1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Module.h"
33 #include <cstdarg>
34
35 using namespace clang;
36 using namespace CodeGen;
37 using llvm::Value;
38
39 //===----------------------------------------------------------------------===//
40 // Scalar Expression Emitter
41 //===----------------------------------------------------------------------===//
42
43 namespace {
44 struct BinOpInfo {
45 Value *LHS;
46 Value *RHS;
47 QualType Ty; // Computation Type.
48 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
49 bool FPContractable;
50 const Expr *E; // Entire expr, for error unsupported. May not be binop.
51 };
52
MustVisitNullValue(const Expr * E)53 static bool MustVisitNullValue(const Expr *E) {
54 // If a null pointer expression's type is the C++0x nullptr_t, then
55 // it's not necessarily a simple constant and it must be evaluated
56 // for its potential side effects.
57 return E->getType()->isNullPtrType();
58 }
59
60 class ScalarExprEmitter
61 : public StmtVisitor<ScalarExprEmitter, Value*> {
62 CodeGenFunction &CGF;
63 CGBuilderTy &Builder;
64 bool IgnoreResultAssign;
65 llvm::LLVMContext &VMContext;
66 public:
67
ScalarExprEmitter(CodeGenFunction & cgf,bool ira=false)68 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
69 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
70 VMContext(cgf.getLLVMContext()) {
71 }
72
73 //===--------------------------------------------------------------------===//
74 // Utilities
75 //===--------------------------------------------------------------------===//
76
TestAndClearIgnoreResultAssign()77 bool TestAndClearIgnoreResultAssign() {
78 bool I = IgnoreResultAssign;
79 IgnoreResultAssign = false;
80 return I;
81 }
82
ConvertType(QualType T)83 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
EmitLValue(const Expr * E)84 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
EmitCheckedLValue(const Expr * E,CodeGenFunction::TypeCheckKind TCK)85 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
86 return CGF.EmitCheckedLValue(E, TCK);
87 }
88
89 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
90 const BinOpInfo &Info);
91
EmitLoadOfLValue(LValue LV,SourceLocation Loc)92 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
93 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
94 }
95
EmitLValueAlignmentAssumption(const Expr * E,Value * V)96 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
97 const AlignValueAttr *AVAttr = nullptr;
98 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
99 const ValueDecl *VD = DRE->getDecl();
100
101 if (VD->getType()->isReferenceType()) {
102 if (const auto *TTy =
103 dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
104 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
105 } else {
106 // Assumptions for function parameters are emitted at the start of the
107 // function, so there is no need to repeat that here.
108 if (isa<ParmVarDecl>(VD))
109 return;
110
111 AVAttr = VD->getAttr<AlignValueAttr>();
112 }
113 }
114
115 if (!AVAttr)
116 if (const auto *TTy =
117 dyn_cast<TypedefType>(E->getType()))
118 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
119
120 if (!AVAttr)
121 return;
122
123 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
124 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
125 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
126 }
127
128 /// EmitLoadOfLValue - Given an expression with complex type that represents a
129 /// value l-value, this method emits the address of the l-value, then loads
130 /// and returns the result.
EmitLoadOfLValue(const Expr * E)131 Value *EmitLoadOfLValue(const Expr *E) {
132 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
133 E->getExprLoc());
134
135 EmitLValueAlignmentAssumption(E, V);
136 return V;
137 }
138
139 /// EmitConversionToBool - Convert the specified expression value to a
140 /// boolean (i1) truth value. This is equivalent to "Val != 0".
141 Value *EmitConversionToBool(Value *Src, QualType DstTy);
142
143 /// Emit a check that a conversion to or from a floating-point type does not
144 /// overflow.
145 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
146 Value *Src, QualType SrcType, QualType DstType,
147 llvm::Type *DstTy, SourceLocation Loc);
148
149 /// Emit a conversion from the specified type to the specified destination
150 /// type, both of which are LLVM scalar types.
151 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
152 SourceLocation Loc);
153
154 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
155 SourceLocation Loc, bool TreatBooleanAsSigned);
156
157 /// Emit a conversion from the specified complex type to the specified
158 /// destination type, where the destination type is an LLVM scalar type.
159 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
160 QualType SrcTy, QualType DstTy,
161 SourceLocation Loc);
162
163 /// EmitNullValue - Emit a value that corresponds to null for the given type.
164 Value *EmitNullValue(QualType Ty);
165
166 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
EmitFloatToBoolConversion(Value * V)167 Value *EmitFloatToBoolConversion(Value *V) {
168 // Compare against 0.0 for fp scalars.
169 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
170 return Builder.CreateFCmpUNE(V, Zero, "tobool");
171 }
172
173 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
EmitPointerToBoolConversion(Value * V)174 Value *EmitPointerToBoolConversion(Value *V) {
175 Value *Zero = llvm::ConstantPointerNull::get(
176 cast<llvm::PointerType>(V->getType()));
177 return Builder.CreateICmpNE(V, Zero, "tobool");
178 }
179
EmitIntToBoolConversion(Value * V)180 Value *EmitIntToBoolConversion(Value *V) {
181 // Because of the type rules of C, we often end up computing a
182 // logical value, then zero extending it to int, then wanting it
183 // as a logical value again. Optimize this common case.
184 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
185 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
186 Value *Result = ZI->getOperand(0);
187 // If there aren't any more uses, zap the instruction to save space.
188 // Note that there can be more uses, for example if this
189 // is the result of an assignment.
190 if (ZI->use_empty())
191 ZI->eraseFromParent();
192 return Result;
193 }
194 }
195
196 return Builder.CreateIsNotNull(V, "tobool");
197 }
198
199 //===--------------------------------------------------------------------===//
200 // Visitor Methods
201 //===--------------------------------------------------------------------===//
202
Visit(Expr * E)203 Value *Visit(Expr *E) {
204 ApplyDebugLocation DL(CGF, E);
205 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
206 }
207
VisitStmt(Stmt * S)208 Value *VisitStmt(Stmt *S) {
209 S->dump(CGF.getContext().getSourceManager());
210 llvm_unreachable("Stmt can't have complex result type!");
211 }
212 Value *VisitExpr(Expr *S);
213
VisitParenExpr(ParenExpr * PE)214 Value *VisitParenExpr(ParenExpr *PE) {
215 return Visit(PE->getSubExpr());
216 }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)217 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
218 return Visit(E->getReplacement());
219 }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)220 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
221 return Visit(GE->getResultExpr());
222 }
223
224 // Leaves.
VisitIntegerLiteral(const IntegerLiteral * E)225 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
226 return Builder.getInt(E->getValue());
227 }
VisitFloatingLiteral(const FloatingLiteral * E)228 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
229 return llvm::ConstantFP::get(VMContext, E->getValue());
230 }
VisitCharacterLiteral(const CharacterLiteral * E)231 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
232 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
233 }
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)234 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
235 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
236 }
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)237 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
238 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
239 }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)240 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
241 return EmitNullValue(E->getType());
242 }
VisitGNUNullExpr(const GNUNullExpr * E)243 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
244 return EmitNullValue(E->getType());
245 }
246 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
247 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
VisitAddrLabelExpr(const AddrLabelExpr * E)248 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
249 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
250 return Builder.CreateBitCast(V, ConvertType(E->getType()));
251 }
252
VisitSizeOfPackExpr(SizeOfPackExpr * E)253 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
254 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
255 }
256
VisitPseudoObjectExpr(PseudoObjectExpr * E)257 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
258 return CGF.EmitPseudoObjectRValue(E).getScalarVal();
259 }
260
VisitOpaqueValueExpr(OpaqueValueExpr * E)261 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
262 if (E->isGLValue())
263 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
264
265 // Otherwise, assume the mapping is the scalar directly.
266 return CGF.getOpaqueRValueMapping(E).getScalarVal();
267 }
268
269 // l-values.
VisitDeclRefExpr(DeclRefExpr * E)270 Value *VisitDeclRefExpr(DeclRefExpr *E) {
271 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
272 if (result.isReference())
273 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
274 E->getExprLoc());
275 return result.getValue();
276 }
277 return EmitLoadOfLValue(E);
278 }
279
VisitObjCSelectorExpr(ObjCSelectorExpr * E)280 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
281 return CGF.EmitObjCSelectorExpr(E);
282 }
VisitObjCProtocolExpr(ObjCProtocolExpr * E)283 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
284 return CGF.EmitObjCProtocolExpr(E);
285 }
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)286 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
287 return EmitLoadOfLValue(E);
288 }
VisitObjCMessageExpr(ObjCMessageExpr * E)289 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
290 if (E->getMethodDecl() &&
291 E->getMethodDecl()->getReturnType()->isReferenceType())
292 return EmitLoadOfLValue(E);
293 return CGF.EmitObjCMessageExpr(E).getScalarVal();
294 }
295
VisitObjCIsaExpr(ObjCIsaExpr * E)296 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
297 LValue LV = CGF.EmitObjCIsaExpr(E);
298 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
299 return V;
300 }
301
302 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
303 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
304 Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
305 Value *VisitMemberExpr(MemberExpr *E);
VisitExtVectorElementExpr(Expr * E)306 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)307 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
308 return EmitLoadOfLValue(E);
309 }
310
311 Value *VisitInitListExpr(InitListExpr *E);
312
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)313 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
314 return EmitNullValue(E->getType());
315 }
VisitExplicitCastExpr(ExplicitCastExpr * E)316 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
317 CGF.CGM.EmitExplicitCastExprType(E, &CGF);
318 return VisitCastExpr(E);
319 }
320 Value *VisitCastExpr(CastExpr *E);
321
VisitCallExpr(const CallExpr * E)322 Value *VisitCallExpr(const CallExpr *E) {
323 if (E->getCallReturnType(CGF.getContext())->isReferenceType())
324 return EmitLoadOfLValue(E);
325
326 Value *V = CGF.EmitCallExpr(E).getScalarVal();
327
328 EmitLValueAlignmentAssumption(E, V);
329 return V;
330 }
331
332 Value *VisitStmtExpr(const StmtExpr *E);
333
334 // Unary Operators.
