1 //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the CFG and CFGBuilder classes for representing and
11 // building Control-Flow Graphs (CFGs) from ASTs.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Analysis/CFG.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/PrettyPrinter.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include <memory>
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/Support/Allocator.h"
27 #include "llvm/Support/Format.h"
28 #include "llvm/Support/GraphWriter.h"
29 #include "llvm/Support/SaveAndRestore.h"
30
31 using namespace clang;
32
33 namespace {
34
GetEndLoc(Decl * D)35 static SourceLocation GetEndLoc(Decl *D) {
36 if (VarDecl *VD = dyn_cast<VarDecl>(D))
37 if (Expr *Ex = VD->getInit())
38 return Ex->getSourceRange().getEnd();
39 return D->getLocation();
40 }
41
42 /// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral
43 /// or EnumConstantDecl from the given Expr. If it fails, returns nullptr.
tryTransformToIntOrEnumConstant(const Expr * E)44 const Expr *tryTransformToIntOrEnumConstant(const Expr *E) {
45 E = E->IgnoreParens();
46 if (isa<IntegerLiteral>(E))
47 return E;
48 if (auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
49 return isa<EnumConstantDecl>(DR->getDecl()) ? DR : nullptr;
50 return nullptr;
51 }
52
53 /// Tries to interpret a binary operator into `Decl Op Expr` form, if Expr is
54 /// an integer literal or an enum constant.
55 ///
56 /// If this fails, at least one of the returned DeclRefExpr or Expr will be
57 /// null.
58 static std::tuple<const DeclRefExpr *, BinaryOperatorKind, const Expr *>
tryNormalizeBinaryOperator(const BinaryOperator * B)59 tryNormalizeBinaryOperator(const BinaryOperator *B) {
60 BinaryOperatorKind Op = B->getOpcode();
61
62 const Expr *MaybeDecl = B->getLHS();
63 const Expr *Constant = tryTransformToIntOrEnumConstant(B->getRHS());
64 // Expr looked like `0 == Foo` instead of `Foo == 0`
65 if (Constant == nullptr) {
66 // Flip the operator
67 if (Op == BO_GT)
68 Op = BO_LT;
69 else if (Op == BO_GE)
70 Op = BO_LE;
71 else if (Op == BO_LT)
72 Op = BO_GT;
73 else if (Op == BO_LE)
74 Op = BO_GE;
75
76 MaybeDecl = B->getRHS();
77 Constant = tryTransformToIntOrEnumConstant(B->getLHS());
78 }
79
80 auto *D = dyn_cast<DeclRefExpr>(MaybeDecl->IgnoreParenImpCasts());
81 return std::make_tuple(D, Op, Constant);
82 }
83
84 /// For an expression `x == Foo && x == Bar`, this determines whether the
85 /// `Foo` and `Bar` are either of the same enumeration type, or both integer
86 /// literals.
87 ///
88 /// It's an error to pass this arguments that are not either IntegerLiterals
89 /// or DeclRefExprs (that have decls of type EnumConstantDecl)
areExprTypesCompatible(const Expr * E1,const Expr * E2)90 static bool areExprTypesCompatible(const Expr *E1, const Expr *E2) {
91 // User intent isn't clear if they're mixing int literals with enum
92 // constants.
93 if (isa<IntegerLiteral>(E1) != isa<IntegerLiteral>(E2))
94 return false;
95
96 // Integer literal comparisons, regardless of literal type, are acceptable.
97 if (isa<IntegerLiteral>(E1))
98 return true;
99
100 // IntegerLiterals are handled above and only EnumConstantDecls are expected
101 // beyond this point
102 assert(isa<DeclRefExpr>(E1) && isa<DeclRefExpr>(E2));
103 auto *Decl1 = cast<DeclRefExpr>(E1)->getDecl();
104 auto *Decl2 = cast<DeclRefExpr>(E2)->getDecl();
105
106 assert(isa<EnumConstantDecl>(Decl1) && isa<EnumConstantDecl>(Decl2));
107 const DeclContext *DC1 = Decl1->getDeclContext();
108 const DeclContext *DC2 = Decl2->getDeclContext();
109
110 assert(isa<EnumDecl>(DC1) && isa<EnumDecl>(DC2));
111 return DC1 == DC2;
112 }
113
114 class CFGBuilder;
115
116 /// The CFG builder uses a recursive algorithm to build the CFG. When
117 /// we process an expression, sometimes we know that we must add the
118 /// subexpressions as block-level expressions. For example:
119 ///
120 /// exp1 || exp2
121 ///
122 /// When processing the '||' expression, we know that exp1 and exp2
123 /// need to be added as block-level expressions, even though they
124 /// might not normally need to be. AddStmtChoice records this
125 /// contextual information. If AddStmtChoice is 'NotAlwaysAdd', then
126 /// the builder has an option not to add a subexpression as a
127 /// block-level expression.
128 ///
129 class AddStmtChoice {
130 public:
131 enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
132
AddStmtChoice(Kind a_kind=NotAlwaysAdd)133 AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
134
135 bool alwaysAdd(CFGBuilder &builder,
136 const Stmt *stmt) const;
137
138 /// Return a copy of this object, except with the 'always-add' bit
139 /// set as specified.
withAlwaysAdd(bool alwaysAdd) const140 AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
141 return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
142 }
143
144 private:
145 Kind kind;
146 };
147
148 /// LocalScope - Node in tree of local scopes created for C++ implicit
149 /// destructor calls generation. It contains list of automatic variables
150 /// declared in the scope and link to position in previous scope this scope
151 /// began in.
152 ///
153 /// The process of creating local scopes is as follows:
154 /// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
155 /// - Before processing statements in scope (e.g. CompoundStmt) create
156 /// LocalScope object using CFGBuilder::ScopePos as link to previous scope
157 /// and set CFGBuilder::ScopePos to the end of new scope,
158 /// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
159 /// at this VarDecl,
160 /// - For every normal (without jump) end of scope add to CFGBlock destructors
161 /// for objects in the current scope,
162 /// - For every jump add to CFGBlock destructors for objects
163 /// between CFGBuilder::ScopePos and local scope position saved for jump
164 /// target. Thanks to C++ restrictions on goto jumps we can be sure that
165 /// jump target position will be on the path to root from CFGBuilder::ScopePos
166 /// (adding any variable that doesn't need constructor to be called to
167 /// LocalScope can break this assumption),
168 ///
169 class LocalScope {
170 public:
171 typedef BumpVector<VarDecl*> AutomaticVarsTy;
172
173 /// const_iterator - Iterates local scope backwards and jumps to previous
174 /// scope on reaching the beginning of currently iterated scope.
175 class const_iterator {
176 const LocalScope* Scope;
177
178 /// VarIter is guaranteed to be greater then 0 for every valid iterator.
179 /// Invalid iterator (with null Scope) has VarIter equal to 0.
180 unsigned VarIter;
181
182 public:
183 /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
184 /// Incrementing invalid iterator is allowed and will result in invalid
185 /// iterator.
const_iterator()186 const_iterator()
187 : Scope(nullptr), VarIter(0) {}
188
189 /// Create valid iterator. In case when S.Prev is an invalid iterator and
190 /// I is equal to 0, this will create invalid iterator.
const_iterator(const LocalScope & S,unsigned I)191 const_iterator(const LocalScope& S, unsigned I)
192 : Scope(&S), VarIter(I) {
193 // Iterator to "end" of scope is not allowed. Handle it by going up
194 // in scopes tree possibly up to invalid iterator in the root.
195 if (VarIter == 0 && Scope)
196 *this = Scope->Prev;
197 }
198
operator ->() const199 VarDecl *const* operator->() const {
200 assert (Scope && "Dereferencing invalid iterator is not allowed");
201 assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
202 return &Scope->Vars[VarIter - 1];
203 }
operator *() const204 VarDecl *operator*() const {
205 return *this->operator->();
206 }
207
operator ++()208 const_iterator &operator++() {
209 if (!Scope)
210 return *this;
211
212 assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
213 --VarIter;
214 if (VarIter == 0)
215 *this = Scope->Prev;
216 return *this;
217 }
operator ++(int)218 const_iterator operator++(int) {
219 const_iterator P = *this;
220 ++*this;
221 return P;
222 }
223
operator ==(const const_iterator & rhs) const224 bool operator==(const const_iterator &rhs) const {
225 return Scope == rhs.Scope && VarIter == rhs.VarIter;
226 }
operator !=(const const_iterator & rhs) const227 bool operator!=(const const_iterator &rhs) const {
228 return !(*this == rhs);
229 }
230
operator bool() const231 explicit operator bool() const {
232 return *this != const_iterator();
233 }
234
235 int distance(const_iterator L);
236 };
237
238 friend class const_iterator;
239
240 private:
241 BumpVectorContext ctx;
242
243 /// Automatic variables in order of declaration.
244 AutomaticVarsTy Vars;
245 /// Iterator to variable in previous scope that was declared just before
246 /// begin of this scope.
247 const_iterator Prev;
248
249 public:
250 /// Constructs empty scope linked to previous scope in specified place.
LocalScope(BumpVectorContext ctx,const_iterator P)251 LocalScope(BumpVectorContext ctx, const_iterator P)
252 : ctx(std::move(ctx)), Vars(this->ctx, 4), Prev(P) {}
253
254 /// Begin of scope in direction of CFG building (backwards).
begin() const255 const_iterator begin() const { return const_iterator(*this, Vars.size()); }
256
addVar(VarDecl * VD)257 void addVar(VarDecl *VD) {
258 Vars.push_back(VD, ctx);
259 }
260 };
261
262 /// distance - Calculates distance from this to L. L must be reachable from this
263 /// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
264 /// number of scopes between this and L.
distance(LocalScope::const_iterator L)265 int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
266 int D = 0;
267 const_iterator F = *this;
268 while (F.Scope != L.Scope) {
269 assert (F != const_iterator()
270 && "L iterator is not reachable from F iterator.");
271 D += F.VarIter;
272 F = F.Scope->Prev;
273 }
274 D += F.VarIter - L.VarIter;
275 return D;
276 }
277
278 /// Structure for specifying position in CFG during its build process. It
279 /// consists of CFGBlock that specifies position in CFG and
280 /// LocalScope::const_iterator that specifies position in LocalScope graph.
281 struct BlockScopePosPair {
BlockScopePosPair__anon4350aedf0111::BlockScopePosPair282 BlockScopePosPair() : block(nullptr) {}
BlockScopePosPair__anon4350aedf0111::BlockScopePosPair283 BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
284 : block(b), scopePosition(scopePos) {}
285
286 CFGBlock *block;
287 LocalScope::const_iterator scopePosition;
288 };
289
290 /// TryResult - a class representing a variant over the values
291 /// 'true', 'false', or 'unknown'. This is returned by tryEvaluateBool,
292 /// and is used by the CFGBuilder to decide if a branch condition
293 /// can be decided up front during CFG construction.
294 class TryResult {
295 int X;
296 public:
TryResult(bool b)297 TryResult(bool b) : X(b ? 1 : 0) {}
TryResult()298 TryResult() : X(-1) {}
299
isTrue() const300 bool isTrue() const { return X == 1; }
isFalse() const301 bool isFalse() const { return X == 0; }
isKnown() const302 bool isKnown() const { return X >= 0; }
negate()303 void negate() {
304 assert(isKnown());
305 X ^= 0x1;
306 }
307 };
308
bothKnownTrue(TryResult R1,TryResult R2)309 TryResult bothKnownTrue(TryResult R1, TryResult R2) {
310 if (!R1.isKnown() || !R2.isKnown())
311 return TryResult();
312 return TryResult(R1.isTrue() && R2.isTrue());
313 }
314
315 class reverse_children {
316 llvm::SmallVector<Stmt *, 12> childrenBuf;
317 ArrayRef<Stmt*> children;
318 public:
319 reverse_children(Stmt *S);
320
321 typedef ArrayRef<Stmt*>::reverse_iterator iterator;
begin() const322 iterator begin() const { return children.rbegin(); }
end() const323 iterator end() const { return children.rend(); }
324 };
325
326
reverse_children(Stmt * S)327 reverse_children::reverse_children(Stmt *S) {
328 if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
329 children = CE->getRawSubExprs();
330 return;
331 }
332 switch (S->getStmtClass()) {
333 // Note: Fill in this switch with more cases we want to optimize.
334 case Stmt::InitListExprClass: {
335 InitListExpr *IE = cast<InitListExpr>(S);
336 children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
337 IE->getNumInits());
338 return;
339 }
340 default:
341 break;
342 }
343
344 // Default case for all other statements.
345 for (Stmt *SubStmt : S->children())
346 childrenBuf.push_back(SubStmt);
347
348 // This needs to be done *after* childrenBuf has been populated.
349 children = childrenBuf;
350 }
351
352 /// CFGBuilder - This class implements CFG construction from an AST.
353 /// The builder is stateful: an instance of the builder should be used to only
354 /// construct a single CFG.
355 ///
356 /// Example usage:
357 ///
358 /// CFGBuilder builder;
359 /// std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1);
360 ///
361 /// CFG construction is done via a recursive walk of an AST. We actually parse
362 /// the AST in reverse order so that the successor of a basic block is
363 /// constructed prior to its predecessor. This allows us to nicely capture
364 /// implicit fall-throughs without extra basic blocks.
365 ///
366 class CFGBuilder {
367 typedef BlockScopePosPair JumpTarget;
368 typedef BlockScopePosPair JumpSource;
369
370 ASTContext *Context;
371 std::unique_ptr<CFG> cfg;
372
373 CFGBlock *Block;
374 CFGBlock *Succ;
375 JumpTarget ContinueJumpTarget;
376 JumpTarget BreakJumpTarget;
377 CFGBlock *SwitchTerminatedBlock;
378 CFGBlock *DefaultCaseBlock;
379 CFGBlock *TryTerminatedBlock;
380
381 // Current position in local scope.
382 LocalScope::const_iterator ScopePos;
383
384 // LabelMap records the mapping from Label expressions to their jump targets.
385 typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
386 LabelMapTy LabelMap;
387
388 // A list of blocks that end with a "goto" that must be backpatched to their
389 // resolved targets upon completion of CFG construction.
390 typedef std::vector<JumpSource> BackpatchBlocksTy;
391 BackpatchBlocksTy BackpatchBlocks;
392
393 // A list of labels whose address has been taken (for indirect gotos).
394 typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
395 LabelSetTy AddressTakenLabels;
396
397 bool badCFG;
398 const CFG::BuildOptions &BuildOpts;
399
400 // State to track for building switch statements.
401 bool switchExclusivelyCovered;
402 Expr::EvalResult *switchCond;
403
404 CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
405 const Stmt *lastLookup;
406
407 // Caches boolean evaluations of expressions to avoid multiple re-evaluations
408 // during construction of branches for chained logical operators.
409 typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy;
410 CachedBoolEvalsTy CachedBoolEvals;
411
412 public:
CFGBuilder(ASTContext * astContext,const CFG::BuildOptions & buildOpts)413 explicit CFGBuilder(ASTContext *astContext,
414 const CFG::BuildOptions &buildOpts)
415 : Context(astContext), cfg(new CFG()), // crew a new CFG
416 Block(nullptr), Succ(nullptr),
417 SwitchTerminatedBlock(nullptr), DefaultCaseBlock(nullptr),
418 TryTerminatedBlock(nullptr), badCFG(false), BuildOpts(buildOpts),
419 switchExclusivelyCovered(false), switchCond(nullptr),
420 cachedEntry(nullptr), lastLookup(nullptr) {}
421
422 // buildCFG - Used by external clients to construct the CFG.
423 std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement);
424
425 bool alwaysAdd(const Stmt *stmt);
426
427 private:
428 // Visitors to walk an AST and construct the CFG.
429 CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
430 CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
431 CFGBlock *VisitBreakStmt(BreakStmt *B);
432 CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
433 CFGBlock *VisitCaseStmt(CaseStmt *C);
434 CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
435 CFGBlock *VisitCompoundStmt(CompoundStmt *C);
436 CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
437 AddStmtChoice asc);
438 CFGBlock *VisitContinueStmt(ContinueStmt *C);
439 CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
440 AddStmtChoice asc);
441 CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
442 CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
443 CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc);
444 CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc);
445 CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
446 CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
447 AddStmtChoice asc);
448 CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
449 AddStmtChoice asc);
450 CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
451 CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
452 CFGBlock *VisitDeclStmt(DeclStmt *DS);
453 CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
454 CFGBlock *VisitDefaultStmt(DefaultStmt *D);
455 CFGBlock *VisitDoStmt(DoStmt *D);
456 CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc);
457 CFGBlock *VisitForStmt(ForStmt *F);
458 CFGBlock *VisitGotoStmt(GotoStmt *G);
459 CFGBlock *VisitIfStmt(IfStmt *I);
460 CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
461 CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
462 CFGBlock *VisitLabelStmt(LabelStmt *L);
463 CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
464 CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
465 CFGBlock *VisitLogicalOperator(BinaryOperator *B);
466 std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
467 Stmt *Term,
468 CFGBlock *TrueBlock,
469 CFGBlock *FalseBlock);
470 CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
471 CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
472 CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
473 CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
474 CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
475 CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
476 CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
477 CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
478 CFGBlock *VisitReturnStmt(ReturnStmt *R);
479 CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
480 CFGBlock *VisitSwitchStmt(SwitchStmt *S);
481 CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
482 AddStmtChoice asc);
483 CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
484 CFGBlock *VisitWhileStmt(WhileStmt *W);
485
486 CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
487 CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
488 CFGBlock *VisitChildren(Stmt *S);
489 CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
490
491 /// When creating the CFG for temporary destructors, we want to mirror the
492 /// branch structure of the corresponding constructor calls.
493 /// Thus, while visiting a statement for temporary destructors, we keep a
494 /// context to keep track of the following information:
495 /// - whether a subexpression is executed unconditionally
496 /// - if a subexpression is executed conditionally, the first
497 /// CXXBindTemporaryExpr we encounter in that subexpression (which
498 /// corresponds to the last temporary destructor we have to call for this
499 /// subexpression) and the CFG block at that point (which will become the
500 /// successor block when inserting the decision point).
501 ///
502 /// That way, we can build the branch structure for temporary destructors as
503 /// follows:
504 /// 1. If a subexpression is executed unconditionally, we add the temporary
505 /// destructor calls to the current block.
506 /// 2. If a subexpression is executed conditionally, when we encounter a
507 /// CXXBindTemporaryExpr:
508 /// a) If it is the first temporary destructor call in the subexpression,
509 /// we remember the CXXBindTemporaryExpr and the current block in the
510 /// TempDtorContext; we start a new block, and insert the temporary
511 /// destructor call.
512 /// b) Otherwise, add the temporary destructor call to the current block.
513 /// 3. When we finished visiting a conditionally executed subexpression,
514 /// and we found at least one temporary constructor during the visitation
515 /// (2.a has executed), we insert a decision block that uses the
516 /// CXXBindTemporaryExpr as terminator, and branches to the current block
517 /// if the CXXBindTemporaryExpr was marked executed, and otherwise
518 /// branches to the stored successor.
519 struct TempDtorContext {
TempDtorContext__anon4350aedf0111::CFGBuilder::TempDtorContext520 TempDtorContext()
521 : IsConditional(false), KnownExecuted(true), Succ(nullptr),
522 TerminatorExpr(nullptr) {}
523
TempDtorContext__anon4350aedf0111::CFGBuilder::TempDtorContext524 TempDtorContext(TryResult KnownExecuted)
525 : IsConditional(true), KnownExecuted(KnownExecuted), Succ(nullptr),
526 TerminatorExpr(nullptr) {}
527
528 /// Returns whether we need to start a new branch for a temporary destructor
529 /// call. This is the case when the temporary destructor is
530 /// conditionally executed, and it is the first one we encounter while
531 /// visiting a subexpression - other temporary destructors at the same level
532 /// will be added to the same block and are executed under the same
533 /// condition.
needsTempDtorBranch__anon4350aedf0111::CFGBuilder::TempDtorContext534 bool needsTempDtorBranch() const {
535 return IsConditional && !TerminatorExpr;
536 }
537
538 /// Remember the successor S of a temporary destructor decision branch for
539 /// the corresponding CXXBindTemporaryExpr E.
setDecisionPoint__anon4350aedf0111::CFGBuilder::TempDtorContext540 void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) {
541 Succ = S;
542 TerminatorExpr = E;
543 }
544
545 const bool IsConditional;
546 const TryResult KnownExecuted;
547 CFGBlock *Succ;
548 CXXBindTemporaryExpr *TerminatorExpr;
549 };
550
551 // Visitors to walk an AST and generate destructors of temporaries in
552 // full expression.
