1 
2 /* -----------------------------------------------------------------------------------------------------------
3 Software License for The Fraunhofer FDK AAC Codec Library for Android
4 
5 � Copyright  1995 - 2015 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
6   All rights reserved.
7 
8  1.    INTRODUCTION
9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
12 
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
16 of the MPEG specifications.
17 
18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
20 individually for the purpose of encoding or decoding bit streams in products that are compliant with
21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
23 software may already be covered under those patent licenses when it is used for those licensed purposes only.
24 
25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
27 applications information and documentation.
28 
29 2.    COPYRIGHT LICENSE
30 
31 Redistribution and use in source and binary forms, with or without modification, are permitted without
32 payment of copyright license fees provided that you satisfy the following conditions:
33 
34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
35 your modifications thereto in source code form.
36 
37 You must retain the complete text of this software license in the documentation and/or other materials
38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
40 modifications thereto to recipients of copies in binary form.
41 
42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without
43 prior written permission.
44 
45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
46 software or your modifications thereto.
47 
48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
49 and the date of any change. For modified versions of the FDK AAC Codec, the term
50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
52 
53 3.    NO PATENT LICENSE
54 
55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
57 respect to this software.
58 
59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
60 by appropriate patent licenses.
61 
62 4.    DISCLAIMER
63 
64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
69 or business interruption, however caused and on any theory of liability, whether in contract, strict
70 liability, or tort (including negligence), arising in any way out of the use of this software, even if
71 advised of the possibility of such damage.
72 
73 5.    CONTACT INFORMATION
74 
75 Fraunhofer Institute for Integrated Circuits IIS
76 Attention: Audio and Multimedia Departments - FDK AAC LL
77 Am Wolfsmantel 33
78 91058 Erlangen, Germany
79 
80 www.iis.fraunhofer.de/amm
81 amm-info@iis.fraunhofer.de
82 ----------------------------------------------------------------------------------------------------------- */
83 
84 #include "ton_corr.h"
85 
86 #include "sbr_ram.h"
87 #include "sbr_misc.h"
88 #include "genericStds.h"
89 #include "autocorr2nd.h"
90 
91 
92 
93 /***************************************************************************
94 
95   Send autoCorrSecondOrder to mlfile
96 
97 ****************************************************************************/
98 
99 /**************************************************************************/
100 /*!
101   \brief Calculates the tonal to noise ration for different frequency bands
102    and time segments.
103 
104    The ratio between the predicted energy (tonal energy A) and the total
105    energy (A + B) is calculated. This is converted to the ratio between
106    the predicted energy (tonal energy A) and the non-predictable energy
107    (noise energy B). Hence the quota-matrix contains A/B = q/(1-q).
108 
109    The samples in nrgVector are scaled by 1.0/16.0
110 		The samples in pNrgVectorFreq	are scaled by 1.0/2.0
111    The samples in quotaMatrix are scaled by RELAXATION
112 
113   \return none.
114 
115 */
116 /**************************************************************************/
117 
118 void
FDKsbrEnc_CalculateTonalityQuotas(HANDLE_SBR_TON_CORR_EST hTonCorr,FIXP_DBL ** RESTRICT sourceBufferReal,FIXP_DBL ** RESTRICT sourceBufferImag,INT usb,INT qmfScale)119 FDKsbrEnc_CalculateTonalityQuotas( HANDLE_SBR_TON_CORR_EST hTonCorr,      /*!< Handle to SBR_TON_CORR struct. */
120                                    FIXP_DBL **RESTRICT sourceBufferReal,  /*!< The real part of the QMF-matrix.  */
121                                    FIXP_DBL **RESTRICT sourceBufferImag,  /*!< The imaginary part of the QMF-matrix. */
122                                    INT usb,                               /*!< upper side band, highest + 1 QMF band in the SBR range. */
123                                    INT qmfScale                       /*!< sclefactor of QMF subsamples */
124                                  )
125 {
126   INT     i, k, r, r2, timeIndex, autoCorrScaling;
127 
128   INT     startIndexMatrix  = hTonCorr->startIndexMatrix;
129   INT     totNoEst          = hTonCorr->numberOfEstimates;
130   INT     noEstPerFrame     = hTonCorr->numberOfEstimatesPerFrame;
131   INT     move              = hTonCorr->move;
132   INT     noQmfChannels     = hTonCorr->noQmfChannels;     /* Numer of Bands */
133   INT     buffLen           = hTonCorr->bufferLength;      /* Numer of Slots */
134   INT     stepSize          = hTonCorr->stepSize;
135   INT    *pBlockLength      = hTonCorr->lpcLength;
136   INT**   RESTRICT signMatrix        = hTonCorr->signMatrix;
137   FIXP_DBL* RESTRICT  nrgVector      = hTonCorr->nrgVector;
138   FIXP_DBL** RESTRICT quotaMatrix    = hTonCorr->quotaMatrix;
139   FIXP_DBL*  RESTRICT pNrgVectorFreq = hTonCorr->nrgVectorFreq;
140 
141 #define BAND_V_SIZE QMF_MAX_TIME_SLOTS
142 #define NUM_V_COMBINE 8 /* Must be a divisor of 64 and fulfill the ASSERTs below */
143 
144   FIXP_DBL *realBuf;
145   FIXP_DBL *imagBuf;
146 
147   FIXP_DBL  alphar[2],alphai[2],fac;
148 
149   C_ALLOC_SCRATCH_START(ac, ACORR_COEFS, 1);
150   C_ALLOC_SCRATCH_START(realBufRef, FIXP_DBL, 2*BAND_V_SIZE*NUM_V_COMBINE);
151 
152   realBuf = realBufRef;
153   imagBuf = realBuf + BAND_V_SIZE*NUM_V_COMBINE;
154 
155 
156   FDK_ASSERT(buffLen <= BAND_V_SIZE);
157   FDK_ASSERT(sizeof(FIXP_DBL)*NUM_V_COMBINE*BAND_V_SIZE*2 < (1024*sizeof(FIXP_DBL)-sizeof(ACORR_COEFS)) );
158 
159   /*
160    * Buffering of the quotaMatrix and the quotaMatrixTransp.