VisitUnaryPostDec(const UnaryOperator * E)335 Value *VisitUnaryPostDec(const UnaryOperator *E) {
336 LValue LV = EmitLValue(E->getSubExpr());
337 return EmitScalarPrePostIncDec(E, LV, false, false);
338 }
VisitUnaryPostInc(const UnaryOperator * E)339 Value *VisitUnaryPostInc(const UnaryOperator *E) {
340 LValue LV = EmitLValue(E->getSubExpr());
341 return EmitScalarPrePostIncDec(E, LV, true, false);
342 }
VisitUnaryPreDec(const UnaryOperator * E)343 Value *VisitUnaryPreDec(const UnaryOperator *E) {
344 LValue LV = EmitLValue(E->getSubExpr());
345 return EmitScalarPrePostIncDec(E, LV, false, true);
346 }
VisitUnaryPreInc(const UnaryOperator * E)347 Value *VisitUnaryPreInc(const UnaryOperator *E) {
348 LValue LV = EmitLValue(E->getSubExpr());
349 return EmitScalarPrePostIncDec(E, LV, true, true);
350 }
351
352 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
353 llvm::Value *InVal,
354 bool IsInc);
355
356 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
357 bool isInc, bool isPre);
358
359
VisitUnaryAddrOf(const UnaryOperator * E)360 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
361 if (isa<MemberPointerType>(E->getType())) // never sugared
362 return CGF.CGM.getMemberPointerConstant(E);
363
364 return EmitLValue(E->getSubExpr()).getPointer();
365 }
VisitUnaryDeref(const UnaryOperator * E)366 Value *VisitUnaryDeref(const UnaryOperator *E) {
367 if (E->getType()->isVoidType())
368 return Visit(E->getSubExpr()); // the actual value should be unused
369 return EmitLoadOfLValue(E);
370 }
VisitUnaryPlus(const UnaryOperator * E)371 Value *VisitUnaryPlus(const UnaryOperator *E) {
372 // This differs from gcc, though, most likely due to a bug in gcc.
373 TestAndClearIgnoreResultAssign();
374 return Visit(E->getSubExpr());
375 }
376 Value *VisitUnaryMinus (const UnaryOperator *E);
377 Value *VisitUnaryNot (const UnaryOperator *E);
378 Value *VisitUnaryLNot (const UnaryOperator *E);
379 Value *VisitUnaryReal (const UnaryOperator *E);
380 Value *VisitUnaryImag (const UnaryOperator *E);
VisitUnaryExtension(const UnaryOperator * E)381 Value *VisitUnaryExtension(const UnaryOperator *E) {
382 return Visit(E->getSubExpr());
383 }
384
385 // C++
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)386 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
387 return EmitLoadOfLValue(E);
388 }
389
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)390 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
391 return Visit(DAE->getExpr());
392 }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)393 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
394 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
395 return Visit(DIE->getExpr());
396 }
VisitCXXThisExpr(CXXThisExpr * TE)397 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
398 return CGF.LoadCXXThis();
399 }
400
VisitExprWithCleanups(ExprWithCleanups * E)401 Value *VisitExprWithCleanups(ExprWithCleanups *E) {
402 CGF.enterFullExpression(E);
403 CodeGenFunction::RunCleanupsScope Scope(CGF);
404 return Visit(E->getSubExpr());
405 }
VisitCXXNewExpr(const CXXNewExpr * E)406 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
407 return CGF.EmitCXXNewExpr(E);
408 }
VisitCXXDeleteExpr(const CXXDeleteExpr * E)409 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
410 CGF.EmitCXXDeleteExpr(E);
411 return nullptr;
412 }
413
VisitTypeTraitExpr(const TypeTraitExpr * E)414 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
415 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
416 }
417
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)418 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
419 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
420 }
421
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)422 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
423 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
424 }
425
VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr * E)426 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
427 // C++ [expr.pseudo]p1:
428 // The result shall only be used as the operand for the function call
429 // operator (), and the result of such a call has type void. The only
430 // effect is the evaluation of the postfix-expression before the dot or
431 // arrow.
432 CGF.EmitScalarExpr(E->getBase());
433 return nullptr;
434 }
435
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)436 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
437 return EmitNullValue(E->getType());
438 }
439
VisitCXXThrowExpr(const CXXThrowExpr * E)440 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
441 CGF.EmitCXXThrowExpr(E);
442 return nullptr;
443 }
444
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)445 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
446 return Builder.getInt1(E->getValue());
447 }
448
449 // Binary Operators.
EmitMul(const BinOpInfo & Ops)450 Value *EmitMul(const BinOpInfo &Ops) {
451 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
452 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
453 case LangOptions::SOB_Defined:
454 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
455 case LangOptions::SOB_Undefined:
456 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
457 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
458 // Fall through.
459 case LangOptions::SOB_Trapping:
460 return EmitOverflowCheckedBinOp(Ops);
461 }
462 }
463
464 if (Ops.Ty->isUnsignedIntegerType() &&
465 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
466 return EmitOverflowCheckedBinOp(Ops);
467
468 if (Ops.LHS->getType()->isFPOrFPVectorTy())
469 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
470 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
471 }
472 /// Create a binary op that checks for overflow.
473 /// Currently only supports +, - and *.
474 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
475
476 // Check for undefined division and modulus behaviors.
477 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
478 llvm::Value *Zero,bool isDiv);
479 // Common helper for getting how wide LHS of shift is.
480 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
481 Value *EmitDiv(const BinOpInfo &Ops);
482 Value *EmitRem(const BinOpInfo &Ops);
483 Value *EmitAdd(const BinOpInfo &Ops);
484 Value *EmitSub(const BinOpInfo &Ops);
485 Value *EmitShl(const BinOpInfo &Ops);
486 Value *EmitShr(const BinOpInfo &Ops);
EmitAnd(const BinOpInfo & Ops)487 Value *EmitAnd(const BinOpInfo &Ops) {
488 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
489 }
EmitXor(const BinOpInfo & Ops)490 Value *EmitXor(const BinOpInfo &Ops) {
491 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
492 }
EmitOr(const BinOpInfo & Ops)493 Value *EmitOr (const BinOpInfo &Ops) {
494 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
495 }
496
497 BinOpInfo EmitBinOps(const BinaryOperator *E);
498 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
499 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
500 Value *&Result);
501
502 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
503 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
504
505 // Binary operators and binary compound assignment operators.
506 #define HANDLEBINOP(OP) \
507 Value *VisitBin ## OP(const BinaryOperator *E) { \
508 return Emit ## OP(EmitBinOps(E)); \
509 } \
510 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
511 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
512 }
513 HANDLEBINOP(Mul)
514 HANDLEBINOP(Div)
515 HANDLEBINOP(Rem)
516 HANDLEBINOP(Add)
517 HANDLEBINOP(Sub)
518 HANDLEBINOP(Shl)
519 HANDLEBINOP(Shr)
520 HANDLEBINOP(And)
521 HANDLEBINOP(Xor)
522 HANDLEBINOP(Or)
523 #undef HANDLEBINOP
524
525 // Comparisons.
526 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
527 llvm::CmpInst::Predicate SICmpOpc,
528 llvm::CmpInst::Predicate FCmpOpc);
529 #define VISITCOMP(CODE, UI, SI, FP) \
530 Value *VisitBin##CODE(const BinaryOperator *E) { \
531 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
532 llvm::FCmpInst::FP); }
533 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
534 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
535 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
536 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
537 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
538 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
539 #undef VISITCOMP
540
541 Value *VisitBinAssign (const BinaryOperator *E);
542
543 Value *VisitBinLAnd (const BinaryOperator *E);
544 Value *VisitBinLOr (const BinaryOperator *E);
545 Value *VisitBinComma (const BinaryOperator *E);
546
VisitBinPtrMemD(const Expr * E)547 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
VisitBinPtrMemI(const Expr * E)548 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
549
550 // Other Operators.
551 Value *VisitBlockExpr(const BlockExpr *BE);
552 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
553 Value *VisitChooseExpr(ChooseExpr *CE);
554 Value *VisitVAArgExpr(VAArgExpr *VE);
VisitObjCStringLiteral(const ObjCStringLiteral * E)555 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
556 return CGF.EmitObjCStringLiteral(E);
557 }
VisitObjCBoxedExpr(ObjCBoxedExpr * E)558 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
559 return CGF.EmitObjCBoxedExpr(E);
560 }
VisitObjCArrayLiteral(ObjCArrayLiteral * E)561 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
562 return CGF.EmitObjCArrayLiteral(E);
563 }
VisitObjCDictionaryLiteral(ObjCDictionaryLiteral * E)564 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
565 return CGF.EmitObjCDictionaryLiteral(E);
566 }
567 Value *VisitAsTypeExpr(AsTypeExpr *CE);
568 Value *VisitAtomicExpr(AtomicExpr *AE);
569 };
570 } // end anonymous namespace.
571
572 //===----------------------------------------------------------------------===//
573 // Utilities
574 //===----------------------------------------------------------------------===//
575
576 /// EmitConversionToBool - Convert the specified expression value to a
577 /// boolean (i1) truth value. This is equivalent to "Val != 0".
EmitConversionToBool(Value * Src,QualType SrcType)578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
579 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
580
581 if (SrcType->isRealFloatingType())
582 return EmitFloatToBoolConversion(Src);
583
584 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
585 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
586
587 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
588 "Unknown scalar type to convert");
589
590 if (isa<llvm::IntegerType>(Src->getType()))
591 return EmitIntToBoolConversion(Src);
592
593 assert(isa<llvm::PointerType>(Src->getType()));
594 return EmitPointerToBoolConversion(Src);
595 }
596
EmitFloatConversionCheck(Value * OrigSrc,QualType OrigSrcType,Value * Src,QualType SrcType,QualType DstType,llvm::Type * DstTy,SourceLocation Loc)597 void ScalarExprEmitter::EmitFloatConversionCheck(
598 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
599 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
600 CodeGenFunction::SanitizerScope SanScope(&CGF);
601 using llvm::APFloat;
602 using llvm::APSInt;
603
604 llvm::Type *SrcTy = Src->getType();
605
606 llvm::Value *Check = nullptr;
607 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
608 // Integer to floating-point. This can fail for unsigned short -> __half
609 // or unsigned __int128 -> float.
610 assert(DstType->isFloatingType());
611 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
612
613 APFloat LargestFloat =
614 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
615 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
616
617 bool IsExact;
618 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
619 &IsExact) != APFloat::opOK)
620 // The range of representable values of this floating point type includes
621 // all values of this integer type. Don't need an overflow check.