553 CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary,
554 TempDtorContext &Context);
555 CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E, TempDtorContext &Context);
556 CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E,
557 TempDtorContext &Context);
558 CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(
559 CXXBindTemporaryExpr *E, bool BindToTemporary, TempDtorContext &Context);
560 CFGBlock *VisitConditionalOperatorForTemporaryDtors(
561 AbstractConditionalOperator *E, bool BindToTemporary,
562 TempDtorContext &Context);
563 void InsertTempDtorDecisionBlock(const TempDtorContext &Context,
564 CFGBlock *FalseSucc = nullptr);
565
566 // NYS == Not Yet Supported
NYS()567 CFGBlock *NYS() {
568 badCFG = true;
569 return Block;
570 }
571
autoCreateBlock()572 void autoCreateBlock() { if (!Block) Block = createBlock(); }
573 CFGBlock *createBlock(bool add_successor = true);
574 CFGBlock *createNoReturnBlock();
575
addStmt(Stmt * S)576 CFGBlock *addStmt(Stmt *S) {
577 return Visit(S, AddStmtChoice::AlwaysAdd);
578 }
579 CFGBlock *addInitializer(CXXCtorInitializer *I);
580 void addAutomaticObjDtors(LocalScope::const_iterator B,
581 LocalScope::const_iterator E, Stmt *S);
582 void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
583
584 // Local scopes creation.
585 LocalScope* createOrReuseLocalScope(LocalScope* Scope);
586
587 void addLocalScopeForStmt(Stmt *S);
588 LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS,
589 LocalScope* Scope = nullptr);
590 LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr);
591
592 void addLocalScopeAndDtors(Stmt *S);
593
594 // Interface to CFGBlock - adding CFGElements.
appendStmt(CFGBlock * B,const Stmt * S)595 void appendStmt(CFGBlock *B, const Stmt *S) {
596 if (alwaysAdd(S) && cachedEntry)
597 cachedEntry->second = B;
598
599 // All block-level expressions should have already been IgnoreParens()ed.
600 assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
601 B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
602 }
appendInitializer(CFGBlock * B,CXXCtorInitializer * I)603 void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
604 B->appendInitializer(I, cfg->getBumpVectorContext());
605 }
appendNewAllocator(CFGBlock * B,CXXNewExpr * NE)606 void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) {
607 B->appendNewAllocator(NE, cfg->getBumpVectorContext());
608 }
appendBaseDtor(CFGBlock * B,const CXXBaseSpecifier * BS)609 void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
610 B->appendBaseDtor(BS, cfg->getBumpVectorContext());
611 }
appendMemberDtor(CFGBlock * B,FieldDecl * FD)612 void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
613 B->appendMemberDtor(FD, cfg->getBumpVectorContext());
614 }
appendTemporaryDtor(CFGBlock * B,CXXBindTemporaryExpr * E)615 void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
616 B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
617 }
appendAutomaticObjDtor(CFGBlock * B,VarDecl * VD,Stmt * S)618 void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
619 B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
620 }
621
appendDeleteDtor(CFGBlock * B,CXXRecordDecl * RD,CXXDeleteExpr * DE)622 void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) {
623 B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext());
624 }
625
626 void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
627 LocalScope::const_iterator B, LocalScope::const_iterator E);
628
addSuccessor(CFGBlock * B,CFGBlock * S,bool IsReachable=true)629 void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) {
630 B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable),
631 cfg->getBumpVectorContext());
632 }
633
634 /// Add a reachable successor to a block, with the alternate variant that is
635 /// unreachable.
addSuccessor(CFGBlock * B,CFGBlock * ReachableBlock,CFGBlock * AltBlock)636 void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) {
637 B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock),
638 cfg->getBumpVectorContext());
639 }
640
641 /// \brief Find a relational comparison with an expression evaluating to a
642 /// boolean and a constant other than 0 and 1.
643 /// e.g. if ((x < y) == 10)
checkIncorrectRelationalOperator(const BinaryOperator * B)644 TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) {
645 const Expr *LHSExpr = B->getLHS()->IgnoreParens();
646 const Expr *RHSExpr = B->getRHS()->IgnoreParens();
647
648 const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
649 const Expr *BoolExpr = RHSExpr;
650 bool IntFirst = true;
651 if (!IntLiteral) {
652 IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
653 BoolExpr = LHSExpr;
654 IntFirst = false;
655 }
656
657 if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue())
658 return TryResult();
659
660 llvm::APInt IntValue = IntLiteral->getValue();
661 if ((IntValue == 1) || (IntValue == 0))
662 return TryResult();
663
664 bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() ||
665 !IntValue.isNegative();
666
667 BinaryOperatorKind Bok = B->getOpcode();
668 if (Bok == BO_GT || Bok == BO_GE) {
669 // Always true for 10 > bool and bool > -1
670 // Always false for -1 > bool and bool > 10
671 return TryResult(IntFirst == IntLarger);
672 } else {
673 // Always true for -1 < bool and bool < 10
674 // Always false for 10 < bool and bool < -1
675 return TryResult(IntFirst != IntLarger);
676 }
677 }
678
679 /// Find an incorrect equality comparison. Either with an expression
680 /// evaluating to a boolean and a constant other than 0 and 1.
681 /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to
682 /// true/false e.q. (x & 8) == 4.
checkIncorrectEqualityOperator(const BinaryOperator * B)683 TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) {
684 const Expr *LHSExpr = B->getLHS()->IgnoreParens();
685 const Expr *RHSExpr = B->getRHS()->IgnoreParens();
686
687 const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
688 const Expr *BoolExpr = RHSExpr;
689
690 if (!IntLiteral) {
691 IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
692 BoolExpr = LHSExpr;
693 }
694
695 if (!IntLiteral)
696 return TryResult();
697
698 const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr);
699 if (BitOp && (BitOp->getOpcode() == BO_And ||
700 BitOp->getOpcode() == BO_Or)) {
701 const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens();
702 const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens();
703
704 const IntegerLiteral *IntLiteral2 = dyn_cast<IntegerLiteral>(LHSExpr2);
705
706 if (!IntLiteral2)
707 IntLiteral2 = dyn_cast<IntegerLiteral>(RHSExpr2);
708
709 if (!IntLiteral2)
710 return TryResult();
711
712 llvm::APInt L1 = IntLiteral->getValue();
713 llvm::APInt L2 = IntLiteral2->getValue();
714 if ((BitOp->getOpcode() == BO_And && (L2 & L1) != L1) ||
715 (BitOp->getOpcode() == BO_Or && (L2 | L1) != L1)) {
716 if (BuildOpts.Observer)
717 BuildOpts.Observer->compareBitwiseEquality(B,
718 B->getOpcode() != BO_EQ);
719 TryResult(B->getOpcode() != BO_EQ);
720 }
721 } else if (BoolExpr->isKnownToHaveBooleanValue()) {
722 llvm::APInt IntValue = IntLiteral->getValue();
723 if ((IntValue == 1) || (IntValue == 0)) {
724 return TryResult();
725 }
726 return TryResult(B->getOpcode() != BO_EQ);
727 }
728
729 return TryResult();
730 }
731
analyzeLogicOperatorCondition(BinaryOperatorKind Relation,const llvm::APSInt & Value1,const llvm::APSInt & Value2)732 TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation,
733 const llvm::APSInt &Value1,
734 const llvm::APSInt &Value2) {
735 assert(Value1.isSigned() == Value2.isSigned());
736 switch (Relation) {
737 default:
738 return TryResult();
739 case BO_EQ:
740 return TryResult(Value1 == Value2);
741 case BO_NE:
742 return TryResult(Value1 != Value2);
743 case BO_LT:
744 return TryResult(Value1 < Value2);
745 case BO_LE:
746 return TryResult(Value1 <= Value2);
747 case BO_GT:
748 return TryResult(Value1 > Value2);
749 case BO_GE:
750 return TryResult(Value1 >= Value2);
751 }
752 }
753
754 /// \brief Find a pair of comparison expressions with or without parentheses
755 /// with a shared variable and constants and a logical operator between them
756 /// that always evaluates to either true or false.
757 /// e.g. if (x != 3 || x != 4)
checkIncorrectLogicOperator(const BinaryOperator * B)758 TryResult checkIncorrectLogicOperator(const BinaryOperator *B) {
759 assert(B->isLogicalOp());
760 const BinaryOperator *LHS =
761 dyn_cast<BinaryOperator>(B->getLHS()->IgnoreParens());
762 const BinaryOperator *RHS =
763 dyn_cast<BinaryOperator>(B->getRHS()->IgnoreParens());
764 if (!LHS || !RHS)
765 return TryResult();
766
767 if (!LHS->isComparisonOp() || !RHS->isComparisonOp())
768 return TryResult();
769
770 const DeclRefExpr *Decl1;
771 const Expr *Expr1;
772 BinaryOperatorKind BO1;
773 std::tie(Decl1, BO1, Expr1) = tryNormalizeBinaryOperator(LHS);
774
775 if (!Decl1 || !Expr1)
776 return TryResult();
777
778 const DeclRefExpr *Decl2;
779 const Expr *Expr2;
780 BinaryOperatorKind BO2;
781 std::tie(Decl2, BO2, Expr2) = tryNormalizeBinaryOperator(RHS);
782
783 if (!Decl2 || !Expr2)
784 return TryResult();
785
786 // Check that it is the same variable on both sides.
787 if (Decl1->getDecl() != Decl2->getDecl())
788 return TryResult();
789
790 // Make sure the user's intent is clear (e.g. they're comparing against two
791 // int literals, or two things from the same enum)
792 if (!areExprTypesCompatible(Expr1, Expr2))
793 return TryResult();
794
795 llvm::APSInt L1, L2;
796
797 if (!Expr1->EvaluateAsInt(L1, *Context) ||
798 !Expr2->EvaluateAsInt(L2, *Context))
799 return TryResult();
800
801 // Can't compare signed with unsigned or with different bit width.
802 if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth())
803 return TryResult();
804
805 // Values that will be used to determine if result of logical
806 // operator is always true/false
807 const llvm::APSInt Values[] = {
808 // Value less than both Value1 and Value2
809 llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()),
810 // L1
811 L1,
812 // Value between Value1 and Value2
813 ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1),
814 L1.isUnsigned()),
815 // L2
816 L2,
817 // Value greater than both Value1 and Value2
818 llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()),
819 };
820
821 // Check whether expression is always true/false by evaluating the following
822 // * variable x is less than the smallest literal.
823 // * variable x is equal to the smallest literal.
824 // * Variable x is between smallest and largest literal.
825 // * Variable x is equal to the largest literal.
826 // * Variable x is greater than largest literal.
827 bool AlwaysTrue = true, AlwaysFalse = true;
828 for (llvm::APSInt Value : Values) {
829 TryResult Res1, Res2;
830 Res1 = analyzeLogicOperatorCondition(BO1, Value, L1);
831 Res2 = analyzeLogicOperatorCondition(BO2, Value, L2);
832
833 if (!Res1.isKnown() || !Res2.isKnown())
834 return TryResult();
835
836 if (B->getOpcode() == BO_LAnd) {
837 AlwaysTrue &= (Res1.isTrue() && Res2.isTrue());
838 AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue());
839 } else {
840 AlwaysTrue &= (Res1.isTrue() || Res2.isTrue());
841 AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue());
842 }
843 }
844
845 if (AlwaysTrue || AlwaysFalse) {
846 if (BuildOpts.Observer)
847 BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue);
848 return TryResult(AlwaysTrue);
849 }
850 return TryResult();
851 }
852
853 /// Try and evaluate an expression to an integer constant.
tryEvaluate(Expr * S,Expr::EvalResult & outResult)854 bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
855 if (!BuildOpts.PruneTriviallyFalseEdges)
856 return false;
857 return !S->isTypeDependent() &&
858 !S->isValueDependent() &&
859 S->EvaluateAsRValue(outResult, *Context);
860 }
861
862 /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
863 /// if we can evaluate to a known value, otherwise return -1.
tryEvaluateBool(Expr * S)864 TryResult tryEvaluateBool(Expr *S) {
865 if (!BuildOpts.PruneTriviallyFalseEdges ||
866 S->isTypeDependent() || S->isValueDependent())
867 return TryResult();
868
869 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
870 if (Bop->isLogicalOp()) {
871 // Check the cache first.
872 CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
873 if (I != CachedBoolEvals.end())
874 return I->second; // already in map;
875
876 // Retrieve result at first, or the map might be updated.
877 TryResult Result = evaluateAsBooleanConditionNoCache(S);
878 CachedBoolEvals[S] = Result; // update or insert
879 return Result;
880 }
881 else {
882 switch (Bop->getOpcode()) {
883 default: break;
884 // For 'x & 0' and 'x * 0', we can determine that
885 // the value is always false.
886 case BO_Mul:
887 case BO_And: {
888 // If either operand is zero, we know the value
889 // must be false.
890 llvm::APSInt IntVal;
891 if (Bop->getLHS()->EvaluateAsInt(IntVal, *Context)) {
892 if (!IntVal.getBoolValue()) {
893 return TryResult(false);
894 }
895 }
896 if (Bop->getRHS()->EvaluateAsInt(IntVal, *Context)) {
897 if (!IntVal.getBoolValue()) {
898 return TryResult(false);
899 }
900 }
901 }
902 break;
903 }
904 }
905 }
906
907 return evaluateAsBooleanConditionNoCache(S);
908 }
909
910 /// \brief Evaluate as boolean \param E without using the cache.
evaluateAsBooleanConditionNoCache(Expr * E)911 TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
912 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
913 if (Bop->isLogicalOp()) {
914 TryResult LHS = tryEvaluateBool(Bop->getLHS());
915 if (LHS.isKnown()) {
916 // We were able to evaluate the LHS, see if we can get away with not
917 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
918 if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
919 return LHS.isTrue();
920
921 TryResult RHS = tryEvaluateBool(Bop->getRHS());
922 if (RHS.isKnown()) {
923 if (Bop->getOpcode() == BO_LOr)
924 return LHS.isTrue() || RHS.isTrue();
925 else
926 return LHS.isTrue() && RHS.isTrue();
927 }
928 } else {
929 TryResult RHS = tryEvaluateBool(Bop->getRHS());
930 if (RHS.isKnown()) {
931 // We can't evaluate the LHS; however, sometimes the result
932 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
933 if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
934 return RHS.isTrue();
935 } else {
936 TryResult BopRes = checkIncorrectLogicOperator(Bop);
937 if (BopRes.isKnown())
938 return BopRes.isTrue();
939 }
940 }
941
942 return TryResult();
943 } else if (Bop->isEqualityOp()) {
944 TryResult BopRes = checkIncorrectEqualityOperator(Bop);
945 if (BopRes.isKnown())
946 return BopRes.isTrue();
947 } else if (Bop->isRelationalOp()) {
948 TryResult BopRes = checkIncorrectRelationalOperator(Bop);
949 if (BopRes.isKnown())
950 return BopRes.isTrue();
951 }
952 }
953
954 bool Result;
955 if (E->EvaluateAsBooleanCondition(Result, *Context))
956 return Result;
957
958 return TryResult();
959 }
960
961 };
962
alwaysAdd(CFGBuilder & builder,const Stmt * stmt) const963 inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
964 const Stmt *stmt) const {
965 return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
966 }
967
alwaysAdd(const Stmt * stmt)968 bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
969 bool shouldAdd = BuildOpts.alwaysAdd(stmt);
970
971 if (!BuildOpts.forcedBlkExprs)
972 return shouldAdd;
973
974 if (lastLookup == stmt) {
975 if (cachedEntry) {
976 assert(cachedEntry->first == stmt);
977 return true;
978 }
979 return shouldAdd;
980 }
981
982 lastLookup = stmt;
983
984 // Perform the lookup!
985 CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
986
987 if (!fb) {
988 // No need to update 'cachedEntry', since it will always be null.
989 assert(!cachedEntry);
990 return shouldAdd;
991 }
992
993 CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
994 if (itr == fb->end()) {
995 cachedEntry = nullptr;
996 return shouldAdd;
997 }
998
999 cachedEntry = &*itr;
1000 return true;
1001 }
1002
1003 // FIXME: Add support for dependent-sized array types in C++?
1004 // Does it even make sense to build a CFG for an uninstantiated template?
FindVA(const Type * t)1005 static const VariableArrayType *FindVA(const Type *t) {
1006 while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
1007 if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
1008 if (vat->getSizeExpr())
1009 return vat;
1010
1011 t = vt->getElementType().getTypePtr();
1012 }
1013
1014 return nullptr;
1015 }
1016
1017 /// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an
1018 /// arbitrary statement. Examples include a single expression or a function
1019 /// body (compound statement). The ownership of the returned CFG is
1020 /// transferred to the caller. If CFG construction fails, this method returns
1021 /// NULL.
buildCFG(const Decl * D,Stmt * Statement)1022 std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
1023 assert(cfg.get());
1024 if (!Statement)
1025 return nullptr;
1026
1027 // Create an empty block that will serve as the exit block for the CFG. Since
1028 // this is the first block added to the CFG, it will be implicitly registered
1029 // as the exit block.
1030 Succ = createBlock();
1031 assert(Succ == &cfg->getExit());
1032 Block = nullptr; // the EXIT block is empty. Create all other blocks lazily.
1033
1034 if (BuildOpts.AddImplicitDtors)
1035 if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
1036 addImplicitDtorsForDestructor(DD);
1037
1038 // Visit the statements and create the CFG.
1039 CFGBlock *B = addStmt(Statement);
1040
1041 if (badCFG)
1042 return nullptr;
1043
1044 // For C++ constructor add initializers to CFG.
1045 if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
1046 for (auto *I : llvm::reverse(CD->inits())) {
1047 B = addInitializer(I);
1048 if (badCFG)
1049 return nullptr;
1050 }
1051 }
1052
1053 if (B)
1054 Succ = B;
1055
1056 // Backpatch the gotos whose label -> block mappings we didn't know when we
1057 // encountered them.
1058 for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
1059 E = BackpatchBlocks.end(); I != E; ++I ) {
1060
1061 CFGBlock *B = I->block;
1062 const GotoStmt *G = cast<GotoStmt>(B->getTerminator());
1063 LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
1064
1065 // If there is no target for the goto, then we are looking at an
1066 // incomplete AST. Handle this by not registering a successor.
1067 if (LI == LabelMap.end()) continue;
1068
1069 JumpTarget JT = LI->second;
1070 prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
1071 JT.scopePosition);
1072 addSuccessor(B, JT.block);
1073 }
1074
1075 // Add successors to the Indirect Goto Dispatch block (if we have one).
1076 if (CFGBlock *B = cfg->getIndirectGotoBlock())
1077 for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
1078 E = AddressTakenLabels.end(); I != E; ++I ) {
1079
1080 // Lookup the target block.
1081 LabelMapTy::iterator LI = LabelMap.find(*I);
1082
1083 // If there is no target block that contains label, then we are looking
1084 // at an incomplete AST. Handle this by not registering a successor.
1085 if (LI == LabelMap.end()) continue;
1086
1087 addSuccessor(B, LI->second.block);
1088 }
1089
1090 // Create an empty entry block that has no predecessors.
1091 cfg->setEntry(createBlock());
1092
1093 return std::move(cfg);
1094 }
1095
1096 /// createBlock - Used to lazily create blocks that are connected
1097 /// to the current (global) succcessor.
createBlock(bool add_successor)1098 CFGBlock *CFGBuilder::createBlock(bool add_successor) {
1099 CFGBlock *B = cfg->createBlock();
1100 if (add_successor && Succ)
1101 addSuccessor(B, Succ);
1102 return B;
1103 }
1104
1105 /// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
1106 /// CFG. It is *not* connected to the current (global) successor, and instead
1107 /// directly tied to the exit block in order to be reachable.
createNoReturnBlock()1108 CFGBlock *CFGBuilder::createNoReturnBlock() {
1109 CFGBlock *B = createBlock(false);
1110 B->setHasNoReturnElement();
1111 addSuccessor(B, &cfg->getExit(), Succ);
1112 return B;
1113 }
1114
1115 /// addInitializer - Add C++ base or member initializer element to CFG.
addInitializer(CXXCtorInitializer * I)1116 CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
1117 if (!BuildOpts.AddInitializers)
1118 return Block;
1119
1120 bool HasTemporaries = false;
1121
1122 // Destructors of temporaries in initialization expression should be called
1123 // after initialization finishes.