161    *********************************************************/
162   for(i =  0 ; i < move; i++){
163     FDKmemcpy(quotaMatrix[i],quotaMatrix[i + noEstPerFrame],noQmfChannels * sizeof(FIXP_DBL));
164     FDKmemcpy(signMatrix[i],signMatrix[i + noEstPerFrame],noQmfChannels * sizeof(INT));
165   }
166 
167   FDKmemmove(nrgVector,nrgVector+noEstPerFrame,move*sizeof(FIXP_DBL));
168   FDKmemclear(nrgVector+startIndexMatrix,(totNoEst-startIndexMatrix)*sizeof(FIXP_DBL));
169   FDKmemclear(pNrgVectorFreq,noQmfChannels * sizeof(FIXP_DBL));
170 
171   /*
172    * Calculate the quotas for the current time steps.
173    **************************************************/
174 
175   for (r = 0; r < usb; r++)
176   {
177     int blockLength;
178 
179     k = hTonCorr->nextSample; /* startSample */
180     timeIndex = startIndexMatrix;
181     /* Copy as many as possible Band accross all Slots at once */
182     if (realBuf != realBufRef) {
183       realBuf -= BAND_V_SIZE;
184       imagBuf -= BAND_V_SIZE;
185     } else {
186       realBuf += BAND_V_SIZE*(NUM_V_COMBINE-1);
187       imagBuf += BAND_V_SIZE*(NUM_V_COMBINE-1);
188       for (i = 0; i < buffLen; i++) {
189         int v;
190         FIXP_DBL *ptr;
191         ptr = realBuf+i;
192         for (v=0; v<NUM_V_COMBINE; v++)
193         {
194           ptr[0] = sourceBufferReal[i][r+v];
195           ptr[0+BAND_V_SIZE*NUM_V_COMBINE] = sourceBufferImag[i][r+v];
196           ptr -= BAND_V_SIZE;
197         }
198       }
199     }
200 
201     blockLength = pBlockLength[0];
202 
203     while(k <= buffLen - blockLength)
204     {
205       autoCorrScaling = fixMin(getScalefactor(&realBuf[k-LPC_ORDER], LPC_ORDER+blockLength), getScalefactor(&imagBuf[k-LPC_ORDER], LPC_ORDER+blockLength));
206       autoCorrScaling = fixMax(0, autoCorrScaling-1);
207 
208       scaleValues(&realBuf[k-LPC_ORDER], LPC_ORDER+blockLength, autoCorrScaling);
209       scaleValues(&imagBuf[k-LPC_ORDER], LPC_ORDER+blockLength, autoCorrScaling);
210 
211       autoCorrScaling <<= 1; /* consider qmf buffer scaling twice */
212       autoCorrScaling += autoCorr2nd_cplx ( ac, realBuf+k, imagBuf+k, blockLength );
213 
214 
215       if(ac->det == FL2FXCONST_DBL(0.0f)){
216         alphar[1] = alphai[1] = FL2FXCONST_DBL(0.0f);
217 
218         alphar[0] = (ac->r01r)>>2;
219         alphai[0] = (ac->r01i)>>2;
220 
221         fac = fMultDiv2(ac->r00r, ac->r11r)>>1;
222       }
223       else{
224         alphar[1] = (fMultDiv2(ac->r01r, ac->r12r)>>1) - (fMultDiv2(ac->r01i, ac->r12i)>>1) - (fMultDiv2(ac->r02r, ac->r11r)>>1);
225         alphai[1] = (fMultDiv2(ac->r01i, ac->r12r)>>1) + (fMultDiv2(ac->r01r, ac->r12i)>>1) - (fMultDiv2(ac->r02i, ac->r11r)>>1);
226 
227         alphar[0] = (fMultDiv2(ac->r01r, ac->det)>>(ac->det_scale+1)) + fMult(alphar[1], ac->r12r) + fMult(alphai[1], ac->r12i);
228         alphai[0] = (fMultDiv2(ac->r01i, ac->det)>>(ac->det_scale+1)) + fMult(alphai[1], ac->r12r) - fMult(alphar[1], ac->r12i);
229 
230         fac = fMultDiv2(ac->r00r, fMult(ac->det, ac->r11r))>>(ac->det_scale+1);
231       }
232 
233       if(fac == FL2FXCONST_DBL(0.0f)){
234         quotaMatrix[timeIndex][r] = FL2FXCONST_DBL(0.0f);
235         signMatrix[timeIndex][r] = 0;
236       }
237       else {
238         /* quotaMatrix is scaled with the factor RELAXATION
239            parse RELAXATION in fractional part and shift factor: 1/(1/0.524288 * 2^RELAXATION_SHIFT) */
