);
578 Locks::thread_suspend_count_lock_->ExclusiveLock(self);
579 }
580 }
581
582 // Must install the pending_threads counter first, then check thread->IsSuspend() and clear
583 // the counter. Otherwise there's a race with Thread::TransitionFromRunnableToSuspended()
584 // that can lead a thread to miss a call to PassActiveSuspendBarriers().
585 if (thread->IsSuspended()) {
586 // Only clear the counter for the current thread.
587 thread->ClearSuspendBarrier(&pending_threads);
588 pending_threads.FetchAndSubSequentiallyConsistent(1);
589 }
590 }
591 }
592
593 // Wait for the barrier to be passed by all runnable threads. This wait
594 // is done with a timeout so that we can detect problems.
595 #if ART_USE_FUTEXES
596 timespec wait_timeout;
597 InitTimeSpec(true, CLOCK_MONOTONIC, 10000, 0, &wait_timeout);
598 #endif
599 while (true) {
600 int32_t cur_val = pending_threads.LoadRelaxed();
601 if (LIKELY(cur_val > 0)) {
602 #if ART_USE_FUTEXES
603 if (futex(pending_threads.Address(), FUTEX_WAIT, cur_val, &wait_timeout, nullptr, 0) != 0) {
604 // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
605 if ((errno != EAGAIN) && (errno != EINTR)) {
606 if (errno == ETIMEDOUT) {
607 LOG(kIsDebugBuild ? FATAL : ERROR) << "Unexpected time out during suspend all.";
608 } else {
609 PLOG(FATAL) << "futex wait failed for SuspendAllInternal()";
610 }
611 }
612 } else {
613 cur_val = pending_threads.LoadRelaxed();
614 CHECK_EQ(cur_val, 0);
615 break;
616 }
617 #else
618 // Spin wait. This is likely to be slow, but on most architecture ART_USE_FUTEXES is set.
619 #endif
620 } else {
621 CHECK_EQ(cur_val, 0);
622 break;
623 }
624 }
625 }
626
ResumeAll()627 void ThreadList::ResumeAll() {
628 Thread* self = Thread::Current();
629
630 if (self != nullptr) {
631 VLOG(threads) << *self << " ResumeAll starting";
632 } else {
633 VLOG(threads) << "Thread[null] ResumeAll starting";
634 }
635
636 ATRACE_END();
637
638 ScopedTrace trace("Resuming mutator threads");
639
640 if (kDebugLocking) {
641 // Debug check that all threads are suspended.
642 AssertThreadsAreSuspended(self, self);
643 }
644
645 long_suspend_ = false;
646
647 Locks::mutator_lock_->ExclusiveUnlock(self);
648 {
649 MutexLock mu(self, *Locks::thread_list_lock_);
650 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
651 // Update global suspend all state for attaching threads.
652 --suspend_all_count_;
653 // Decrement the suspend counts for all threads.
654 for (const auto& thread : list_) {
655 if (thread == self) {
656 continue;
657 }
658 thread->ModifySuspendCount(self, -1, nullptr, false);
659 }
660
661 // Broadcast a notification to all suspended threads, some or all of
662 // which may choose to wake up. No need to wait for them.
663 if (self != nullptr) {
664 VLOG(threads) << *self << " ResumeAll waking others";
665 } else {
666 VLOG(threads) << "Thread[null] ResumeAll waking others";
667 }
668 Thread::resume_cond_->Broadcast(self);
669 }
670
671 if (self != nullptr) {
672 VLOG(threads) << *self << " ResumeAll complete";
673 } else {
674 VLOG(threads) << "Thread[null] ResumeAll complete";
675 }
676 }
677
Resume(Thread * thread,bool for_debugger)678 void ThreadList::Resume(Thread* thread, bool for_debugger) {
679 // This assumes there was an ATRACE_BEGIN when we suspended the thread.
680 ATRACE_END();
681
682 Thread* self = Thread::Current();
683 DCHECK_NE(thread, self);
684 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") starting..."
685 << (for_debugger ? " (debugger)" : "");
686
687 {
688 // To check Contains.
