1 
2 /* -----------------------------------------------------------------------------------------------------------
3 Software License for The Fraunhofer FDK AAC Codec Library for Android
4 
5 � Copyright  1995 - 2015 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
6   All rights reserved.
7 
8  1.    INTRODUCTION
9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
12 
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
16 of the MPEG specifications.
17 
18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
20 individually for the purpose of encoding or decoding bit streams in products that are compliant with
21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
23 software may already be covered under those patent licenses when it is used for those licensed purposes only.
24 
25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
27 applications information and documentation.
28 
29 2.    COPYRIGHT LICENSE
30 
31 Redistribution and use in source and binary forms, with or without modification, are permitted without
32 payment of copyright license fees provided that you satisfy the following conditions:
33 
34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
35 your modifications thereto in source code form.
36 
37 You must retain the complete text of this software license in the documentation and/or other materials
38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
40 modifications thereto to recipients of copies in binary form.
41 
42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without
43 prior written permission.
44 
45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
46 software or your modifications thereto.
47 
48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
49 and the date of any change. For modified versions of the FDK AAC Codec, the term
50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
52 
53 3.    NO PATENT LICENSE
54 
55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
57 respect to this software.
58 
59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
60 by appropriate patent licenses.
61 
62 4.    DISCLAIMER
63 
64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
69 or business interruption, however caused and on any theory of liability, whether in contract, strict
70 liability, or tort (including negligence), arising in any way out of the use of this software, even if
71 advised of the possibility of such damage.
72 
73 5.    CONTACT INFORMATION
74 
75 Fraunhofer Institute for Integrated Circuits IIS
76 Attention: Audio and Multimedia Departments - FDK AAC LL
77 Am Wolfsmantel 33
78 91058 Erlangen, Germany
79 
80 www.iis.fraunhofer.de/amm
81 amm-info@iis.fraunhofer.de
82 ----------------------------------------------------------------------------------------------------------- */
83 
84 /******************************** MPEG Audio Encoder **************************
85 
86    Initial author:       M.Werner
87    contents/description: Quantization
88 
89 ******************************************************************************/
90 
91 #include "quantize.h"
92 
93 #include "aacEnc_rom.h"
94 
95 /*****************************************************************************
96 
97     functionname: FDKaacEnc_quantizeLines
98     description: quantizes spectrum lines
99     returns:
100     input: global gain, number of lines to process, spectral data
101     output: quantized spectrum
102 
103 *****************************************************************************/
FDKaacEnc_quantizeLines(INT gain,INT noOfLines,FIXP_DBL * mdctSpectrum,SHORT * quaSpectrum,INT dZoneQuantEnable)104 static void FDKaacEnc_quantizeLines(INT      gain,
105                           INT      noOfLines,
