1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include "linker_phdr.h"
30
31 #include <errno.h>
32 #include <string.h>
33 #include <sys/mman.h>
34 #include <sys/types.h>
35 #include <sys/stat.h>
36 #include <unistd.h>
37
38 #include "linker.h"
39 #include "linker_debug.h"
40 #include "linker_utils.h"
41
42 #include "private/bionic_prctl.h"
43
GetTargetElfMachine()44 static int GetTargetElfMachine() {
45 #if defined(__arm__)
46 return EM_ARM;
47 #elif defined(__aarch64__)
48 return EM_AARCH64;
49 #elif defined(__i386__)
50 return EM_386;
51 #elif defined(__mips__)
52 return EM_MIPS;
53 #elif defined(__x86_64__)
54 return EM_X86_64;
55 #endif
56 }
57
58 /**
59 TECHNICAL NOTE ON ELF LOADING.
60
61 An ELF file's program header table contains one or more PT_LOAD
62 segments, which corresponds to portions of the file that need to
63 be mapped into the process' address space.
64
65 Each loadable segment has the following important properties:
66
67 p_offset -> segment file offset
68 p_filesz -> segment file size
69 p_memsz -> segment memory size (always >= p_filesz)
70 p_vaddr -> segment's virtual address
71 p_flags -> segment flags (e.g. readable, writable, executable)
72
73 We will ignore the p_paddr and p_align fields of ElfW(Phdr) for now.
74
75 The loadable segments can be seen as a list of [p_vaddr ... p_vaddr+p_memsz)
76 ranges of virtual addresses. A few rules apply:
77
78 - the virtual address ranges should not overlap.
79
80 - if a segment's p_filesz is smaller than its p_memsz, the extra bytes
81 between them should always be initialized to 0.
82
83 - ranges do not necessarily start or end at page boundaries. Two distinct
84 segments can have their start and end on the same page. In this case, the
85 page inherits the mapping flags of the latter segment.
86
87 Finally, the real load addrs of each segment is not p_vaddr. Instead the
88 loader decides where to load the first segment, then will load all others
89 relative to the first one to respect the initial range layout.
90
91 For example, consider the following list:
92
93 [ offset:0, filesz:0x4000, memsz:0x4000, vaddr:0x30000 ],
94 [ offset:0x4000, filesz:0x2000, memsz:0x8000, vaddr:0x40000 ],
95
96 This corresponds to two segments that cover these virtual address ranges:
97
98 0x30000...0x34000
99 0x40000...0x48000
100
101 If the loader decides to load the first segment at address 0xa0000000
102 then the segments' load address ranges will be:
103
104 0xa0030000...0xa0034000
105 0xa0040000...0xa0048000
106
107 In other words, all segments must be loaded at an address that has the same
108 constant offset from their p_vaddr value. This offset is computed as the
109 difference between the first segment's load address, and its p_vaddr value.
110
111 However, in practice, segments do _not_ start at page boundaries. Since we
112 can only memory-map at page boundaries, this means that the bias is
113 computed as:
114
115 load_bias = phdr0_load_address - PAGE_START(phdr0->p_vaddr)
116
117 (NOTE: The value must be used as a 32-bit unsigned integer, to deal with
118 possible wrap around UINT32_MAX for possible large p_vaddr values).
119
120 And that the phdr0_load_address must start at a page boundary, with
121 the segment's real content starting at:
122
123 phdr0_load_address + PAGE_OFFSET(phdr0->p_vaddr)
124
125 Note that ELF requires the following condition to make the mmap()-ing work:
126
127 PAGE_OFFSET(phdr0->p_vaddr) == PAGE_OFFSET(phdr0->p_offset)
128
129 The load_bias must be added to any p_vaddr value read from the ELF file to
130 determine the corresponding memory address.