240         FIXP_DBL tmp,num,denom;
241         INT numShift,denomShift,commonShift;
242         INT sign;
243 
244         num = fMultDiv2(alphar[0], ac->r01r) + fMultDiv2(alphai[0], ac->r01i) - fMultDiv2(alphar[1], fMult(ac->r02r, ac->r11r)) - fMultDiv2(alphai[1], fMult(ac->r02i, ac->r11r));
245         num = fixp_abs(num);
246 
247         denom = (fac>>1) + (fMultDiv2(fac,RELAXATION_FRACT)>>RELAXATION_SHIFT) - num;
248         denom = fixp_abs(denom);
249 
250         num = fMult(num,RELAXATION_FRACT);
251 
252         numShift = CountLeadingBits(num) - 2;
253         num = scaleValue(num, numShift);
254 
255         denomShift = CountLeadingBits(denom);
256         denom = (FIXP_DBL)denom << denomShift;
257 
258         if ((num > FL2FXCONST_DBL(0.0f)) && (denom != FL2FXCONST_DBL(0.0f))) {
259           commonShift = fixMin(numShift - denomShift + RELAXATION_SHIFT, DFRACT_BITS-1);
260           if (commonShift < 0) {
261             commonShift = -commonShift;
262             tmp = schur_div(num,denom,16);
263             commonShift = fixMin(commonShift,CountLeadingBits(tmp));
264             quotaMatrix[timeIndex][r] = tmp << commonShift;
265           }
266           else {
267             quotaMatrix[timeIndex][r] = schur_div(num,denom,16) >> commonShift;
268           }
269         }
270         else {
271           quotaMatrix[timeIndex][r] = FL2FXCONST_DBL(0.0f);
272         }
273 
274         if (ac->r11r != FL2FXCONST_DBL(0.0f)) {
275           if (  ( (ac->r01r >= FL2FXCONST_DBL(0.0f) ) && ( ac->r11r >= FL2FXCONST_DBL(0.0f) ) )
276               ||( (ac->r01r <  FL2FXCONST_DBL(0.0f) ) && ( ac->r11r <  FL2FXCONST_DBL(0.0f) ) )  ) {
277             sign = 1;
278           }
279           else {
280             sign = -1;
281           }
282         }
283         else {
284           sign = 1;
285         }
286 
287         if(sign < 0) {
288           r2 = r;       /* (INT) pow(-1, band); */
289         }
290         else {
291           r2 = r + 1;   /* (INT) pow(-1, band+1); */
292         }
293         signMatrix[timeIndex][r] = 1 - 2*(r2 & 0x1);
294       }
295 
296       nrgVector[timeIndex] += ((ac->r00r) >> fixMin(DFRACT_BITS-1,(2*qmfScale+autoCorrScaling + SCALE_NRGVEC)));
297       /* pNrgVectorFreq[r] finally has to be divided by noEstPerFrame, replaced division by shifting with one */
298       pNrgVectorFreq[r] = pNrgVectorFreq[r] + ((ac->r00r) >> fixMin(DFRACT_BITS-1,(2*qmfScale+autoCorrScaling + SCALE_NRGVEC)));
299 
300       blockLength = pBlockLength[1];
301       k += stepSize;
302       timeIndex++;
303     }
304   }
305 
306 
307   C_ALLOC_SCRATCH_END(realBuf, FIXP_DBL, 2*BAND_V_SIZE*NUM_V_COMBINE);
308   C_ALLOC_SCRATCH_END(ac, ACORR_COEFS, 1);
309 }
310 
311 /**************************************************************************/
312 /*!
313   \brief Extracts the parameters required in the decoder to obtain the
314   correct tonal to noise ratio after SBR.
315 
316   Estimates the tonal to noise ratio of the original signal (using LPC).
317   Predicts the tonal to noise ration of the SBR signal (in the decoder) by
318   patching the tonal to noise ratio values similar to the patching of the
319   lowband in the decoder. Given the tonal to noise ratio of the original
320   and the SBR signal, it estimates the required amount of inverse filtering,
321   additional noise as well as any additional sines.
322 
323   \return none.