1124 Expr *Init = I->getInit();
1125 if (Init) {
1126 HasTemporaries = isa<ExprWithCleanups>(Init);
1127
1128 if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
1129 // Generate destructors for temporaries in initialization expression.
1130 TempDtorContext Context;
1131 VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1132 /*BindToTemporary=*/false, Context);
1133 }
1134 }
1135
1136 autoCreateBlock();
1137 appendInitializer(Block, I);
1138
1139 if (Init) {
1140 if (HasTemporaries) {
1141 // For expression with temporaries go directly to subexpression to omit
1142 // generating destructors for the second time.
1143 return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1144 }
1145 if (BuildOpts.AddCXXDefaultInitExprInCtors) {
1146 if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(Init)) {
1147 // In general, appending the expression wrapped by a CXXDefaultInitExpr
1148 // may cause the same Expr to appear more than once in the CFG. Doing it
1149 // here is safe because there's only one initializer per field.
1150 autoCreateBlock();
1151 appendStmt(Block, Default);
1152 if (Stmt *Child = Default->getExpr())
1153 if (CFGBlock *R = Visit(Child))
1154 Block = R;
1155 return Block;
1156 }
1157 }
1158 return Visit(Init);
1159 }
1160
1161 return Block;
1162 }
1163
1164 /// \brief Retrieve the type of the temporary object whose lifetime was
1165 /// extended by a local reference with the given initializer.
getReferenceInitTemporaryType(ASTContext & Context,const Expr * Init)1166 static QualType getReferenceInitTemporaryType(ASTContext &Context,
1167 const Expr *Init) {
1168 while (true) {
1169 // Skip parentheses.
1170 Init = Init->IgnoreParens();
1171
1172 // Skip through cleanups.
1173 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
1174 Init = EWC->getSubExpr();
1175 continue;
1176 }
1177
1178 // Skip through the temporary-materialization expression.
1179 if (const MaterializeTemporaryExpr *MTE
1180 = dyn_cast<MaterializeTemporaryExpr>(Init)) {
1181 Init = MTE->GetTemporaryExpr();
1182 continue;
1183 }
1184
1185 // Skip derived-to-base and no-op casts.
1186 if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
1187 if ((CE->getCastKind() == CK_DerivedToBase ||
1188 CE->getCastKind() == CK_UncheckedDerivedToBase ||
1189 CE->getCastKind() == CK_NoOp) &&
1190 Init->getType()->isRecordType()) {
1191 Init = CE->getSubExpr();
1192 continue;
1193 }
1194 }
1195
1196 // Skip member accesses into rvalues.
1197 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
1198 if (!ME->isArrow() && ME->getBase()->isRValue()) {
1199 Init = ME->getBase();
1200 continue;
1201 }
1202 }
1203
1204 break;
1205 }
1206
1207 return Init->getType();
1208 }
1209
1210 /// addAutomaticObjDtors - Add to current block automatic objects destructors
1211 /// for objects in range of local scope positions. Use S as trigger statement
1212 /// for destructors.
addAutomaticObjDtors(LocalScope::const_iterator B,LocalScope::const_iterator E,Stmt * S)1213 void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
1214 LocalScope::const_iterator E, Stmt *S) {
1215 if (!BuildOpts.AddImplicitDtors)
1216 return;
1217
1218 if (B == E)
1219 return;
1220
1221 // We need to append the destructors in reverse order, but any one of them
1222 // may be a no-return destructor which changes the CFG. As a result, buffer
1223 // this sequence up and replay them in reverse order when appending onto the
1224 // CFGBlock(s).
1225 SmallVector<VarDecl*, 10> Decls;
1226 Decls.reserve(B.distance(E));
1227 for (LocalScope::const_iterator I = B; I != E; ++I)
1228 Decls.push_back(*I);
1229
1230 for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
1231 E = Decls.rend();
1232 I != E; ++I) {
1233 // If this destructor is marked as a no-return destructor, we need to
1234 // create a new block for the destructor which does not have as a successor
1235 // anything built thus far: control won't flow out of this block.
1236 QualType Ty = (*I)->getType();
1237 if (Ty->isReferenceType()) {
1238 Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
1239 }
1240 Ty = Context->getBaseElementType(Ty);
1241
1242 if (Ty->getAsCXXRecordDecl()->isAnyDestructorNoReturn())
1243 Block = createNoReturnBlock();
1244 else
1245 autoCreateBlock();
1246
1247 appendAutomaticObjDtor(Block, *I, S);
1248 }
1249 }
1250
1251 /// addImplicitDtorsForDestructor - Add implicit destructors generated for
1252 /// base and member objects in destructor.
addImplicitDtorsForDestructor(const CXXDestructorDecl * DD)1253 void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
1254 assert (BuildOpts.AddImplicitDtors
1255 && "Can be called only when dtors should be added");
1256 const CXXRecordDecl *RD = DD->getParent();
1257
1258 // At the end destroy virtual base objects.
1259 for (const auto &VI : RD->vbases()) {
1260 const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl();
1261 if (!CD->hasTrivialDestructor()) {
1262 autoCreateBlock();
1263 appendBaseDtor(Block, &VI);
1264 }
1265 }
1266
1267 // Before virtual bases destroy direct base objects.
1268 for (const auto &BI : RD->bases()) {
1269 if (!BI.isVirtual()) {
1270 const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl();
1271 if (!CD->hasTrivialDestructor()) {
1272 autoCreateBlock();
1273 appendBaseDtor(Block, &BI);
1274 }
1275 }
1276 }
1277
1278 // First destroy member objects.
1279 for (auto *FI : RD->fields()) {
1280 // Check for constant size array. Set type to array element type.
1281 QualType QT = FI->getType();
1282 if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
1283 if (AT->getSize() == 0)
1284 continue;
1285 QT = AT->getElementType();
1286 }
1287
1288 if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
1289 if (!CD->hasTrivialDestructor()) {
1290 autoCreateBlock();
1291 appendMemberDtor(Block, FI);
1292 }
1293 }
1294 }
1295
1296 /// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
1297 /// way return valid LocalScope object.
createOrReuseLocalScope(LocalScope * Scope)1298 LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
1299 if (Scope)
1300 return Scope;
1301 llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
1302 return new (alloc.Allocate<LocalScope>())
1303 LocalScope(BumpVectorContext(alloc), ScopePos);
1304 }
1305
1306 /// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
1307 /// that should create implicit scope (e.g. if/else substatements).
addLocalScopeForStmt(Stmt * S)1308 void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
1309 if (!BuildOpts.AddImplicitDtors)
1310 return;
1311
1312 LocalScope *Scope = nullptr;
1313
1314 // For compound statement we will be creating explicit scope.
1315 if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1316 for (auto *BI : CS->body()) {
1317 Stmt *SI = BI->stripLabelLikeStatements();
1318 if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
1319 Scope = addLocalScopeForDeclStmt(DS, Scope);
1320 }
1321 return;
1322 }
1323
1324 // For any other statement scope will be implicit and as such will be
1325 // interesting only for DeclStmt.
1326 if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
1327 addLocalScopeForDeclStmt(DS);
1328 }
1329
1330 /// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
1331 /// reuse Scope if not NULL.
addLocalScopeForDeclStmt(DeclStmt * DS,LocalScope * Scope)1332 LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
1333 LocalScope* Scope) {
1334 if (!BuildOpts.AddImplicitDtors)
1335 return Scope;
1336
1337 for (auto *DI : DS->decls())
1338 if (VarDecl *VD = dyn_cast<VarDecl>(DI))
1339 Scope = addLocalScopeForVarDecl(VD, Scope);
1340 return Scope;
1341 }
1342
1343 /// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
1344 /// create add scope for automatic objects and temporary objects bound to
1345 /// const reference. Will reuse Scope if not NULL.
addLocalScopeForVarDecl(VarDecl * VD,LocalScope * Scope)1346 LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
1347 LocalScope* Scope) {
1348 if (!BuildOpts.AddImplicitDtors)
1349 return Scope;
1350
1351 // Check if variable is local.
1352 switch (VD->getStorageClass()) {
1353 case SC_None:
1354 case SC_Auto:
1355 case SC_Register:
1356 break;
1357 default: return Scope;
1358 }
1359
1360 // Check for const references bound to temporary. Set type to pointee.
1361 QualType QT = VD->getType();
1362 if (QT.getTypePtr()->isReferenceType()) {
1363 // Attempt to determine whether this declaration lifetime-extends a
1364 // temporary.
1365 //
1366 // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
1367 // temporaries, and a single declaration can extend multiple temporaries.
1368 // We should look at the storage duration on each nested
1369 // MaterializeTemporaryExpr instead.
1370 const Expr *Init = VD->getInit();
1371 if (!Init)
1372 return Scope;
1373 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init))
1374 Init = EWC->getSubExpr();
1375 if (!isa<MaterializeTemporaryExpr>(Init))
1376 return Scope;
1377
1378 // Lifetime-extending a temporary.
1379 QT = getReferenceInitTemporaryType(*Context, Init);
1380 }
1381
1382 // Check for constant size array. Set type to array element type.
1383 while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
1384 if (AT->getSize() == 0)
1385 return Scope;
1386 QT = AT->getElementType();
1387 }
1388
1389 // Check if type is a C++ class with non-trivial destructor.
1390 if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
1391 if (!CD->hasTrivialDestructor()) {
1392 // Add the variable to scope
1393 Scope = createOrReuseLocalScope(Scope);
1394 Scope->addVar(VD);
1395 ScopePos = Scope->begin();
1396 }
1397 return Scope;
1398 }
1399
1400 /// addLocalScopeAndDtors - For given statement add local scope for it and
1401 /// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
addLocalScopeAndDtors(Stmt * S)1402 void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
1403 if (!BuildOpts.AddImplicitDtors)
1404 return;
1405
1406 LocalScope::const_iterator scopeBeginPos = ScopePos;
1407 addLocalScopeForStmt(S);
1408 addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
1409 }
1410
1411 /// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
1412 /// variables with automatic storage duration to CFGBlock's elements vector.
1413 /// Elements will be prepended to physical beginning of the vector which
1414 /// happens to be logical end. Use blocks terminator as statement that specifies
1415 /// destructors call site.
1416 /// FIXME: This mechanism for adding automatic destructors doesn't handle
1417 /// no-return destructors properly.
prependAutomaticObjDtorsWithTerminator(CFGBlock * Blk,LocalScope::const_iterator B,LocalScope::const_iterator E)1418 void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
1419 LocalScope::const_iterator B, LocalScope::const_iterator E) {
1420 BumpVectorContext &C = cfg->getBumpVectorContext();
1421 CFGBlock::iterator InsertPos
1422 = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
1423 for (LocalScope::const_iterator I = B; I != E; ++I)
1424 InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
1425 Blk->getTerminator());
1426 }
1427
1428 /// Visit - Walk the subtree of a statement and add extra
1429 /// blocks for ternary operators, &&, and ||. We also process "," and
1430 /// DeclStmts (which may contain nested control-flow).
Visit(Stmt * S,AddStmtChoice asc)1431 CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
1432 if (!S) {
1433 badCFG = true;
1434 return nullptr;
1435 }
1436
1437 if (Expr *E = dyn_cast<Expr>(S))
1438 S = E->IgnoreParens();
1439
1440 switch (S->getStmtClass()) {
1441 default:
1442 return VisitStmt(S, asc);
1443
1444 case Stmt::AddrLabelExprClass:
1445 return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
1446
1447 case Stmt::BinaryConditionalOperatorClass:
1448 return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
1449
1450 case Stmt::BinaryOperatorClass:
1451 return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
1452
1453 case Stmt::BlockExprClass:
1454 return VisitBlockExpr(cast<BlockExpr>(S), asc);
1455
1456 case Stmt::BreakStmtClass:
1457 return VisitBreakStmt(cast<BreakStmt>(S));
1458
1459 case Stmt::CallExprClass:
1460 case Stmt::CXXOperatorCallExprClass:
1461 case Stmt::CXXMemberCallExprClass:
1462 case Stmt::UserDefinedLiteralClass:
1463 return VisitCallExpr(cast<CallExpr>(S), asc);
1464
1465 case Stmt::CaseStmtClass:
1466 return VisitCaseStmt(cast<CaseStmt>(S));
1467
1468 case Stmt::ChooseExprClass:
1469 return VisitChooseExpr(cast<ChooseExpr>(S), asc);
1470
1471 case Stmt::CompoundStmtClass:
1472 return VisitCompoundStmt(cast<CompoundStmt>(S));
1473
1474 case Stmt::ConditionalOperatorClass:
1475 return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
1476
1477 case Stmt::ContinueStmtClass:
1478 return VisitContinueStmt(cast<ContinueStmt>(S));
1479
1480 case Stmt::CXXCatchStmtClass:
1481 return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
1482
1483 case Stmt::ExprWithCleanupsClass:
1484 return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
1485
1486 case Stmt::CXXDefaultArgExprClass:
1487 case Stmt::CXXDefaultInitExprClass:
1488 // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
1489 // called function's declaration, not by the caller. If we simply add
1490 // this expression to the CFG, we could end up with the same Expr
1491 // appearing multiple times.
1492 // PR13385 / <rdar://problem/12156507>
1493 //
1494 // It's likewise possible for multiple CXXDefaultInitExprs for the same
1495 // expression to be used in the same function (through aggregate
1496 // initialization).
1497 return VisitStmt(S, asc);
1498
1499 case Stmt::CXXBindTemporaryExprClass:
1500 return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
1501
1502 case Stmt::CXXConstructExprClass:
1503 return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
1504
1505 case Stmt::CXXNewExprClass:
1506 return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc);
1507
1508 case Stmt::CXXDeleteExprClass:
1509 return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc);
1510
1511 case Stmt::CXXFunctionalCastExprClass:
1512 return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
1513
1514 case Stmt::CXXTemporaryObjectExprClass:
1515 return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
1516
1517 case Stmt::CXXThrowExprClass:
1518 return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
1519
1520 case Stmt::CXXTryStmtClass:
1521 return VisitCXXTryStmt(cast<CXXTryStmt>(S));
1522
1523 case Stmt::CXXForRangeStmtClass:
1524 return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
1525
1526 case Stmt::DeclStmtClass:
1527 return VisitDeclStmt(cast<DeclStmt>(S));
1528
1529 case Stmt::DefaultStmtClass:
1530 return VisitDefaultStmt(cast<DefaultStmt>(S));
1531
1532 case Stmt::DoStmtClass:
1533 return VisitDoStmt(cast<DoStmt>(S));
1534
1535 case Stmt::ForStmtClass:
1536 return VisitForStmt(cast<ForStmt>(S));
1537
1538 case Stmt::GotoStmtClass:
1539 return VisitGotoStmt(cast<GotoStmt>(S));
1540
1541 case Stmt::IfStmtClass:
1542 return VisitIfStmt(cast<IfStmt>(S));
1543
1544 case Stmt::ImplicitCastExprClass:
1545 return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
1546
1547 case Stmt::IndirectGotoStmtClass:
1548 return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
1549
1550 case Stmt::LabelStmtClass:
1551 return VisitLabelStmt(cast<LabelStmt>(S));
1552
1553 case Stmt::LambdaExprClass:
1554 return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
1555
1556 case Stmt::MemberExprClass:
1557 return VisitMemberExpr(cast<MemberExpr>(S), asc);
1558
1559 case Stmt::NullStmtClass:
1560 return Block;
1561
1562 case Stmt::ObjCAtCatchStmtClass:
1563 return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
1564
1565 case Stmt::ObjCAutoreleasePoolStmtClass:
1566 return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
1567
1568 case Stmt::ObjCAtSynchronizedStmtClass:
1569 return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
1570
1571 case Stmt::ObjCAtThrowStmtClass:
1572 return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
1573
1574 case Stmt::ObjCAtTryStmtClass:
1575 return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
1576
1577 case Stmt::ObjCForCollectionStmtClass:
1578 return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
1579
1580 case Stmt::OpaqueValueExprClass:
1581 return Block;
1582
1583 case Stmt::PseudoObjectExprClass:
1584 return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
1585
1586 case Stmt::ReturnStmtClass:
1587 return VisitReturnStmt(cast<ReturnStmt>(S));
1588
1589 case Stmt::UnaryExprOrTypeTraitExprClass:
1590 return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
1591 asc);
1592
1593 case Stmt::StmtExprClass:
1594 return VisitStmtExpr(cast<StmtExpr>(S), asc);
1595
1596 case Stmt::SwitchStmtClass:
1597 return VisitSwitchStmt(cast<SwitchStmt>(S));
1598
1599 case Stmt::UnaryOperatorClass:
1600 return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
1601
1602 case Stmt::WhileStmtClass:
1603 return VisitWhileStmt(cast<WhileStmt>(S));
1604 }
1605 }
1606
VisitStmt(Stmt * S,AddStmtChoice asc)1607 CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1608 if (asc.alwaysAdd(*this, S)) {
1609 autoCreateBlock();
1610 appendStmt(Block, S);
1611 }
1612
1613 return VisitChildren(S);
1614 }
1615
1616 /// VisitChildren - Visit the children of a Stmt.
VisitChildren(Stmt * S)1617 CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
1618 CFGBlock *B = Block;
1619
1620 // Visit the children in their reverse order so that they appear in
1621 // left-to-right (natural) order in the CFG.
1622 reverse_children RChildren(S);
1623 for (reverse_children::iterator I = RChildren.begin(), E = RChildren.end();
1624 I != E; ++I) {
1625 if (Stmt *Child = *I)
1626 if (CFGBlock *R = Visit(Child))
1627 B = R;
1628 }
1629 return B;
1630 }
1631
VisitAddrLabelExpr(AddrLabelExpr * A,AddStmtChoice asc)1632 CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1633 AddStmtChoice asc) {
1634 AddressTakenLabels.insert(A->getLabel());
1635
1636 if (asc.alwaysAdd(*this, A)) {
1637 autoCreateBlock();
1638 appendStmt(Block, A);
1639 }
1640
1641 return Block;
1642 }
1643
VisitUnaryOperator(UnaryOperator * U,AddStmtChoice asc)1644 CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1645 AddStmtChoice asc) {
1646 if (asc.alwaysAdd(*this, U)) {
1647 autoCreateBlock();
1648 appendStmt(Block, U);
1649 }
1650
1651 return Visit(U->getSubExpr(), AddStmtChoice());
1652 }
1653
VisitLogicalOperator(BinaryOperator * B)1654 CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
1655 CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1656 appendStmt(ConfluenceBlock, B);
1657
1658 if (badCFG)
1659 return nullptr;
1660
1661 return VisitLogicalOperator(B, nullptr, ConfluenceBlock,
1662 ConfluenceBlock).first;
1663 }
1664
1665 std::pair<CFGBlock*, CFGBlock*>
VisitLogicalOperator(BinaryOperator * B,Stmt * Term,CFGBlock * TrueBlock,CFGBlock * FalseBlock)1666 CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
1667 Stmt *Term,
1668 CFGBlock *TrueBlock,
1669 CFGBlock *FalseBlock) {
1670
1671 // Introspect the RHS. If it is a nested logical operation, we recursively
1672 // build the CFG using this function. Otherwise, resort to default
1673 // CFG construction behavior.
1674 Expr *RHS = B->getRHS()->IgnoreParens();
1675 CFGBlock *RHSBlock, *ExitBlock;
1676
1677 do {
1678 if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
1679 if (B_RHS->isLogicalOp()) {
1680 std::tie(RHSBlock, ExitBlock) =
1681 VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
1682 break;
1683 }
1684
1685 // The RHS is not a nested logical operation. Don't push the terminator
1686 // down further, but instead visit RHS and construct the respective
1687 // pieces of the CFG, and link up the RHSBlock with the terminator
1688 // we have been provided.
1689 ExitBlock = RHSBlock = createBlock(false);
1690
1691 if (!Term) {
1692 assert(TrueBlock == FalseBlock);
1693 addSuccessor(RHSBlock, TrueBlock);
1694 }
1695 else {
1696 RHSBlock->setTerminator(Term);
1697 TryResult KnownVal = tryEvaluateBool(RHS);
1698 if (!KnownVal.isKnown())
1699 KnownVal = tryEvaluateBool(B);
1700 addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse());
1701 addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue());
1702 }
1703
1704 Block = RHSBlock;
1705 RHSBlock = addStmt(RHS);
1706 }
1707 while (false);
1708
1709 if (badCFG)
1710 return std::make_pair(nullptr, nullptr);
1711
1712 // Generate the blocks for evaluating the LHS.