622 return;
623
624 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
625 if (SrcIsUnsigned)
626 Check = Builder.CreateICmpULE(Src, Max);
627 else {
628 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
629 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
630 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
631 Check = Builder.CreateAnd(GE, LE);
632 }
633 } else {
634 const llvm::fltSemantics &SrcSema =
635 CGF.getContext().getFloatTypeSemantics(OrigSrcType);
636 if (isa<llvm::IntegerType>(DstTy)) {
637 // Floating-point to integer. This has undefined behavior if the source is
638 // +-Inf, NaN, or doesn't fit into the destination type (after truncation
639 // to an integer).
640 unsigned Width = CGF.getContext().getIntWidth(DstType);
641 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
642
643 APSInt Min = APSInt::getMinValue(Width, Unsigned);
644 APFloat MinSrc(SrcSema, APFloat::uninitialized);
645 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
646 APFloat::opOverflow)
647 // Don't need an overflow check for lower bound. Just check for
648 // -Inf/NaN.
649 MinSrc = APFloat::getInf(SrcSema, true);
650 else
651 // Find the largest value which is too small to represent (before
652 // truncation toward zero).
653 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
654
655 APSInt Max = APSInt::getMaxValue(Width, Unsigned);
656 APFloat MaxSrc(SrcSema, APFloat::uninitialized);
657 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
658 APFloat::opOverflow)
659 // Don't need an overflow check for upper bound. Just check for
660 // +Inf/NaN.
661 MaxSrc = APFloat::getInf(SrcSema, false);
662 else
663 // Find the smallest value which is too large to represent (before
664 // truncation toward zero).
665 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
666
667 // If we're converting from __half, convert the range to float to match
668 // the type of src.
669 if (OrigSrcType->isHalfType()) {
670 const llvm::fltSemantics &Sema =
671 CGF.getContext().getFloatTypeSemantics(SrcType);
672 bool IsInexact;
673 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
674 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
675 }
676
677 llvm::Value *GE =
678 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
679 llvm::Value *LE =
680 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
681 Check = Builder.CreateAnd(GE, LE);
682 } else {
683 // FIXME: Maybe split this sanitizer out from float-cast-overflow.
684 //
685 // Floating-point to floating-point. This has undefined behavior if the
686 // source is not in the range of representable values of the destination
687 // type. The C and C++ standards are spectacularly unclear here. We
688 // diagnose finite out-of-range conversions, but allow infinities and NaNs
689 // to convert to the corresponding value in the smaller type.
690 //
691 // C11 Annex F gives all such conversions defined behavior for IEC 60559
692 // conforming implementations. Unfortunately, LLVM's fptrunc instruction
693 // does not.
694
695 // Converting from a lower rank to a higher rank can never have
696 // undefined behavior, since higher-rank types must have a superset
697 // of values of lower-rank types.
698 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
699 return;
700
701 assert(!OrigSrcType->isHalfType() &&
702 "should not check conversion from __half, it has the lowest rank");
703
704 const llvm::fltSemantics &DstSema =
705 CGF.getContext().getFloatTypeSemantics(DstType);
706 APFloat MinBad = APFloat::getLargest(DstSema, false);
707 APFloat MaxBad = APFloat::getInf(DstSema, false);
708
709 bool IsInexact;
710 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
711 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
712
713 Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
714 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
715 llvm::Value *GE =
716 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
717 llvm::Value *LE =
718 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
719 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
720 }
721 }
722
723 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
724 CGF.EmitCheckTypeDescriptor(OrigSrcType),
725 CGF.EmitCheckTypeDescriptor(DstType)};
726 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
727 "float_cast_overflow", StaticArgs, OrigSrc);
728 }
729
730 /// Emit a conversion from the specified type to the specified destination type,
731 /// both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcType,QualType DstType,SourceLocation Loc)732 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
733 QualType DstType,
734 SourceLocation Loc) {
735 return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
736 }
737
EmitScalarConversion(Value * Src,QualType SrcType,QualType DstType,SourceLocation Loc,bool TreatBooleanAsSigned)738 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
739 QualType DstType,
740 SourceLocation Loc,
741 bool TreatBooleanAsSigned) {
742 SrcType = CGF.getContext().getCanonicalType(SrcType);
743 DstType = CGF.getContext().getCanonicalType(DstType);
744 if (SrcType == DstType) return Src;
745
746 if (DstType->isVoidType()) return nullptr;
747
748 llvm::Value *OrigSrc = Src;
749 QualType OrigSrcType = SrcType;
750 llvm::Type *SrcTy = Src->getType();
751
752 // Handle conversions to bool first, they are special: comparisons against 0.
753 if (DstType->isBooleanType())
754 return EmitConversionToBool(Src, SrcType);
755
756 llvm::Type *DstTy = ConvertType(DstType);
757
758 // Cast from half through float if half isn't a native type.
759 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
760 // Cast to FP using the intrinsic if the half type itself isn't supported.
761 if (DstTy->isFloatingPointTy()) {
762 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
763 return Builder.CreateCall(
764 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
765 Src);
766 } else {
767 // Cast to other types through float, using either the intrinsic or FPExt,
768 // depending on whether the half type itself is supported
769 // (as opposed to operations on half, available with NativeHalfType).
770 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
771 Src = Builder.CreateCall(
772 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
773 CGF.CGM.FloatTy),
774 Src);
775 } else {
776 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
777 }
778 SrcType = CGF.getContext().FloatTy;
779 SrcTy = CGF.FloatTy;
780 }
781 }
782
783 // Ignore conversions like int -> uint.
784 if (SrcTy == DstTy)
785 return Src;
786
787 // Handle pointer conversions next: pointers can only be converted to/from
788 // other pointers and integers. Check for pointer types in terms of LLVM, as
789 // some native types (like Obj-C id) may map to a pointer type.
790 if (isa<llvm::PointerType>(DstTy)) {
791 // The source value may be an integer, or a pointer.
792 if (isa<llvm::PointerType>(SrcTy))
793 return Builder.CreateBitCast(Src, DstTy, "conv");
794
795 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
796 // First, convert to the correct width so that we control the kind of
797 // extension.
798 llvm::Type *MiddleTy = CGF.IntPtrTy;
799 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
800 llvm::Value* IntResult =
801 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
802 // Then, cast to pointer.
803 return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
804 }
805
806 if (isa<llvm::PointerType>(SrcTy)) {
807 // Must be an ptr to int cast.
808 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
809 return Builder.CreatePtrToInt(Src, DstTy, "conv");
810 }
811
812 // A scalar can be splatted to an extended vector of the same element type
813 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
814 // Cast the scalar to element type
815 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
816 llvm::Value *Elt = EmitScalarConversion(
817 Src, SrcType, EltTy, Loc, CGF.getContext().getLangOpts().OpenCL);
818
819 // Splat the element across to all elements
820 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
821 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
822 }
823
824 // Allow bitcast from vector to integer/fp of the same size.
825 if (isa<llvm::VectorType>(SrcTy) ||
826 isa<llvm::VectorType>(DstTy))
827 return Builder.CreateBitCast(Src, DstTy, "conv");
828
829 // Finally, we have the arithmetic types: real int/float.
830 Value *Res = nullptr;
831 llvm::Type *ResTy = DstTy;
832
833 // An overflowing conversion has undefined behavior if either the source type
834 // or the destination type is a floating-point type.
835 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
836 (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
837 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
838 Loc);
839
840 // Cast to half through float if half isn't a native type.
841 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
842 // Make sure we cast in a single step if from another FP type.
843 if (SrcTy->isFloatingPointTy()) {
844 // Use the intrinsic if the half type itself isn't supported
845 // (as opposed to operations on half, available with NativeHalfType).
846 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
847 return Builder.CreateCall(
848 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
849 // If the half type is supported, just use an fptrunc.
850 return Builder.CreateFPTrunc(Src, DstTy);
851 }
852 DstTy = CGF.FloatTy;
853 }
854
855 if (isa<llvm::IntegerType>(SrcTy)) {
856 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
857 if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
858 InputSigned = true;
859 }
860 if (isa<llvm::IntegerType>(DstTy))
861 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
862 else if (InputSigned)
863 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
864 else
865 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
866 } else if (isa<llvm::IntegerType>(DstTy)) {
867 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
868 if (DstType->isSignedIntegerOrEnumerationType())
869 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
870 else
871 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
872 } else {
873 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
874 "Unknown real conversion");
875 if (DstTy->getTypeID() < SrcTy->getTypeID())
876 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
877 else
878 Res = Builder.CreateFPExt(Src, DstTy, "conv");
879 }
880
881 if (DstTy != ResTy) {
882 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
883 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
884 Res = Builder.CreateCall(
885 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
886 Res);
887 } else {
888 Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
889 }
890 }
891
892 return Res;
893 }
894
895 /// Emit a conversion from the specified complex type to the specified
896 /// destination type, where the destination type is an LLVM scalar type.
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)897 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
898 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
899 SourceLocation Loc) {
900 // Get the source element type.
901 SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
902
903 // Handle conversions to bool first, they are special: comparisons against 0.
904 if (DstTy->isBooleanType()) {
905 // Complex != 0 -> (Real != 0) | (Imag != 0)
906 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
907 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
908 return Builder.CreateOr(Src.first, Src.second, "tobool");
909 }
910
911 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
912 // the imaginary part of the complex value is discarded and the value of the
913 // real part is converted according to the conversion rules for the
914 // corresponding real type.
915 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
916 }
917
EmitNullValue(QualType Ty)918 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
919 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
920 }
921
922 /// \brief Emit a sanitization check for the given "binary" operation (which
923 /// might actually be a unary increment which has been lowered to a binary
924 /// operation). The check passes if all values in \p Checks (which are \c i1),
925 /// are \c true.
EmitBinOpCheck(ArrayRef<std::pair<Value *,SanitizerMask>> Checks,const BinOpInfo & Info)926 void ScalarExprEmitter::EmitBinOpCheck(
927 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
928 assert(CGF.IsSanitizerScope);
929 StringRef CheckName;
930 SmallVector<llvm::Constant *, 4> StaticData;
931 SmallVector<llvm::Value *, 2> DynamicData;
932
933 BinaryOperatorKind Opcode = Info.Opcode;
934 if (BinaryOperator::isCompoundAssignmentOp(Opcode))
935 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
936
937 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
938 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
939 if (UO && UO->getOpcode() == UO_Minus) {
940 CheckName = "negate_overflow";
941 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
942 DynamicData.push_back(Info.RHS);
943 } else {
944 if (BinaryOperator::isShiftOp(Opcode)) {
945 // Shift LHS negative or too large, or RHS out of bounds.