324 
325 */
326 /**************************************************************************/
327 void
FDKsbrEnc_TonCorrParamExtr(HANDLE_SBR_TON_CORR_EST hTonCorr,INVF_MODE * infVec,FIXP_DBL * noiseLevels,INT * missingHarmonicFlag,UCHAR * missingHarmonicsIndex,UCHAR * envelopeCompensation,const SBR_FRAME_INFO * frameInfo,UCHAR * transientInfo,UCHAR * freqBandTable,INT nSfb,XPOS_MODE xposType,UINT sbrSyntaxFlags)328 FDKsbrEnc_TonCorrParamExtr(HANDLE_SBR_TON_CORR_EST hTonCorr,/*!< Handle to SBR_TON_CORR struct. */
329                            INVF_MODE* infVec,               /*!< Vector where the inverse filtering levels will be stored. */
330                            FIXP_DBL * noiseLevels,          /*!< Vector where the noise levels will be stored. */
331                            INT* missingHarmonicFlag,        /*!< Flag set to one or zero, dependent on if any strong sines are missing.*/
332                            UCHAR * missingHarmonicsIndex,   /*!< Vector indicating where sines are missing. */
333                            UCHAR * envelopeCompensation,    /*!< Vector to store compensation values for the energies in. */
334                            const SBR_FRAME_INFO *frameInfo, /*!< Frame info struct, contains the time and frequency grid of the current frame.*/
335                            UCHAR* transientInfo,            /*!< Transient info.*/
336                            UCHAR* freqBandTable,            /*!< Frequency band tables for high-res.*/
337                            INT nSfb,                        /*!< Number of scalefactor bands for high-res. */
338                            XPOS_MODE xposType,              /*!< Type of transposer used in the decoder.*/
339                            UINT sbrSyntaxFlags
340                            )
341 {
342   INT band;
343   INT transientFlag = transientInfo[1] ;    /*!< Flag indicating if a transient is present in the current frame. */
344   INT transientPos  = transientInfo[0];     /*!< Position of the transient.*/
345   INT transientFrame, transientFrameInvfEst;
346   INVF_MODE* infVecPtr;
347 
348 
349   /* Determine if this is a frame where a transient starts...
350 
351   The detection of noise-floor, missing harmonics and invf_est, is not in sync for the
352   non-buf-opt decoder such as AAC. Hence we need to keep track on the transient in the
353   present frame as well as in the next.
354   */
355   transientFrame = 0;
356   if(hTonCorr->transientNextFrame){       /* The transient was detected in the previous frame, but is actually */
357     transientFrame = 1;
358     hTonCorr->transientNextFrame = 0;
359 
360     if(transientFlag){
361       if(transientPos + hTonCorr->transientPosOffset >= frameInfo->borders[frameInfo->nEnvelopes]){
362         hTonCorr->transientNextFrame = 1;
363       }
364     }
365   }
366   else{
367     if(transientFlag){
368       if(transientPos + hTonCorr->transientPosOffset < frameInfo->borders[frameInfo->nEnvelopes]){
369         transientFrame = 1;
370         hTonCorr->transientNextFrame = 0;
371       }
372       else{
373         hTonCorr->transientNextFrame = 1;
374       }
375     }
376   }
377   transientFrameInvfEst = transientFrame;
378 
379 
380   /*
381     Estimate the required invese filtereing level.
382   */
383   if (hTonCorr->switchInverseFilt)
384     FDKsbrEnc_qmfInverseFilteringDetector(&hTonCorr->sbrInvFilt,
385                                           hTonCorr->quotaMatrix,
386                                           hTonCorr->nrgVector,
387                                           hTonCorr->indexVector,
388                                           hTonCorr->frameStartIndexInvfEst,
389                                           hTonCorr->numberOfEstimatesPerFrame + hTonCorr->frameStartIndexInvfEst,
390                                           transientFrameInvfEst,
391                                           infVec);
392 
393   /*
394       Detect what tones will be missing.
395    */
396   if (xposType == XPOS_LC ){
397     FDKsbrEnc_SbrMissingHarmonicsDetectorQmf(&hTonCorr->sbrMissingHarmonicsDetector,
398                                              hTonCorr->quotaMatrix,
399                                              hTonCorr->signMatrix,
400                                              hTonCorr->indexVector,
401                                              frameInfo,
402                                              transientInfo,
403                                              missingHarmonicFlag,
404                                              missingHarmonicsIndex,
405                                              freqBandTable,
406                                              nSfb,
407                                              envelopeCompensation,
408                                              hTonCorr->nrgVectorFreq);
409   }
410   else{
411     *missingHarmonicFlag = 0;
412     FDKmemclear(missingHarmonicsIndex,nSfb*sizeof(UCHAR));
413   }
414 
415 
416 
417   /*
418     Noise floor estimation
419   */
420 
421   infVecPtr = hTonCorr->sbrInvFilt.prevInvfMode;
422 
423   FDKsbrEnc_sbrNoiseFloorEstimateQmf(&hTonCorr->sbrNoiseFloorEstimate,
424                                      frameInfo,
425                                      noiseLevels,
426                                      hTonCorr->quotaMatrix,
427                                      hTonCorr->indexVector,
428                                      *missingHarmonicFlag,
429                                      hTonCorr->frameStartIndex,
430                                      hTonCorr->numberOfEstimatesPerFrame,
431                                      transientFrame,
432                                      infVecPtr,
433                                      sbrSyntaxFlags);
434 
435 
436   /* Store the invfVec data for the next frame...*/
437   for(band = 0 ; band < hTonCorr->sbrInvFilt.noDetectorBands; band++){
438     hTonCorr->sbrInvFilt.prevInvfMode[band] = infVec[band];
439   }
440 }
441 
442 /**************************************************************************/
443 /*!