1713 Expr *LHS = B->getLHS()->IgnoreParens();
1714
1715 if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
1716 if (B_LHS->isLogicalOp()) {
1717 if (B->getOpcode() == BO_LOr)
1718 FalseBlock = RHSBlock;
1719 else
1720 TrueBlock = RHSBlock;
1721
1722 // For the LHS, treat 'B' as the terminator that we want to sink
1723 // into the nested branch. The RHS always gets the top-most
1724 // terminator.
1725 return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
1726 }
1727
1728 // Create the block evaluating the LHS.
1729 // This contains the '&&' or '||' as the terminator.
1730 CFGBlock *LHSBlock = createBlock(false);
1731 LHSBlock->setTerminator(B);
1732
1733 Block = LHSBlock;
1734 CFGBlock *EntryLHSBlock = addStmt(LHS);
1735
1736 if (badCFG)
1737 return std::make_pair(nullptr, nullptr);
1738
1739 // See if this is a known constant.
1740 TryResult KnownVal = tryEvaluateBool(LHS);
1741
1742 // Now link the LHSBlock with RHSBlock.
1743 if (B->getOpcode() == BO_LOr) {
1744 addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse());
1745 addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue());
1746 } else {
1747 assert(B->getOpcode() == BO_LAnd);
1748 addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse());
1749 addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue());
1750 }
1751
1752 return std::make_pair(EntryLHSBlock, ExitBlock);
1753 }
1754
1755
VisitBinaryOperator(BinaryOperator * B,AddStmtChoice asc)1756 CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1757 AddStmtChoice asc) {
1758 // && or ||
1759 if (B->isLogicalOp())
1760 return VisitLogicalOperator(B);
1761
1762 if (B->getOpcode() == BO_Comma) { // ,
1763 autoCreateBlock();
1764 appendStmt(Block, B);
1765 addStmt(B->getRHS());
1766 return addStmt(B->getLHS());
1767 }
1768
1769 if (B->isAssignmentOp()) {
1770 if (asc.alwaysAdd(*this, B)) {
1771 autoCreateBlock();
1772 appendStmt(Block, B);
1773 }
1774 Visit(B->getLHS());
1775 return Visit(B->getRHS());
1776 }
1777
1778 if (asc.alwaysAdd(*this, B)) {
1779 autoCreateBlock();
1780 appendStmt(Block, B);
1781 }
1782
1783 CFGBlock *RBlock = Visit(B->getRHS());
1784 CFGBlock *LBlock = Visit(B->getLHS());
1785 // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1786 // containing a DoStmt, and the LHS doesn't create a new block, then we should
1787 // return RBlock. Otherwise we'll incorrectly return NULL.
1788 return (LBlock ? LBlock : RBlock);
1789 }
1790
VisitNoRecurse(Expr * E,AddStmtChoice asc)1791 CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
1792 if (asc.alwaysAdd(*this, E)) {
1793 autoCreateBlock();
1794 appendStmt(Block, E);
1795 }
1796 return Block;
1797 }
1798
VisitBreakStmt(BreakStmt * B)1799 CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1800 // "break" is a control-flow statement. Thus we stop processing the current
1801 // block.
1802 if (badCFG)
1803 return nullptr;
1804
1805 // Now create a new block that ends with the break statement.
1806 Block = createBlock(false);
1807 Block->setTerminator(B);
1808
1809 // If there is no target for the break, then we are looking at an incomplete
1810 // AST. This means that the CFG cannot be constructed.
1811 if (BreakJumpTarget.block) {
1812 addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1813 addSuccessor(Block, BreakJumpTarget.block);
1814 } else
1815 badCFG = true;
1816
1817
1818 return Block;
1819 }
1820
CanThrow(Expr * E,ASTContext & Ctx)1821 static bool CanThrow(Expr *E, ASTContext &Ctx) {
1822 QualType Ty = E->getType();
1823 if (Ty->isFunctionPointerType())
1824 Ty = Ty->getAs<PointerType>()->getPointeeType();
1825 else if (Ty->isBlockPointerType())
1826 Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1827
1828 const FunctionType *FT = Ty->getAs<FunctionType>();
1829 if (FT) {
1830 if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1831 if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
1832 Proto->isNothrow(Ctx))
1833 return false;
1834 }
1835 return true;
1836 }
1837
VisitCallExpr(CallExpr * C,AddStmtChoice asc)1838 CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1839 // Compute the callee type.
1840 QualType calleeType = C->getCallee()->getType();
1841 if (calleeType == Context->BoundMemberTy) {
1842 QualType boundType = Expr::findBoundMemberType(C->getCallee());
1843
1844 // We should only get a null bound type if processing a dependent
1845 // CFG. Recover by assuming nothing.
1846 if (!boundType.isNull()) calleeType = boundType;
1847 }
1848
1849 // If this is a call to a no-return function, this stops the block here.
1850 bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1851
1852 bool AddEHEdge = false;
1853
1854 // Languages without exceptions are assumed to not throw.
1855 if (Context->getLangOpts().Exceptions) {
1856 if (BuildOpts.AddEHEdges)
1857 AddEHEdge = true;
1858 }
1859
1860 // If this is a call to a builtin function, it might not actually evaluate
1861 // its arguments. Don't add them to the CFG if this is the case.
1862 bool OmitArguments = false;
1863
1864 if (FunctionDecl *FD = C->getDirectCallee()) {
1865 if (FD->isNoReturn())
1866 NoReturn = true;
1867 if (FD->hasAttr<NoThrowAttr>())
1868 AddEHEdge = false;
1869 if (FD->getBuiltinID() == Builtin::BI__builtin_object_size)
1870 OmitArguments = true;
1871 }
1872
1873 if (!CanThrow(C->getCallee(), *Context))
1874 AddEHEdge = false;
1875
1876 if (OmitArguments) {
1877 assert(!NoReturn && "noreturn calls with unevaluated args not implemented");
1878 assert(!AddEHEdge && "EH calls with unevaluated args not implemented");
1879 autoCreateBlock();
1880 appendStmt(Block, C);
1881 return Visit(C->getCallee());
1882 }
1883
1884 if (!NoReturn && !AddEHEdge) {
1885 return VisitStmt(C, asc.withAlwaysAdd(true));
1886 }
1887
1888 if (Block) {
1889 Succ = Block;
1890 if (badCFG)
1891 return nullptr;
1892 }
1893
1894 if (NoReturn)
1895 Block = createNoReturnBlock();
1896 else
1897 Block = createBlock();
1898
1899 appendStmt(Block, C);
1900
1901 if (AddEHEdge) {
1902 // Add exceptional edges.
1903 if (TryTerminatedBlock)
1904 addSuccessor(Block, TryTerminatedBlock);
1905 else
1906 addSuccessor(Block, &cfg->getExit());
1907 }
1908
1909 return VisitChildren(C);
1910 }
1911
VisitChooseExpr(ChooseExpr * C,AddStmtChoice asc)1912 CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1913 AddStmtChoice asc) {
1914 CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1915 appendStmt(ConfluenceBlock, C);
1916 if (badCFG)
1917 return nullptr;
1918
1919 AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1920 Succ = ConfluenceBlock;
1921 Block = nullptr;
1922 CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1923 if (badCFG)
1924 return nullptr;
1925
1926 Succ = ConfluenceBlock;
1927 Block = nullptr;
1928 CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1929 if (badCFG)
1930 return nullptr;
1931
1932 Block = createBlock(false);
1933 // See if this is a known constant.
1934 const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1935 addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock);
1936 addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock);
1937 Block->setTerminator(C);
1938 return addStmt(C->getCond());
1939 }
1940
1941
VisitCompoundStmt(CompoundStmt * C)1942 CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1943 LocalScope::const_iterator scopeBeginPos = ScopePos;
1944 if (BuildOpts.AddImplicitDtors) {
1945 addLocalScopeForStmt(C);
1946 }
1947 if (!C->body_empty() && !isa<ReturnStmt>(*C->body_rbegin())) {
1948 // If the body ends with a ReturnStmt, the dtors will be added in VisitReturnStmt
1949 addAutomaticObjDtors(ScopePos, scopeBeginPos, C);
1950 }
1951
1952 CFGBlock *LastBlock = Block;
1953
1954 for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1955 I != E; ++I ) {
1956 // If we hit a segment of code just containing ';' (NullStmts), we can
1957 // get a null block back. In such cases, just use the LastBlock
1958 if (CFGBlock *newBlock = addStmt(*I))
1959 LastBlock = newBlock;
1960
1961 if (badCFG)
1962 return nullptr;
1963 }
1964
1965 return LastBlock;
1966 }
1967
VisitConditionalOperator(AbstractConditionalOperator * C,AddStmtChoice asc)1968 CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1969 AddStmtChoice asc) {
1970 const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1971 const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr);
1972
1973 // Create the confluence block that will "merge" the results of the ternary
1974 // expression.
1975 CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1976 appendStmt(ConfluenceBlock, C);
1977 if (badCFG)
1978 return nullptr;
1979
1980 AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1981
1982 // Create a block for the LHS expression if there is an LHS expression. A
1983 // GCC extension allows LHS to be NULL, causing the condition to be the
1984 // value that is returned instead.
1985 // e.g: x ?: y is shorthand for: x ? x : y;
1986 Succ = ConfluenceBlock;
1987 Block = nullptr;
1988 CFGBlock *LHSBlock = nullptr;
1989 const Expr *trueExpr = C->getTrueExpr();
1990 if (trueExpr != opaqueValue) {
1991 LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1992 if (badCFG)
1993 return nullptr;
1994 Block = nullptr;
1995 }
1996 else
1997 LHSBlock = ConfluenceBlock;
1998
1999 // Create the block for the RHS expression.
2000 Succ = ConfluenceBlock;
2001 CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
2002 if (badCFG)
2003 return nullptr;
2004
2005 // If the condition is a logical '&&' or '||', build a more accurate CFG.
2006 if (BinaryOperator *Cond =
2007 dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
2008 if (Cond->isLogicalOp())
2009 return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
2010
2011 // Create the block that will contain the condition.
2012 Block = createBlock(false);
2013
2014 // See if this is a known constant.
2015 const TryResult& KnownVal = tryEvaluateBool(C->getCond());
2016 addSuccessor(Block, LHSBlock, !KnownVal.isFalse());
2017 addSuccessor(Block, RHSBlock, !KnownVal.isTrue());
2018 Block->setTerminator(C);
2019 Expr *condExpr = C->getCond();
2020
2021 if (opaqueValue) {
2022 // Run the condition expression if it's not trivially expressed in
2023 // terms of the opaque value (or if there is no opaque value).
2024 if (condExpr != opaqueValue)
2025 addStmt(condExpr);
2026
2027 // Before that, run the common subexpression if there was one.
2028 // At least one of this or the above will be run.
2029 return addStmt(BCO->getCommon());
2030 }
2031
2032 return addStmt(condExpr);
2033 }
2034
VisitDeclStmt(DeclStmt * DS)2035 CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
2036 // Check if the Decl is for an __label__. If so, elide it from the
2037 // CFG entirely.
2038 if (isa<LabelDecl>(*DS->decl_begin()))
2039 return Block;
2040
2041 // This case also handles static_asserts.
2042 if (DS->isSingleDecl())
2043 return VisitDeclSubExpr(DS);
2044
2045 CFGBlock *B = nullptr;
2046
2047 // Build an individual DeclStmt for each decl.
2048 for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
2049 E = DS->decl_rend();
2050 I != E; ++I) {
2051 // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
2052 unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
2053 ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
2054
2055 // Allocate the DeclStmt using the BumpPtrAllocator. It will get
2056 // automatically freed with the CFG.
2057 DeclGroupRef DG(*I);
2058 Decl *D = *I;
2059 void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
2060 DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
2061 cfg->addSyntheticDeclStmt(DSNew, DS);
2062
2063 // Append the fake DeclStmt to block.
2064 B = VisitDeclSubExpr(DSNew);
2065 }
2066
2067 return B;
2068 }
2069
2070 /// VisitDeclSubExpr - Utility method to add block-level expressions for
2071 /// DeclStmts and initializers in them.
VisitDeclSubExpr(DeclStmt * DS)2072 CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
2073 assert(DS->isSingleDecl() && "Can handle single declarations only.");
2074 VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
2075
2076 if (!VD) {
2077 // Of everything that can be declared in a DeclStmt, only VarDecls impact
2078 // runtime semantics.
2079 return Block;
2080 }
2081
2082 bool HasTemporaries = false;
2083
2084 // Guard static initializers under a branch.
2085 CFGBlock *blockAfterStaticInit = nullptr;
2086
2087 if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
2088 // For static variables, we need to create a branch to track
2089 // whether or not they are initialized.
2090 if (Block) {
2091 Succ = Block;
2092 Block = nullptr;
2093 if (badCFG)
2094 return nullptr;
2095 }
2096 blockAfterStaticInit = Succ;
2097 }
2098
2099 // Destructors of temporaries in initialization expression should be called
2100 // after initialization finishes.
2101 Expr *Init = VD->getInit();
2102 if (Init) {
2103 HasTemporaries = isa<ExprWithCleanups>(Init);
2104
2105 if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
2106 // Generate destructors for temporaries in initialization expression.
2107 TempDtorContext Context;
2108 VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
2109 /*BindToTemporary=*/false, Context);
2110 }
2111 }
2112
2113 autoCreateBlock();
2114 appendStmt(Block, DS);
2115
2116 // Keep track of the last non-null block, as 'Block' can be nulled out
2117 // if the initializer expression is something like a 'while' in a
2118 // statement-expression.
2119 CFGBlock *LastBlock = Block;
2120
2121 if (Init) {
2122 if (HasTemporaries) {
2123 // For expression with temporaries go directly to subexpression to omit
2124 // generating destructors for the second time.
2125 ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
2126 if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
2127 LastBlock = newBlock;
2128 }
2129 else {
2130 if (CFGBlock *newBlock = Visit(Init))
2131 LastBlock = newBlock;
2132 }
2133 }
2134
2135 // If the type of VD is a VLA, then we must process its size expressions.
2136 for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
2137 VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) {
2138 if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
2139 LastBlock = newBlock;
2140 }
2141
2142 // Remove variable from local scope.
2143 if (ScopePos && VD == *ScopePos)
2144 ++ScopePos;
2145
2146 CFGBlock *B = LastBlock;
2147 if (blockAfterStaticInit) {
2148 Succ = B;
2149 Block = createBlock(false);
2150 Block->setTerminator(DS);
2151 addSuccessor(Block, blockAfterStaticInit);
2152 addSuccessor(Block, B);
2153 B = Block;
2154 }
2155
2156 return B;
2157 }
2158
VisitIfStmt(IfStmt * I)2159 CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
2160 // We may see an if statement in the middle of a basic block, or it may be the
2161 // first statement we are processing. In either case, we create a new basic
2162 // block. First, we create the blocks for the then...else statements, and
2163 // then we create the block containing the if statement. If we were in the
2164 // middle of a block, we stop processing that block. That block is then the
2165 // implicit successor for the "then" and "else" clauses.
2166
2167 // Save local scope position because in case of condition variable ScopePos
2168 // won't be restored when traversing AST.
2169 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2170
2171 // Create local scope for possible condition variable.
2172 // Store scope position. Add implicit destructor.
2173 if (VarDecl *VD = I->getConditionVariable()) {
2174 LocalScope::const_iterator BeginScopePos = ScopePos;
2175 addLocalScopeForVarDecl(VD);
2176 addAutomaticObjDtors(ScopePos, BeginScopePos, I);
2177 }
2178
2179 // The block we were processing is now finished. Make it the successor
2180 // block.
2181 if (Block) {
2182 Succ = Block;
2183 if (badCFG)
2184 return nullptr;
2185 }
2186
2187 // Process the false branch.
2188 CFGBlock *ElseBlock = Succ;
2189
2190 if (Stmt *Else = I->getElse()) {
2191 SaveAndRestore<CFGBlock*> sv(Succ);
2192
2193 // NULL out Block so that the recursive call to Visit will
2194 // create a new basic block.
2195 Block = nullptr;
2196
2197 // If branch is not a compound statement create implicit scope
2198 // and add destructors.
2199 if (!isa<CompoundStmt>(Else))
2200 addLocalScopeAndDtors(Else);
2201
2202 ElseBlock = addStmt(Else);
2203
2204 if (!ElseBlock) // Can occur when the Else body has all NullStmts.
2205 ElseBlock = sv.get();
2206 else if (Block) {
2207 if (badCFG)
2208 return nullptr;
2209 }
2210 }
2211
2212 // Process the true branch.
2213 CFGBlock *ThenBlock;
2214 {
2215 Stmt *Then = I->getThen();
2216 assert(Then);
2217 SaveAndRestore<CFGBlock*> sv(Succ);
2218 Block = nullptr;
2219
2220 // If branch is not a compound statement create implicit scope
2221 // and add destructors.
2222 if (!isa<CompoundStmt>(Then))
2223 addLocalScopeAndDtors(Then);
2224
2225 ThenBlock = addStmt(Then);
2226
2227 if (!ThenBlock) {
2228 // We can reach here if the "then" body has all NullStmts.
2229 // Create an empty block so we can distinguish between true and false
2230 // branches in path-sensitive analyses.
2231 ThenBlock = createBlock(false);
2232 addSuccessor(ThenBlock, sv.get());
2233 } else if (Block) {
2234 if (badCFG)
2235 return nullptr;
2236 }
2237 }
2238
2239 // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
2240 // having these handle the actual control-flow jump. Note that
2241 // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
2242 // we resort to the old control-flow behavior. This special handling
2243 // removes infeasible paths from the control-flow graph by having the
2244 // control-flow transfer of '&&' or '||' go directly into the then/else
2245 // blocks directly.
2246 if (!I->getConditionVariable())
2247 if (BinaryOperator *Cond =
2248 dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens()))
2249 if (Cond->isLogicalOp())
2250 return VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
2251
2252 // Now create a new block containing the if statement.
2253 Block = createBlock(false);
2254
2255 // Set the terminator of the new block to the If statement.
2256 Block->setTerminator(I);
2257
2258 // See if this is a known constant.
2259 const TryResult &KnownVal = tryEvaluateBool(I->getCond());
2260
2261 // Add the successors. If we know that specific branches are
2262 // unreachable, inform addSuccessor() of that knowledge.
2263 addSuccessor(Block, ThenBlock, /* isReachable = */ !KnownVal.isFalse());
2264 addSuccessor(Block, ElseBlock, /* isReachable = */ !KnownVal.isTrue());
2265
2266 // Add the condition as the last statement in the new block. This may create
2267 // new blocks as the condition may contain control-flow. Any newly created
2268 // blocks will be pointed to be "Block".
2269 CFGBlock *LastBlock = addStmt(I->getCond());
2270
2271 // Finally, if the IfStmt contains a condition variable, add it and its
2272 // initializer to the CFG.
2273 if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) {
2274 autoCreateBlock();
2275 LastBlock = addStmt(const_cast<DeclStmt *>(DS));
2276 }
2277
2278 return LastBlock;
2279 }
2280
2281
VisitReturnStmt(ReturnStmt * R)2282 CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
2283 // If we were in the middle of a block we stop processing that block.
2284 //
2285 // NOTE: If a "return" appears in the middle of a block, this means that the
2286 // code afterwards is DEAD (unreachable). We still keep a basic block
2287 // for that code; a simple "mark-and-sweep" from the entry block will be
2288 // able to report such dead blocks.
2289
2290 // Create the new block.
2291 Block = createBlock(false);
2292
2293 addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
2294
2295 // If the one of the destructors does not return, we already have the Exit
2296 // block as a successor.
2297 if (!Block->hasNoReturnElement())
2298 addSuccessor(Block, &cfg->getExit());
2299
2300 // Add the return statement to the block. This may create new blocks if R
2301 // contains control-flow (short-circuit operations).
2302 return VisitStmt(R, AddStmtChoice::AlwaysAdd);
2303 }
2304
VisitLabelStmt(LabelStmt * L)2305 CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
2306 // Get the block of the labeled statement. Add it to our map.
2307 addStmt(L->getSubStmt());
2308 CFGBlock *LabelBlock = Block;
2309
2310 if (!LabelBlock) // This can happen when the body is empty, i.e.