946 CheckName = "shift_out_of_bounds";
947 const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
948 StaticData.push_back(
949 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
950 StaticData.push_back(
951 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
952 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
953 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
954 CheckName = "divrem_overflow";
955 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
956 } else {
957 // Arithmetic overflow (+, -, *).
958 switch (Opcode) {
959 case BO_Add: CheckName = "add_overflow"; break;
960 case BO_Sub: CheckName = "sub_overflow"; break;
961 case BO_Mul: CheckName = "mul_overflow"; break;
962 default: llvm_unreachable("unexpected opcode for bin op check");
963 }
964 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
965 }
966 DynamicData.push_back(Info.LHS);
967 DynamicData.push_back(Info.RHS);
968 }
969
970 CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
971 }
972
973 //===----------------------------------------------------------------------===//
974 // Visitor Methods
975 //===----------------------------------------------------------------------===//
976
VisitExpr(Expr * E)977 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
978 CGF.ErrorUnsupported(E, "scalar expression");
979 if (E->getType()->isVoidType())
980 return nullptr;
981 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
982 }
983
VisitShuffleVectorExpr(ShuffleVectorExpr * E)984 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
985 // Vector Mask Case
986 if (E->getNumSubExprs() == 2 ||
987 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
988 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
989 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
990 Value *Mask;
991
992 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
993 unsigned LHSElts = LTy->getNumElements();
994
995 if (E->getNumSubExprs() == 3) {
996 Mask = CGF.EmitScalarExpr(E->getExpr(2));
997
998 // Shuffle LHS & RHS into one input vector.
999 SmallVector<llvm::Constant*, 32> concat;
1000 for (unsigned i = 0; i != LHSElts; ++i) {
1001 concat.push_back(Builder.getInt32(2*i));
1002 concat.push_back(Builder.getInt32(2*i+1));
1003 }
1004
1005 Value* CV = llvm::ConstantVector::get(concat);
1006 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
1007 LHSElts *= 2;
1008 } else {
1009 Mask = RHS;
1010 }
1011
1012 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1013
1014 // Mask off the high bits of each shuffle index.
1015 Value *MaskBits =
1016 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
1017 Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1018
1019 // newv = undef
1020 // mask = mask & maskbits
1021 // for each elt
1022 // n = extract mask i
1023 // x = extract val n
1024 // newv = insert newv, x, i
1025 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1026 MTy->getNumElements());
1027 Value* NewV = llvm::UndefValue::get(RTy);
1028 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1029 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1030 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1031
1032 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1033 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1034 }
1035 return NewV;
1036 }
1037
1038 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1039 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1040
1041 SmallVector<llvm::Constant*, 32> indices;
1042 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1043 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1044 // Check for -1 and output it as undef in the IR.
1045 if (Idx.isSigned() && Idx.isAllOnesValue())
1046 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1047 else
1048 indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1049 }
1050
1051 Value *SV = llvm::ConstantVector::get(indices);
1052 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1053 }
1054
VisitConvertVectorExpr(ConvertVectorExpr * E)1055 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1056 QualType SrcType = E->getSrcExpr()->getType(),
1057 DstType = E->getType();
1058
1059 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1060
1061 SrcType = CGF.getContext().getCanonicalType(SrcType);
1062 DstType = CGF.getContext().getCanonicalType(DstType);
1063 if (SrcType == DstType) return Src;
1064
1065 assert(SrcType->isVectorType() &&
1066 "ConvertVector source type must be a vector");
1067 assert(DstType->isVectorType() &&
1068 "ConvertVector destination type must be a vector");
1069
1070 llvm::Type *SrcTy = Src->getType();
1071 llvm::Type *DstTy = ConvertType(DstType);
1072
1073 // Ignore conversions like int -> uint.
1074 if (SrcTy == DstTy)
1075 return Src;
1076
1077 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1078 DstEltType = DstType->getAs<VectorType>()->getElementType();
1079
1080 assert(SrcTy->isVectorTy() &&
1081 "ConvertVector source IR type must be a vector");
1082 assert(DstTy->isVectorTy() &&
1083 "ConvertVector destination IR type must be a vector");
1084
1085 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1086 *DstEltTy = DstTy->getVectorElementType();
1087
1088 if (DstEltType->isBooleanType()) {
1089 assert((SrcEltTy->isFloatingPointTy() ||
1090 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1091
1092 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1093 if (SrcEltTy->isFloatingPointTy()) {
1094 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1095 } else {
1096 return Builder.CreateICmpNE(Src, Zero, "tobool");
1097 }
1098 }
1099
1100 // We have the arithmetic types: real int/float.
1101 Value *Res = nullptr;
1102
1103 if (isa<llvm::IntegerType>(SrcEltTy)) {
1104 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1105 if (isa<llvm::IntegerType>(DstEltTy))
1106 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1107 else if (InputSigned)
1108 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1109 else
1110 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1111 } else if (isa<llvm::IntegerType>(DstEltTy)) {
1112 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1113 if (DstEltType->isSignedIntegerOrEnumerationType())
1114 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1115 else
1116 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1117 } else {
1118 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1119 "Unknown real conversion");
1120 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1121 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1122 else
1123 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1124 }
1125
1126 return Res;
1127 }
1128
VisitMemberExpr(MemberExpr * E)1129 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1130 llvm::APSInt Value;
1131 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1132 if (E->isArrow())
1133 CGF.EmitScalarExpr(E->getBase());
1134 else
1135 EmitLValue(E->getBase());
1136 return Builder.getInt(Value);
1137 }
1138
1139 return EmitLoadOfLValue(E);
1140 }
1141
VisitArraySubscriptExpr(ArraySubscriptExpr * E)1142 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1143 TestAndClearIgnoreResultAssign();
1144
1145 // Emit subscript expressions in rvalue context's. For most cases, this just
1146 // loads the lvalue formed by the subscript expr. However, we have to be
1147 // careful, because the base of a vector subscript is occasionally an rvalue,
1148 // so we can't get it as an lvalue.
1149 if (!E->getBase()->getType()->isVectorType())
1150 return EmitLoadOfLValue(E);
1151
1152 // Handle the vector case. The base must be a vector, the index must be an
1153 // integer value.
1154 Value *Base = Visit(E->getBase());
1155 Value *Idx = Visit(E->getIdx());
1156 QualType IdxTy = E->getIdx()->getType();
1157
1158 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1159 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1160
1161 return Builder.CreateExtractElement(Base, Idx, "vecext");
1162 }
1163
getMaskElt(llvm::ShuffleVectorInst * SVI,unsigned Idx,unsigned Off,llvm::Type * I32Ty)1164 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1165 unsigned Off, llvm::Type *I32Ty) {
1166 int MV = SVI->getMaskValue(Idx);
1167 if (MV == -1)
1168 return llvm::UndefValue::get(I32Ty);
1169 return llvm::ConstantInt::get(I32Ty, Off+MV);
1170 }
1171
getAsInt32(llvm::ConstantInt * C,llvm::Type * I32Ty)1172 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
1173 if (C->getBitWidth() != 32) {
1174 assert(llvm::ConstantInt::isValueValidForType(I32Ty,
1175 C->getZExtValue()) &&
1176 "Index operand too large for shufflevector mask!");
1177 return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
1178 }
1179 return C;
1180 }
1181
VisitInitListExpr(InitListExpr * E)1182 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1183 bool Ignore = TestAndClearIgnoreResultAssign();
1184 (void)Ignore;
1185 assert (Ignore == false && "init list ignored");
1186 unsigned NumInitElements = E->getNumInits();
1187
1188 if (E->hadArrayRangeDesignator())
1189 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1190
1191 llvm::VectorType *VType =
1192 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1193
1194 if (!VType) {
1195 if (NumInitElements == 0) {
1196 // C++11 value-initialization for the scalar.
1197 return EmitNullValue(E->getType());
1198 }
1199 // We have a scalar in braces. Just use the first element.
1200 return Visit(E->getInit(0));
1201 }
1202
1203 unsigned ResElts = VType->getNumElements();
1204
1205 // Loop over initializers collecting the Value for each, and remembering
1206 // whether the source was swizzle (ExtVectorElementExpr). This will allow
1207 // us to fold the shuffle for the swizzle into the shuffle for the vector
1208 // initializer, since LLVM optimizers generally do not want to touch
1209 // shuffles.
1210 unsigned CurIdx = 0;
1211 bool VIsUndefShuffle = false;
1212 llvm::Value *V = llvm::UndefValue::get(VType);
1213 for (unsigned i = 0; i != NumInitElements; ++i) {
1214 Expr *IE = E->getInit(i);
1215 Value *Init = Visit(IE);
1216 SmallVector<llvm::Constant*, 16> Args;
1217
1218 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1219
1220 // Handle scalar elements. If the scalar initializer is actually one
1221 // element of a different vector of the same width, use shuffle instead of
1222 // extract+insert.
1223 if (!VVT) {
1224 if (isa<ExtVectorElementExpr>(IE)) {
1225 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1226
1227 if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1228 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1229 Value *LHS = nullptr, *RHS = nullptr;
1230 if (CurIdx == 0) {
1231 // insert into undef -> shuffle (src, undef)
1232 // shufflemask must use an i32
1233 Args.push_back(getAsInt32(C, CGF.Int32Ty));
1234 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1235
1236 LHS = EI->getVectorOperand();
1237 RHS = V;
1238 VIsUndefShuffle = true;
1239 } else if (VIsUndefShuffle) {
1240 // insert into undefshuffle && size match -> shuffle (v, src)
1241 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1242 for (unsigned j = 0; j != CurIdx; ++j)
1243 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1244 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1245 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1246
1247 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1248 RHS = EI->getVectorOperand();
1249 VIsUndefShuffle = false;
1250 }
1251 if (!Args.empty()) {
1252 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1253 V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1254 ++CurIdx;
1255 continue;
1256 }
1257 }
1258 }
1259 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1260 "vecinit");
1261 VIsUndefShuffle = false;
1262 ++CurIdx;
1263 continue;
1264 }
1265
1266 unsigned InitElts = VVT->getNumElements();
1267
1268 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1269 // input is the same width as the vector being constructed, generate an
1270 // optimized shuffle of the swizzle input into the result.