444   \brief     Searches for the closest match in the frequency master table.
445 
446 
447 
448   \return   closest entry.
449 
450 */
451 /**************************************************************************/
452 static INT
findClosestEntry(INT goalSb,UCHAR * v_k_master,INT numMaster,INT direction)453 findClosestEntry(INT goalSb,
454                  UCHAR *v_k_master,
455                  INT numMaster,
456                  INT direction)
457 {
458   INT index;
459 
460   if( goalSb <= v_k_master[0] )
461     return v_k_master[0];
462 
463   if( goalSb >= v_k_master[numMaster] )
464     return v_k_master[numMaster];
465 
466   if(direction) {
467     index = 0;
468     while( v_k_master[index] < goalSb ) {
469       index++;
470     }
471   } else {
472     index = numMaster;
473     while( v_k_master[index] > goalSb ) {
474       index--;
475     }
476   }
477 
478   return v_k_master[index];
479 }
480 
481 
482 /**************************************************************************/
483 /*!
484   \brief     resets the patch
485 
486 
487 
488   \return   errorCode, noError if successful.
489 
490 */
491 /**************************************************************************/
492 static INT
resetPatch(HANDLE_SBR_TON_CORR_EST hTonCorr,INT xposctrl,INT highBandStartSb,UCHAR * v_k_master,INT numMaster,INT fs,INT noChannels)493 resetPatch(HANDLE_SBR_TON_CORR_EST hTonCorr,  /*!< Handle to SBR_TON_CORR struct. */
494            INT xposctrl,                      /*!< Different patch modes. */
495            INT highBandStartSb,               /*!< Start band of the SBR range. */
496            UCHAR *v_k_master,                   /*!< Master frequency table from which all other table are derived.*/
497            INT numMaster,                     /*!< Number of elements in the master table. */
498            INT fs,                            /*!< Sampling frequency. */
499            INT noChannels)                    /*!< Number of QMF-channels. */
500 {
501   INT patch,k,i;
502   INT targetStopBand;
503 
504   PATCH_PARAM  *patchParam = hTonCorr->patchParam;
505 
506   INT sbGuard = hTonCorr->guard;
507   INT sourceStartBand;
508   INT patchDistance;
509   INT numBandsInPatch;
510 
511   INT lsb = v_k_master[0];                           /* Lowest subband related to the synthesis filterbank */
512   INT usb = v_k_master[numMaster];                   /* Stop subband related to the synthesis filterbank */
513   INT xoverOffset = highBandStartSb - v_k_master[0]; /* Calculate distance in subbands between k0 and kx */
514 
515   INT goalSb;
516 
517 
518   /*
519    * Initialize the patching parameter
520    */
521 
522   if (xposctrl == 1) {
523     lsb += xoverOffset;
524     xoverOffset = 0;
525   }
526 
527   goalSb = (INT)( (2 * noChannels * 16000 + (fs>>1)) / fs ); /* 16 kHz band */
528   goalSb = findClosestEntry(goalSb, v_k_master, numMaster, 1); /* Adapt region to master-table */
529 
530   /* First patch */
531   sourceStartBand = hTonCorr->shiftStartSb + xoverOffset;
532   targetStopBand = lsb + xoverOffset;
533 
534   /* even (odd) numbered channel must be patched to even (odd) numbered channel */
535   patch = 0;
536   while(targetStopBand < usb) {
537 
538     /* To many patches */
539     if (patch >= MAX_NUM_PATCHES)
540       return(1); /*Number of patches to high */
541 
542     patchParam[patch].guardStartBand = targetStopBand;
543     targetStopBand += sbGuard;
544     patchParam[patch].targetStartBand = targetStopBand;
545 
546     numBandsInPatch = goalSb - targetStopBand;                   /* get the desired range of the patch */
547 
548     if ( numBandsInPatch >= lsb - sourceStartBand ) {
549       /* desired number bands are not available -> patch whole source range */
550       patchDistance   = targetStopBand - sourceStartBand;        /* get the targetOffset */
551       patchDistance   = patchDistance & ~1;                      /* rounding off odd numbers and make all even */
552       numBandsInPatch = lsb - (targetStopBand - patchDistance);
553       numBandsInPatch = findClosestEntry(targetStopBand + numBandsInPatch, v_k_master, numMaster, 0) -
554                         targetStopBand;  /* Adapt region to master-table */
555     }
556 
557     /* desired number bands are available -> get the minimal even patching distance */
558     patchDistance   = numBandsInPatch + targetStopBand - lsb;  /* get minimal distance */
559     patchDistance   = (patchDistance + 1) & ~1;                /* rounding up odd numbers and make all even */
560 
561     if (numBandsInPatch <= 0) {
562       patch--;
563     } else {
564       patchParam[patch].sourceStartBand = targetStopBand - patchDistance;
565       patchParam[patch].targetBandOffs  = patchDistance;
566       patchParam[patch].numBandsInPatch = numBandsInPatch;
567       patchParam[patch].sourceStopBand  = patchParam[patch].sourceStartBand + numBandsInPatch;
568 
569       targetStopBand += patchParam[patch].numBandsInPatch;
570     }
571 
572     /* All patches but first */
573     sourceStartBand = hTonCorr->shiftStartSb;
574 
575     /* Check if we are close to goalSb */
576     if( fixp_abs(targetStopBand - goalSb) < 3) {
577       goalSb = usb;
578     }
579 
580     patch++;
581 
582   }
583 
584   patch--;
585 
586   /* if highest patch contains less than three subband: skip it */
587   if ( patchParam[patch].numBandsInPatch < 3 && patch > 0 ) {
588     patch--;
589     targetStopBand = patchParam[patch].targetStartBand + patchParam[patch].numBandsInPatch;
590   }
591 
592   hTonCorr->noOfPatches = patch + 1;
593 
594 
595   /* Assign the index-vector, so we know where to look for the high-band.