2311 LabelBlock = createBlock(); // scopes that only contains NullStmts.
2312
2313 assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
2314 "label already in map");
2315 LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
2316
2317 // Labels partition blocks, so this is the end of the basic block we were
2318 // processing (L is the block's label). Because this is label (and we have
2319 // already processed the substatement) there is no extra control-flow to worry
2320 // about.
2321 LabelBlock->setLabel(L);
2322 if (badCFG)
2323 return nullptr;
2324
2325 // We set Block to NULL to allow lazy creation of a new block (if necessary);
2326 Block = nullptr;
2327
2328 // This block is now the implicit successor of other blocks.
2329 Succ = LabelBlock;
2330
2331 return LabelBlock;
2332 }
2333
VisitBlockExpr(BlockExpr * E,AddStmtChoice asc)2334 CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
2335 CFGBlock *LastBlock = VisitNoRecurse(E, asc);
2336 for (const BlockDecl::Capture &CI : E->getBlockDecl()->captures()) {
2337 if (Expr *CopyExpr = CI.getCopyExpr()) {
2338 CFGBlock *Tmp = Visit(CopyExpr);
2339 if (Tmp)
2340 LastBlock = Tmp;
2341 }
2342 }
2343 return LastBlock;
2344 }
2345
VisitLambdaExpr(LambdaExpr * E,AddStmtChoice asc)2346 CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
2347 CFGBlock *LastBlock = VisitNoRecurse(E, asc);
2348 for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
2349 et = E->capture_init_end(); it != et; ++it) {
2350 if (Expr *Init = *it) {
2351 CFGBlock *Tmp = Visit(Init);
2352 if (Tmp)
2353 LastBlock = Tmp;
2354 }
2355 }
2356 return LastBlock;
2357 }
2358
VisitGotoStmt(GotoStmt * G)2359 CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
2360 // Goto is a control-flow statement. Thus we stop processing the current
2361 // block and create a new one.
2362
2363 Block = createBlock(false);
2364 Block->setTerminator(G);
2365
2366 // If we already know the mapping to the label block add the successor now.
2367 LabelMapTy::iterator I = LabelMap.find(G->getLabel());
2368
2369 if (I == LabelMap.end())
2370 // We will need to backpatch this block later.
2371 BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
2372 else {
2373 JumpTarget JT = I->second;
2374 addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
2375 addSuccessor(Block, JT.block);
2376 }
2377
2378 return Block;
2379 }
2380
VisitForStmt(ForStmt * F)2381 CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
2382 CFGBlock *LoopSuccessor = nullptr;
2383
2384 // Save local scope position because in case of condition variable ScopePos
2385 // won't be restored when traversing AST.
2386 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2387
2388 // Create local scope for init statement and possible condition variable.
2389 // Add destructor for init statement and condition variable.
2390 // Store scope position for continue statement.
2391 if (Stmt *Init = F->getInit())
2392 addLocalScopeForStmt(Init);
2393 LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2394
2395 if (VarDecl *VD = F->getConditionVariable())
2396 addLocalScopeForVarDecl(VD);
2397 LocalScope::const_iterator ContinueScopePos = ScopePos;
2398
2399 addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
2400
2401 // "for" is a control-flow statement. Thus we stop processing the current
2402 // block.
2403 if (Block) {
2404 if (badCFG)
2405 return nullptr;
2406 LoopSuccessor = Block;
2407 } else
2408 LoopSuccessor = Succ;
2409
2410 // Save the current value for the break targets.
2411 // All breaks should go to the code following the loop.
2412 SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2413 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2414
2415 CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
2416
2417 // Now create the loop body.
2418 {
2419 assert(F->getBody());
2420
2421 // Save the current values for Block, Succ, continue and break targets.
2422 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2423 SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2424
2425 // Create an empty block to represent the transition block for looping back
2426 // to the head of the loop. If we have increment code, it will
2427 // go in this block as well.
2428 Block = Succ = TransitionBlock = createBlock(false);
2429 TransitionBlock->setLoopTarget(F);
2430
2431 if (Stmt *I = F->getInc()) {
2432 // Generate increment code in its own basic block. This is the target of
2433 // continue statements.
2434 Succ = addStmt(I);
2435 }
2436
2437 // Finish up the increment (or empty) block if it hasn't been already.
2438 if (Block) {
2439 assert(Block == Succ);
2440 if (badCFG)
2441 return nullptr;
2442 Block = nullptr;
2443 }
2444
2445 // The starting block for the loop increment is the block that should
2446 // represent the 'loop target' for looping back to the start of the loop.
2447 ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2448 ContinueJumpTarget.block->setLoopTarget(F);
2449
2450 // Loop body should end with destructor of Condition variable (if any).
2451 addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
2452
2453 // If body is not a compound statement create implicit scope
2454 // and add destructors.
2455 if (!isa<CompoundStmt>(F->getBody()))
2456 addLocalScopeAndDtors(F->getBody());
2457
2458 // Now populate the body block, and in the process create new blocks as we
2459 // walk the body of the loop.
2460 BodyBlock = addStmt(F->getBody());
2461
2462 if (!BodyBlock) {
2463 // In the case of "for (...;...;...);" we can have a null BodyBlock.
2464 // Use the continue jump target as the proxy for the body.
2465 BodyBlock = ContinueJumpTarget.block;
2466 }
2467 else if (badCFG)
2468 return nullptr;
2469 }
2470
2471 // Because of short-circuit evaluation, the condition of the loop can span
2472 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
2473 // evaluate the condition.
2474 CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
2475
2476 do {
2477 Expr *C = F->getCond();
2478
2479 // Specially handle logical operators, which have a slightly
2480 // more optimal CFG representation.
2481 if (BinaryOperator *Cond =
2482 dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : nullptr))
2483 if (Cond->isLogicalOp()) {
2484 std::tie(EntryConditionBlock, ExitConditionBlock) =
2485 VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
2486 break;
2487 }
2488
2489 // The default case when not handling logical operators.
2490 EntryConditionBlock = ExitConditionBlock = createBlock(false);
2491 ExitConditionBlock->setTerminator(F);
2492
2493 // See if this is a known constant.
2494 TryResult KnownVal(true);
2495
2496 if (C) {
2497 // Now add the actual condition to the condition block.
2498 // Because the condition itself may contain control-flow, new blocks may
2499 // be created. Thus we update "Succ" after adding the condition.
2500 Block = ExitConditionBlock;
2501 EntryConditionBlock = addStmt(C);
2502
2503 // If this block contains a condition variable, add both the condition
2504 // variable and initializer to the CFG.
2505 if (VarDecl *VD = F->getConditionVariable()) {
2506 if (Expr *Init = VD->getInit()) {
2507 autoCreateBlock();
2508 appendStmt(Block, F->getConditionVariableDeclStmt());
2509 EntryConditionBlock = addStmt(Init);
2510 assert(Block == EntryConditionBlock);
2511 }
2512 }
2513
2514 if (Block && badCFG)
2515 return nullptr;
2516
2517 KnownVal = tryEvaluateBool(C);
2518 }
2519
2520 // Add the loop body entry as a successor to the condition.
2521 addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
2522 // Link up the condition block with the code that follows the loop. (the
2523 // false branch).
2524 addSuccessor(ExitConditionBlock,
2525 KnownVal.isTrue() ? nullptr : LoopSuccessor);
2526
2527 } while (false);
2528
2529 // Link up the loop-back block to the entry condition block.
2530 addSuccessor(TransitionBlock, EntryConditionBlock);
2531
2532 // The condition block is the implicit successor for any code above the loop.
2533 Succ = EntryConditionBlock;
2534
2535 // If the loop contains initialization, create a new block for those
2536 // statements. This block can also contain statements that precede the loop.
2537 if (Stmt *I = F->getInit()) {
2538 Block = createBlock();
2539 return addStmt(I);
2540 }
2541
2542 // There is no loop initialization. We are thus basically a while loop.
2543 // NULL out Block to force lazy block construction.
2544 Block = nullptr;
2545 Succ = EntryConditionBlock;
2546 return EntryConditionBlock;
2547 }
2548
VisitMemberExpr(MemberExpr * M,AddStmtChoice asc)2549 CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
2550 if (asc.alwaysAdd(*this, M)) {
2551 autoCreateBlock();
2552 appendStmt(Block, M);
2553 }
2554 return Visit(M->getBase());
2555 }
2556
VisitObjCForCollectionStmt(ObjCForCollectionStmt * S)2557 CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
2558 // Objective-C fast enumeration 'for' statements:
2559 // http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
2560 //
2561 // for ( Type newVariable in collection_expression ) { statements }
2562 //
2563 // becomes:
2564 //
2565 // prologue:
2566 // 1. collection_expression
2567 // T. jump to loop_entry
2568 // loop_entry:
2569 // 1. side-effects of element expression
2570 // 1. ObjCForCollectionStmt [performs binding to newVariable]
2571 // T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil]
2572 // TB:
2573 // statements
2574 // T. jump to loop_entry
2575 // FB:
2576 // what comes after
2577 //
2578 // and
2579 //
2580 // Type existingItem;
2581 // for ( existingItem in expression ) { statements }
2582 //
2583 // becomes:
2584 //
2585 // the same with newVariable replaced with existingItem; the binding works
2586 // the same except that for one ObjCForCollectionStmt::getElement() returns
2587 // a DeclStmt and the other returns a DeclRefExpr.
2588 //
2589
2590 CFGBlock *LoopSuccessor = nullptr;
2591
2592 if (Block) {
2593 if (badCFG)
2594 return nullptr;
2595 LoopSuccessor = Block;
2596 Block = nullptr;
2597 } else
2598 LoopSuccessor = Succ;
2599
2600 // Build the condition blocks.
2601 CFGBlock *ExitConditionBlock = createBlock(false);
2602
2603 // Set the terminator for the "exit" condition block.
2604 ExitConditionBlock->setTerminator(S);
2605
2606 // The last statement in the block should be the ObjCForCollectionStmt, which
2607 // performs the actual binding to 'element' and determines if there are any
2608 // more items in the collection.
2609 appendStmt(ExitConditionBlock, S);
2610 Block = ExitConditionBlock;
2611
2612 // Walk the 'element' expression to see if there are any side-effects. We
2613 // generate new blocks as necessary. We DON'T add the statement by default to
2614 // the CFG unless it contains control-flow.
2615 CFGBlock *EntryConditionBlock = Visit(S->getElement(),
2616 AddStmtChoice::NotAlwaysAdd);
2617 if (Block) {
2618 if (badCFG)
2619 return nullptr;
2620 Block = nullptr;
2621 }
2622
2623 // The condition block is the implicit successor for the loop body as well as
2624 // any code above the loop.
2625 Succ = EntryConditionBlock;
2626
2627 // Now create the true branch.
2628 {
2629 // Save the current values for Succ, continue and break targets.
2630 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2631 SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2632 save_break(BreakJumpTarget);
2633
2634 // Add an intermediate block between the BodyBlock and the
2635 // EntryConditionBlock to represent the "loop back" transition, for looping
2636 // back to the head of the loop.
2637 CFGBlock *LoopBackBlock = nullptr;
2638 Succ = LoopBackBlock = createBlock();
2639 LoopBackBlock->setLoopTarget(S);
2640
2641 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2642 ContinueJumpTarget = JumpTarget(Succ, ScopePos);
2643
2644 CFGBlock *BodyBlock = addStmt(S->getBody());
2645
2646 if (!BodyBlock)
2647 BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
2648 else if (Block) {
2649 if (badCFG)
2650 return nullptr;
2651 }
2652
2653 // This new body block is a successor to our "exit" condition block.
2654 addSuccessor(ExitConditionBlock, BodyBlock);
2655 }
2656
2657 // Link up the condition block with the code that follows the loop.
2658 // (the false branch).
2659 addSuccessor(ExitConditionBlock, LoopSuccessor);
2660
2661 // Now create a prologue block to contain the collection expression.
2662 Block = createBlock();
2663 return addStmt(S->getCollection());
2664 }
2665
VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt * S)2666 CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
2667 // Inline the body.
2668 return addStmt(S->getSubStmt());
2669 // TODO: consider adding cleanups for the end of @autoreleasepool scope.
2670 }
2671
VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt * S)2672 CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
2673 // FIXME: Add locking 'primitives' to CFG for @synchronized.
2674
2675 // Inline the body.
2676 CFGBlock *SyncBlock = addStmt(S->getSynchBody());
2677
2678 // The sync body starts its own basic block. This makes it a little easier
2679 // for diagnostic clients.
2680 if (SyncBlock) {
2681 if (badCFG)
2682 return nullptr;
2683
2684 Block = nullptr;
2685 Succ = SyncBlock;
2686 }
2687
2688 // Add the @synchronized to the CFG.
2689 autoCreateBlock();
2690 appendStmt(Block, S);
2691
2692 // Inline the sync expression.
2693 return addStmt(S->getSynchExpr());
2694 }
2695
VisitObjCAtTryStmt(ObjCAtTryStmt * S)2696 CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
2697 // FIXME
2698 return NYS();
2699 }
2700
VisitPseudoObjectExpr(PseudoObjectExpr * E)2701 CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
2702 autoCreateBlock();
2703
2704 // Add the PseudoObject as the last thing.
2705 appendStmt(Block, E);
2706
2707 CFGBlock *lastBlock = Block;
2708
2709 // Before that, evaluate all of the semantics in order. In
2710 // CFG-land, that means appending them in reverse order.
2711 for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
2712 Expr *Semantic = E->getSemanticExpr(--i);
2713
2714 // If the semantic is an opaque value, we're being asked to bind
2715 // it to its source expression.
2716 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
2717 Semantic = OVE->getSourceExpr();
2718
2719 if (CFGBlock *B = Visit(Semantic))
2720 lastBlock = B;
2721 }
2722
2723 return lastBlock;
2724 }
2725
VisitWhileStmt(WhileStmt * W)2726 CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
2727 CFGBlock *LoopSuccessor = nullptr;
2728
2729 // Save local scope position because in case of condition variable ScopePos
2730 // won't be restored when traversing AST.
2731 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2732
2733 // Create local scope for possible condition variable.
2734 // Store scope position for continue statement.
2735 LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2736 if (VarDecl *VD = W->getConditionVariable()) {
2737 addLocalScopeForVarDecl(VD);
2738 addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2739 }
2740
2741 // "while" is a control-flow statement. Thus we stop processing the current
2742 // block.
2743 if (Block) {
2744 if (badCFG)
2745 return nullptr;
2746 LoopSuccessor = Block;
2747 Block = nullptr;
2748 } else {
2749 LoopSuccessor = Succ;
2750 }
2751
2752 CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
2753
2754 // Process the loop body.
2755 {
2756 assert(W->getBody());
2757
2758 // Save the current values for Block, Succ, continue and break targets.
2759 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2760 SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2761 save_break(BreakJumpTarget);
2762
2763 // Create an empty block to represent the transition block for looping back
2764 // to the head of the loop.
2765 Succ = TransitionBlock = createBlock(false);
2766 TransitionBlock->setLoopTarget(W);
2767 ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
2768
2769 // All breaks should go to the code following the loop.
2770 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2771
2772 // Loop body should end with destructor of Condition variable (if any).
2773 addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2774
2775 // If body is not a compound statement create implicit scope
2776 // and add destructors.
2777 if (!isa<CompoundStmt>(W->getBody()))
2778 addLocalScopeAndDtors(W->getBody());
2779
2780 // Create the body. The returned block is the entry to the loop body.
2781 BodyBlock = addStmt(W->getBody());
2782
2783 if (!BodyBlock)
2784 BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2785 else if (Block && badCFG)
2786 return nullptr;
2787 }
2788
2789 // Because of short-circuit evaluation, the condition of the loop can span
2790 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
2791 // evaluate the condition.
2792 CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
2793
2794 do {
2795 Expr *C = W->getCond();
2796
2797 // Specially handle logical operators, which have a slightly
2798 // more optimal CFG representation.
2799 if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
2800 if (Cond->isLogicalOp()) {
2801 std::tie(EntryConditionBlock, ExitConditionBlock) =
2802 VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor);
2803 break;
2804 }
2805
2806 // The default case when not handling logical operators.
2807 ExitConditionBlock = createBlock(false);
2808 ExitConditionBlock->setTerminator(W);
2809
2810 // Now add the actual condition to the condition block.
2811 // Because the condition itself may contain control-flow, new blocks may
2812 // be created. Thus we update "Succ" after adding the condition.
2813 Block = ExitConditionBlock;
2814 Block = EntryConditionBlock = addStmt(C);
2815
2816 // If this block contains a condition variable, add both the condition
2817 // variable and initializer to the CFG.
2818 if (VarDecl *VD = W->getConditionVariable()) {
2819 if (Expr *Init = VD->getInit()) {
2820 autoCreateBlock();
2821 appendStmt(Block, W->getConditionVariableDeclStmt());
2822 EntryConditionBlock = addStmt(Init);
2823 assert(Block == EntryConditionBlock);
2824 }
2825 }
2826
2827 if (Block && badCFG)
2828 return nullptr;
2829
2830 // See if this is a known constant.
2831 const TryResult& KnownVal = tryEvaluateBool(C);
2832
2833 // Add the loop body entry as a successor to the condition.
2834 addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
2835 // Link up the condition block with the code that follows the loop. (the
2836 // false branch).
2837 addSuccessor(ExitConditionBlock,
2838 KnownVal.isTrue() ? nullptr : LoopSuccessor);
2839
2840 } while(false);
2841
2842 // Link up the loop-back block to the entry condition block.
2843 addSuccessor(TransitionBlock, EntryConditionBlock);
2844
2845 // There can be no more statements in the condition block since we loop back
2846 // to this block. NULL out Block to force lazy creation of another block.
2847 Block = nullptr;
2848
2849 // Return the condition block, which is the dominating block for the loop.
2850 Succ = EntryConditionBlock;
2851 return EntryConditionBlock;
2852 }
2853
2854
VisitObjCAtCatchStmt(ObjCAtCatchStmt * S)2855 CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2856 // FIXME: For now we pretend that @catch and the code it contains does not
2857 // exit.
2858 return Block;
2859 }
2860
VisitObjCAtThrowStmt(ObjCAtThrowStmt * S)2861 CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2862 // FIXME: This isn't complete. We basically treat @throw like a return
2863 // statement.
2864
2865 // If we were in the middle of a block we stop processing that block.
2866 if (badCFG)
2867 return nullptr;
2868
2869 // Create the new block.
2870 Block = createBlock(false);
2871
2872 // The Exit block is the only successor.
2873 addSuccessor(Block, &cfg->getExit());
2874
2875 // Add the statement to the block. This may create new blocks if S contains
2876 // control-flow (short-circuit operations).
2877 return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2878 }
2879
VisitCXXThrowExpr(CXXThrowExpr * T)2880 CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2881 // If we were in the middle of a block we stop processing that block.
2882 if (badCFG)
2883 return nullptr;
2884
2885 // Create the new block.
2886 Block = createBlock(false);
2887
2888 if (TryTerminatedBlock)
2889 // The current try statement is the only successor.
2890 addSuccessor(Block, TryTerminatedBlock);
2891 else
2892 // otherwise the Exit block is the only successor.
2893 addSuccessor(Block, &cfg->getExit());
2894
2895 // Add the statement to the block. This may create new blocks if S contains
2896 // control-flow (short-circuit operations).
2897 return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2898 }
2899
VisitDoStmt(DoStmt * D)2900 CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2901 CFGBlock *LoopSuccessor = nullptr;
2902
2903 // "do...while" is a control-flow statement. Thus we stop processing the
2904 // current block.
2905 if (Block) {
2906 if (badCFG)
2907 return nullptr;
2908 LoopSuccessor = Block;
2909 } else
2910 LoopSuccessor = Succ;
2911
2912 // Because of short-circuit evaluation, the condition of the loop can span
2913 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
2914 // evaluate the condition.
2915 CFGBlock *ExitConditionBlock = createBlock(false);
2916 CFGBlock *EntryConditionBlock = ExitConditionBlock;
2917
2918 // Set the terminator for the "exit" condition block.
2919 ExitConditionBlock->setTerminator(D);
2920
2921 // Now add the actual condition to the condition block. Because the condition
2922 // itself may contain control-flow, new blocks may be created.
2923 if (Stmt *C = D->getCond()) {
2924 Block = ExitConditionBlock;
2925 EntryConditionBlock = addStmt(C);
2926 if (Block) {
2927 if (badCFG)
2928 return nullptr;
2929 }
2930 }
2931
2932 // The condition block is the implicit successor for the loop body.