106                           FIXP_DBL *mdctSpectrum,
107                           SHORT    *quaSpectrum,
108                           INT      dZoneQuantEnable)
109 {
110   int   line;
111   FIXP_DBL k = FL2FXCONST_DBL(0.0f);
112   FIXP_QTD quantizer = FDKaacEnc_quantTableQ[(-gain)&3];
113   INT      quantizershift = ((-gain)>>2)+1;
114   const INT kShift=16;
115 
116   if (dZoneQuantEnable)
117     k = FL2FXCONST_DBL(0.23f)>>kShift;
118   else
119     k = FL2FXCONST_DBL(-0.0946f + 0.5f)>>kShift;
120 
121   for (line = 0; line < noOfLines; line++)
122   {
123     FIXP_DBL accu = fMultDiv2(mdctSpectrum[line],quantizer);
124 
125     if (accu < FL2FXCONST_DBL(0.0f))
126     {
127       accu=-accu;
128       /* normalize */
129       INT   accuShift = CntLeadingZeros(accu) - 1;  /* CountLeadingBits() is not necessary here since test value is always > 0 */
130       accu <<= accuShift;
131       INT tabIndex = (INT)(accu>>(DFRACT_BITS-2-MANT_DIGITS))&(~MANT_SIZE);
132       INT totalShift = quantizershift-accuShift+1;
133       accu = fMultDiv2(FDKaacEnc_mTab_3_4[tabIndex],FDKaacEnc_quantTableE[totalShift&3]);
134       totalShift = (16-4)-(3*(totalShift>>2));
135       FDK_ASSERT(totalShift >=0); /* MAX_QUANT_VIOLATION */
136       accu >>= fixMin(totalShift,DFRACT_BITS-1);
137       quaSpectrum[line] = (SHORT)(-((LONG)(k + accu) >> (DFRACT_BITS-1-16)));
138     }
139     else if(accu > FL2FXCONST_DBL(0.0f))
140     {
141       /* normalize */
142       INT   accuShift = CntLeadingZeros(accu) - 1;  /* CountLeadingBits() is not necessary here since test value is always > 0 */
143       accu <<= accuShift;
144       INT tabIndex = (INT)(accu>>(DFRACT_BITS-2-MANT_DIGITS))&(~MANT_SIZE);
145       INT totalShift = quantizershift-accuShift+1;
146       accu = fMultDiv2(FDKaacEnc_mTab_3_4[tabIndex],FDKaacEnc_quantTableE[totalShift&3]);
147       totalShift = (16-4)-(3*(totalShift>>2));
148       FDK_ASSERT(totalShift >=0); /* MAX_QUANT_VIOLATION */
149       accu >>= fixMin(totalShift,DFRACT_BITS-1);
150       quaSpectrum[line] = (SHORT)((LONG)(k + accu) >> (DFRACT_BITS-1-16));
151     }
152     else
153       quaSpectrum[line]=0;
154   }
155 }
156 
157 
158 /*****************************************************************************
159 
160     functionname:iFDKaacEnc_quantizeLines
161     description: iquantizes spectrum lines
162                  mdctSpectrum = iquaSpectrum^4/3 *2^(0.25*gain)
163     input: global gain, number of lines to process,quantized spectrum
164     output: spectral data
165 
166 *****************************************************************************/
FDKaacEnc_invQuantizeLines(INT gain,INT noOfLines,SHORT * quantSpectrum,FIXP_DBL * mdctSpectrum)167 static void FDKaacEnc_invQuantizeLines(INT  gain,
168                              INT  noOfLines,
169                              SHORT *quantSpectrum,
170                              FIXP_DBL *mdctSpectrum)
171 
172 {
173   INT iquantizermod;
174   INT iquantizershift;
175   INT line;
176 
177   iquantizermod = gain&3;
178   iquantizershift = gain>>2;
179 
180   for (line = 0; line < noOfLines; line++) {
181 
182     if(quantSpectrum[line] < 0) {
183       FIXP_DBL accu;
184       INT ex,specExp,tabIndex;
185       FIXP_DBL s,t;
186 
187       accu = (FIXP_DBL) -quantSpectrum[line];
188 
189       ex = CountLeadingBits(accu);
190       accu <<= ex;
191       specExp = (DFRACT_BITS-1) - ex;
192 
193       FDK_ASSERT(specExp < 14);       /* this fails if abs(value) > 8191 */
194 
195       tabIndex = (INT)(accu>>(DFRACT_BITS-2-MANT_DIGITS))&(~MANT_SIZE);
196 
197       /* calculate "mantissa" ^4/3 */
198       s = FDKaacEnc_mTab_4_3Elc[tabIndex];
199 