596      -1 represents a guard-band. */
597   for(k = 0; k < hTonCorr->patchParam[0].guardStartBand; k++)
598     hTonCorr->indexVector[k] = k;
599 
600   for(i = 0; i < hTonCorr->noOfPatches; i++)
601   {
602     INT sourceStart    = hTonCorr->patchParam[i].sourceStartBand;
603     INT targetStart    = hTonCorr->patchParam[i].targetStartBand;
604     INT numberOfBands  = hTonCorr->patchParam[i].numBandsInPatch;
605     INT startGuardBand = hTonCorr->patchParam[i].guardStartBand;
606 
607     for(k = 0; k < (targetStart- startGuardBand); k++)
608       hTonCorr->indexVector[startGuardBand+k] = -1;
609 
610     for(k = 0; k < numberOfBands; k++)
611       hTonCorr->indexVector[targetStart+k] = sourceStart+k;
612   }
613 
614   return (0);
615 }
616 
617 /**************************************************************************/
618 /*!
619   \brief     Creates an instance of the tonality correction parameter module.
620 
621   The module includes modules for inverse filtering level estimation,
622   missing harmonics detection and noise floor level estimation.
623 
624   \return   errorCode, noError if successful.
625 */
626 /**************************************************************************/
627 INT
FDKsbrEnc_CreateTonCorrParamExtr(HANDLE_SBR_TON_CORR_EST hTonCorr,INT chan)628 FDKsbrEnc_CreateTonCorrParamExtr(HANDLE_SBR_TON_CORR_EST hTonCorr, /*!< Pointer to handle to SBR_TON_CORR struct. */
629                                  INT                     chan)     /*!< Channel index, needed for mem allocation */
630 {
631   INT i;
632   FIXP_DBL* quotaMatrix = GetRam_Sbr_quotaMatrix(chan);
633   INT*      signMatrix  = GetRam_Sbr_signMatrix(chan);
634 
635   FDKmemclear(hTonCorr, sizeof(SBR_TON_CORR_EST));
636 
637   for (i=0; i<MAX_NO_OF_ESTIMATES; i++) {
638     hTonCorr->quotaMatrix[i] = quotaMatrix + (i*QMF_CHANNELS);
639     hTonCorr->signMatrix[i]  = signMatrix  + (i*QMF_CHANNELS);
640   }
641 
642   FDKsbrEnc_CreateSbrMissingHarmonicsDetector (&hTonCorr->sbrMissingHarmonicsDetector, chan);
643 
644   return 0;
645 }
646 
647 
648 
649 /**************************************************************************/
650 /*!
651   \brief     Initialize an instance of the tonality correction parameter module.
652 
653   The module includes modules for inverse filtering level estimation,
654   missing harmonics detection and noise floor level estimation.
655 
656   \return   errorCode, noError if successful.
657 */
658 /**************************************************************************/
659 INT
FDKsbrEnc_InitTonCorrParamExtr(INT frameSize,HANDLE_SBR_TON_CORR_EST hTonCorr,HANDLE_SBR_CONFIG_DATA sbrCfg,INT timeSlots,INT xposCtrl,INT ana_max_level,INT noiseBands,INT noiseFloorOffset,UINT useSpeechConfig)660 FDKsbrEnc_InitTonCorrParamExtr (INT frameSize,                     /*!< Current SBR frame size. */