689 MutexLock mu(self, *Locks::thread_list_lock_);
690 // To check IsSuspended.
691 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
692 DCHECK(thread->IsSuspended());
693 if (!Contains(thread)) {
694 // We only expect threads within the thread-list to have been suspended otherwise we can't
695 // stop such threads from delete-ing themselves.
696 LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
697 << ") thread not within thread list";
698 return;
699 }
700 thread->ModifySuspendCount(self, -1, nullptr, for_debugger);
701 }
702
703 {
704 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") waking others";
705 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
706 Thread::resume_cond_->Broadcast(self);
707 }
708
709 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") complete";
710 }
711
ThreadSuspendByPeerWarning(Thread * self,LogSeverity severity,const char * message,jobject peer)712 static void ThreadSuspendByPeerWarning(Thread* self,
713 LogSeverity severity,
714 const char* message,
715 jobject peer) {
716 JNIEnvExt* env = self->GetJniEnv();
717 ScopedLocalRef<jstring>
718 scoped_name_string(env, static_cast<jstring>(env->GetObjectField(
719 peer, WellKnownClasses::java_lang_Thread_name)));
720 ScopedUtfChars scoped_name_chars(env, scoped_name_string.get());
721 if (scoped_name_chars.c_str() == nullptr) {
722 LOG(severity) << message << ": " << peer;
723 env->ExceptionClear();
724 } else {
725 LOG(severity) << message << ": " << peer << ":" << scoped_name_chars.c_str();
726 }
727 }
728
SuspendThreadByPeer(jobject peer,bool request_suspension,bool debug_suspension,bool * timed_out)729 Thread* ThreadList::SuspendThreadByPeer(jobject peer,
730 bool request_suspension,
731 bool debug_suspension,
732 bool* timed_out) {
733 const uint64_t start_time = NanoTime();
734 useconds_t sleep_us = kThreadSuspendInitialSleepUs;
735 *timed_out = false;
736 Thread* const self = Thread::Current();
737 Thread* suspended_thread = nullptr;
738 VLOG(threads) << "SuspendThreadByPeer starting";
739 while (true) {
740 Thread* thread;
741 {
742 // Note: this will transition to runnable and potentially suspend. We ensure only one thread
743 // is requesting another suspend, to avoid deadlock, by requiring this function be called
744 // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
745 // than request thread suspension, to avoid potential cycles in threads requesting each other
746 // suspend.
747 ScopedObjectAccess soa(self);
748 MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
749 thread = Thread::FromManagedThread(soa, peer);
750 if (thread == nullptr) {
751 if (suspended_thread != nullptr) {
752 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
753 // If we incremented the suspend count but the thread reset its peer, we need to
754 // re-decrement it since it is shutting down and may deadlock the runtime in
755 // ThreadList::WaitForOtherNonDaemonThreadsToExit.
756 suspended_thread->ModifySuspendCount(soa.Self(), -1, nullptr, debug_suspension);
757 }
758 ThreadSuspendByPeerWarning(self, WARNING, "No such thread for suspend", peer);
759 return nullptr;
760 }
761 if (!Contains(thread)) {
762 CHECK(suspended_thread == nullptr);
763 VLOG(threads) << "SuspendThreadByPeer failed for unattached thread: "
764 << reinterpret_cast<void*>(thread);
765 return nullptr;
766 }
767 VLOG(threads) << "SuspendThreadByPeer found thread: " << *thread;
768 {
769 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
770 if (request_suspension) {
771 if (self->GetSuspendCount() > 0) {
772 // We hold the suspend count lock but another thread is trying to suspend us. Its not
773 // safe to try to suspend another thread in case we get a cycle. Start the loop again
774 // which will allow this thread to be suspended.
775 continue;
776 }
777 CHECK(suspended_thread == nullptr);
778 suspended_thread = thread;
779 suspended_thread->ModifySuspendCount(self, +1, nullptr, debug_suspension);
780 request_suspension = false;
781 } else {
782 // If the caller isn't requesting suspension, a suspension should have already occurred.