200       /* get approperiate exponent multiplier for specExp^3/4 combined with scfMod */
201       t = FDKaacEnc_specExpMantTableCombElc[iquantizermod][specExp];
202 
203       /* multiply "mantissa" ^4/3 with exponent multiplier */
204       accu = fMult(s,t);
205 
206       /* get approperiate exponent shifter */
207       specExp = FDKaacEnc_specExpTableComb[iquantizermod][specExp]-1; /* -1 to avoid overflows in accu */
208 
209       if ((-iquantizershift-specExp) < 0)
210         accu <<= -(-iquantizershift-specExp);
211       else
212         accu >>= -iquantizershift-specExp;
213 
214       mdctSpectrum[line] = -accu;
215     }
216     else if (quantSpectrum[line] > 0) {
217       FIXP_DBL accu;
218       INT ex,specExp,tabIndex;
219       FIXP_DBL s,t;
220 
221       accu = (FIXP_DBL)(INT)quantSpectrum[line];
222 
223       ex = CountLeadingBits(accu);
224       accu <<= ex;
225       specExp = (DFRACT_BITS-1) - ex;
226 
227       FDK_ASSERT(specExp < 14);       /* this fails if abs(value) > 8191 */
228 
229       tabIndex = (INT)(accu>>(DFRACT_BITS-2-MANT_DIGITS))&(~MANT_SIZE);
230 
231       /* calculate "mantissa" ^4/3 */
232       s = FDKaacEnc_mTab_4_3Elc[tabIndex];
233 
234       /* get approperiate exponent multiplier for specExp^3/4 combined with scfMod */
235       t = FDKaacEnc_specExpMantTableCombElc[iquantizermod][specExp];
236 
237       /* multiply "mantissa" ^4/3 with exponent multiplier */
238       accu = fMult(s,t);
239 
240       /* get approperiate exponent shifter */
241       specExp = FDKaacEnc_specExpTableComb[iquantizermod][specExp]-1; /* -1 to avoid overflows in accu */
242 
243       if (( -iquantizershift-specExp) < 0)
244         accu <<= -(-iquantizershift-specExp);
245       else
246         accu >>= -iquantizershift-specExp;
247 
248       mdctSpectrum[line] = accu;
249     }
250     else {
251       mdctSpectrum[line] = FL2FXCONST_DBL(0.0f);
252     }
253   }
254 }
255 
256 /*****************************************************************************
257 
258     functionname: FDKaacEnc_QuantizeSpectrum
259     description: quantizes the entire spectrum
260     returns:
261     input: number of scalefactor bands to be quantized, ...
262     output: quantized spectrum
263 
264 *****************************************************************************/
FDKaacEnc_QuantizeSpectrum(INT sfbCnt,INT maxSfbPerGroup,INT sfbPerGroup,INT * sfbOffset,FIXP_DBL * mdctSpectrum,INT globalGain,INT * scalefactors,SHORT * quantizedSpectrum,INT dZoneQuantEnable)265 void FDKaacEnc_QuantizeSpectrum(INT sfbCnt,
266                       INT maxSfbPerGroup,
267                       INT sfbPerGroup,
268                       INT *sfbOffset,
269                       FIXP_DBL *mdctSpectrum,
270                       INT globalGain,
271                       INT *scalefactors,
272                       SHORT *quantizedSpectrum,
273                       INT dZoneQuantEnable)
274 {
275   INT sfbOffs,sfb;
276 
277   /* in FDKaacEnc_quantizeLines quaSpectrum is calculated with:
278         spec^(3/4) * 2^(-3/16*QSS) * 2^(3/4*scale) + k
279      simplify scaling calculation and reduce QSS before:
280         spec^(3/4) * 2^(-3/16*(QSS - 4*scale)) */
281 
282   for(sfbOffs=0;sfbOffs<sfbCnt;sfbOffs+=sfbPerGroup)
283   for (sfb = 0; sfb < maxSfbPerGroup; sfb++)
284   {
285     INT scalefactor = scalefactors[sfbOffs+sfb] ;
286 
287     FDKaacEnc_quantizeLines(globalGain - scalefactor, /* QSS */
288                   sfbOffset[sfbOffs+sfb+1] - sfbOffset[sfbOffs+sfb],
289                   mdctSpectrum + sfbOffset[sfbOffs+sfb],
290                   quantizedSpectrum + sfbOffset[sfbOffs+sfb],
291                   dZoneQuantEnable);
292   }
293 }
294 