131
132 **/
133
134 #define MAYBE_MAP_FLAG(x, from, to) (((x) & (from)) ? (to) : 0)
135 #define PFLAGS_TO_PROT(x) (MAYBE_MAP_FLAG((x), PF_X, PROT_EXEC) | \
136 MAYBE_MAP_FLAG((x), PF_R, PROT_READ) | \
137 MAYBE_MAP_FLAG((x), PF_W, PROT_WRITE))
138
ElfReader()139 ElfReader::ElfReader()
140 : did_read_(false), did_load_(false), fd_(-1), file_offset_(0), file_size_(0), phdr_num_(0),
141 phdr_table_(nullptr), shdr_table_(nullptr), shdr_num_(0), dynamic_(nullptr), strtab_(nullptr),
142 strtab_size_(0), load_start_(nullptr), load_size_(0), load_bias_(0), loaded_phdr_(nullptr),
143 mapped_by_caller_(false) {
144 }
145
Read(const char * name,int fd,off64_t file_offset,off64_t file_size)146 bool ElfReader::Read(const char* name, int fd, off64_t file_offset, off64_t file_size) {
147 CHECK(!did_read_);
148 CHECK(!did_load_);
149 name_ = name;
150 fd_ = fd;
151 file_offset_ = file_offset;
152 file_size_ = file_size;
153
154 if (ReadElfHeader() &&
155 VerifyElfHeader() &&
156 ReadProgramHeaders() &&
157 ReadSectionHeaders() &&
158 ReadDynamicSection()) {
159 did_read_ = true;
160 }
161
162 return did_read_;
163 }
164
Load(const android_dlextinfo * extinfo)165 bool ElfReader::Load(const android_dlextinfo* extinfo) {
166 CHECK(did_read_);
167 CHECK(!did_load_);
168 if (ReserveAddressSpace(extinfo) &&
169 LoadSegments() &&
170 FindPhdr()) {
171 did_load_ = true;
172 }
173
174 return did_load_;
175 }
176
get_string(ElfW (Word)index) const177 const char* ElfReader::get_string(ElfW(Word) index) const {
178 CHECK(strtab_ != nullptr);
179 CHECK(index < strtab_size_);
180
181 return strtab_ + index;
182 }
183
ReadElfHeader()184 bool ElfReader::ReadElfHeader() {
185 ssize_t rc = TEMP_FAILURE_RETRY(pread64(fd_, &header_, sizeof(header_), file_offset_));
186 if (rc < 0) {
187 DL_ERR("can't read file \"%s\": %s", name_.c_str(), strerror(errno));
188 return false;
189 }
190
191 if (rc != sizeof(header_)) {
192 DL_ERR("\"%s\" is too small to be an ELF executable: only found %zd bytes", name_.c_str(),
193 static_cast<size_t>(rc));
194 return false;
195 }
196 return true;
197 }
198
VerifyElfHeader()199 bool ElfReader::VerifyElfHeader() {
200 if (memcmp(header_.e_ident, ELFMAG, SELFMAG) != 0) {
201 DL_ERR("\"%s\" has bad ELF magic", name_.c_str());
202 return false;
203 }
204
205 // Try to give a clear diagnostic for ELF class mismatches, since they're
206 // an easy mistake to make during the 32-bit/64-bit transition period.
207 int elf_class = header_.e_ident[EI_CLASS];
208 #if defined(__LP64__)
209 if (elf_class != ELFCLASS64) {
210 if (elf_class == ELFCLASS32) {
211 DL_ERR("\"%s\" is 32-bit instead of 64-bit", name_.c_str());
212 } else {
213 DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class);
214 }
215 return false;
216 }
217 #else
218 if (elf_class != ELFCLASS32) {
219 if (elf_class == ELFCLASS64) {
220 DL_ERR("\"%s\" is 64-bit instead of 32-bit", name_.c_str());
221 } else {
222 DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class);
223 }
224 return false;
225 }
226 #endif
227
228 if (header_.e_ident[EI_DATA] != ELFDATA2LSB) {
229 DL_ERR("\"%s\" not little-endian: %d", name_.c_str(), header_.e_ident[EI_DATA]);
230 return false;
231 }
232
233 if (header_.e_type != ET_DYN) {
234 DL_ERR("\"%s\" has unexpected e_type: %d", name_.c_str(), header_.e_type);
235 return false;
236 }
237
238 if (header_.e_version != EV_CURRENT) {
239 DL_ERR("\"%s\" has unexpected e_version: %d", name_.c_str(), header_.e_version);
240 return false;
241 }
242
243 if (header_.e_machine != GetTargetElfMachine()) {
244 DL_ERR("\"%s\" has unexpected e_machine: %d", name_.c_str(), header_.e_machine);
245 return false;
246 }
247
248 return true;
249 }
250
CheckFileRange(ElfW (Addr)offset,size_t size)251 bool ElfReader::CheckFileRange(ElfW(Addr) offset, size_t size) {
252 off64_t range_start;
253 off64_t range_end;
254
255 return safe_add(&range_start, file_offset_, offset) &&
256 safe_add(&range_end, range_start, size) &&
257 range_start < file_size_ &&
258 range_end <= file_size_;
259 }
260
261 // Loads the program header table from an ELF file into a read-only private
262 // anonymous mmap-ed block.
ReadProgramHeaders()263 bool ElfReader::ReadProgramHeaders() {
264 phdr_num_ = header_.e_phnum;
265
266 // Like the kernel, we only accept program header tables that
267 // are smaller than 64KiB.