1271 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1272 if (isa<ExtVectorElementExpr>(IE)) {
1273 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1274 Value *SVOp = SVI->getOperand(0);
1275 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1276
1277 if (OpTy->getNumElements() == ResElts) {
1278 for (unsigned j = 0; j != CurIdx; ++j) {
1279 // If the current vector initializer is a shuffle with undef, merge
1280 // this shuffle directly into it.
1281 if (VIsUndefShuffle) {
1282 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1283 CGF.Int32Ty));
1284 } else {
1285 Args.push_back(Builder.getInt32(j));
1286 }
1287 }
1288 for (unsigned j = 0, je = InitElts; j != je; ++j)
1289 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1290 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1291
1292 if (VIsUndefShuffle)
1293 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1294
1295 Init = SVOp;
1296 }
1297 }
1298
1299 // Extend init to result vector length, and then shuffle its contribution
1300 // to the vector initializer into V.
1301 if (Args.empty()) {
1302 for (unsigned j = 0; j != InitElts; ++j)
1303 Args.push_back(Builder.getInt32(j));
1304 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1305 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1306 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1307 Mask, "vext");
1308
1309 Args.clear();
1310 for (unsigned j = 0; j != CurIdx; ++j)
1311 Args.push_back(Builder.getInt32(j));
1312 for (unsigned j = 0; j != InitElts; ++j)
1313 Args.push_back(Builder.getInt32(j+Offset));
1314 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1315 }
1316
1317 // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1318 // merging subsequent shuffles into this one.
1319 if (CurIdx == 0)
1320 std::swap(V, Init);
1321 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1322 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1323 VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1324 CurIdx += InitElts;
1325 }
1326
1327 // FIXME: evaluate codegen vs. shuffling against constant null vector.
1328 // Emit remaining default initializers.
1329 llvm::Type *EltTy = VType->getElementType();
1330
1331 // Emit remaining default initializers
1332 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1333 Value *Idx = Builder.getInt32(CurIdx);
1334 llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1335 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1336 }
1337 return V;
1338 }
1339
ShouldNullCheckClassCastValue(const CastExpr * CE)1340 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
1341 const Expr *E = CE->getSubExpr();
1342
1343 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1344 return false;
1345
1346 if (isa<CXXThisExpr>(E->IgnoreParens())) {
1347 // We always assume that 'this' is never null.
1348 return false;
1349 }
1350
1351 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1352 // And that glvalue casts are never null.
1353 if (ICE->getValueKind() != VK_RValue)
1354 return false;
1355 }
1356
1357 return true;
1358 }
1359
1360 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
1361 // have to handle a more broad range of conversions than explicit casts, as they
1362 // handle things like function to ptr-to-function decay etc.
VisitCastExpr(CastExpr * CE)1363 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1364 Expr *E = CE->getSubExpr();
1365 QualType DestTy = CE->getType();
1366 CastKind Kind = CE->getCastKind();
1367
1368 if (!DestTy->isVoidType())
1369 TestAndClearIgnoreResultAssign();
1370
1371 // Since almost all cast kinds apply to scalars, this switch doesn't have
1372 // a default case, so the compiler will warn on a missing case. The cases
1373 // are in the same order as in the CastKind enum.
1374 switch (Kind) {
1375 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1376 case CK_BuiltinFnToFnPtr:
1377 llvm_unreachable("builtin functions are handled elsewhere");
1378
1379 case CK_LValueBitCast:
1380 case CK_ObjCObjectLValueCast: {
1381 Address Addr = EmitLValue(E).getAddress();
1382 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
1383 LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
1384 return EmitLoadOfLValue(LV, CE->getExprLoc());
1385 }
1386
1387 case CK_CPointerToObjCPointerCast:
1388 case CK_BlockPointerToObjCPointerCast:
1389 case CK_AnyPointerToBlockPointerCast:
1390 case CK_BitCast: {
1391 Value *Src = Visit(const_cast<Expr*>(E));
1392 llvm::Type *SrcTy = Src->getType();
1393 llvm::Type *DstTy = ConvertType(DestTy);
1394 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1395 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1396 llvm_unreachable("wrong cast for pointers in different address spaces"
1397 "(must be an address space cast)!");
1398 }
1399
1400 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1401 if (auto PT = DestTy->getAs<PointerType>())
1402 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1403 /*MayBeNull=*/true,
1404 CodeGenFunction::CFITCK_UnrelatedCast,
1405 CE->getLocStart());
1406 }
1407
1408 return Builder.CreateBitCast(Src, DstTy);
1409 }
1410 case CK_AddressSpaceConversion: {
1411 Value *Src = Visit(const_cast<Expr*>(E));
1412 return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
1413 }
1414 case CK_AtomicToNonAtomic:
1415 case CK_NonAtomicToAtomic:
1416 case CK_NoOp:
1417 case CK_UserDefinedConversion:
1418 return Visit(const_cast<Expr*>(E));
1419
1420 case CK_BaseToDerived: {
1421 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1422 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1423
1424 Address Base = CGF.EmitPointerWithAlignment(E);
1425 Address Derived =
1426 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
1427 CE->path_begin(), CE->path_end(),
1428 CGF.ShouldNullCheckClassCastValue(CE));
1429
1430 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1431 // performed and the object is not of the derived type.
1432 if (CGF.sanitizePerformTypeCheck())
1433 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1434 Derived.getPointer(), DestTy->getPointeeType());
1435
1436 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1437 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
1438 Derived.getPointer(),
1439 /*MayBeNull=*/true,
1440 CodeGenFunction::CFITCK_DerivedCast,
1441 CE->getLocStart());
1442
1443 return Derived.getPointer();
1444 }
1445 case CK_UncheckedDerivedToBase:
1446 case CK_DerivedToBase: {
1447 // The EmitPointerWithAlignment path does this fine; just discard
1448 // the alignment.
1449 return CGF.EmitPointerWithAlignment(CE).getPointer();
1450 }
1451
1452 case CK_Dynamic: {
1453 Address V = CGF.EmitPointerWithAlignment(E);
1454 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1455 return CGF.EmitDynamicCast(V, DCE);
1456 }
1457
1458 case CK_ArrayToPointerDecay:
1459 return CGF.EmitArrayToPointerDecay(E).getPointer();
1460 case CK_FunctionToPointerDecay:
1461 return EmitLValue(E).getPointer();
1462
1463 case CK_NullToPointer:
1464 if (MustVisitNullValue(E))
1465 (void) Visit(E);
1466
1467 return llvm::ConstantPointerNull::get(
1468 cast<llvm::PointerType>(ConvertType(DestTy)));
1469
1470 case CK_NullToMemberPointer: {
1471 if (MustVisitNullValue(E))
1472 (void) Visit(E);
1473
1474 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1475 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1476 }
1477
1478 case CK_ReinterpretMemberPointer:
1479 case CK_BaseToDerivedMemberPointer:
1480 case CK_DerivedToBaseMemberPointer: {
1481 Value *Src = Visit(E);
1482
1483 // Note that the AST doesn't distinguish between checked and
1484 // unchecked member pointer conversions, so we always have to
1485 // implement checked conversions here. This is inefficient when
1486 // actual control flow may be required in order to perform the
1487 // check, which it is for data member pointers (but not member
1488 // function pointers on Itanium and ARM).
1489 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1490 }
1491
1492 case CK_ARCProduceObject:
1493 return CGF.EmitARCRetainScalarExpr(E);
1494 case CK_ARCConsumeObject:
1495 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1496 case CK_ARCReclaimReturnedObject: {
1497 llvm::Value *value = Visit(E);
1498 value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1499 return CGF.EmitObjCConsumeObject(E->getType(), value);
1500 }
1501 case CK_ARCExtendBlockObject:
1502 return CGF.EmitARCExtendBlockObject(E);
1503
1504 case CK_CopyAndAutoreleaseBlockObject:
1505 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1506
1507 case CK_FloatingRealToComplex:
1508 case CK_FloatingComplexCast:
1509 case CK_IntegralRealToComplex:
1510 case CK_IntegralComplexCast:
1511 case CK_IntegralComplexToFloatingComplex:
1512 case CK_FloatingComplexToIntegralComplex:
1513 case CK_ConstructorConversion:
1514 case CK_ToUnion:
1515 llvm_unreachable("scalar cast to non-scalar value");
1516
1517 case CK_LValueToRValue:
1518 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1519 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1520 return Visit(const_cast<Expr*>(E));
1521
1522 case CK_IntegralToPointer: {
1523 Value *Src = Visit(const_cast<Expr*>(E));
1524
1525 // First, convert to the correct width so that we control the kind of
1526 // extension.
1527 llvm::Type *MiddleTy = CGF.IntPtrTy;
1528 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1529 llvm::Value* IntResult =
1530 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1531
1532 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1533 }
1534 case CK_PointerToIntegral:
1535 assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1536 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1537
1538 case CK_ToVoid: {
1539 CGF.EmitIgnoredExpr(E);
1540 return nullptr;
1541 }
1542 case CK_VectorSplat: {
1543 llvm::Type *DstTy = ConvertType(DestTy);
1544 // Need an IgnoreImpCasts here as by default a boolean will be promoted to
1545 // an int, which will not perform the sign extension, so if we know we are
1546 // going to cast to a vector we have to strip the implicit cast off.