295 /*****************************************************************************
296 
297     functionname: FDKaacEnc_calcSfbDist
298     description: calculates distortion of quantized values
299     returns: distortion
300     input: gain, number of lines to process, spectral data
301     output:
302 
303 *****************************************************************************/
FDKaacEnc_calcSfbDist(FIXP_DBL * mdctSpectrum,SHORT * quantSpectrum,INT noOfLines,INT gain,INT dZoneQuantEnable)304 FIXP_DBL FDKaacEnc_calcSfbDist(FIXP_DBL *mdctSpectrum,
305                      SHORT *quantSpectrum,
306                      INT noOfLines,
307                      INT gain,
308                      INT dZoneQuantEnable
309                      )
310 {
311   INT i,scale;
312   FIXP_DBL xfsf;
313   FIXP_DBL diff;
314   FIXP_DBL invQuantSpec;
315 
316   xfsf = FL2FXCONST_DBL(0.0f);
317 
318   for (i=0; i<noOfLines; i++) {
319     /* quantization */
320     FDKaacEnc_quantizeLines(gain,
321                   1,
322                  &mdctSpectrum[i],
323                  &quantSpectrum[i],
324                   dZoneQuantEnable);
325 
326     if (fAbs(quantSpectrum[i])>MAX_QUANT) {
327       return FL2FXCONST_DBL(0.0f);
328     }
329     /* inverse quantization */
330     FDKaacEnc_invQuantizeLines(gain,1,&quantSpectrum[i],&invQuantSpec);
331 
332     /* dist */
333     diff = fixp_abs(fixp_abs(invQuantSpec) - fixp_abs(mdctSpectrum[i]>>1));
334 
335     scale = CountLeadingBits(diff);
336     diff = scaleValue(diff, scale);
337     diff = fPow2(diff);
338     scale = fixMin(2*(scale-1), DFRACT_BITS-1);
339 
340     diff = scaleValue(diff, -scale);
341 
342     xfsf = xfsf + diff;
343   }
344 
345   xfsf = CalcLdData(xfsf);
346 
347   return xfsf;
348 }
349 
350 /*****************************************************************************
351 
352     functionname: FDKaacEnc_calcSfbQuantEnergyAndDist
353     description: calculates energy and distortion of quantized values
354     returns:
355     input: gain, number of lines to process, quantized spectral data,
356            spectral data
357     output: energy, distortion
358 
359 *****************************************************************************/
FDKaacEnc_calcSfbQuantEnergyAndDist(FIXP_DBL * mdctSpectrum,SHORT * quantSpectrum,INT noOfLines,INT gain,FIXP_DBL * en,FIXP_DBL * dist)360 void FDKaacEnc_calcSfbQuantEnergyAndDist(FIXP_DBL *mdctSpectrum,
361                                SHORT *quantSpectrum,
362                                INT noOfLines,
363                                INT gain,
364                                FIXP_DBL *en,
365                                FIXP_DBL *dist)
366 {
367   INT i,scale;
368   FIXP_DBL invQuantSpec;
369   FIXP_DBL diff;
370 
371   FIXP_DBL energy = FL2FXCONST_DBL(0.0f);
372   FIXP_DBL distortion = FL2FXCONST_DBL(0.0f);
373 
374   for (i=0; i<noOfLines; i++) {
375 
376     if (fAbs(quantSpectrum[i])>MAX_QUANT) {
377       *en   = FL2FXCONST_DBL(0.0f);
378       *dist = FL2FXCONST_DBL(0.0f);
379       return;
380     }
381 
382     /* inverse quantization */
383     FDKaacEnc_invQuantizeLines(gain,1,&quantSpectrum[i],&invQuantSpec);
384 
385     /* energy */
386     energy += fPow2(invQuantSpec);
387 
388     /* dist */
389     diff = fixp_abs(fixp_abs(invQuantSpec) - fixp_abs(mdctSpectrum[i]>>1));
390 
391     scale = CountLeadingBits(diff);
392     diff = scaleValue(diff, scale);
393     diff = fPow2(diff);
394 
395     scale = fixMin(2*(scale-1), DFRACT_BITS-1);
396 
397     diff = scaleValue(diff, -scale);
398 
399     distortion += diff;
400   }
401 
402   *en   = CalcLdData(energy)+FL2FXCONST_DBL(0.03125f);
403   *dist = CalcLdData(distortion);
404 }
405 
406