268 if (phdr_num_ < 1 || phdr_num_ > 65536/sizeof(ElfW(Phdr))) {
269 DL_ERR("\"%s\" has invalid e_phnum: %zd", name_.c_str(), phdr_num_);
270 return false;
271 }
272
273 // Boundary checks
274 size_t size = phdr_num_ * sizeof(ElfW(Phdr));
275 if (!CheckFileRange(header_.e_phoff, size)) {
276 DL_ERR("\"%s\" has invalid phdr offset/size", name_.c_str());
277 return false;
278 }
279
280 if (!phdr_fragment_.Map(fd_, file_offset_, header_.e_phoff, size)) {
281 DL_ERR("\"%s\" phdr mmap failed: %s", name_.c_str(), strerror(errno));
282 return false;
283 }
284
285 phdr_table_ = static_cast<ElfW(Phdr)*>(phdr_fragment_.data());
286 return true;
287 }
288
ReadSectionHeaders()289 bool ElfReader::ReadSectionHeaders() {
290 shdr_num_ = header_.e_shnum;
291
292 if (shdr_num_ == 0) {
293 DL_ERR("\"%s\" has no section headers", name_.c_str());
294 return false;
295 }
296
297 size_t size = shdr_num_ * sizeof(ElfW(Shdr));
298 if (!CheckFileRange(header_.e_shoff, size)) {
299 DL_ERR("\"%s\" has invalid shdr offset/size", name_.c_str());
300 return false;
301 }
302
303 if (!shdr_fragment_.Map(fd_, file_offset_, header_.e_shoff, size)) {
304 DL_ERR("\"%s\" shdr mmap failed: %s", name_.c_str(), strerror(errno));
305 return false;
306 }
307
308 shdr_table_ = static_cast<const ElfW(Shdr)*>(shdr_fragment_.data());
309 return true;
310 }
311
ReadDynamicSection()312 bool ElfReader::ReadDynamicSection() {
313 // 1. Find .dynamic section (in section headers)
314 const ElfW(Shdr)* dynamic_shdr = nullptr;
315 for (size_t i = 0; i < shdr_num_; ++i) {
316 if (shdr_table_[i].sh_type == SHT_DYNAMIC) {
317 dynamic_shdr = &shdr_table_ [i];
318 break;
319 }
320 }
321
322 if (dynamic_shdr == nullptr) {
323 DL_ERR("\"%s\" .dynamic section header was not found", name_.c_str());
324 return false;
325 }
326
327 if (dynamic_shdr->sh_link >= shdr_num_) {
328 DL_ERR("\"%s\" .dynamic section has invalid sh_link: %d", name_.c_str(), dynamic_shdr->sh_link);
329 return false;
330 }
331
332 const ElfW(Shdr)* strtab_shdr = &shdr_table_[dynamic_shdr->sh_link];
333
334 if (strtab_shdr->sh_type != SHT_STRTAB) {
335 DL_ERR("\"%s\" .dynamic section has invalid link(%d) sh_type: %d (expected SHT_STRTAB)",
336 name_.c_str(), dynamic_shdr->sh_link, strtab_shdr->sh_type);
337 return false;
338 }
339
340 if (!CheckFileRange(dynamic_shdr->sh_offset, dynamic_shdr->sh_size)) {
341 DL_ERR("\"%s\" has invalid offset/size of .dynamic section", name_.c_str());
342 PRINT("\"%s\" has invalid offset/size of .dynamic section", name_.c_str());
343 return false;
344 }
345
346 if (!dynamic_fragment_.Map(fd_, file_offset_, dynamic_shdr->sh_offset, dynamic_shdr->sh_size)) {
347 DL_ERR("\"%s\" dynamic section mmap failed: %s", name_.c_str(), strerror(errno));
348 return false;
349 }
350
351 dynamic_ = static_cast<const ElfW(Dyn)*>(dynamic_fragment_.data());
352
353 if (!CheckFileRange(strtab_shdr->sh_offset, strtab_shdr->sh_size)) {
354 DL_ERR("\"%s\" has invalid offset/size of the .strtab section linked from .dynamic section",
355 name_.c_str());
356 return false;
357 }
358
359 if (!strtab_fragment_.Map(fd_, file_offset_, strtab_shdr->sh_offset, strtab_shdr->sh_size)) {
360 DL_ERR("\"%s\" strtab section mmap failed: %s", name_.c_str(), strerror(errno));
361 return false;
362 }
363
364 strtab_ = static_cast<const char*>(strtab_fragment_.data());
365 strtab_size_ = strtab_fragment_.size();
366 return true;
367 }
368
369 /* Returns the size of the extent of all the possibly non-contiguous
370 * loadable segments in an ELF program header table. This corresponds
371 * to the page-aligned size in bytes that needs to be reserved in the
372 * process' address space. If there are no loadable segments, 0 is
373 * returned.
374 *
375 * If out_min_vaddr or out_max_vaddr are not null, they will be
376 * set to the minimum and maximum addresses of pages to be reserved,
377 * or 0 if there is nothing to load.