2933 Succ = EntryConditionBlock;
2934
2935 // See if this is a known constant.
2936 const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2937
2938 // Process the loop body.
2939 CFGBlock *BodyBlock = nullptr;
2940 {
2941 assert(D->getBody());
2942
2943 // Save the current values for Block, Succ, and continue and break targets
2944 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2945 SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2946 save_break(BreakJumpTarget);
2947
2948 // All continues within this loop should go to the condition block
2949 ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2950
2951 // All breaks should go to the code following the loop.
2952 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2953
2954 // NULL out Block to force lazy instantiation of blocks for the body.
2955 Block = nullptr;
2956
2957 // If body is not a compound statement create implicit scope
2958 // and add destructors.
2959 if (!isa<CompoundStmt>(D->getBody()))
2960 addLocalScopeAndDtors(D->getBody());
2961
2962 // Create the body. The returned block is the entry to the loop body.
2963 BodyBlock = addStmt(D->getBody());
2964
2965 if (!BodyBlock)
2966 BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2967 else if (Block) {
2968 if (badCFG)
2969 return nullptr;
2970 }
2971
2972 if (!KnownVal.isFalse()) {
2973 // Add an intermediate block between the BodyBlock and the
2974 // ExitConditionBlock to represent the "loop back" transition. Create an
2975 // empty block to represent the transition block for looping back to the
2976 // head of the loop.
2977 // FIXME: Can we do this more efficiently without adding another block?
2978 Block = nullptr;
2979 Succ = BodyBlock;
2980 CFGBlock *LoopBackBlock = createBlock();
2981 LoopBackBlock->setLoopTarget(D);
2982
2983 // Add the loop body entry as a successor to the condition.
2984 addSuccessor(ExitConditionBlock, LoopBackBlock);
2985 }
2986 else
2987 addSuccessor(ExitConditionBlock, nullptr);
2988 }
2989
2990 // Link up the condition block with the code that follows the loop.
2991 // (the false branch).
2992 addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
2993
2994 // There can be no more statements in the body block(s) since we loop back to
2995 // the body. NULL out Block to force lazy creation of another block.
2996 Block = nullptr;
2997
2998 // Return the loop body, which is the dominating block for the loop.
2999 Succ = BodyBlock;
3000 return BodyBlock;
3001 }
3002
VisitContinueStmt(ContinueStmt * C)3003 CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
3004 // "continue" is a control-flow statement. Thus we stop processing the
3005 // current block.
3006 if (badCFG)
3007 return nullptr;
3008
3009 // Now create a new block that ends with the continue statement.
3010 Block = createBlock(false);
3011 Block->setTerminator(C);
3012
3013 // If there is no target for the continue, then we are looking at an
3014 // incomplete AST. This means the CFG cannot be constructed.
3015 if (ContinueJumpTarget.block) {
3016 addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
3017 addSuccessor(Block, ContinueJumpTarget.block);
3018 } else
3019 badCFG = true;
3020
3021 return Block;
3022 }
3023
VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr * E,AddStmtChoice asc)3024 CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
3025 AddStmtChoice asc) {
3026
3027 if (asc.alwaysAdd(*this, E)) {
3028 autoCreateBlock();
3029 appendStmt(Block, E);
3030 }
3031
3032 // VLA types have expressions that must be evaluated.
3033 CFGBlock *lastBlock = Block;
3034
3035 if (E->isArgumentType()) {
3036 for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
3037 VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr()))
3038 lastBlock = addStmt(VA->getSizeExpr());
3039 }
3040 return lastBlock;
3041 }
3042
3043 /// VisitStmtExpr - Utility method to handle (nested) statement
3044 /// expressions (a GCC extension).
VisitStmtExpr(StmtExpr * SE,AddStmtChoice asc)3045 CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
3046 if (asc.alwaysAdd(*this, SE)) {
3047 autoCreateBlock();
3048 appendStmt(Block, SE);
3049 }
3050 return VisitCompoundStmt(SE->getSubStmt());
3051 }
3052
VisitSwitchStmt(SwitchStmt * Terminator)3053 CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
3054 // "switch" is a control-flow statement. Thus we stop processing the current
3055 // block.
3056 CFGBlock *SwitchSuccessor = nullptr;
3057
3058 // Save local scope position because in case of condition variable ScopePos
3059 // won't be restored when traversing AST.
3060 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3061
3062 // Create local scope for possible condition variable.
3063 // Store scope position. Add implicit destructor.
3064 if (VarDecl *VD = Terminator->getConditionVariable()) {
3065 LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
3066 addLocalScopeForVarDecl(VD);
3067 addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
3068 }
3069
3070 if (Block) {
3071 if (badCFG)
3072 return nullptr;
3073 SwitchSuccessor = Block;
3074 } else SwitchSuccessor = Succ;
3075
3076 // Save the current "switch" context.
3077 SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
3078 save_default(DefaultCaseBlock);
3079 SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
3080
3081 // Set the "default" case to be the block after the switch statement. If the
3082 // switch statement contains a "default:", this value will be overwritten with
3083 // the block for that code.
3084 DefaultCaseBlock = SwitchSuccessor;
3085
3086 // Create a new block that will contain the switch statement.
3087 SwitchTerminatedBlock = createBlock(false);
3088
3089 // Now process the switch body. The code after the switch is the implicit
3090 // successor.
3091 Succ = SwitchSuccessor;
3092 BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
3093
3094 // When visiting the body, the case statements should automatically get linked
3095 // up to the switch. We also don't keep a pointer to the body, since all
3096 // control-flow from the switch goes to case/default statements.
3097 assert(Terminator->getBody() && "switch must contain a non-NULL body");
3098 Block = nullptr;
3099
3100 // For pruning unreachable case statements, save the current state
3101 // for tracking the condition value.
3102 SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
3103 false);
3104
3105 // Determine if the switch condition can be explicitly evaluated.
3106 assert(Terminator->getCond() && "switch condition must be non-NULL");
3107 Expr::EvalResult result;
3108 bool b = tryEvaluate(Terminator->getCond(), result);
3109 SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
3110 b ? &result : nullptr);
3111
3112 // If body is not a compound statement create implicit scope
3113 // and add destructors.
3114 if (!isa<CompoundStmt>(Terminator->getBody()))
3115 addLocalScopeAndDtors(Terminator->getBody());
3116
3117 addStmt(Terminator->getBody());
3118 if (Block) {
3119 if (badCFG)
3120 return nullptr;
3121 }
3122
3123 // If we have no "default:" case, the default transition is to the code
3124 // following the switch body. Moreover, take into account if all the
3125 // cases of a switch are covered (e.g., switching on an enum value).
3126 //
3127 // Note: We add a successor to a switch that is considered covered yet has no
3128 // case statements if the enumeration has no enumerators.
3129 bool SwitchAlwaysHasSuccessor = false;
3130 SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
3131 SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
3132 Terminator->getSwitchCaseList();
3133 addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock,
3134 !SwitchAlwaysHasSuccessor);
3135
3136 // Add the terminator and condition in the switch block.
3137 SwitchTerminatedBlock->setTerminator(Terminator);
3138 Block = SwitchTerminatedBlock;
3139 CFGBlock *LastBlock = addStmt(Terminator->getCond());
3140
3141 // Finally, if the SwitchStmt contains a condition variable, add both the
3142 // SwitchStmt and the condition variable initialization to the CFG.
3143 if (VarDecl *VD = Terminator->getConditionVariable()) {
3144 if (Expr *Init = VD->getInit()) {
3145 autoCreateBlock();
3146 appendStmt(Block, Terminator->getConditionVariableDeclStmt());
3147 LastBlock = addStmt(Init);
3148 }
3149 }
3150
3151 return LastBlock;
3152 }
3153
shouldAddCase(bool & switchExclusivelyCovered,const Expr::EvalResult * switchCond,const CaseStmt * CS,ASTContext & Ctx)3154 static bool shouldAddCase(bool &switchExclusivelyCovered,
3155 const Expr::EvalResult *switchCond,
3156 const CaseStmt *CS,
3157 ASTContext &Ctx) {
3158 if (!switchCond)
3159 return true;
3160
3161 bool addCase = false;
3162
3163 if (!switchExclusivelyCovered) {
3164 if (switchCond->Val.isInt()) {
3165 // Evaluate the LHS of the case value.
3166 const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
3167 const llvm::APSInt &condInt = switchCond->Val.getInt();
3168
3169 if (condInt == lhsInt) {
3170 addCase = true;
3171 switchExclusivelyCovered = true;
3172 }
3173 else if (condInt > lhsInt) {
3174 if (const Expr *RHS = CS->getRHS()) {
3175 // Evaluate the RHS of the case value.
3176 const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
3177 if (V2 >= condInt) {
3178 addCase = true;
3179 switchExclusivelyCovered = true;
3180 }
3181 }
3182 }
3183 }
3184 else
3185 addCase = true;
3186 }
3187 return addCase;
3188 }
3189
VisitCaseStmt(CaseStmt * CS)3190 CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
3191 // CaseStmts are essentially labels, so they are the first statement in a
3192 // block.
3193 CFGBlock *TopBlock = nullptr, *LastBlock = nullptr;
3194
3195 if (Stmt *Sub = CS->getSubStmt()) {
3196 // For deeply nested chains of CaseStmts, instead of doing a recursion
3197 // (which can blow out the stack), manually unroll and create blocks
3198 // along the way.
3199 while (isa<CaseStmt>(Sub)) {
3200 CFGBlock *currentBlock = createBlock(false);
3201 currentBlock->setLabel(CS);
3202
3203 if (TopBlock)
3204 addSuccessor(LastBlock, currentBlock);
3205 else
3206 TopBlock = currentBlock;
3207
3208 addSuccessor(SwitchTerminatedBlock,
3209 shouldAddCase(switchExclusivelyCovered, switchCond,
3210 CS, *Context)
3211 ? currentBlock : nullptr);
3212
3213 LastBlock = currentBlock;
3214 CS = cast<CaseStmt>(Sub);
3215 Sub = CS->getSubStmt();
3216 }
3217
3218 addStmt(Sub);
3219 }
3220
3221 CFGBlock *CaseBlock = Block;
3222 if (!CaseBlock)
3223 CaseBlock = createBlock();
3224
3225 // Cases statements partition blocks, so this is the top of the basic block we
3226 // were processing (the "case XXX:" is the label).
3227 CaseBlock->setLabel(CS);
3228
3229 if (badCFG)
3230 return nullptr;
3231
3232 // Add this block to the list of successors for the block with the switch
3233 // statement.
3234 assert(SwitchTerminatedBlock);
3235 addSuccessor(SwitchTerminatedBlock, CaseBlock,
3236 shouldAddCase(switchExclusivelyCovered, switchCond,
3237 CS, *Context));
3238
3239 // We set Block to NULL to allow lazy creation of a new block (if necessary)
3240 Block = nullptr;
3241
3242 if (TopBlock) {
3243 addSuccessor(LastBlock, CaseBlock);
3244 Succ = TopBlock;
3245 } else {
3246 // This block is now the implicit successor of other blocks.
3247 Succ = CaseBlock;
3248 }
3249
3250 return Succ;
3251 }
3252
VisitDefaultStmt(DefaultStmt * Terminator)3253 CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
3254 if (Terminator->getSubStmt())
3255 addStmt(Terminator->getSubStmt());
3256
3257 DefaultCaseBlock = Block;
3258
3259 if (!DefaultCaseBlock)
3260 DefaultCaseBlock = createBlock();
3261
3262 // Default statements partition blocks, so this is the top of the basic block
3263 // we were processing (the "default:" is the label).
3264 DefaultCaseBlock->setLabel(Terminator);
3265
3266 if (badCFG)
3267 return nullptr;
3268
3269 // Unlike case statements, we don't add the default block to the successors
3270 // for the switch statement immediately. This is done when we finish
3271 // processing the switch statement. This allows for the default case
3272 // (including a fall-through to the code after the switch statement) to always
3273 // be the last successor of a switch-terminated block.
3274
3275 // We set Block to NULL to allow lazy creation of a new block (if necessary)
3276 Block = nullptr;
3277
3278 // This block is now the implicit successor of other blocks.
3279 Succ = DefaultCaseBlock;
3280
3281 return DefaultCaseBlock;
3282 }
3283
VisitCXXTryStmt(CXXTryStmt * Terminator)3284 CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
3285 // "try"/"catch" is a control-flow statement. Thus we stop processing the
3286 // current block.
3287 CFGBlock *TrySuccessor = nullptr;
3288
3289 if (Block) {
3290 if (badCFG)
3291 return nullptr;
3292 TrySuccessor = Block;
3293 } else TrySuccessor = Succ;
3294
3295 CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
3296
3297 // Create a new block that will contain the try statement.
3298 CFGBlock *NewTryTerminatedBlock = createBlock(false);
3299 // Add the terminator in the try block.
3300 NewTryTerminatedBlock->setTerminator(Terminator);
3301
3302 bool HasCatchAll = false;
3303 for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
3304 // The code after the try is the implicit successor.
3305 Succ = TrySuccessor;
3306 CXXCatchStmt *CS = Terminator->getHandler(h);
3307 if (CS->getExceptionDecl() == nullptr) {
3308 HasCatchAll = true;
3309 }
3310 Block = nullptr;
3311 CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
3312 if (!CatchBlock)
3313 return nullptr;
3314 // Add this block to the list of successors for the block with the try
3315 // statement.
3316 addSuccessor(NewTryTerminatedBlock, CatchBlock);
3317 }
3318 if (!HasCatchAll) {
3319 if (PrevTryTerminatedBlock)
3320 addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
3321 else
3322 addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
3323 }
3324
3325 // The code after the try is the implicit successor.
3326 Succ = TrySuccessor;
3327
3328 // Save the current "try" context.
3329 SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
3330 cfg->addTryDispatchBlock(TryTerminatedBlock);
3331
3332 assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
3333 Block = nullptr;
3334 return addStmt(Terminator->getTryBlock());
3335 }
3336
VisitCXXCatchStmt(CXXCatchStmt * CS)3337 CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
3338 // CXXCatchStmt are treated like labels, so they are the first statement in a
3339 // block.
3340
3341 // Save local scope position because in case of exception variable ScopePos
3342 // won't be restored when traversing AST.
3343 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3344
3345 // Create local scope for possible exception variable.
3346 // Store scope position. Add implicit destructor.
3347 if (VarDecl *VD = CS->getExceptionDecl()) {
3348 LocalScope::const_iterator BeginScopePos = ScopePos;
3349 addLocalScopeForVarDecl(VD);
3350 addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
3351 }
3352
3353 if (CS->getHandlerBlock())
3354 addStmt(CS->getHandlerBlock());
3355
3356 CFGBlock *CatchBlock = Block;
3357 if (!CatchBlock)
3358 CatchBlock = createBlock();
3359
3360 // CXXCatchStmt is more than just a label. They have semantic meaning
3361 // as well, as they implicitly "initialize" the catch variable. Add
3362 // it to the CFG as a CFGElement so that the control-flow of these
3363 // semantics gets captured.
3364 appendStmt(CatchBlock, CS);
3365
3366 // Also add the CXXCatchStmt as a label, to mirror handling of regular
3367 // labels.
3368 CatchBlock->setLabel(CS);
3369
3370 // Bail out if the CFG is bad.
3371 if (badCFG)
3372 return nullptr;
3373
3374 // We set Block to NULL to allow lazy creation of a new block (if necessary)
3375 Block = nullptr;
3376
3377 return CatchBlock;
3378 }
3379
VisitCXXForRangeStmt(CXXForRangeStmt * S)3380 CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
3381 // C++0x for-range statements are specified as [stmt.ranged]:
3382 //
3383 // {
3384 // auto && __range = range-init;
3385 // for ( auto __begin = begin-expr,
3386 // __end = end-expr;
3387 // __begin != __end;
3388 // ++__begin ) {
3389 // for-range-declaration = *__begin;
3390 // statement
3391 // }
3392 // }
3393
3394 // Save local scope position before the addition of the implicit variables.
3395 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3396
3397 // Create local scopes and destructors for range, begin and end variables.
3398 if (Stmt *Range = S->getRangeStmt())
3399 addLocalScopeForStmt(Range);
3400 if (Stmt *BeginEnd = S->getBeginEndStmt())
3401 addLocalScopeForStmt(BeginEnd);
3402 addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
3403
3404 LocalScope::const_iterator ContinueScopePos = ScopePos;
3405
3406 // "for" is a control-flow statement. Thus we stop processing the current
3407 // block.
3408 CFGBlock *LoopSuccessor = nullptr;
3409 if (Block) {
3410 if (badCFG)
3411 return nullptr;
3412 LoopSuccessor = Block;
3413 } else
3414 LoopSuccessor = Succ;
3415
3416 // Save the current value for the break targets.
3417 // All breaks should go to the code following the loop.
3418 SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
3419 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3420
3421 // The block for the __begin != __end expression.
3422 CFGBlock *ConditionBlock = createBlock(false);
3423 ConditionBlock->setTerminator(S);
3424
3425 // Now add the actual condition to the condition block.
3426 if (Expr *C = S->getCond()) {
3427 Block = ConditionBlock;
3428 CFGBlock *BeginConditionBlock = addStmt(C);
3429 if (badCFG)
3430 return nullptr;
3431 assert(BeginConditionBlock == ConditionBlock &&
3432 "condition block in for-range was unexpectedly complex");
3433 (void)BeginConditionBlock;
3434 }
3435
3436 // The condition block is the implicit successor for the loop body as well as
3437 // any code above the loop.
3438 Succ = ConditionBlock;
3439
3440 // See if this is a known constant.
3441 TryResult KnownVal(true);
3442
3443 if (S->getCond())
3444 KnownVal = tryEvaluateBool(S->getCond());
3445
3446 // Now create the loop body.
3447 {
3448 assert(S->getBody());
3449
3450 // Save the current values for Block, Succ, and continue targets.
3451 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3452 SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
3453
3454 // Generate increment code in its own basic block. This is the target of
3455 // continue statements.
3456 Block = nullptr;
3457 Succ = addStmt(S->getInc());
3458 ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
3459
3460 // The starting block for the loop increment is the block that should
3461 // represent the 'loop target' for looping back to the start of the loop.
3462 ContinueJumpTarget.block->setLoopTarget(S);
3463
3464 // Finish up the increment block and prepare to start the loop body.
3465 assert(Block);
3466 if (badCFG)
3467 return nullptr;
3468 Block = nullptr;
3469
3470 // Add implicit scope and dtors for loop variable.
3471 addLocalScopeAndDtors(S->getLoopVarStmt());
3472
3473 // Populate a new block to contain the loop body and loop variable.
3474 addStmt(S->getBody());
3475 if (badCFG)
3476 return nullptr;
3477 CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
3478 if (badCFG)
3479 return nullptr;
3480
3481 // This new body block is a successor to our condition block.
3482 addSuccessor(ConditionBlock,
3483 KnownVal.isFalse() ? nullptr : LoopVarStmtBlock);
3484 }
3485
3486 // Link up the condition block with the code that follows the loop (the
3487 // false branch).
3488 addSuccessor(ConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
3489
3490 // Add the initialization statements.
3491 Block = createBlock();
3492 addStmt(S->getBeginEndStmt());
3493 return addStmt(S->getRangeStmt());
3494 }
3495
VisitExprWithCleanups(ExprWithCleanups * E,AddStmtChoice asc)3496 CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
3497 AddStmtChoice asc) {
3498 if (BuildOpts.AddTemporaryDtors) {
3499 // If adding implicit destructors visit the full expression for adding
3500 // destructors of temporaries.
3501 TempDtorContext Context;
3502 VisitForTemporaryDtors(E->getSubExpr(), false, Context);
3503
3504 // Full expression has to be added as CFGStmt so it will be sequenced
3505 // before destructors of it's temporaries.
3506 asc = asc.withAlwaysAdd(true);
3507 }
3508 return Visit(E->getSubExpr(), asc);
3509 }
3510
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E,AddStmtChoice asc)3511 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
3512 AddStmtChoice asc) {
3513 if (asc.alwaysAdd(*this, E)) {
3514 autoCreateBlock();
3515 appendStmt(Block, E);
3516
3517 // We do not want to propagate the AlwaysAdd property.