783 CHECK_GT(thread->GetSuspendCount(), 0);
784 }
785 // IsSuspended on the current thread will fail as the current thread is changed into
786 // Runnable above. As the suspend count is now raised if this is the current thread
787 // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
788 // to just explicitly handle the current thread in the callers to this code.
789 CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
790 // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
791 // count, or else we've waited and it has self suspended) or is the current thread, we're
792 // done.
793 if (thread->IsSuspended()) {
794 VLOG(threads) << "SuspendThreadByPeer thread suspended: " << *thread;
795 if (ATRACE_ENABLED()) {
796 std::string name;
797 thread->GetThreadName(name);
798 ATRACE_BEGIN(StringPrintf("SuspendThreadByPeer suspended %s for peer=%p", name.c_str(),
799 peer).c_str());
800 }
801 return thread;
802 }
803 const uint64_t total_delay = NanoTime() - start_time;
804 if (total_delay >= MsToNs(kThreadSuspendTimeoutMs)) {
805 ThreadSuspendByPeerWarning(self, FATAL, "Thread suspension timed out", peer);
806 if (suspended_thread != nullptr) {
807 CHECK_EQ(suspended_thread, thread);
808 suspended_thread->ModifySuspendCount(soa.Self(), -1, nullptr, debug_suspension);
809 }
810 *timed_out = true;
811 return nullptr;
812 } else if (sleep_us == 0 &&
813 total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
814 // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
815 // excessive CPU usage.
816 sleep_us = kThreadSuspendMaxYieldUs / 2;
817 }
818 }
819 // Release locks and come out of runnable state.
820 }
821 VLOG(threads) << "SuspendThreadByPeer waiting to allow thread chance to suspend";
822 ThreadSuspendSleep(sleep_us);
823 // This may stay at 0 if sleep_us == 0, but this is WAI since we want to avoid using usleep at
824 // all if possible. This shouldn't be an issue since time to suspend should always be small.
825 sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
826 }
827 }
828
ThreadSuspendByThreadIdWarning(LogSeverity severity,const char * message,uint32_t thread_id)829 static void ThreadSuspendByThreadIdWarning(LogSeverity severity,
830 const char* message,
831 uint32_t thread_id) {
832 LOG(severity) << StringPrintf("%s: %d", message, thread_id);
833 }
834
SuspendThreadByThreadId(uint32_t thread_id,bool debug_suspension,bool * timed_out)835 Thread* ThreadList::SuspendThreadByThreadId(uint32_t thread_id,
836 bool debug_suspension,
837 bool* timed_out) {
838 const uint64_t start_time = NanoTime();
839 useconds_t sleep_us = kThreadSuspendInitialSleepUs;
840 *timed_out = false;
841 Thread* suspended_thread = nullptr;
842 Thread* const self = Thread::Current();
843 CHECK_NE(thread_id, kInvalidThreadId);
844 VLOG(threads) << "SuspendThreadByThreadId starting";
845 while (true) {
846 {
847 // Note: this will transition to runnable and potentially suspend. We ensure only one thread
848 // is requesting another suspend, to avoid deadlock, by requiring this function be called
849 // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
850 // than request thread suspension, to avoid potential cycles in threads requesting each other
851 // suspend.
852 ScopedObjectAccess soa(self);
853 MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
854 Thread* thread = nullptr;
855 for (const auto& it : list_) {
856 if (it->GetThreadId() == thread_id) {
857 thread = it;
858 break;
859 }
860 }
861 if (thread == nullptr) {
862 CHECK(suspended_thread == nullptr) << "Suspended thread " << suspended_thread
863 << " no longer in thread list";
864 // There's a race in inflating a lock and the owner giving up ownership and then dying.
865 ThreadSuspendByThreadIdWarning(WARNING, "No such thread id for suspend", thread_id);
866 return nullptr;
867 }
868 VLOG(threads) << "SuspendThreadByThreadId found thread: " << *thread;
869 DCHECK(Contains(thread));
870 {
871 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
872 if (suspended_thread == nullptr) {
873 if (self->GetSuspendCount() > 0) {
874 // We hold the suspend count lock but another thread is trying to suspend us. Its not
875 // safe to try to suspend another thread in case we get a cycle. Start the loop again
876 // which will allow this thread to be suspended.