378 */
phdr_table_get_load_size(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)* out_min_vaddr,ElfW (Addr)* out_max_vaddr)379 size_t phdr_table_get_load_size(const ElfW(Phdr)* phdr_table, size_t phdr_count,
380 ElfW(Addr)* out_min_vaddr,
381 ElfW(Addr)* out_max_vaddr) {
382 ElfW(Addr) min_vaddr = UINTPTR_MAX;
383 ElfW(Addr) max_vaddr = 0;
384
385 bool found_pt_load = false;
386 for (size_t i = 0; i < phdr_count; ++i) {
387 const ElfW(Phdr)* phdr = &phdr_table[i];
388
389 if (phdr->p_type != PT_LOAD) {
390 continue;
391 }
392 found_pt_load = true;
393
394 if (phdr->p_vaddr < min_vaddr) {
395 min_vaddr = phdr->p_vaddr;
396 }
397
398 if (phdr->p_vaddr + phdr->p_memsz > max_vaddr) {
399 max_vaddr = phdr->p_vaddr + phdr->p_memsz;
400 }
401 }
402 if (!found_pt_load) {
403 min_vaddr = 0;
404 }
405
406 min_vaddr = PAGE_START(min_vaddr);
407 max_vaddr = PAGE_END(max_vaddr);
408
409 if (out_min_vaddr != nullptr) {
410 *out_min_vaddr = min_vaddr;
411 }
412 if (out_max_vaddr != nullptr) {
413 *out_max_vaddr = max_vaddr;
414 }
415 return max_vaddr - min_vaddr;
416 }
417
418 // Reserve a virtual address range big enough to hold all loadable
419 // segments of a program header table. This is done by creating a
420 // private anonymous mmap() with PROT_NONE.
ReserveAddressSpace(const android_dlextinfo * extinfo)421 bool ElfReader::ReserveAddressSpace(const android_dlextinfo* extinfo) {
422 ElfW(Addr) min_vaddr;
423 load_size_ = phdr_table_get_load_size(phdr_table_, phdr_num_, &min_vaddr);
424 if (load_size_ == 0) {
425 DL_ERR("\"%s\" has no loadable segments", name_.c_str());
426 return false;
427 }
428
429 uint8_t* addr = reinterpret_cast<uint8_t*>(min_vaddr);
430 void* start;
431 size_t reserved_size = 0;
432 bool reserved_hint = true;
433 bool strict_hint = false;
434 // Assume position independent executable by default.
435 void* mmap_hint = nullptr;
436
437 if (extinfo != nullptr) {
438 if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS) {
439 reserved_size = extinfo->reserved_size;
440 reserved_hint = false;
441 } else if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS_HINT) {
442 reserved_size = extinfo->reserved_size;
443 }
444
445 if (addr != nullptr && (extinfo->flags & ANDROID_DLEXT_FORCE_FIXED_VADDR) != 0) {
446 mmap_hint = addr;
447 } else if ((extinfo->flags & ANDROID_DLEXT_LOAD_AT_FIXED_ADDRESS) != 0) {
448 mmap_hint = extinfo->reserved_addr;
449 strict_hint = true;
450 }
451 }
452
453 if (load_size_ > reserved_size) {
454 if (!reserved_hint) {
455 DL_ERR("reserved address space %zd smaller than %zd bytes needed for \"%s\"",
456 reserved_size - load_size_, load_size_, name_.c_str());
457 return false;
458 }
459 int mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS;
460 start = mmap(mmap_hint, load_size_, PROT_NONE, mmap_flags, -1, 0);
461 if (start == MAP_FAILED) {
462 DL_ERR("couldn't reserve %zd bytes of address space for \"%s\"", load_size_, name_.c_str());
463 return false;
464 }
465 if (strict_hint && (start != mmap_hint)) {
466 munmap(start, load_size_);
467 DL_ERR("couldn't reserve %zd bytes of address space at %p for \"%s\"",
468 load_size_, mmap_hint, name_.c_str());
469 return false;
470 }
471 } else {
472 start = extinfo->reserved_addr;
473 mapped_by_caller_ = true;
474 }
475
476 load_start_ = start;
477 load_bias_ = reinterpret_cast<uint8_t*>(start) - addr;
478 return true;
479 }
480
LoadSegments()481 bool ElfReader::LoadSegments() {
482 for (size_t i = 0; i < phdr_num_; ++i) {
483 const ElfW(Phdr)* phdr = &phdr_table_[i];
484
485 if (phdr->p_type != PT_LOAD) {
486 continue;
487 }
488
489 // Segment addresses in memory.