3518 asc = asc.withAlwaysAdd(false);
3519 }
3520 return Visit(E->getSubExpr(), asc);
3521 }
3522
VisitCXXConstructExpr(CXXConstructExpr * C,AddStmtChoice asc)3523 CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
3524 AddStmtChoice asc) {
3525 autoCreateBlock();
3526 appendStmt(Block, C);
3527
3528 return VisitChildren(C);
3529 }
3530
VisitCXXNewExpr(CXXNewExpr * NE,AddStmtChoice asc)3531 CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE,
3532 AddStmtChoice asc) {
3533
3534 autoCreateBlock();
3535 appendStmt(Block, NE);
3536
3537 if (NE->getInitializer())
3538 Block = Visit(NE->getInitializer());
3539 if (BuildOpts.AddCXXNewAllocator)
3540 appendNewAllocator(Block, NE);
3541 if (NE->isArray())
3542 Block = Visit(NE->getArraySize());
3543 for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(),
3544 E = NE->placement_arg_end(); I != E; ++I)
3545 Block = Visit(*I);
3546 return Block;
3547 }
3548
VisitCXXDeleteExpr(CXXDeleteExpr * DE,AddStmtChoice asc)3549 CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE,
3550 AddStmtChoice asc) {
3551 autoCreateBlock();
3552 appendStmt(Block, DE);
3553 QualType DTy = DE->getDestroyedType();
3554 DTy = DTy.getNonReferenceType();
3555 CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl();
3556 if (RD) {
3557 if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor())
3558 appendDeleteDtor(Block, RD, DE);
3559 }
3560
3561 return VisitChildren(DE);
3562 }
3563
VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr * E,AddStmtChoice asc)3564 CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
3565 AddStmtChoice asc) {
3566 if (asc.alwaysAdd(*this, E)) {
3567 autoCreateBlock();
3568 appendStmt(Block, E);
3569 // We do not want to propagate the AlwaysAdd property.
3570 asc = asc.withAlwaysAdd(false);
3571 }
3572 return Visit(E->getSubExpr(), asc);
3573 }
3574
VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr * C,AddStmtChoice asc)3575 CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
3576 AddStmtChoice asc) {
3577 autoCreateBlock();
3578 appendStmt(Block, C);
3579 return VisitChildren(C);
3580 }
3581
VisitImplicitCastExpr(ImplicitCastExpr * E,AddStmtChoice asc)3582 CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
3583 AddStmtChoice asc) {
3584 if (asc.alwaysAdd(*this, E)) {
3585 autoCreateBlock();
3586 appendStmt(Block, E);
3587 }
3588 return Visit(E->getSubExpr(), AddStmtChoice());
3589 }
3590
VisitIndirectGotoStmt(IndirectGotoStmt * I)3591 CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3592 // Lazily create the indirect-goto dispatch block if there isn't one already.
3593 CFGBlock *IBlock = cfg->getIndirectGotoBlock();
3594
3595 if (!IBlock) {
3596 IBlock = createBlock(false);
3597 cfg->setIndirectGotoBlock(IBlock);
3598 }
3599
3600 // IndirectGoto is a control-flow statement. Thus we stop processing the
3601 // current block and create a new one.
3602 if (badCFG)
3603 return nullptr;
3604
3605 Block = createBlock(false);
3606 Block->setTerminator(I);
3607 addSuccessor(Block, IBlock);
3608 return addStmt(I->getTarget());
3609 }
3610
VisitForTemporaryDtors(Stmt * E,bool BindToTemporary,TempDtorContext & Context)3611 CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary,
3612 TempDtorContext &Context) {
3613 assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
3614
3615 tryAgain:
3616 if (!E) {
3617 badCFG = true;
3618 return nullptr;
3619 }
3620 switch (E->getStmtClass()) {
3621 default:
3622 return VisitChildrenForTemporaryDtors(E, Context);
3623
3624 case Stmt::BinaryOperatorClass:
3625 return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E),
3626 Context);
3627
3628 case Stmt::CXXBindTemporaryExprClass:
3629 return VisitCXXBindTemporaryExprForTemporaryDtors(
3630 cast<CXXBindTemporaryExpr>(E), BindToTemporary, Context);
3631
3632 case Stmt::BinaryConditionalOperatorClass:
3633 case Stmt::ConditionalOperatorClass:
3634 return VisitConditionalOperatorForTemporaryDtors(
3635 cast<AbstractConditionalOperator>(E), BindToTemporary, Context);
3636
3637 case Stmt::ImplicitCastExprClass:
3638 // For implicit cast we want BindToTemporary to be passed further.
3639 E = cast<CastExpr>(E)->getSubExpr();
3640 goto tryAgain;
3641
3642 case Stmt::CXXFunctionalCastExprClass:
3643 // For functional cast we want BindToTemporary to be passed further.
3644 E = cast<CXXFunctionalCastExpr>(E)->getSubExpr();
3645 goto tryAgain;
3646
3647 case Stmt::ParenExprClass:
3648 E = cast<ParenExpr>(E)->getSubExpr();
3649 goto tryAgain;
3650
3651 case Stmt::MaterializeTemporaryExprClass: {
3652 const MaterializeTemporaryExpr* MTE = cast<MaterializeTemporaryExpr>(E);
3653 BindToTemporary = (MTE->getStorageDuration() != SD_FullExpression);
3654 SmallVector<const Expr *, 2> CommaLHSs;
3655 SmallVector<SubobjectAdjustment, 2> Adjustments;
3656 // Find the expression whose lifetime needs to be extended.
3657 E = const_cast<Expr *>(
3658 cast<MaterializeTemporaryExpr>(E)
3659 ->GetTemporaryExpr()
3660 ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
3661 // Visit the skipped comma operator left-hand sides for other temporaries.
3662 for (const Expr *CommaLHS : CommaLHSs) {
3663 VisitForTemporaryDtors(const_cast<Expr *>(CommaLHS),
3664 /*BindToTemporary=*/false, Context);
3665 }
3666 goto tryAgain;
3667 }
3668
3669 case Stmt::BlockExprClass:
3670 // Don't recurse into blocks; their subexpressions don't get evaluated
3671 // here.
3672 return Block;
3673
3674 case Stmt::LambdaExprClass: {
3675 // For lambda expressions, only recurse into the capture initializers,
3676 // and not the body.
3677 auto *LE = cast<LambdaExpr>(E);
3678 CFGBlock *B = Block;
3679 for (Expr *Init : LE->capture_inits()) {
3680 if (CFGBlock *R = VisitForTemporaryDtors(
3681 Init, /*BindToTemporary=*/false, Context))
3682 B = R;
3683 }
3684 return B;
3685 }
3686
3687 case Stmt::CXXDefaultArgExprClass:
3688 E = cast<CXXDefaultArgExpr>(E)->getExpr();
3689 goto tryAgain;
3690
3691 case Stmt::CXXDefaultInitExprClass:
3692 E = cast<CXXDefaultInitExpr>(E)->getExpr();
3693 goto tryAgain;
3694 }
3695 }
3696
VisitChildrenForTemporaryDtors(Stmt * E,TempDtorContext & Context)3697 CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E,
3698 TempDtorContext &Context) {
3699 if (isa<LambdaExpr>(E)) {
3700 // Do not visit the children of lambdas; they have their own CFGs.
3701 return Block;
3702 }
3703
3704 // When visiting children for destructors we want to visit them in reverse
3705 // order that they will appear in the CFG. Because the CFG is built
3706 // bottom-up, this means we visit them in their natural order, which
3707 // reverses them in the CFG.
3708 CFGBlock *B = Block;
3709 for (Stmt *Child : E->children())
3710 if (Child)
3711 if (CFGBlock *R = VisitForTemporaryDtors(Child, false, Context))
3712 B = R;
3713
3714 return B;
3715 }
3716
VisitBinaryOperatorForTemporaryDtors(BinaryOperator * E,TempDtorContext & Context)3717 CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(
3718 BinaryOperator *E, TempDtorContext &Context) {
3719 if (E->isLogicalOp()) {
3720 VisitForTemporaryDtors(E->getLHS(), false, Context);
3721 TryResult RHSExecuted = tryEvaluateBool(E->getLHS());
3722 if (RHSExecuted.isKnown() && E->getOpcode() == BO_LOr)
3723 RHSExecuted.negate();
3724
3725 // We do not know at CFG-construction time whether the right-hand-side was
3726 // executed, thus we add a branch node that depends on the temporary
3727 // constructor call.
3728 TempDtorContext RHSContext(
3729 bothKnownTrue(Context.KnownExecuted, RHSExecuted));
3730 VisitForTemporaryDtors(E->getRHS(), false, RHSContext);
3731 InsertTempDtorDecisionBlock(RHSContext);
3732
3733 return Block;
3734 }
3735
3736 if (E->isAssignmentOp()) {
3737 // For assignment operator (=) LHS expression is visited
3738 // before RHS expression. For destructors visit them in reverse order.
3739 CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
3740 CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
3741 return LHSBlock ? LHSBlock : RHSBlock;
3742 }
3743
3744 // For any other binary operator RHS expression is visited before
3745 // LHS expression (order of children). For destructors visit them in reverse
3746 // order.
3747 CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
3748 CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
3749 return RHSBlock ? RHSBlock : LHSBlock;
3750 }
3751
VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr * E,bool BindToTemporary,TempDtorContext & Context)3752 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
3753 CXXBindTemporaryExpr *E, bool BindToTemporary, TempDtorContext &Context) {
3754 // First add destructors for temporaries in subexpression.
3755 CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr(), false, Context);
3756 if (!BindToTemporary) {
3757 // If lifetime of temporary is not prolonged (by assigning to constant
3758 // reference) add destructor for it.
3759
3760 const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
3761
3762 if (Dtor->getParent()->isAnyDestructorNoReturn()) {
3763 // If the destructor is marked as a no-return destructor, we need to
3764 // create a new block for the destructor which does not have as a
3765 // successor anything built thus far. Control won't flow out of this
3766 // block.
3767 if (B) Succ = B;
3768 Block = createNoReturnBlock();
3769 } else if (Context.needsTempDtorBranch()) {
3770 // If we need to introduce a branch, we add a new block that we will hook
3771 // up to a decision block later.
3772 if (B) Succ = B;
3773 Block = createBlock();
3774 } else {
3775 autoCreateBlock();
3776 }
3777 if (Context.needsTempDtorBranch()) {
3778 Context.setDecisionPoint(Succ, E);
3779 }
3780 appendTemporaryDtor(Block, E);
3781
3782 B = Block;
3783 }
3784 return B;
3785 }
3786
InsertTempDtorDecisionBlock(const TempDtorContext & Context,CFGBlock * FalseSucc)3787 void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext &Context,
3788 CFGBlock *FalseSucc) {
3789 if (!Context.TerminatorExpr) {
3790 // If no temporary was found, we do not need to insert a decision point.
3791 return;
3792 }
3793 assert(Context.TerminatorExpr);
3794 CFGBlock *Decision = createBlock(false);
3795 Decision->setTerminator(CFGTerminator(Context.TerminatorExpr, true));
3796 addSuccessor(Decision, Block, !Context.KnownExecuted.isFalse());
3797 addSuccessor(Decision, FalseSucc ? FalseSucc : Context.Succ,
3798 !Context.KnownExecuted.isTrue());
3799 Block = Decision;
3800 }
3801
VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator * E,bool BindToTemporary,TempDtorContext & Context)3802 CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
3803 AbstractConditionalOperator *E, bool BindToTemporary,
3804 TempDtorContext &Context) {
3805 VisitForTemporaryDtors(E->getCond(), false, Context);
3806 CFGBlock *ConditionBlock = Block;
3807 CFGBlock *ConditionSucc = Succ;
3808 TryResult ConditionVal = tryEvaluateBool(E->getCond());
3809 TryResult NegatedVal = ConditionVal;
3810 if (NegatedVal.isKnown()) NegatedVal.negate();
3811
3812 TempDtorContext TrueContext(
3813 bothKnownTrue(Context.KnownExecuted, ConditionVal));
3814 VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary, TrueContext);
3815 CFGBlock *TrueBlock = Block;
3816
3817 Block = ConditionBlock;
3818 Succ = ConditionSucc;
3819 TempDtorContext FalseContext(
3820 bothKnownTrue(Context.KnownExecuted, NegatedVal));
3821 VisitForTemporaryDtors(E->getFalseExpr(), BindToTemporary, FalseContext);
3822
3823 if (TrueContext.TerminatorExpr && FalseContext.TerminatorExpr) {
3824 InsertTempDtorDecisionBlock(FalseContext, TrueBlock);
3825 } else if (TrueContext.TerminatorExpr) {
3826 Block = TrueBlock;
3827 InsertTempDtorDecisionBlock(TrueContext);
3828 } else {
3829 InsertTempDtorDecisionBlock(FalseContext);
3830 }
3831 return Block;
3832 }
3833
3834 } // end anonymous namespace
3835
3836 /// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has
3837 /// no successors or predecessors. If this is the first block created in the
3838 /// CFG, it is automatically set to be the Entry and Exit of the CFG.
createBlock()3839 CFGBlock *CFG::createBlock() {
3840 bool first_block = begin() == end();
3841
3842 // Create the block.
3843 CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
3844 new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
3845 Blocks.push_back(Mem, BlkBVC);
3846
3847 // If this is the first block, set it as the Entry and Exit.
3848 if (first_block)
3849 Entry = Exit = &back();
3850
3851 // Return the block.
3852 return &back();
3853 }
3854
3855 /// buildCFG - Constructs a CFG from an AST.
buildCFG(const Decl * D,Stmt * Statement,ASTContext * C,const BuildOptions & BO)3856 std::unique_ptr<CFG> CFG::buildCFG(const Decl *D, Stmt *Statement,
3857 ASTContext *C, const BuildOptions &BO) {
3858 CFGBuilder Builder(C, BO);
3859 return Builder.buildCFG(D, Statement);
3860 }
3861
3862 const CXXDestructorDecl *
getDestructorDecl(ASTContext & astContext) const3863 CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
3864 switch (getKind()) {
3865 case CFGElement::Statement:
3866 case CFGElement::Initializer:
3867 case CFGElement::NewAllocator:
3868 llvm_unreachable("getDestructorDecl should only be used with "
3869 "ImplicitDtors");
3870 case CFGElement::AutomaticObjectDtor: {
3871 const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
3872 QualType ty = var->getType();
3873 ty = ty.getNonReferenceType();
3874 while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
3875 ty = arrayType->getElementType();
3876 }
3877 const RecordType *recordType = ty->getAs<RecordType>();
3878 const CXXRecordDecl *classDecl =
3879 cast<CXXRecordDecl>(recordType->getDecl());
3880 return classDecl->getDestructor();
3881 }
3882 case CFGElement::DeleteDtor: {
3883 const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr();
3884 QualType DTy = DE->getDestroyedType();
3885 DTy = DTy.getNonReferenceType();
3886 const CXXRecordDecl *classDecl =
3887 astContext.getBaseElementType(DTy)->getAsCXXRecordDecl();
3888 return classDecl->getDestructor();
3889 }
3890 case CFGElement::TemporaryDtor: {
3891 const CXXBindTemporaryExpr *bindExpr =
3892 castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
3893 const CXXTemporary *temp = bindExpr->getTemporary();
3894 return temp->getDestructor();
3895 }
3896 case CFGElement::BaseDtor:
3897 case CFGElement::MemberDtor:
3898
3899 // Not yet supported.
3900 return nullptr;
3901 }
3902 llvm_unreachable("getKind() returned bogus value");
3903 }
3904
isNoReturn(ASTContext & astContext) const3905 bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3906 if (const CXXDestructorDecl *DD = getDestructorDecl(astContext))
3907 return DD->isNoReturn();
3908 return false;
3909 }
3910
3911 //===----------------------------------------------------------------------===//
3912 // CFGBlock operations.
3913 //===----------------------------------------------------------------------===//
3914
AdjacentBlock(CFGBlock * B,bool IsReachable)3915 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable)
3916 : ReachableBlock(IsReachable ? B : nullptr),
3917 UnreachableBlock(!IsReachable ? B : nullptr,
3918 B && IsReachable ? AB_Normal : AB_Unreachable) {}
3919
AdjacentBlock(CFGBlock * B,CFGBlock * AlternateBlock)3920 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock)
3921 : ReachableBlock(B),
3922 UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock,
3923 B == AlternateBlock ? AB_Alternate : AB_Normal) {}
3924
addSuccessor(AdjacentBlock Succ,BumpVectorContext & C)3925 void CFGBlock::addSuccessor(AdjacentBlock Succ,
3926 BumpVectorContext &C) {
3927 if (CFGBlock *B = Succ.getReachableBlock())
3928 B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C);
3929
3930 if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock())
3931 UnreachableB->Preds.push_back(AdjacentBlock(this, false), C);
3932
3933 Succs.push_back(Succ, C);
3934 }
3935
FilterEdge(const CFGBlock::FilterOptions & F,const CFGBlock * From,const CFGBlock * To)3936 bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3937 const CFGBlock *From, const CFGBlock *To) {
3938
3939 if (F.IgnoreNullPredecessors && !From)
3940 return true;
3941
3942 if (To && From && F.IgnoreDefaultsWithCoveredEnums) {
3943 // If the 'To' has no label or is labeled but the label isn't a
3944 // CaseStmt then filter this edge.
3945 if (const SwitchStmt *S =
3946 dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3947 if (S->isAllEnumCasesCovered()) {
3948 const Stmt *L = To->getLabel();
3949 if (!L || !isa<CaseStmt>(L))
3950 return true;
3951 }
3952 }
3953 }
3954
3955 return false;
3956 }
3957
3958 //===----------------------------------------------------------------------===//
3959 // CFG pretty printing
3960 //===----------------------------------------------------------------------===//
3961
3962 namespace {
3963
3964 class StmtPrinterHelper : public PrinterHelper {
3965 typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3966 typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3967 StmtMapTy StmtMap;
3968 DeclMapTy DeclMap;
3969 signed currentBlock;
3970 unsigned currStmt;
3971 const LangOptions &LangOpts;
3972 public:
3973
StmtPrinterHelper(const CFG * cfg,const LangOptions & LO)3974 StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3975 : currentBlock(0), currStmt(0), LangOpts(LO)
3976 {
3977 for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3978 unsigned j = 1;
3979 for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3980 BI != BEnd; ++BI, ++j ) {
3981 if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
3982 const Stmt *stmt= SE->getStmt();
3983 std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3984 StmtMap[stmt] = P;
3985
3986 switch (stmt->getStmtClass()) {
3987 case Stmt::DeclStmtClass:
3988 DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3989 break;
3990 case Stmt::IfStmtClass: {
3991 const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3992 if (var)
3993 DeclMap[var] = P;
3994 break;
3995 }
3996 case Stmt::ForStmtClass: {
3997 const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3998 if (var)
3999 DeclMap[var] = P;
4000 break;
4001 }
4002 case Stmt::WhileStmtClass: {
4003 const VarDecl *var =
4004 cast<WhileStmt>(stmt)->getConditionVariable();
4005 if (var)
4006 DeclMap[var] = P;
4007 break;
4008 }
4009 case Stmt::SwitchStmtClass: {
4010 const VarDecl *var =
4011 cast<SwitchStmt>(stmt)->getConditionVariable();
4012 if (var)
4013 DeclMap[var] = P;
4014 break;
4015 }
4016 case Stmt::CXXCatchStmtClass: {
4017 const VarDecl *var =
4018 cast<CXXCatchStmt>(stmt)->getExceptionDecl();
4019 if (var)
4020 DeclMap[var] = P;
4021 break;
4022 }
4023 default:
4024 break;
4025 }
4026 }
4027 }
4028 }
4029 }
4030
~StmtPrinterHelper()4031 ~StmtPrinterHelper() override {}
4032
getLangOpts() const4033 const LangOptions &getLangOpts() const { return LangOpts; }
setBlockID(signed i)4034 void setBlockID(signed i) { currentBlock = i; }
setStmtID(unsigned i)4035 void setStmtID(unsigned i) { currStmt = i; }
4036
handledStmt(Stmt * S,raw_ostream & OS)4037 bool handledStmt(Stmt *S, raw_ostream &OS) override {
4038 StmtMapTy::iterator I = StmtMap.find(S);
4039
4040 if (I == StmtMap.end())
4041 return false;
4042
4043 if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
4044 && I->second.second == currStmt) {
4045 return false;
4046 }
4047
4048 OS << "[B" << I->second.first << "." << I->second.second << "]";
4049 return true;
4050 }
4051
handleDecl(const Decl * D,raw_ostream & OS)4052 bool handleDecl(const Decl *D, raw_ostream &OS) {
4053 DeclMapTy::iterator I = DeclMap.find(D);
4054
4055 if (I == DeclMap.end())
4056 return false;
4057
4058 if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
4059 && I->second.second == currStmt) {
4060 return false;
4061 }
4062
4063 OS << "[B" << I->second.first << "." << I->second.second << "]";
4064 return true;
4065 }
4066 };
4067 } // end anonymous namespace
4068
4069
4070 namespace {
4071 class CFGBlockTerminatorPrint
4072 : public StmtVisitor<CFGBlockTerminatorPrint,void> {
4073
4074 raw_ostream &OS;
4075 StmtPrinterHelper* Helper;
4076 PrintingPolicy Policy;
4077 public:
CFGBlockTerminatorPrint(raw_ostream & os,StmtPrinterHelper * helper,const PrintingPolicy & Policy)4078 CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
4079 const PrintingPolicy &Policy)
4080 : OS(os), Helper(helper), Policy(Policy) {
4081 this->Policy.IncludeNewlines = false;
4082 }
4083
VisitIfStmt(IfStmt * I)4084 void VisitIfStmt(IfStmt *I) {
4085 OS << "if ";
4086 if (Stmt *C = I->getCond())
4087 C->printPretty(OS, Helper, Policy);
4088 }
4089
4090 // Default case.