877 continue;
878 }
879 thread->ModifySuspendCount(self, +1, nullptr, debug_suspension);
880 suspended_thread = thread;
881 } else {
882 CHECK_EQ(suspended_thread, thread);
883 // If the caller isn't requesting suspension, a suspension should have already occurred.
884 CHECK_GT(thread->GetSuspendCount(), 0);
885 }
886 // IsSuspended on the current thread will fail as the current thread is changed into
887 // Runnable above. As the suspend count is now raised if this is the current thread
888 // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
889 // to just explicitly handle the current thread in the callers to this code.
890 CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
891 // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
892 // count, or else we've waited and it has self suspended) or is the current thread, we're
893 // done.
894 if (thread->IsSuspended()) {
895 if (ATRACE_ENABLED()) {
896 std::string name;
897 thread->GetThreadName(name);
898 ATRACE_BEGIN(StringPrintf("SuspendThreadByThreadId suspended %s id=%d",
899 name.c_str(), thread_id).c_str());
900 }
901 VLOG(threads) << "SuspendThreadByThreadId thread suspended: " << *thread;
902 return thread;
903 }
904 const uint64_t total_delay = NanoTime() - start_time;
905 if (total_delay >= MsToNs(kThreadSuspendTimeoutMs)) {
906 ThreadSuspendByThreadIdWarning(WARNING, "Thread suspension timed out", thread_id);
907 if (suspended_thread != nullptr) {
908 thread->ModifySuspendCount(soa.Self(), -1, nullptr, debug_suspension);
909 }
910 *timed_out = true;
911 return nullptr;
912 } else if (sleep_us == 0 &&
913 total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
914 // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
915 // excessive CPU usage.
916 sleep_us = kThreadSuspendMaxYieldUs / 2;
917 }
918 }
919 // Release locks and come out of runnable state.
920 }
921 VLOG(threads) << "SuspendThreadByThreadId waiting to allow thread chance to suspend";
922 ThreadSuspendSleep(sleep_us);
923 sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
924 }
925 }
926
FindThreadByThreadId(uint32_t thread_id)927 Thread* ThreadList::FindThreadByThreadId(uint32_t thread_id) {
928 for (const auto& thread : list_) {
929 if (thread->GetThreadId() == thread_id) {
930 return thread;
931 }
932 }
933 return nullptr;
934 }
935
SuspendAllForDebugger()936 void ThreadList::SuspendAllForDebugger() {
937 Thread* self = Thread::Current();
938 Thread* debug_thread = Dbg::GetDebugThread();
939
940 VLOG(threads) << *self << " SuspendAllForDebugger starting...";
941
942 SuspendAllInternal(self, self, debug_thread, true);
943 // Block on the mutator lock until all Runnable threads release their share of access then
944 // immediately unlock again.
945 #if HAVE_TIMED_RWLOCK
946 // Timeout if we wait more than 30 seconds.
947 if (!Locks::mutator_lock_->ExclusiveLockWithTimeout(self, 30 * 1000, 0)) {
948 UnsafeLogFatalForThreadSuspendAllTimeout();
949 } else {
950 Locks::mutator_lock_->ExclusiveUnlock(self);
951 }
952 #else
953 Locks::mutator_lock_->ExclusiveLock(self);
954 Locks::mutator_lock_->ExclusiveUnlock(self);
955 #endif
956 // Disabled for the following race condition:
957 // Thread 1 calls SuspendAllForDebugger, gets preempted after pulsing the mutator lock.
958 // Thread 2 calls SuspendAll and SetStateUnsafe (perhaps from Dbg::Disconnected).
959 // Thread 1 fails assertion that all threads are suspended due to thread 2 being in a runnable
960 // state (from SetStateUnsafe).