490 ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
491 ElfW(Addr) seg_end = seg_start + phdr->p_memsz;
492
493 ElfW(Addr) seg_page_start = PAGE_START(seg_start);
494 ElfW(Addr) seg_page_end = PAGE_END(seg_end);
495
496 ElfW(Addr) seg_file_end = seg_start + phdr->p_filesz;
497
498 // File offsets.
499 ElfW(Addr) file_start = phdr->p_offset;
500 ElfW(Addr) file_end = file_start + phdr->p_filesz;
501
502 ElfW(Addr) file_page_start = PAGE_START(file_start);
503 ElfW(Addr) file_length = file_end - file_page_start;
504
505 if (file_size_ <= 0) {
506 DL_ERR("\"%s\" invalid file size: %" PRId64, name_.c_str(), file_size_);
507 return false;
508 }
509
510 if (file_end > static_cast<size_t>(file_size_)) {
511 DL_ERR("invalid ELF file \"%s\" load segment[%zd]:"
512 " p_offset (%p) + p_filesz (%p) ( = %p) past end of file (0x%" PRIx64 ")",
513 name_.c_str(), i, reinterpret_cast<void*>(phdr->p_offset),
514 reinterpret_cast<void*>(phdr->p_filesz),
515 reinterpret_cast<void*>(file_end), file_size_);
516 return false;
517 }
518
519 if (file_length != 0) {
520 void* seg_addr = mmap64(reinterpret_cast<void*>(seg_page_start),
521 file_length,
522 PFLAGS_TO_PROT(phdr->p_flags),
523 MAP_FIXED|MAP_PRIVATE,
524 fd_,
525 file_offset_ + file_page_start);
526 if (seg_addr == MAP_FAILED) {
527 DL_ERR("couldn't map \"%s\" segment %zd: %s", name_.c_str(), i, strerror(errno));
528 return false;
529 }
530 }
531
532 // if the segment is writable, and does not end on a page boundary,
533 // zero-fill it until the page limit.
534 if ((phdr->p_flags & PF_W) != 0 && PAGE_OFFSET(seg_file_end) > 0) {
535 memset(reinterpret_cast<void*>(seg_file_end), 0, PAGE_SIZE - PAGE_OFFSET(seg_file_end));
536 }
537
538 seg_file_end = PAGE_END(seg_file_end);
539
540 // seg_file_end is now the first page address after the file
541 // content. If seg_end is larger, we need to zero anything
542 // between them. This is done by using a private anonymous
543 // map for all extra pages.
544 if (seg_page_end > seg_file_end) {
545 size_t zeromap_size = seg_page_end - seg_file_end;
546 void* zeromap = mmap(reinterpret_cast<void*>(seg_file_end),
547 zeromap_size,
548 PFLAGS_TO_PROT(phdr->p_flags),
549 MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE,
550 -1,
551 0);
552 if (zeromap == MAP_FAILED) {
553 DL_ERR("couldn't zero fill \"%s\" gap: %s", name_.c_str(), strerror(errno));
554 return false;
555 }
556
557 prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, zeromap, zeromap_size, ".bss");
558 }
559 }
560 return true;
561 }
562
563 /* Used internally. Used to set the protection bits of all loaded segments
564 * with optional extra flags (i.e. really PROT_WRITE). Used by
565 * phdr_table_protect_segments and phdr_table_unprotect_segments.
566 */
_phdr_table_set_load_prot(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int extra_prot_flags)567 static int _phdr_table_set_load_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count,
568 ElfW(Addr) load_bias, int extra_prot_flags) {
569 const ElfW(Phdr)* phdr = phdr_table;
570 const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
571
572 for (; phdr < phdr_limit; phdr++) {
573 if (phdr->p_type != PT_LOAD || (phdr->p_flags & PF_W) != 0) {
574 continue;
575 }
576
577 ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
578 ElfW(Addr) seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
579
580 int prot = PFLAGS_TO_PROT(phdr->p_flags);
581 if ((extra_prot_flags & PROT_WRITE) != 0) {
582 // make sure we're never simultaneously writable / executable
583 prot &= ~PROT_EXEC;
584 }
585
586 int ret = mprotect(reinterpret_cast<void*>(seg_page_start),
587 seg_page_end - seg_page_start,
588 prot | extra_prot_flags);
589 if (ret < 0) {
590 return -1;
591 }
592 }
593 return 0;
594 }
595
596 /* Restore the original protection modes for all loadable segments.
597 * You should only call this after phdr_table_unprotect_segments and
598 * applying all relocations.
599 *
600 * Input:
601 * phdr_table -> program header table
602 * phdr_count -> number of entries in tables
603 * load_bias -> load bias
604 * Return:
605 * 0 on error, -1 on failure (error code in errno).
606 */
phdr_table_protect_segments(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)607 int phdr_table_protect_segments(const ElfW(Phdr)* phdr_table,
608 size_t phdr_count, ElfW(Addr) load_bias) {
609 return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, 0);
610 }
611
612 /* Change the protection of all loaded segments in memory to writable.