VisitStmt(Stmt * Terminator)4091 void VisitStmt(Stmt *Terminator) {
4092 Terminator->printPretty(OS, Helper, Policy);
4093 }
4094
VisitDeclStmt(DeclStmt * DS)4095 void VisitDeclStmt(DeclStmt *DS) {
4096 VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
4097 OS << "static init " << VD->getName();
4098 }
4099
VisitForStmt(ForStmt * F)4100 void VisitForStmt(ForStmt *F) {
4101 OS << "for (" ;
4102 if (F->getInit())
4103 OS << "...";
4104 OS << "; ";
4105 if (Stmt *C = F->getCond())
4106 C->printPretty(OS, Helper, Policy);
4107 OS << "; ";
4108 if (F->getInc())
4109 OS << "...";
4110 OS << ")";
4111 }
4112
VisitWhileStmt(WhileStmt * W)4113 void VisitWhileStmt(WhileStmt *W) {
4114 OS << "while " ;
4115 if (Stmt *C = W->getCond())
4116 C->printPretty(OS, Helper, Policy);
4117 }
4118
VisitDoStmt(DoStmt * D)4119 void VisitDoStmt(DoStmt *D) {
4120 OS << "do ... while ";
4121 if (Stmt *C = D->getCond())
4122 C->printPretty(OS, Helper, Policy);
4123 }
4124
VisitSwitchStmt(SwitchStmt * Terminator)4125 void VisitSwitchStmt(SwitchStmt *Terminator) {
4126 OS << "switch ";
4127 Terminator->getCond()->printPretty(OS, Helper, Policy);
4128 }
4129
VisitCXXTryStmt(CXXTryStmt * CS)4130 void VisitCXXTryStmt(CXXTryStmt *CS) {
4131 OS << "try ...";
4132 }
4133
VisitAbstractConditionalOperator(AbstractConditionalOperator * C)4134 void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
4135 if (Stmt *Cond = C->getCond())
4136 Cond->printPretty(OS, Helper, Policy);
4137 OS << " ? ... : ...";
4138 }
4139
VisitChooseExpr(ChooseExpr * C)4140 void VisitChooseExpr(ChooseExpr *C) {
4141 OS << "__builtin_choose_expr( ";
4142 if (Stmt *Cond = C->getCond())
4143 Cond->printPretty(OS, Helper, Policy);
4144 OS << " )";
4145 }
4146
VisitIndirectGotoStmt(IndirectGotoStmt * I)4147 void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
4148 OS << "goto *";
4149 if (Stmt *T = I->getTarget())
4150 T->printPretty(OS, Helper, Policy);
4151 }
4152
VisitBinaryOperator(BinaryOperator * B)4153 void VisitBinaryOperator(BinaryOperator* B) {
4154 if (!B->isLogicalOp()) {
4155 VisitExpr(B);
4156 return;
4157 }
4158
4159 if (B->getLHS())
4160 B->getLHS()->printPretty(OS, Helper, Policy);
4161
4162 switch (B->getOpcode()) {
4163 case BO_LOr:
4164 OS << " || ...";
4165 return;
4166 case BO_LAnd:
4167 OS << " && ...";
4168 return;
4169 default:
4170 llvm_unreachable("Invalid logical operator.");
4171 }
4172 }
4173
VisitExpr(Expr * E)4174 void VisitExpr(Expr *E) {
4175 E->printPretty(OS, Helper, Policy);
4176 }
4177
4178 public:
print(CFGTerminator T)4179 void print(CFGTerminator T) {
4180 if (T.isTemporaryDtorsBranch())
4181 OS << "(Temp Dtor) ";
4182 Visit(T.getStmt());
4183 }
4184 };
4185 } // end anonymous namespace
4186
print_elem(raw_ostream & OS,StmtPrinterHelper & Helper,const CFGElement & E)4187 static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
4188 const CFGElement &E) {
4189 if (Optional<CFGStmt> CS = E.getAs<CFGStmt>()) {
4190 const Stmt *S = CS->getStmt();
4191 assert(S != nullptr && "Expecting non-null Stmt");
4192
4193 // special printing for statement-expressions.
4194 if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
4195 const CompoundStmt *Sub = SE->getSubStmt();
4196
4197 auto Children = Sub->children();
4198 if (Children.begin() != Children.end()) {
4199 OS << "({ ... ; ";
4200 Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
4201 OS << " })\n";
4202 return;
4203 }
4204 }
4205 // special printing for comma expressions.
4206 if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
4207 if (B->getOpcode() == BO_Comma) {
4208 OS << "... , ";
4209 Helper.handledStmt(B->getRHS(),OS);
4210 OS << '\n';
4211 return;
4212 }
4213 }
4214 S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
4215
4216 if (isa<CXXOperatorCallExpr>(S)) {
4217 OS << " (OperatorCall)";
4218 }
4219 else if (isa<CXXBindTemporaryExpr>(S)) {
4220 OS << " (BindTemporary)";
4221 }
4222 else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
4223 OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
4224 }
4225 else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
4226 OS << " (" << CE->getStmtClassName() << ", "
4227 << CE->getCastKindName()
4228 << ", " << CE->getType().getAsString()
4229 << ")";
4230 }
4231
4232 // Expressions need a newline.
4233 if (isa<Expr>(S))
4234 OS << '\n';
4235
4236 } else if (Optional<CFGInitializer> IE = E.getAs<CFGInitializer>()) {
4237 const CXXCtorInitializer *I = IE->getInitializer();
4238 if (I->isBaseInitializer())
4239 OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
4240 else if (I->isDelegatingInitializer())
4241 OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName();
4242 else OS << I->getAnyMember()->getName();
4243
4244 OS << "(";
4245 if (Expr *IE = I->getInit())
4246 IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
4247 OS << ")";
4248
4249 if (I->isBaseInitializer())
4250 OS << " (Base initializer)\n";
4251 else if (I->isDelegatingInitializer())
4252 OS << " (Delegating initializer)\n";
4253 else OS << " (Member initializer)\n";
4254
4255 } else if (Optional<CFGAutomaticObjDtor> DE =
4256 E.getAs<CFGAutomaticObjDtor>()) {
4257 const VarDecl *VD = DE->getVarDecl();
4258 Helper.handleDecl(VD, OS);
4259
4260 const Type* T = VD->getType().getTypePtr();
4261 if (const ReferenceType* RT = T->getAs<ReferenceType>())
4262 T = RT->getPointeeType().getTypePtr();
4263 T = T->getBaseElementTypeUnsafe();
4264
4265 OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
4266 OS << " (Implicit destructor)\n";
4267
4268 } else if (Optional<CFGNewAllocator> NE = E.getAs<CFGNewAllocator>()) {
4269 OS << "CFGNewAllocator(";
4270 if (const CXXNewExpr *AllocExpr = NE->getAllocatorExpr())
4271 AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
4272 OS << ")\n";
4273 } else if (Optional<CFGDeleteDtor> DE = E.getAs<CFGDeleteDtor>()) {
4274 const CXXRecordDecl *RD = DE->getCXXRecordDecl();
4275 if (!RD)
4276 return;
4277 CXXDeleteExpr *DelExpr =
4278 const_cast<CXXDeleteExpr*>(DE->getDeleteExpr());
4279 Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS);
4280 OS << "->~" << RD->getName().str() << "()";
4281 OS << " (Implicit destructor)\n";
4282 } else if (Optional<CFGBaseDtor> BE = E.getAs<CFGBaseDtor>()) {
4283 const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
4284 OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
4285 OS << " (Base object destructor)\n";
4286
4287 } else if (Optional<CFGMemberDtor> ME = E.getAs<CFGMemberDtor>()) {
4288 const FieldDecl *FD = ME->getFieldDecl();
4289 const Type *T = FD->getType()->getBaseElementTypeUnsafe();
4290 OS << "this->" << FD->getName();
4291 OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
4292 OS << " (Member object destructor)\n";
4293
4294 } else if (Optional<CFGTemporaryDtor> TE = E.getAs<CFGTemporaryDtor>()) {
4295 const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
4296 OS << "~";
4297 BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
4298 OS << "() (Temporary object destructor)\n";
4299 }
4300 }
4301
print_block(raw_ostream & OS,const CFG * cfg,const CFGBlock & B,StmtPrinterHelper & Helper,bool print_edges,bool ShowColors)4302 static void print_block(raw_ostream &OS, const CFG* cfg,
4303 const CFGBlock &B,
4304 StmtPrinterHelper &Helper, bool print_edges,
4305 bool ShowColors) {
4306
4307 Helper.setBlockID(B.getBlockID());
4308
4309 // Print the header.
4310 if (ShowColors)
4311 OS.changeColor(raw_ostream::YELLOW, true);
4312
4313 OS << "\n [B" << B.getBlockID();
4314
4315 if (&B == &cfg->getEntry())
4316 OS << " (ENTRY)]\n";
4317 else if (&B == &cfg->getExit())
4318 OS << " (EXIT)]\n";
4319 else if (&B == cfg->getIndirectGotoBlock())
4320 OS << " (INDIRECT GOTO DISPATCH)]\n";
4321 else if (B.hasNoReturnElement())
4322 OS << " (NORETURN)]\n";
4323 else
4324 OS << "]\n";
4325
4326 if (ShowColors)
4327 OS.resetColor();
4328
4329 // Print the label of this block.
4330 if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
4331
4332 if (print_edges)
4333 OS << " ";
4334
4335 if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
4336 OS << L->getName();
4337 else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
4338 OS << "case ";
4339 if (C->getLHS())
4340 C->getLHS()->printPretty(OS, &Helper,
4341 PrintingPolicy(Helper.getLangOpts()));
4342 if (C->getRHS()) {
4343 OS << " ... ";
4344 C->getRHS()->printPretty(OS, &Helper,
4345 PrintingPolicy(Helper.getLangOpts()));
4346 }
4347 } else if (isa<DefaultStmt>(Label))
4348 OS << "default";
4349 else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
4350 OS << "catch (";
4351 if (CS->getExceptionDecl())
4352 CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper.getLangOpts()),
4353 0);
4354 else
4355 OS << "...";
4356 OS << ")";
4357
4358 } else
4359 llvm_unreachable("Invalid label statement in CFGBlock.");
4360
4361 OS << ":\n";
4362 }
4363
4364 // Iterate through the statements in the block and print them.
4365 unsigned j = 1;
4366
4367 for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
4368 I != E ; ++I, ++j ) {
4369
4370 // Print the statement # in the basic block and the statement itself.
4371 if (print_edges)
4372 OS << " ";
4373
4374 OS << llvm::format("%3d", j) << ": ";
4375
4376 Helper.setStmtID(j);
4377
4378 print_elem(OS, Helper, *I);
4379 }
4380
4381 // Print the terminator of this block.
4382 if (B.getTerminator()) {
4383 if (ShowColors)
4384 OS.changeColor(raw_ostream::GREEN);
4385
4386 OS << " T: ";
4387
4388 Helper.setBlockID(-1);
4389
4390 PrintingPolicy PP(Helper.getLangOpts());
4391 CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP);
4392 TPrinter.print(B.getTerminator());
4393 OS << '\n';
4394
4395 if (ShowColors)
4396 OS.resetColor();
4397 }
4398
4399 if (print_edges) {
4400 // Print the predecessors of this block.
4401 if (!B.pred_empty()) {
4402 const raw_ostream::Colors Color = raw_ostream::BLUE;
4403 if (ShowColors)
4404 OS.changeColor(Color);
4405 OS << " Preds " ;
4406 if (ShowColors)
4407 OS.resetColor();
4408 OS << '(' << B.pred_size() << "):";
4409 unsigned i = 0;
4410
4411 if (ShowColors)
4412 OS.changeColor(Color);
4413
4414 for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
4415 I != E; ++I, ++i) {
4416
4417 if (i % 10 == 8)
4418 OS << "\n ";
4419
4420 CFGBlock *B = *I;
4421 bool Reachable = true;
4422 if (!B) {
4423 Reachable = false;
4424 B = I->getPossiblyUnreachableBlock();
4425 }
4426
4427 OS << " B" << B->getBlockID();
4428 if (!Reachable)
4429 OS << "(Unreachable)";
4430 }
4431
4432 if (ShowColors)
4433 OS.resetColor();
4434
4435 OS << '\n';
4436 }
4437
4438 // Print the successors of this block.
4439 if (!B.succ_empty()) {
4440 const raw_ostream::Colors Color = raw_ostream::MAGENTA;
4441 if (ShowColors)
4442 OS.changeColor(Color);
4443 OS << " Succs ";
4444 if (ShowColors)
4445 OS.resetColor();
4446 OS << '(' << B.succ_size() << "):";
4447 unsigned i = 0;
4448
4449 if (ShowColors)
4450 OS.changeColor(Color);
4451
4452 for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
4453 I != E; ++I, ++i) {
4454
4455 if (i % 10 == 8)
4456 OS << "\n ";
4457
4458 CFGBlock *B = *I;
4459
4460 bool Reachable = true;
4461 if (!B) {
4462 Reachable = false;
4463 B = I->getPossiblyUnreachableBlock();
4464 }
4465
4466 if (B) {
4467 OS << " B" << B->getBlockID();
4468 if (!Reachable)
4469 OS << "(Unreachable)";
4470 }
4471 else {
4472 OS << " NULL";
4473 }
4474 }
4475
4476 if (ShowColors)
4477 OS.resetColor();
4478 OS << '\n';
4479 }
4480 }
4481 }
4482
4483
4484 /// dump - A simple pretty printer of a CFG that outputs to stderr.
dump(const LangOptions & LO,bool ShowColors) const4485 void CFG::dump(const LangOptions &LO, bool ShowColors) const {
4486 print(llvm::errs(), LO, ShowColors);
4487 }
4488
4489 /// print - A simple pretty printer of a CFG that outputs to an ostream.
print(raw_ostream & OS,const LangOptions & LO,bool ShowColors) const4490 void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
4491 StmtPrinterHelper Helper(this, LO);
4492
4493 // Print the entry block.
4494 print_block(OS, this, getEntry(), Helper, true, ShowColors);
4495
4496 // Iterate through the CFGBlocks and print them one by one.
4497 for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
4498 // Skip the entry block, because we already printed it.
4499 if (&(**I) == &getEntry() || &(**I) == &getExit())
4500 continue;
4501
4502 print_block(OS, this, **I, Helper, true, ShowColors);
4503 }
4504
4505 // Print the exit block.
4506 print_block(OS, this, getExit(), Helper, true, ShowColors);
4507 OS << '\n';
4508 OS.flush();
4509 }
4510
4511 /// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
dump(const CFG * cfg,const LangOptions & LO,bool ShowColors) const4512 void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
4513 bool ShowColors) const {
4514 print(llvm::errs(), cfg, LO, ShowColors);
4515 }
4516
dump() const4517 void CFGBlock::dump() const {
4518 dump(getParent(), LangOptions(), false);
4519 }
4520
4521 /// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
4522 /// Generally this will only be called from CFG::print.
print(raw_ostream & OS,const CFG * cfg,const LangOptions & LO,bool ShowColors) const4523 void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
4524 const LangOptions &LO, bool ShowColors) const {
4525 StmtPrinterHelper Helper(cfg, LO);
4526 print_block(OS, cfg, *this, Helper, true, ShowColors);
4527 OS << '\n';
4528 }
4529
4530 /// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
printTerminator(raw_ostream & OS,const LangOptions & LO) const4531 void CFGBlock::printTerminator(raw_ostream &OS,
4532 const LangOptions &LO) const {
4533 CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO));
4534 TPrinter.print(getTerminator());
4535 }
4536
getTerminatorCondition(bool StripParens)4537 Stmt *CFGBlock::getTerminatorCondition(bool StripParens) {
4538 Stmt *Terminator = this->Terminator;
4539 if (!Terminator)
4540 return nullptr;
4541
4542 Expr *E = nullptr;
4543
4544 switch (Terminator->getStmtClass()) {
4545 default:
4546 break;
4547
4548 case Stmt::CXXForRangeStmtClass:
4549 E = cast<CXXForRangeStmt>(Terminator)->getCond();
4550 break;
4551
4552 case Stmt::ForStmtClass:
4553 E = cast<ForStmt>(Terminator)->getCond();
4554 break;
4555
4556 case Stmt::WhileStmtClass:
4557 E = cast<WhileStmt>(Terminator)->getCond();
4558 break;
4559
4560 case Stmt::DoStmtClass:
4561 E = cast<DoStmt>(Terminator)->getCond();
4562 break;
4563
4564 case Stmt::IfStmtClass:
4565 E = cast<IfStmt>(Terminator)->getCond();
4566 break;
4567
4568 case Stmt::ChooseExprClass:
4569 E = cast<ChooseExpr>(Terminator)->getCond();
4570 break;
4571
4572 case Stmt::IndirectGotoStmtClass:
4573 E = cast<IndirectGotoStmt>(Terminator)->getTarget();
4574 break;
4575
4576 case Stmt::SwitchStmtClass:
4577 E = cast<SwitchStmt>(Terminator)->getCond();
4578 break;
4579
4580 case Stmt::BinaryConditionalOperatorClass:
4581 E = cast<BinaryConditionalOperator>(Terminator)->getCond();
4582 break;
4583
4584 case Stmt::ConditionalOperatorClass:
4585 E = cast<ConditionalOperator>(Terminator)->getCond();
4586 break;
4587
4588 case Stmt::BinaryOperatorClass: // '&&' and '||'
4589 E = cast<BinaryOperator>(Terminator)->getLHS();
4590 break;
4591
4592 case Stmt::ObjCForCollectionStmtClass:
4593 return Terminator;
4594 }
4595
4596 if (!StripParens)
4597 return E;
4598
4599 return E ? E->IgnoreParens() : nullptr;
4600 }
4601
4602 //===----------------------------------------------------------------------===//
4603 // CFG Graphviz Visualization
4604 //===----------------------------------------------------------------------===//
4605
4606
4607 #ifndef NDEBUG
4608 static StmtPrinterHelper* GraphHelper;
4609 #endif
4610
viewCFG(const LangOptions & LO) const4611 void CFG::viewCFG(const LangOptions &LO) const {
4612 #ifndef NDEBUG
4613 StmtPrinterHelper H(this, LO);
4614 GraphHelper = &H;
4615 llvm::ViewGraph(this,"CFG");
4616 GraphHelper = nullptr;
4617 #endif
4618 }
4619
4620 namespace llvm {
4621 template<>
4622 struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
4623
DOTGraphTraitsllvm::DOTGraphTraits4624 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
4625
getNodeLabelllvm::DOTGraphTraits4626 static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
4627
4628 #ifndef NDEBUG
4629 std::string OutSStr;
4630 llvm::raw_string_ostream Out(OutSStr);
4631 print_block(Out,Graph, *Node, *GraphHelper, false, false);
4632 std::string& OutStr = Out.str();
4633
4634 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
4635
4636 // Process string output to make it nicer...
4637 for (unsigned i = 0; i != OutStr.length(); ++i)
4638 if (OutStr[i] == '\n') { // Left justify
4639 OutStr[i] = '\\';
4640 OutStr.insert(OutStr.begin()+i+1, 'l');
4641 }
4642
4643 return OutStr;
4644 #else
4645 return "";
4646 #endif
4647 }
4648 };
4649 } // end namespace llvm
4650