961 // AssertThreadsAreSuspended(self, self, debug_thread);
962
963 VLOG(threads) << *self << " SuspendAllForDebugger complete";
964 }
965
SuspendSelfForDebugger()966 void ThreadList::SuspendSelfForDebugger() {
967 Thread* const self = Thread::Current();
968 self->SetReadyForDebugInvoke(true);
969
970 // The debugger thread must not suspend itself due to debugger activity!
971 Thread* debug_thread = Dbg::GetDebugThread();
972 CHECK(self != debug_thread);
973 CHECK_NE(self->GetState(), kRunnable);
974 Locks::mutator_lock_->AssertNotHeld(self);
975
976 // The debugger may have detached while we were executing an invoke request. In that case, we
977 // must not suspend ourself.
978 DebugInvokeReq* pReq = self->GetInvokeReq();
979 const bool skip_thread_suspension = (pReq != nullptr && !Dbg::IsDebuggerActive());
980 if (!skip_thread_suspension) {
981 // Collisions with other suspends aren't really interesting. We want
982 // to ensure that we're the only one fiddling with the suspend count
983 // though.
984 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
985 self->ModifySuspendCount(self, +1, nullptr, true);
986 CHECK_GT(self->GetSuspendCount(), 0);
987
988 VLOG(threads) << *self << " self-suspending (debugger)";
989 } else {
990 // We must no longer be subject to debugger suspension.
991 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
992 CHECK_EQ(self->GetDebugSuspendCount(), 0) << "Debugger detached without resuming us";
993
994 VLOG(threads) << *self << " not self-suspending because debugger detached during invoke";
995 }
996
997 // If the debugger requested an invoke, we need to send the reply and clear the request.
998 if (pReq != nullptr) {
999 Dbg::FinishInvokeMethod(pReq);
1000 self->ClearDebugInvokeReq();
1001 pReq = nullptr; // object has been deleted, clear it for safety.
1002 }
1003
1004 // Tell JDWP that we've completed suspension. The JDWP thread can't
1005 // tell us to resume before we're fully asleep because we hold the
1006 // suspend count lock.
1007 Dbg::ClearWaitForEventThread();
1008
1009 {
1010 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1011 while (self->GetSuspendCount() != 0) {
1012 Thread::resume_cond_->Wait(self);
1013 if (self->GetSuspendCount() != 0) {
1014 // The condition was signaled but we're still suspended. This
1015 // can happen when we suspend then resume all threads to
1016 // update instrumentation or compute monitor info. This can
1017 // also happen if the debugger lets go while a SIGQUIT thread
1018 // dump event is pending (assuming SignalCatcher was resumed for
1019 // just long enough to try to grab the thread-suspend lock).
1020 VLOG(jdwp) << *self << " still suspended after undo "
1021 << "(suspend count=" << self->GetSuspendCount() << ", "
1022 << "debug suspend count=" << self->GetDebugSuspendCount() << ")";
1023 }
1024 }
1025 CHECK_EQ(self->GetSuspendCount(), 0);
1026 }
1027
1028 self->SetReadyForDebugInvoke(false);
1029 VLOG(threads) << *self << " self-reviving (debugger)";
1030 }
1031
ResumeAllForDebugger()1032 void ThreadList::ResumeAllForDebugger() {
1033 Thread* self = Thread::Current();
1034 Thread* debug_thread = Dbg::GetDebugThread();
1035
1036 VLOG(threads) << *self << " ResumeAllForDebugger starting...";
1037
1038 // Threads can't resume if we exclusively hold the mutator lock.
1039 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
1040
1041 {
1042 MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
1043 {
1044 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
1045 // Update global suspend all state for attaching threads.
1046 DCHECK_GE(suspend_all_count_, debug_suspend_all_count_);
1047 if (debug_suspend_all_count_ > 0) {
1048 --suspend_all_count_;
1049 --debug_suspend_all_count_;
1050 } else {
1051 // We've been asked to resume all threads without being asked to
1052 // suspend them all before. That may happen if a debugger tries
1053 // to resume some suspended threads (with suspend count == 1)
1054 // at once with a VirtualMachine.Resume command. Let's print a
1055 // warning.