613 * This is useful before performing relocations. Once completed, you
614 * will have to call phdr_table_protect_segments to restore the original
615 * protection flags on all segments.
616 *
617 * Note that some writable segments can also have their content turned
618 * to read-only by calling phdr_table_protect_gnu_relro. This is no
619 * performed here.
620 *
621 * Input:
622 * phdr_table -> program header table
623 * phdr_count -> number of entries in tables
624 * load_bias -> load bias
625 * Return:
626 * 0 on error, -1 on failure (error code in errno).
627 */
phdr_table_unprotect_segments(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)628 int phdr_table_unprotect_segments(const ElfW(Phdr)* phdr_table,
629 size_t phdr_count, ElfW(Addr) load_bias) {
630 return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, PROT_WRITE);
631 }
632
633 /* Used internally by phdr_table_protect_gnu_relro and
634 * phdr_table_unprotect_gnu_relro.
635 */
_phdr_table_set_gnu_relro_prot(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int prot_flags)636 static int _phdr_table_set_gnu_relro_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count,
637 ElfW(Addr) load_bias, int prot_flags) {
638 const ElfW(Phdr)* phdr = phdr_table;
639 const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
640
641 for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
642 if (phdr->p_type != PT_GNU_RELRO) {
643 continue;
644 }
645
646 // Tricky: what happens when the relro segment does not start
647 // or end at page boundaries? We're going to be over-protective
648 // here and put every page touched by the segment as read-only.
649
650 // This seems to match Ian Lance Taylor's description of the
651 // feature at http://www.airs.com/blog/archives/189.
652
653 // Extract:
654 // Note that the current dynamic linker code will only work
655 // correctly if the PT_GNU_RELRO segment starts on a page
656 // boundary. This is because the dynamic linker rounds the
657 // p_vaddr field down to the previous page boundary. If
658 // there is anything on the page which should not be read-only,
659 // the program is likely to fail at runtime. So in effect the
660 // linker must only emit a PT_GNU_RELRO segment if it ensures
661 // that it starts on a page boundary.
662 ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
663 ElfW(Addr) seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
664
665 int ret = mprotect(reinterpret_cast<void*>(seg_page_start),
666 seg_page_end - seg_page_start,
667 prot_flags);
668 if (ret < 0) {
669 return -1;
670 }
671 }
672 return 0;
673 }
674
675 /* Apply GNU relro protection if specified by the program header. This will
676 * turn some of the pages of a writable PT_LOAD segment to read-only, as
677 * specified by one or more PT_GNU_RELRO segments. This must be always
678 * performed after relocations.
679 *
680 * The areas typically covered are .got and .data.rel.ro, these are
681 * read-only from the program's POV, but contain absolute addresses
682 * that need to be relocated before use.
683 *
684 * Input:
685 * phdr_table -> program header table
686 * phdr_count -> number of entries in tables
687 * load_bias -> load bias
688 * Return:
689 * 0 on error, -1 on failure (error code in errno).
690 */
phdr_table_protect_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)691 int phdr_table_protect_gnu_relro(const ElfW(Phdr)* phdr_table,
692 size_t phdr_count, ElfW(Addr) load_bias) {
693 return _phdr_table_set_gnu_relro_prot(phdr_table, phdr_count, load_bias, PROT_READ);
694 }
695
696 /* Serialize the GNU relro segments to the given file descriptor. This can be
697 * performed after relocations to allow another process to later share the
698 * relocated segment, if it was loaded at the same address.
699 *
700 * Input:
701 * phdr_table -> program header table
702 * phdr_count -> number of entries in tables
703 * load_bias -> load bias
704 * fd -> writable file descriptor to use
705 * Return:
706 * 0 on error, -1 on failure (error code in errno).
707 */
phdr_table_serialize_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int fd)708 int phdr_table_serialize_gnu_relro(const ElfW(Phdr)* phdr_table,
709 size_t phdr_count,
710 ElfW(Addr) load_bias,
711 int fd) {
712 const ElfW(Phdr)* phdr = phdr_table;
713 const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
714 ssize_t file_offset = 0;
715
716 for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
717 if (phdr->p_type != PT_GNU_RELRO) {
718 continue;
719 }
720
721 ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
722 ElfW(Addr) seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
723 ssize_t size = seg_page_end - seg_page_start;
724
725 ssize_t written = TEMP_FAILURE_RETRY(write(fd, reinterpret_cast<void*>(seg_page_start), size));
726 if (written != size) {
727 return -1;
728 }
729 void* map = mmap(reinterpret_cast<void*>(seg_page_start), size, PROT_READ,
730 MAP_PRIVATE|MAP_FIXED, fd, file_offset);
731 if (map == MAP_FAILED) {
732 return -1;
733 }
734 file_offset += size;
735 }
736 return 0;
737 }
738
739 /* Where possible, replace the GNU relro segments with mappings of the given
740 * file descriptor. This can be performed after relocations to allow a file
741 * previously created by phdr_table_serialize_gnu_relro in another process to
742 * replace the dirty relocated pages, saving memory, if it was loaded at the
743 * same address. We have to compare the data before we map over it, since some
744 * parts of the relro segment may not be identical due to other libraries in
745 * the process being loaded at different addresses.