1547 Value *Elt = Visit(const_cast<Expr*>(E->IgnoreImpCasts()));
1548 Elt = EmitScalarConversion(Elt, E->IgnoreImpCasts()->getType(),
1549 DestTy->getAs<VectorType>()->getElementType(),
1550 CE->getExprLoc(),
1551 CGF.getContext().getLangOpts().OpenCL);
1552
1553 // Splat the element across to all elements
1554 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1555 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1556 }
1557
1558 case CK_IntegralCast:
1559 case CK_IntegralToFloating:
1560 case CK_FloatingToIntegral:
1561 case CK_FloatingCast:
1562 return EmitScalarConversion(Visit(E), E->getType(), DestTy,
1563 CE->getExprLoc());
1564 case CK_IntegralToBoolean:
1565 return EmitIntToBoolConversion(Visit(E));
1566 case CK_PointerToBoolean:
1567 return EmitPointerToBoolConversion(Visit(E));
1568 case CK_FloatingToBoolean:
1569 return EmitFloatToBoolConversion(Visit(E));
1570 case CK_MemberPointerToBoolean: {
1571 llvm::Value *MemPtr = Visit(E);
1572 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1573 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1574 }
1575
1576 case CK_FloatingComplexToReal:
1577 case CK_IntegralComplexToReal:
1578 return CGF.EmitComplexExpr(E, false, true).first;
1579
1580 case CK_FloatingComplexToBoolean:
1581 case CK_IntegralComplexToBoolean: {
1582 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1583
1584 // TODO: kill this function off, inline appropriate case here
1585 return EmitComplexToScalarConversion(V, E->getType(), DestTy,
1586 CE->getExprLoc());
1587 }
1588
1589 case CK_ZeroToOCLEvent: {
1590 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1591 return llvm::Constant::getNullValue(ConvertType(DestTy));
1592 }
1593
1594 }
1595
1596 llvm_unreachable("unknown scalar cast");
1597 }
1598
VisitStmtExpr(const StmtExpr * E)1599 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1600 CodeGenFunction::StmtExprEvaluation eval(CGF);
1601 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1602 !E->getType()->isVoidType());
1603 if (!RetAlloca.isValid())
1604 return nullptr;
1605 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1606 E->getExprLoc());
1607 }
1608
1609 //===----------------------------------------------------------------------===//
1610 // Unary Operators
1611 //===----------------------------------------------------------------------===//
1612
createBinOpInfoFromIncDec(const UnaryOperator * E,llvm::Value * InVal,bool IsInc)1613 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1614 llvm::Value *InVal, bool IsInc) {
1615 BinOpInfo BinOp;
1616 BinOp.LHS = InVal;
1617 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1618 BinOp.Ty = E->getType();
1619 BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1620 BinOp.FPContractable = false;
1621 BinOp.E = E;
1622 return BinOp;
1623 }
1624
EmitIncDecConsiderOverflowBehavior(const UnaryOperator * E,llvm::Value * InVal,bool IsInc)1625 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1626 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1627 llvm::Value *Amount =
1628 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1629 StringRef Name = IsInc ? "inc" : "dec";
1630 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1631 case LangOptions::SOB_Defined:
1632 return Builder.CreateAdd(InVal, Amount, Name);
1633 case LangOptions::SOB_Undefined:
1634 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1635 return Builder.CreateNSWAdd(InVal, Amount, Name);
1636 // Fall through.
1637 case LangOptions::SOB_Trapping:
1638 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1639 }
1640 llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1641 }
1642
1643 llvm::Value *
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)1644 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1645 bool isInc, bool isPre) {
1646
1647 QualType type = E->getSubExpr()->getType();
1648 llvm::PHINode *atomicPHI = nullptr;
1649 llvm::Value *value;
1650 llvm::Value *input;
1651
1652 int amount = (isInc ? 1 : -1);
1653
1654 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1655 type = atomicTy->getValueType();
1656 if (isInc && type->isBooleanType()) {
1657 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1658 if (isPre) {
1659 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
1660 ->setAtomic(llvm::SequentiallyConsistent);
1661 return Builder.getTrue();
1662 }
1663 // For atomic bool increment, we just store true and return it for
1664 // preincrement, do an atomic swap with true for postincrement
1665 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1666 LV.getPointer(), True, llvm::SequentiallyConsistent);
1667 }
1668 // Special case for atomic increment / decrement on integers, emit
1669 // atomicrmw instructions. We skip this if we want to be doing overflow
1670 // checking, and fall into the slow path with the atomic cmpxchg loop.
1671 if (!type->isBooleanType() && type->isIntegerType() &&
1672 !(type->isUnsignedIntegerType() &&
1673 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1674 CGF.getLangOpts().getSignedOverflowBehavior() !=
1675 LangOptions::SOB_Trapping) {
1676 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1677 llvm::AtomicRMWInst::Sub;
1678 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1679 llvm::Instruction::Sub;
1680 llvm::Value *amt = CGF.EmitToMemory(
1681 llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1682 llvm::Value *old = Builder.CreateAtomicRMW(aop,
1683 LV.getPointer(), amt, llvm::SequentiallyConsistent);
1684 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1685 }
1686 value = EmitLoadOfLValue(LV, E->getExprLoc());
1687 input = value;
1688 // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1689 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1690 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1691 value = CGF.EmitToMemory(value, type);
1692 Builder.CreateBr(opBB);
1693 Builder.SetInsertPoint(opBB);
1694 atomicPHI = Builder.CreatePHI(value->getType(), 2);
1695 atomicPHI->addIncoming(value, startBB);
1696 value = atomicPHI;
1697 } else {
1698 value = EmitLoadOfLValue(LV, E->getExprLoc());
1699 input = value;
1700 }
1701
1702 // Special case of integer increment that we have to check first: bool++.
1703 // Due to promotion rules, we get:
1704 // bool++ -> bool = bool + 1
1705 // -> bool = (int)bool + 1
1706 // -> bool = ((int)bool + 1 != 0)
1707 // An interesting aspect of this is that increment is always true.
1708 // Decrement does not have this property.
1709 if (isInc && type->isBooleanType()) {
1710 value = Builder.getTrue();
1711
1712 // Most common case by far: integer increment.
1713 } else if (type->isIntegerType()) {
1714 // Note that signed integer inc/dec with width less than int can't
1715 // overflow because of promotion rules; we're just eliding a few steps here.
1716 bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1717 CGF.IntTy->getIntegerBitWidth();
1718 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1719 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1720 } else if (CanOverflow && type->isUnsignedIntegerType() &&
1721 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1722 value =
1723 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1724 } else {
1725 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1726 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1727 }
1728
1729 // Next most common: pointer increment.
1730 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1731 QualType type = ptr->getPointeeType();
1732
1733 // VLA types don't have constant size.
1734 if (const VariableArrayType *vla
1735 = CGF.getContext().getAsVariableArrayType(type)) {
1736 llvm::Value *numElts = CGF.getVLASize(vla).first;
1737 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1738 if (CGF.getLangOpts().isSignedOverflowDefined())
1739 value = Builder.CreateGEP(value, numElts, "vla.inc");
1740 else
1741 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1742
1743 // Arithmetic on function pointers (!) is just +-1.
1744 } else if (type->isFunctionType()) {
1745 llvm::Value *amt = Builder.getInt32(amount);
1746
1747 value = CGF.EmitCastToVoidPtr(value);
1748 if (CGF.getLangOpts().isSignedOverflowDefined())
1749 value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1750 else
1751 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1752 value = Builder.CreateBitCast(value, input->getType());
1753
1754 // For everything else, we can just do a simple increment.
1755 } else {
1756 llvm::Value *amt = Builder.getInt32(amount);
1757 if (CGF.getLangOpts().isSignedOverflowDefined())
1758 value = Builder.CreateGEP(value, amt, "incdec.ptr");
1759 else
1760 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1761 }
1762
1763 // Vector increment/decrement.
1764 } else if (type->isVectorType()) {
1765 if (type->hasIntegerRepresentation()) {
1766 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1767
1768 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1769 } else {
1770 value = Builder.CreateFAdd(
1771 value,
1772 llvm::ConstantFP::get(value->getType(), amount),
1773 isInc ? "inc" : "dec");
1774 }
1775
1776 // Floating point.
1777 } else if (type->isRealFloatingType()) {
1778 // Add the inc/dec to the real part.
1779 llvm::Value *amt;
1780
1781 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1782 // Another special case: half FP increment should be done via float
1783 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1784 value = Builder.CreateCall(
1785 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1786 CGF.CGM.FloatTy),
1787 input, "incdec.conv");
1788 } else {
1789 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1790 }
1791 }
1792
1793 if (value->getType()->isFloatTy())
1794 amt = llvm::ConstantFP::get(VMContext,
1795 llvm::APFloat(static_cast<float>(amount)));
1796 else if (value->getType()->isDoubleTy())
1797 amt = llvm::ConstantFP::get(VMContext,
1798 llvm::APFloat(static_cast<double>(amount)));
1799 else {
1800 // Remaining types are either Half or LongDouble. Convert from float.
1801 llvm::APFloat F(static_cast<float>(amount));
1802 bool ignored;
1803 // Don't use getFloatTypeSemantics because Half isn't
1804 // necessarily represented using the "half" LLVM type.
1805 F.convert(value->getType()->isHalfTy()
1806 ? CGF.getTarget().getHalfFormat()
1807 : CGF.getTarget().getLongDoubleFormat(),
1808 llvm::APFloat::rmTowardZero, &ignored);
1809 amt = llvm::ConstantFP::get(VMContext, F);
1810 }
1811 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1812
1813 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1814 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1815 value = Builder.CreateCall(
1816 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1817 CGF.CGM.FloatTy),
1818 value, "incdec.conv");
1819 } else {
1820 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1821 }
1822 }
1823
1824 // Objective-C pointer types.
1825 } else {
1826 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1827 value = CGF.EmitCastToVoidPtr(value);
1828
1829 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1830 if (!isInc) size = -size;
1831 llvm::Value *sizeValue =
1832 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1833
1834 if (CGF.getLangOpts().isSignedOverflowDefined())
1835 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1836 else
1837 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1838 value = Builder.CreateBitCast(value, input->getType());
1839 }
1840
1841 if (atomicPHI) {
1842 llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1843 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1844 auto Pair = CGF.EmitAtomicCompareExchange(
1845 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1846 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1847 llvm::Value *success = Pair.second;
1848 atomicPHI->addIncoming(old, opBB);
1849 Builder.CreateCondBr(success, contBB, opBB);
1850 Builder.SetInsertPoint(contBB);
1851 return isPre ? value : input;
1852 }
1853
1854 // Store the updated result through the lvalue.
1855 if (LV.isBitField())
1856 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1857 else
1858 CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1859
1860 // If this is a postinc, return the value read from memory, otherwise use the
1861 // updated value.
1862 return isPre ? value : input;
1863 }
1864
1865
1866
VisitUnaryMinus(const UnaryOperator * E)1867 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1868 TestAndClearIgnoreResultAssign();
1869 // Emit unary minus with EmitSub so we handle overflow cases etc.
1870 BinOpInfo BinOp;
1871 BinOp.RHS = Visit(E->getSubExpr());
1872
1873 if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1874 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1875 else
1876 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1877 BinOp.Ty = E->getType();
1878 BinOp.Opcode = BO_Sub;
1879 BinOp.FPContractable = false;
1880 BinOp.E = E;
1881 return EmitSub(BinOp);
1882 }
1883
VisitUnaryNot(const UnaryOperator * E)1884 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1885 TestAndClearIgnoreResultAssign();
1886 Value *Op = Visit(E->getSubExpr());
1887 return Builder.CreateNot(Op, "neg");
1888 }
1889
VisitUnaryLNot(const UnaryOperator * E)1890 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1891 // Perform vector logical not on comparison with zero vector.