1056 LOG(WARNING) << "Debugger attempted to resume all threads without "
1057 << "having suspended them all before.";
1058 }
1059 // Decrement everybody's suspend count (except our own).
1060 for (const auto& thread : list_) {
1061 if (thread == self || thread == debug_thread) {
1062 continue;
1063 }
1064 if (thread->GetDebugSuspendCount() == 0) {
1065 // This thread may have been individually resumed with ThreadReference.Resume.
1066 continue;
1067 }
1068 VLOG(threads) << "requesting thread resume: " << *thread;
1069 thread->ModifySuspendCount(self, -1, nullptr, true);
1070 }
1071 }
1072 }
1073
1074 {
1075 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1076 Thread::resume_cond_->Broadcast(self);
1077 }
1078
1079 VLOG(threads) << *self << " ResumeAllForDebugger complete";
1080 }
1081
UndoDebuggerSuspensions()1082 void ThreadList::UndoDebuggerSuspensions() {
1083 Thread* self = Thread::Current();
1084
1085 VLOG(threads) << *self << " UndoDebuggerSuspensions starting";
1086
1087 {
1088 MutexLock mu(self, *Locks::thread_list_lock_);
1089 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1090 // Update global suspend all state for attaching threads.
1091 suspend_all_count_ -= debug_suspend_all_count_;
1092 debug_suspend_all_count_ = 0;
1093 // Update running threads.
1094 for (const auto& thread : list_) {
1095 if (thread == self || thread->GetDebugSuspendCount() == 0) {
1096 continue;
1097 }
1098 thread->ModifySuspendCount(self, -thread->GetDebugSuspendCount(), nullptr, true);
1099 }
1100 }
1101
1102 {
1103 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1104 Thread::resume_cond_->Broadcast(self);
1105 }
1106
1107 VLOG(threads) << "UndoDebuggerSuspensions(" << *self << ") complete";
1108 }
1109
WaitForOtherNonDaemonThreadsToExit()1110 void ThreadList::WaitForOtherNonDaemonThreadsToExit() {
1111 ScopedTrace trace(__PRETTY_FUNCTION__);
1112 Thread* self = Thread::Current();
1113 Locks::mutator_lock_->AssertNotHeld(self);
1114 while (true) {
1115 {
1116 // No more threads can be born after we start to shutdown.
1117 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
1118 CHECK(Runtime::Current()->IsShuttingDownLocked());
1119 CHECK_EQ(Runtime::Current()->NumberOfThreadsBeingBorn(), 0U);
1120 }
1121 MutexLock mu(self, *Locks::thread_list_lock_);
1122 // Also wait for any threads that are unregistering to finish. This is required so that no
1123 // threads access the thread list after it is deleted. TODO: This may not work for user daemon
1124 // threads since they could unregister at the wrong time.
1125 bool done = unregistering_count_ == 0;
1126 if (done) {
1127 for (const auto& thread : list_) {
1128 if (thread != self && !thread->IsDaemon()) {
1129 done = false;
1130 break;
1131 }
1132 }
1133 }
1134 if (done) {
1135 break;
1136 }
1137 // Wait for another thread to exit before re-checking.
1138 Locks::thread_exit_cond_->Wait(self);
1139 }
1140 }
1141
SuspendAllDaemonThreadsForShutdown()1142 void ThreadList::SuspendAllDaemonThreadsForShutdown() {
1143 ScopedTrace trace(__PRETTY_FUNCTION__);
1144 Thread* self = Thread::Current();
1145 MutexLock mu(self, *Locks::thread_list_lock_);
1146 size_t daemons_left = 0;
1147 { // Tell all the daemons it's time to suspend.
1148 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1149 for (const auto& thread : list_) {
1150 // This is only run after all non-daemon threads have exited, so the remainder should all be
1151 // daemons.
1152 CHECK(thread->IsDaemon()) << *thread;
1153 if (thread != self) {
1154 thread->ModifySuspendCount(self, +1, nullptr, false);
1155 ++daemons_left;
1156 }
1157 // We are shutting down the runtime, set the JNI functions of all the JNIEnvs to be
1158 // the sleep forever one.