746 *
747 * Input:
748 * phdr_table -> program header table
749 * phdr_count -> number of entries in tables
750 * load_bias -> load bias
751 * fd -> readable file descriptor to use
752 * Return:
753 * 0 on error, -1 on failure (error code in errno).
754 */
phdr_table_map_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int fd)755 int phdr_table_map_gnu_relro(const ElfW(Phdr)* phdr_table,
756 size_t phdr_count,
757 ElfW(Addr) load_bias,
758 int fd) {
759 // Map the file at a temporary location so we can compare its contents.
760 struct stat file_stat;
761 if (TEMP_FAILURE_RETRY(fstat(fd, &file_stat)) != 0) {
762 return -1;
763 }
764 off_t file_size = file_stat.st_size;
765 void* temp_mapping = nullptr;
766 if (file_size > 0) {
767 temp_mapping = mmap(nullptr, file_size, PROT_READ, MAP_PRIVATE, fd, 0);
768 if (temp_mapping == MAP_FAILED) {
769 return -1;
770 }
771 }
772 size_t file_offset = 0;
773
774 // Iterate over the relro segments and compare/remap the pages.
775 const ElfW(Phdr)* phdr = phdr_table;
776 const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
777
778 for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
779 if (phdr->p_type != PT_GNU_RELRO) {
780 continue;
781 }
782
783 ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
784 ElfW(Addr) seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
785
786 char* file_base = static_cast<char*>(temp_mapping) + file_offset;
787 char* mem_base = reinterpret_cast<char*>(seg_page_start);
788 size_t match_offset = 0;
789 size_t size = seg_page_end - seg_page_start;
790
791 if (file_size - file_offset < size) {
792 // File is too short to compare to this segment. The contents are likely
793 // different as well (it's probably for a different library version) so
794 // just don't bother checking.
795 break;
796 }
797
798 while (match_offset < size) {
799 // Skip over dissimilar pages.
800 while (match_offset < size &&
801 memcmp(mem_base + match_offset, file_base + match_offset, PAGE_SIZE) != 0) {
802 match_offset += PAGE_SIZE;
803 }
804
805 // Count similar pages.
806 size_t mismatch_offset = match_offset;
807 while (mismatch_offset < size &&
808 memcmp(mem_base + mismatch_offset, file_base + mismatch_offset, PAGE_SIZE) == 0) {
809 mismatch_offset += PAGE_SIZE;
810 }
811
812 // Map over similar pages.
813 if (mismatch_offset > match_offset) {
814 void* map = mmap(mem_base + match_offset, mismatch_offset - match_offset,
815 PROT_READ, MAP_PRIVATE|MAP_FIXED, fd, match_offset);
816 if (map == MAP_FAILED) {
817 munmap(temp_mapping, file_size);
818 return -1;
819 }
820 }
821
822 match_offset = mismatch_offset;
823 }
824
825 // Add to the base file offset in case there are multiple relro segments.
826 file_offset += size;
827 }
828 munmap(temp_mapping, file_size);
829 return 0;
830 }
831
832
833 #if defined(__arm__)
834
835 # ifndef PT_ARM_EXIDX
836 # define PT_ARM_EXIDX 0x70000001 /* .ARM.exidx segment */
837 # endif
838
839 /* Return the address and size of the .ARM.exidx section in memory,
840 * if present.
841 *
842 * Input:
843 * phdr_table -> program header table
844 * phdr_count -> number of entries in tables
845 * load_bias -> load bias
846 * Output:
847 * arm_exidx -> address of table in memory (null on failure).
848 * arm_exidx_count -> number of items in table (0 on failure).
849 * Return:
850 * 0 on error, -1 on failure (_no_ error code in errno)
851 */
phdr_table_get_arm_exidx(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,ElfW (Addr)** arm_exidx,size_t * arm_exidx_count)852 int phdr_table_get_arm_exidx(const ElfW(Phdr)* phdr_table, size_t phdr_count,
853 ElfW(Addr) load_bias,
854 ElfW(Addr)** arm_exidx, size_t* arm_exidx_count) {
855 const ElfW(Phdr)* phdr = phdr_table;
856 const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
857
858 for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
859 if (phdr->p_type != PT_ARM_EXIDX) {
860 continue;
861 }
862
863 *arm_exidx = reinterpret_cast<ElfW(Addr)*>(load_bias + phdr->p_vaddr);
864 *arm_exidx_count = phdr->p_memsz / 8;
865 return 0;
866 }
867 *arm_exidx = nullptr;
868 *arm_exidx_count = 0;
869 return -1;
870 }
871 #endif
872
873 /* Return the address and size of the ELF file's .dynamic section in memory,
874 * or null if missing.