1892 if (E->getType()->isExtVectorType()) {
1893 Value *Oper = Visit(E->getSubExpr());
1894 Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1895 Value *Result;
1896 if (Oper->getType()->isFPOrFPVectorTy())
1897 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1898 else
1899 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1900 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1901 }
1902
1903 // Compare operand to zero.
1904 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1905
1906 // Invert value.
1907 // TODO: Could dynamically modify easy computations here. For example, if
1908 // the operand is an icmp ne, turn into icmp eq.
1909 BoolVal = Builder.CreateNot(BoolVal, "lnot");
1910
1911 // ZExt result to the expr type.
1912 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1913 }
1914
VisitOffsetOfExpr(OffsetOfExpr * E)1915 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1916 // Try folding the offsetof to a constant.
1917 llvm::APSInt Value;
1918 if (E->EvaluateAsInt(Value, CGF.getContext()))
1919 return Builder.getInt(Value);
1920
1921 // Loop over the components of the offsetof to compute the value.
1922 unsigned n = E->getNumComponents();
1923 llvm::Type* ResultType = ConvertType(E->getType());
1924 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1925 QualType CurrentType = E->getTypeSourceInfo()->getType();
1926 for (unsigned i = 0; i != n; ++i) {
1927 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1928 llvm::Value *Offset = nullptr;
1929 switch (ON.getKind()) {
1930 case OffsetOfExpr::OffsetOfNode::Array: {
1931 // Compute the index
1932 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1933 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1934 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1935 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1936
1937 // Save the element type
1938 CurrentType =
1939 CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1940
1941 // Compute the element size
1942 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1943 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1944
1945 // Multiply out to compute the result
1946 Offset = Builder.CreateMul(Idx, ElemSize);
1947 break;
1948 }
1949
1950 case OffsetOfExpr::OffsetOfNode::Field: {
1951 FieldDecl *MemberDecl = ON.getField();
1952 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1953 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1954
1955 // Compute the index of the field in its parent.
1956 unsigned i = 0;
1957 // FIXME: It would be nice if we didn't have to loop here!
1958 for (RecordDecl::field_iterator Field = RD->field_begin(),
1959 FieldEnd = RD->field_end();
1960 Field != FieldEnd; ++Field, ++i) {
1961 if (*Field == MemberDecl)
1962 break;
1963 }
1964 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1965
1966 // Compute the offset to the field
1967 int64_t OffsetInt = RL.getFieldOffset(i) /
1968 CGF.getContext().getCharWidth();
1969 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1970
1971 // Save the element type.
1972 CurrentType = MemberDecl->getType();
1973 break;
1974 }
1975
1976 case OffsetOfExpr::OffsetOfNode::Identifier:
1977 llvm_unreachable("dependent __builtin_offsetof");
1978
1979 case OffsetOfExpr::OffsetOfNode::Base: {
1980 if (ON.getBase()->isVirtual()) {
1981 CGF.ErrorUnsupported(E, "virtual base in offsetof");
1982 continue;
1983 }
1984
1985 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1986 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1987
1988 // Save the element type.
1989 CurrentType = ON.getBase()->getType();
1990
1991 // Compute the offset to the base.
1992 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1993 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1994 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1995 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1996 break;
1997 }
1998 }
1999 Result = Builder.CreateAdd(Result, Offset);
2000 }
2001 return Result;
2002 }
2003
2004 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2005 /// argument of the sizeof expression as an integer.
2006 Value *
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)2007 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2008 const UnaryExprOrTypeTraitExpr *E) {
2009 QualType TypeToSize = E->getTypeOfArgument();
2010 if (E->getKind() == UETT_SizeOf) {
2011 if (const VariableArrayType *VAT =
2012 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2013 if (E->isArgumentType()) {
2014 // sizeof(type) - make sure to emit the VLA size.
2015 CGF.EmitVariablyModifiedType(TypeToSize);
2016 } else {
2017 // C99 6.5.3.4p2: If the argument is an expression of type
2018 // VLA, it is evaluated.
2019 CGF.EmitIgnoredExpr(E->getArgumentExpr());
2020 }
2021
2022 QualType eltType;
2023 llvm::Value *numElts;
2024 std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2025
2026 llvm::Value *size = numElts;
2027
2028 // Scale the number of non-VLA elements by the non-VLA element size.
2029 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2030 if (!eltSize.isOne())
2031 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2032
2033 return size;
2034 }
2035 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
2036 auto Alignment =
2037 CGF.getContext()
2038 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
2039 E->getTypeOfArgument()->getPointeeType()))
2040 .getQuantity();
2041 return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
2042 }
2043
2044 // If this isn't sizeof(vla), the result must be constant; use the constant
2045 // folding logic so we don't have to duplicate it here.
2046 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2047 }
2048
VisitUnaryReal(const UnaryOperator * E)2049 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2050 Expr *Op = E->getSubExpr();
2051 if (Op->getType()->isAnyComplexType()) {
2052 // If it's an l-value, load through the appropriate subobject l-value.
2053 // Note that we have to ask E because Op might be an l-value that
2054 // this won't work for, e.g. an Obj-C property.
2055 if (E->isGLValue())
2056 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2057 E->getExprLoc()).getScalarVal();
2058
2059 // Otherwise, calculate and project.
2060 return CGF.EmitComplexExpr(Op, false, true).first;
2061 }
2062
2063 return Visit(Op);
2064 }
2065
VisitUnaryImag(const UnaryOperator * E)2066 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2067 Expr *Op = E->getSubExpr();
2068 if (Op->getType()->isAnyComplexType()) {
2069 // If it's an l-value, load through the appropriate subobject l-value.
2070 // Note that we have to ask E because Op might be an l-value that
2071 // this won't work for, e.g. an Obj-C property.
2072 if (Op->isGLValue())
2073 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2074 E->getExprLoc()).getScalarVal();
2075
2076 // Otherwise, calculate and project.
2077 return CGF.EmitComplexExpr(Op, true, false).second;
2078 }
2079
2080 // __imag on a scalar returns zero. Emit the subexpr to ensure side
2081 // effects are evaluated, but not the actual value.
2082 if (Op->isGLValue())
2083 CGF.EmitLValue(Op);
2084 else
2085 CGF.EmitScalarExpr(Op, true);
2086 return llvm::Constant::getNullValue(ConvertType(E->getType()));
2087 }
2088
2089 //===----------------------------------------------------------------------===//
2090 // Binary Operators
2091 //===----------------------------------------------------------------------===//
2092
EmitBinOps(const BinaryOperator * E)2093 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2094 TestAndClearIgnoreResultAssign();
2095 BinOpInfo Result;
2096 Result.LHS = Visit(E->getLHS());
2097 Result.RHS = Visit(E->getRHS());
2098 Result.Ty = E->getType();
2099 Result.Opcode = E->getOpcode();
2100 Result.FPContractable = E->isFPContractable();
2101 Result.E = E;
2102 return Result;
2103 }
2104
EmitCompoundAssignLValue(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &),Value * & Result)2105 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2106 const CompoundAssignOperator *E,
2107 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2108 Value *&Result) {
2109 QualType LHSTy = E->getLHS()->getType();
2110 BinOpInfo OpInfo;
2111
2112 if (E->getComputationResultType()->isAnyComplexType())
2113 return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2114
2115 // Emit the RHS first. __block variables need to have the rhs evaluated
2116 // first, plus this should improve codegen a little.
2117 OpInfo.RHS = Visit(E->getRHS());
2118 OpInfo.Ty = E->getComputationResultType();
2119 OpInfo.Opcode = E->getOpcode();
2120 OpInfo.FPContractable = E->isFPContractable();
2121 OpInfo.E = E;
2122 // Load/convert the LHS.
2123 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2124
2125 llvm::PHINode *atomicPHI = nullptr;
2126 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2127 QualType type = atomicTy->getValueType();
2128 if (!type->isBooleanType() && type->isIntegerType() &&
2129 !(type->isUnsignedIntegerType() &&
2130 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2131 CGF.getLangOpts().getSignedOverflowBehavior() !=
2132 LangOptions::SOB_Trapping) {
2133 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2134 switch (OpInfo.Opcode) {
2135 // We don't have atomicrmw operands for *, %, /, <<, >>
2136 case BO_MulAssign: case BO_DivAssign:
2137 case BO_RemAssign:
2138 case BO_ShlAssign:
2139 case BO_ShrAssign:
2140 break;
2141 case BO_AddAssign:
2142 aop = llvm::AtomicRMWInst::Add;
2143 break;
2144 case BO_SubAssign:
2145 aop = llvm::AtomicRMWInst::Sub;
2146 break;
2147 case BO_AndAssign:
2148 aop = llvm::AtomicRMWInst::And;
2149 break;
2150 case BO_XorAssign:
2151 aop = llvm::AtomicRMWInst::Xor;
2152 break;
2153 case BO_OrAssign:
2154 aop = llvm::AtomicRMWInst::Or;
2155 break;
2156 default:
2157 llvm_unreachable("Invalid compound assignment type");
2158 }
2159 if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2160 llvm::Value *amt = CGF.EmitToMemory(
2161 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
2162 E->getExprLoc()),
2163 LHSTy);
2164 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
2165 llvm::SequentiallyConsistent);
2166 return LHSLV;
2167 }
2168 }
2169 // FIXME: For floating point types, we should be saving and restoring the
2170 // floating point environment in the loop.
2171 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2172 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2173 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2174 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2175 Builder.CreateBr(opBB);
2176 Builder.SetInsertPoint(opBB);
2177 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2178 atomicPHI->addIncoming(OpInfo.LHS, startBB);
2179 OpInfo.LHS = atomicPHI;
2180 }
2181 else
2182 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2183
2184 SourceLocation Loc = E->getExprLoc();
2185 OpInfo.LHS =
2186 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
2187
2188 // Expand the binary operator.
2189 Result = (this->*Func)(OpInfo);
2190
2191 // Convert the result back to the LHS type.