661                                 HANDLE_SBR_TON_CORR_EST hTonCorr,  /*!< Pointer to handle to SBR_TON_CORR struct. */
662                                 HANDLE_SBR_CONFIG_DATA sbrCfg,     /*!< Pointer to SBR configuration parameters. */
663                                 INT timeSlots,                     /*!< Number of time-slots per frame */
664                                 INT xposCtrl,                      /*!< Different patch modes. */
665                                 INT ana_max_level,                 /*!< Maximum level of the adaptive noise. */
666                                 INT noiseBands,                    /*!< Number of noise bands per octave. */
667                                 INT noiseFloorOffset,              /*!< Noise floor offset. */
668                                 UINT useSpeechConfig)              /*!< Speech or music tuning. */
669 {
670   INT nCols = sbrCfg->noQmfSlots;
671   INT fs    = sbrCfg->sampleFreq;
672   INT noQmfChannels = sbrCfg->noQmfBands;
673 
674   INT highBandStartSb = sbrCfg->freqBandTable[LOW_RES][0];
675   UCHAR *v_k_master   = sbrCfg->v_k_master;
676   INT numMaster       = sbrCfg->num_Master;
677 
678   UCHAR **freqBandTable   = sbrCfg->freqBandTable;
679   INT    *nSfb            = sbrCfg->nSfb;
680 
681   INT i;
682 
683   /*
684   Reset the patching and allocate memory for the quota matrix.
685   Assuming parameters for the LPC analysis.
686   */
687   if (sbrCfg->sbrSyntaxFlags & SBR_SYNTAX_LOW_DELAY) {
688     switch (timeSlots) {
689     case NUMBER_TIME_SLOTS_1920:
690       hTonCorr->lpcLength[0]              = 8 - LPC_ORDER;
691       hTonCorr->lpcLength[1]              = 7 - LPC_ORDER;
692       hTonCorr->numberOfEstimates         = NO_OF_ESTIMATES_LD;
693       hTonCorr->numberOfEstimatesPerFrame = 2; /* sbrCfg->noQmfSlots / 7 */
694       hTonCorr->frameStartIndexInvfEst    = 0;
695       hTonCorr->transientPosOffset        = FRAME_MIDDLE_SLOT_512LD;
696       break;
697     case NUMBER_TIME_SLOTS_2048:
698       hTonCorr->lpcLength[0]              = 8 - LPC_ORDER;
699       hTonCorr->lpcLength[1]              = 8 - LPC_ORDER;
700       hTonCorr->numberOfEstimates         = NO_OF_ESTIMATES_LD;
701       hTonCorr->numberOfEstimatesPerFrame = 2; /* sbrCfg->noQmfSlots / 8 */
702       hTonCorr->frameStartIndexInvfEst    = 0;
703       hTonCorr->transientPosOffset        = FRAME_MIDDLE_SLOT_512LD;
704       break;
705     }
706   } else
707   switch (timeSlots) {
708   case NUMBER_TIME_SLOTS_2048:
709     hTonCorr->lpcLength[0]              = 16 - LPC_ORDER; /* blockLength[0] */
710     hTonCorr->lpcLength[1]              = 16 - LPC_ORDER; /* blockLength[0] */
711     hTonCorr->numberOfEstimates         = NO_OF_ESTIMATES_LC;
712     hTonCorr->numberOfEstimatesPerFrame = sbrCfg->noQmfSlots / 16;
713     hTonCorr->frameStartIndexInvfEst    = 0;
714     hTonCorr->transientPosOffset        = FRAME_MIDDLE_SLOT_2048;
715     break;
716   case NUMBER_TIME_SLOTS_1920:
717     hTonCorr->lpcLength[0]              = 15 - LPC_ORDER; /* blockLength[0] */
718     hTonCorr->lpcLength[1]              = 15 - LPC_ORDER; /* blockLength[0] */
719     hTonCorr->numberOfEstimates         = NO_OF_ESTIMATES_LC;
720     hTonCorr->numberOfEstimatesPerFrame = sbrCfg->noQmfSlots / 15;
721     hTonCorr->frameStartIndexInvfEst    = 0;
722     hTonCorr->transientPosOffset        = FRAME_MIDDLE_SLOT_1920;
723     break;
724   default:
725     return -1;
726   }
727 
728   hTonCorr->bufferLength              = nCols;
729   hTonCorr->stepSize                  = hTonCorr->lpcLength[0] + LPC_ORDER; /* stepSize[0] implicitly 0. */
730 
731   hTonCorr->nextSample                = LPC_ORDER; /* firstSample */
732   hTonCorr->move                      = hTonCorr->numberOfEstimates - hTonCorr->numberOfEstimatesPerFrame;    /* Number of estimates to move when buffering.*/
733   hTonCorr->startIndexMatrix          = hTonCorr->numberOfEstimates - hTonCorr->numberOfEstimatesPerFrame;    /* Where to store the latest estimations in the tonality Matrix.*/
734   hTonCorr->frameStartIndex           = 0;                      /* Where in the tonality matrix the current frame (to be sent to the decoder) starts. */
735   hTonCorr->prevTransientFlag = 0;
736   hTonCorr->transientNextFrame = 0;
737 
738   hTonCorr->noQmfChannels = noQmfChannels;
739 
740   for (i=0; i<hTonCorr->numberOfEstimates; i++) {
741     FDKmemclear (hTonCorr->quotaMatrix[i] , sizeof(FIXP_DBL)*noQmfChannels);
742     FDKmemclear (hTonCorr->signMatrix[i] , sizeof(INT)*noQmfChannels);
743   }
744 
745    /* Reset the patch.*/
746   hTonCorr->guard = 0;
747   hTonCorr->shiftStartSb = 1;
748 
749   if(resetPatch(hTonCorr,
750                 xposCtrl,
751                 highBandStartSb,
752                 v_k_master,
753                 numMaster,
754                 fs,
755                 noQmfChannels))
756     return(1);
757 
758   if(FDKsbrEnc_InitSbrNoiseFloorEstimate (&hTonCorr->sbrNoiseFloorEstimate,
759                                    ana_max_level,
760                                    freqBandTable[LO],
761                                    nSfb[LO],
762                                    noiseBands,
763                                    noiseFloorOffset,
764                                    timeSlots,
765                                    useSpeechConfig))
766     return(1);
767 
768 
769   if(FDKsbrEnc_initInvFiltDetector(&hTonCorr->sbrInvFilt,
770                             hTonCorr->sbrNoiseFloorEstimate.freqBandTableQmf,
771                             hTonCorr->sbrNoiseFloorEstimate.noNoiseBands,
772                             useSpeechConfig))
773     return(1);
774 
775 
776 
777   if(FDKsbrEnc_InitSbrMissingHarmonicsDetector(
778                                         &hTonCorr->sbrMissingHarmonicsDetector,
779                                         fs,
780                                         frameSize,
781                                         nSfb[HI],
782                                         noQmfChannels,
783                                         hTonCorr->numberOfEstimates,
784                                         hTonCorr->move,
785                                         hTonCorr->numberOfEstimatesPerFrame,
786                                         sbrCfg->sbrSyntaxFlags))
787     return(1);
788 
789 
790 
791   return (0);
792 }
793 
794 
795 
796 /**************************************************************************/
797 /*!