875 *
876 * Input:
877 * phdr_table -> program header table
878 * phdr_count -> number of entries in tables
879 * load_bias -> load bias
880 * Output:
881 * dynamic -> address of table in memory (null on failure).
882 * dynamic_flags -> protection flags for section (unset on failure)
883 * Return:
884 * void
885 */
phdr_table_get_dynamic_section(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,ElfW (Dyn)** dynamic,ElfW (Word)* dynamic_flags)886 void phdr_table_get_dynamic_section(const ElfW(Phdr)* phdr_table, size_t phdr_count,
887 ElfW(Addr) load_bias, ElfW(Dyn)** dynamic,
888 ElfW(Word)* dynamic_flags) {
889 *dynamic = nullptr;
890 for (size_t i = 0; i<phdr_count; ++i) {
891 const ElfW(Phdr)& phdr = phdr_table[i];
892 if (phdr.p_type == PT_DYNAMIC) {
893 *dynamic = reinterpret_cast<ElfW(Dyn)*>(load_bias + phdr.p_vaddr);
894 if (dynamic_flags) {
895 *dynamic_flags = phdr.p_flags;
896 }
897 return;
898 }
899 }
900 }
901
902 /* Return the program interpreter string, or nullptr if missing.
903 *
904 * Input:
905 * phdr_table -> program header table
906 * phdr_count -> number of entries in tables
907 * load_bias -> load bias
908 * Return:
909 * pointer to the program interpreter string.
910 */
phdr_table_get_interpreter_name(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)911 const char* phdr_table_get_interpreter_name(const ElfW(Phdr) * phdr_table, size_t phdr_count,
912 ElfW(Addr) load_bias) {
913 for (size_t i = 0; i<phdr_count; ++i) {
914 const ElfW(Phdr)& phdr = phdr_table[i];
915 if (phdr.p_type == PT_INTERP) {
916 return reinterpret_cast<const char*>(load_bias + phdr.p_vaddr);
917 }
918 }
919 return nullptr;
920 }
921
922 // Sets loaded_phdr_ to the address of the program header table as it appears
923 // in the loaded segments in memory. This is in contrast with phdr_table_,
924 // which is temporary and will be released before the library is relocated.
FindPhdr()925 bool ElfReader::FindPhdr() {
926 const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_;
927
928 // If there is a PT_PHDR, use it directly.
929 for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
930 if (phdr->p_type == PT_PHDR) {
931 return CheckPhdr(load_bias_ + phdr->p_vaddr);
932 }
933 }
934
935 // Otherwise, check the first loadable segment. If its file offset
936 // is 0, it starts with the ELF header, and we can trivially find the
937 // loaded program header from it.
938 for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
939 if (phdr->p_type == PT_LOAD) {
940 if (phdr->p_offset == 0) {
941 ElfW(Addr) elf_addr = load_bias_ + phdr->p_vaddr;
942 const ElfW(Ehdr)* ehdr = reinterpret_cast<const ElfW(Ehdr)*>(elf_addr);
943 ElfW(Addr) offset = ehdr->e_phoff;
944 return CheckPhdr(reinterpret_cast<ElfW(Addr)>(ehdr) + offset);
945 }
946 break;
947 }
948 }
949
950 DL_ERR("can't find loaded phdr for \"%s\"", name_.c_str());
951 return false;
952 }
953
954 // Ensures that our program header is actually within a loadable
955 // segment. This should help catch badly-formed ELF files that
956 // would cause the linker to crash later when trying to access it.
CheckPhdr(ElfW (Addr)loaded)957 bool ElfReader::CheckPhdr(ElfW(Addr) loaded) {
958 const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_;
959 ElfW(Addr) loaded_end = loaded + (phdr_num_ * sizeof(ElfW(Phdr)));
960 for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
961 if (phdr->p_type != PT_LOAD) {
962 continue;
963 }
964 ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
965 ElfW(Addr) seg_end = phdr->p_filesz + seg_start;
966 if (seg_start <= loaded && loaded_end <= seg_end) {
967 loaded_phdr_ = reinterpret_cast<const ElfW(Phdr)*>(loaded);
968 return true;
969 }
970 }
971 DL_ERR("\"%s\" loaded phdr %p not in loadable segment",
972 name_.c_str(), reinterpret_cast<void*>(loaded));
973 return false;
974 }
975