1159 thread->GetJniEnv()->SetFunctionsToRuntimeShutdownFunctions();
1160 }
1161 }
1162 // If we have any daemons left, wait 200ms to ensure they are not stuck in a place where they
1163 // are about to access runtime state and are not in a runnable state. Examples: Monitor code
1164 // or waking up from a condition variable. TODO: Try and see if there is a better way to wait
1165 // for daemon threads to be in a blocked state.
1166 if (daemons_left > 0) {
1167 static constexpr size_t kDaemonSleepTime = 200 * 1000;
1168 usleep(kDaemonSleepTime);
1169 }
1170 // Give the threads a chance to suspend, complaining if they're slow.
1171 bool have_complained = false;
1172 static constexpr size_t kTimeoutMicroseconds = 2000 * 1000;
1173 static constexpr size_t kSleepMicroseconds = 1000;
1174 for (size_t i = 0; i < kTimeoutMicroseconds / kSleepMicroseconds; ++i) {
1175 bool all_suspended = true;
1176 for (const auto& thread : list_) {
1177 if (thread != self && thread->GetState() == kRunnable) {
1178 if (!have_complained) {
1179 LOG(WARNING) << "daemon thread not yet suspended: " << *thread;
1180 have_complained = true;
1181 }
1182 all_suspended = false;
1183 }
1184 }
1185 if (all_suspended) {
1186 return;
1187 }
1188 usleep(kSleepMicroseconds);
1189 }
1190 LOG(WARNING) << "timed out suspending all daemon threads";
1191 }
1192
Register(Thread * self)1193 void ThreadList::Register(Thread* self) {
1194 DCHECK_EQ(self, Thread::Current());
1195
1196 if (VLOG_IS_ON(threads)) {
1197 std::ostringstream oss;
1198 self->ShortDump(oss); // We don't hold the mutator_lock_ yet and so cannot call Dump.
1199 LOG(INFO) << "ThreadList::Register() " << *self << "\n" << oss.str();
1200 }
1201
1202 // Atomically add self to the thread list and make its thread_suspend_count_ reflect ongoing
1203 // SuspendAll requests.
1204 MutexLock mu(self, *Locks::thread_list_lock_);
1205 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1206 CHECK_GE(suspend_all_count_, debug_suspend_all_count_);
1207 // Modify suspend count in increments of 1 to maintain invariants in ModifySuspendCount. While
1208 // this isn't particularly efficient the suspend counts are most commonly 0 or 1.
1209 for (int delta = debug_suspend_all_count_; delta > 0; delta--) {
1210 self->ModifySuspendCount(self, +1, nullptr, true);
1211 }
1212 for (int delta = suspend_all_count_ - debug_suspend_all_count_; delta > 0; delta--) {
1213 self->ModifySuspendCount(self, +1, nullptr, false);
1214 }
1215 CHECK(!Contains(self));
1216 list_.push_back(self);
1217 if (kUseReadBarrier) {
1218 // Initialize according to the state of the CC collector.
1219 bool is_gc_marking =
1220 Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->IsMarking();
1221 self->SetIsGcMarking(is_gc_marking);
1222 bool weak_ref_access_enabled =
1223 Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->IsWeakRefAccessEnabled();
1224 self->SetWeakRefAccessEnabled(weak_ref_access_enabled);
1225 }
1226 }
1227
Unregister(Thread * self)1228 void ThreadList::Unregister(Thread* self) {
1229 DCHECK_EQ(self, Thread::Current());
1230 CHECK_NE(self->GetState(), kRunnable);
1231 Locks::mutator_lock_->AssertNotHeld(self);
1232
1233 VLOG(threads) << "ThreadList::Unregister() " << *self;
1234
1235 {
1236 MutexLock mu(self, *Locks::thread_list_lock_);
1237 ++unregistering_count_;
1238 }
1239
1240 // Any time-consuming destruction, plus anything that can call back into managed code or
1241 // suspend and so on, must happen at this point, and not in ~Thread. The self->Destroy is what
1242 // causes the threads to join. It is important to do this after incrementing unregistering_count_
1243 // since we want the runtime to wait for the daemon threads to exit before deleting the thread
1244 // list.