798   \brief     resets tonality correction parameter module.
799 
800 
801 
802   \return   errorCode, noError if successful.
803 
804 */
805 /**************************************************************************/
806 INT
FDKsbrEnc_ResetTonCorrParamExtr(HANDLE_SBR_TON_CORR_EST hTonCorr,INT xposctrl,INT highBandStartSb,UCHAR * v_k_master,INT numMaster,INT fs,UCHAR ** freqBandTable,INT * nSfb,INT noQmfChannels)807 FDKsbrEnc_ResetTonCorrParamExtr(HANDLE_SBR_TON_CORR_EST hTonCorr, /*!< Handle to SBR_TON_CORR struct. */
808                       INT xposctrl,                     /*!< Different patch modes. */
809                       INT highBandStartSb,              /*!< Start band of the SBR range. */
810                       UCHAR *v_k_master,        /*!< Master frequency table from which all other table are derived.*/
811                       INT numMaster,                    /*!< Number of elements in the master table. */
812                       INT fs,                           /*!< Sampling frequency (of the SBR part). */
813                       UCHAR ** freqBandTable,   /*!< Frequency band table for low-res and high-res. */
814                       INT* nSfb,                        /*!< Number of frequency bands (hig-res and low-res). */
815                       INT noQmfChannels                 /*!< Number of QMF channels. */
816                       )
817 {
818 
819   /* Reset the patch.*/
820   hTonCorr->guard = 0;
821   hTonCorr->shiftStartSb = 1;
822 
823   if(resetPatch(hTonCorr,
824                 xposctrl,
825                 highBandStartSb,
826                 v_k_master,
827                 numMaster,
828                 fs,
829                 noQmfChannels))
830     return(1);
831 
832 
833 
834   /* Reset the noise floor estimate.*/
835   if(FDKsbrEnc_resetSbrNoiseFloorEstimate (&hTonCorr->sbrNoiseFloorEstimate,
836                                  freqBandTable[LO],
837                                  nSfb[LO]))
838     return(1);
839 
840   /*
841   Reset the inveerse filtereing detector.
842   */
843   if(FDKsbrEnc_resetInvFiltDetector(&hTonCorr->sbrInvFilt,
844                            hTonCorr->sbrNoiseFloorEstimate.freqBandTableQmf,
845                            hTonCorr->sbrNoiseFloorEstimate.noNoiseBands))
846     return(1);
847 /* Reset the missing harmonics detector. */
848   if(FDKsbrEnc_ResetSbrMissingHarmonicsDetector (&hTonCorr->sbrMissingHarmonicsDetector,
849                                        nSfb[HI]))
850     return(1);
851 
852   return (0);
853 }
854 
855 
856 
857 
858 
859 /**************************************************************************/
860 /*!
861   \brief  Deletes the tonality correction paramtere module.
862 
863 
864 
865   \return   none
866 
867 */
868 /**************************************************************************/
869 void
FDKsbrEnc_DeleteTonCorrParamExtr(HANDLE_SBR_TON_CORR_EST hTonCorr)870 FDKsbrEnc_DeleteTonCorrParamExtr (HANDLE_SBR_TON_CORR_EST hTonCorr) /*!< Handle to SBR_TON_CORR struct. */
871 {
872 
873   if (hTonCorr) {
874 
875    FreeRam_Sbr_quotaMatrix(hTonCorr->quotaMatrix);
876 
877    FreeRam_Sbr_signMatrix(hTonCorr->signMatrix);
878 
879    FDKsbrEnc_DeleteSbrMissingHarmonicsDetector (&hTonCorr->sbrMissingHarmonicsDetector);
880   }
881 }
882