1245 self->Destroy();
1246
1247 // If tracing, remember thread id and name before thread exits.
1248 Trace::StoreExitingThreadInfo(self);
1249
1250 uint32_t thin_lock_id = self->GetThreadId();
1251 while (true) {
1252 // Remove and delete the Thread* while holding the thread_list_lock_ and
1253 // thread_suspend_count_lock_ so that the unregistering thread cannot be suspended.
1254 // Note: deliberately not using MutexLock that could hold a stale self pointer.
1255 MutexLock mu(self, *Locks::thread_list_lock_);
1256 if (!Contains(self)) {
1257 std::string thread_name;
1258 self->GetThreadName(thread_name);
1259 std::ostringstream os;
1260 DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr);
1261 LOG(ERROR) << "Request to unregister unattached thread " << thread_name << "\n" << os.str();
1262 break;
1263 } else {
1264 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1265 if (!self->IsSuspended()) {
1266 list_.remove(self);
1267 break;
1268 }
1269 }
1270 // We failed to remove the thread due to a suspend request, loop and try again.
1271 }
1272 delete self;
1273
1274 // Release the thread ID after the thread is finished and deleted to avoid cases where we can
1275 // temporarily have multiple threads with the same thread id. When this occurs, it causes
1276 // problems in FindThreadByThreadId / SuspendThreadByThreadId.
1277 ReleaseThreadId(nullptr, thin_lock_id);
1278
1279 // Clear the TLS data, so that the underlying native thread is recognizably detached.
1280 // (It may wish to reattach later.)
1281 #ifdef __ANDROID__
1282 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = nullptr;
1283 #else
1284 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, nullptr), "detach self");
1285 #endif
1286
1287 // Signal that a thread just detached.
1288 MutexLock mu(nullptr, *Locks::thread_list_lock_);
1289 --unregistering_count_;
1290 Locks::thread_exit_cond_->Broadcast(nullptr);
1291 }
1292
ForEach(void (* callback)(Thread *,void *),void * context)1293 void ThreadList::ForEach(void (*callback)(Thread*, void*), void* context) {
1294 for (const auto& thread : list_) {
1295 callback(thread, context);
1296 }
1297 }
1298
VisitRoots(RootVisitor * visitor) const1299 void ThreadList::VisitRoots(RootVisitor* visitor) const {
1300 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1301 for (const auto& thread : list_) {
1302 thread->VisitRoots(visitor);
1303 }
1304 }
1305
AllocThreadId(Thread * self)1306 uint32_t ThreadList::AllocThreadId(Thread* self) {
1307 MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
1308 for (size_t i = 0; i < allocated_ids_.size(); ++i) {
1309 if (!allocated_ids_[i]) {
1310 allocated_ids_.set(i);
1311 return i + 1; // Zero is reserved to mean "invalid".
1312 }
1313 }
1314 LOG(FATAL) << "Out of internal thread ids";
1315 return 0;
1316 }
1317
ReleaseThreadId(Thread * self,uint32_t id)1318 void ThreadList::ReleaseThreadId(Thread* self, uint32_t id) {
1319 MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
1320 --id; // Zero is reserved to mean "invalid".
1321 DCHECK(allocated_ids_[id]) << id;
1322 allocated_ids_.reset(id);
1323 }
1324
ScopedSuspendAll(const char * cause,bool long_suspend)1325 ScopedSuspendAll::ScopedSuspendAll(const char* cause, bool long_suspend) {
1326 Runtime::Current()->GetThreadList()->SuspendAll(cause, long_suspend);
1327 }
1328
~ScopedSuspendAll()1329 ScopedSuspendAll::~ScopedSuspendAll() {
1330 Runtime::Current()->GetThreadList()->ResumeAll();
1331 }
1332
1333 } // namespace art
1334