2192 Result =
2193 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
2194
2195 if (atomicPHI) {
2196 llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2197 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2198 auto Pair = CGF.EmitAtomicCompareExchange(
2199 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2200 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2201 llvm::Value *success = Pair.second;
2202 atomicPHI->addIncoming(old, opBB);
2203 Builder.CreateCondBr(success, contBB, opBB);
2204 Builder.SetInsertPoint(contBB);
2205 return LHSLV;
2206 }
2207
2208 // Store the result value into the LHS lvalue. Bit-fields are handled
2209 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2210 // 'An assignment expression has the value of the left operand after the
2211 // assignment...'.
2212 if (LHSLV.isBitField())
2213 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2214 else
2215 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2216
2217 return LHSLV;
2218 }
2219
EmitCompoundAssign(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &))2220 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2221 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2222 bool Ignore = TestAndClearIgnoreResultAssign();
2223 Value *RHS;
2224 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2225
2226 // If the result is clearly ignored, return now.
2227 if (Ignore)
2228 return nullptr;
2229
2230 // The result of an assignment in C is the assigned r-value.
2231 if (!CGF.getLangOpts().CPlusPlus)
2232 return RHS;
2233
2234 // If the lvalue is non-volatile, return the computed value of the assignment.
2235 if (!LHS.isVolatileQualified())
2236 return RHS;
2237
2238 // Otherwise, reload the value.
2239 return EmitLoadOfLValue(LHS, E->getExprLoc());
2240 }
2241
EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo & Ops,llvm::Value * Zero,bool isDiv)2242 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2243 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2244 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2245
2246 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2247 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2248 SanitizerKind::IntegerDivideByZero));
2249 }
2250
2251 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2252 Ops.Ty->hasSignedIntegerRepresentation()) {
2253 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2254
2255 llvm::Value *IntMin =
2256 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2257 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2258
2259 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2260 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2261 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2262 Checks.push_back(
2263 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2264 }
2265
2266 if (Checks.size() > 0)
2267 EmitBinOpCheck(Checks, Ops);
2268 }
2269
EmitDiv(const BinOpInfo & Ops)2270 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2271 {
2272 CodeGenFunction::SanitizerScope SanScope(&CGF);
2273 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2274 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2275 Ops.Ty->isIntegerType()) {
2276 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2277 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2278 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2279 Ops.Ty->isRealFloatingType()) {
2280 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2281 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2282 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2283 Ops);
2284 }
2285 }
2286
2287 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2288 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2289 if (CGF.getLangOpts().OpenCL) {
2290 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2291 llvm::Type *ValTy = Val->getType();
2292 if (ValTy->isFloatTy() ||
2293 (isa<llvm::VectorType>(ValTy) &&
2294 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2295 CGF.SetFPAccuracy(Val, 2.5);
2296 }
2297 return Val;
2298 }
2299 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2300 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2301 else
2302 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2303 }
2304
EmitRem(const BinOpInfo & Ops)2305 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2306 // Rem in C can't be a floating point type: C99 6.5.5p2.
2307 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2308 CodeGenFunction::SanitizerScope SanScope(&CGF);
2309 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2310
2311 if (Ops.Ty->isIntegerType())
2312 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2313 }
2314
2315 if (Ops.Ty->hasUnsignedIntegerRepresentation())
2316 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2317 else
2318 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2319 }
2320
EmitOverflowCheckedBinOp(const BinOpInfo & Ops)2321 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2322 unsigned IID;
2323 unsigned OpID = 0;
2324
2325 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2326 switch (Ops.Opcode) {
2327 case BO_Add:
2328 case BO_AddAssign:
2329 OpID = 1;
2330 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2331 llvm::Intrinsic::uadd_with_overflow;
2332 break;
2333 case BO_Sub:
2334 case BO_SubAssign:
2335 OpID = 2;
2336 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2337 llvm::Intrinsic::usub_with_overflow;
2338 break;
2339 case BO_Mul:
2340 case BO_MulAssign:
2341 OpID = 3;
2342 IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2343 llvm::Intrinsic::umul_with_overflow;
2344 break;
2345 default:
2346 llvm_unreachable("Unsupported operation for overflow detection");
2347 }
2348 OpID <<= 1;
2349 if (isSigned)
2350 OpID |= 1;
2351
2352 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2353
2354 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2355
2356 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2357 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2358 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2359
2360 // Handle overflow with llvm.trap if no custom handler has been specified.
2361 const std::string *handlerName =
2362 &CGF.getLangOpts().OverflowHandler;
2363 if (handlerName->empty()) {
2364 // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2365 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2366 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2367 CodeGenFunction::SanitizerScope SanScope(&CGF);
2368 llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2369 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2370 : SanitizerKind::UnsignedIntegerOverflow;
2371 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2372 } else
2373 CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2374 return result;
2375 }
2376
2377 // Branch in case of overflow.
2378 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2379 llvm::Function::iterator insertPt = initialBB->getIterator();
2380 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2381 &*std::next(insertPt));
2382 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2383
2384 Builder.CreateCondBr(overflow, overflowBB, continueBB);
2385
2386 // If an overflow handler is set, then we want to call it and then use its
2387 // result, if it returns.
2388 Builder.SetInsertPoint(overflowBB);
2389
2390 // Get the overflow handler.
2391 llvm::Type *Int8Ty = CGF.Int8Ty;
2392 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2393 llvm::FunctionType *handlerTy =
2394 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2395 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2396
2397 // Sign extend the args to 64-bit, so that we can use the same handler for
2398 // all types of overflow.
2399 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2400 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2401
2402 // Call the handler with the two arguments, the operation, and the size of
2403 // the result.
2404 llvm::Value *handlerArgs[] = {
2405 lhs,
2406 rhs,
2407 Builder.getInt8(OpID),
2408 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2409 };
2410 llvm::Value *handlerResult =
2411 CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2412
2413 // Truncate the result back to the desired size.
2414 handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2415 Builder.CreateBr(continueBB);
2416
2417 Builder.SetInsertPoint(continueBB);
2418 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2419 phi->addIncoming(result, initialBB);
2420 phi->addIncoming(handlerResult, overflowBB);
2421
2422 return phi;
2423 }
2424
2425 /// Emit pointer + index arithmetic.
emitPointerArithmetic(CodeGenFunction & CGF,const BinOpInfo & op,bool isSubtraction)2426 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2427 const BinOpInfo &op,
2428 bool isSubtraction) {
2429 // Must have binary (not unary) expr here. Unary pointer
2430 // increment/decrement doesn't use this path.
2431 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2432
2433 Value *pointer = op.LHS;
2434 Expr *pointerOperand = expr->getLHS();
2435 Value *index = op.RHS;
2436 Expr *indexOperand = expr->getRHS();
2437
2438 // In a subtraction, the LHS is always the pointer.
2439 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2440 std::swap(pointer, index);
2441 std::swap(pointerOperand, indexOperand);
2442 }
2443
2444 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2445 if (width != CGF.PointerWidthInBits) {
2446 // Zero-extend or sign-extend the pointer value according to
2447 // whether the index is signed or not.
2448 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2449 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2450 "idx.ext");
2451 }
2452
2453 // If this is subtraction, negate the index.
2454 if (isSubtraction)
2455 index = CGF.Builder.CreateNeg(index, "idx.neg");
2456
2457 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2458 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2459 /*Accessed*/ false);
2460
2461 const PointerType *pointerType
2462 = pointerOperand->getType()->getAs<PointerType>();
2463 if (!pointerType) {
2464 QualType objectType = pointerOperand->getType()
2465 ->castAs<ObjCObjectPointerType>()
2466 ->getPointeeType();
2467 llvm::Value *objectSize
2468 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2469
2470 index = CGF.Builder.CreateMul(index, objectSize);
2471
2472 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2473 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2474 return CGF.Builder.CreateBitCast(result, pointer->getType());
2475 }
2476
2477 QualType elementType = pointerType->getPointeeType();
2478 if (const VariableArrayType *vla
2479 = CGF.getContext().getAsVariableArrayType(elementType)) {
2480 // The element count here is the total number of non-VLA elements.
2481 llvm::Value *numElements = CGF.getVLASize(vla).first;
2482
2483 // Effectively, the multiply by the VLA size is part of the GEP.
2484 // GEP indexes are signed, and scaling an index isn't permitted to
2485 // signed-overflow, so we use the same semantics for our explicit
2486 // multiply. We suppress this if overflow is not undefined behavior.
2487 if (CGF.getLangOpts().isSignedOverflowDefined()) {
2488 index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2489 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2490 } else {
2491 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2492 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2493 }
2494 return pointer;
2495 }
2496
2497 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2498 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2499 // future proof.
2500 if (elementType->isVoidType() || elementType->isFunctionType()) {
2501 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2502 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2503 return CGF.Builder.CreateBitCast(result, pointer->getType());
2504 }
2505
2506 if (CGF.getLangOpts().isSignedOverflowDefined())
2507 return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2508
2509 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2510 }
2511
2512 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2513 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2514 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2515 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2516 // efficient operations.
buildFMulAdd(llvm::BinaryOperator * MulOp,Value * Addend,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool negMul,bool negAdd)2517 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2518 const CodeGenFunction &CGF, CGBuilderTy &Builder,
2519 bool negMul, bool negAdd) {
2520 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2521
2522 Value *MulOp0 = MulOp->getOperand(0);
2523 Value *MulOp1 = MulOp->getOperand(1);
2524 if (negMul) {
2525 MulOp0 =
2526 Builder.CreateFSub(
2527 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2528 "neg");
2529 } else if (negAdd) {
2530 Addend =
2531 Builder.CreateFSub(
2532 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2533 "neg");
2534 }
2535
2536 Value *FMulAdd = Builder.CreateCall(
2537 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2538 {MulOp0, MulOp1, Addend});
2539 MulOp->eraseFromParent();
2540
2541 return FMulAdd;
2542 }
2543
2544 // Check whether it would be legal to emit an fmuladd intrinsic call to
2545 // represent op and if so, build the fmuladd.
2546 //
2547 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2548 // Does NOT check the type of the operation - it's assumed that this function
2549 // will be called from contexts where it's known that the type is contractable.
tryEmitFMulAdd(const BinOpInfo & op,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool isSub=false)2550 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2551 const CodeGenFunction &CGF, CGBuilderTy &Builder,
2552 bool isSub=false) {
2553
2554 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2555 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2556 "Only fadd/fsub can be the root of an fmuladd.");
2557
2558 // Check whether this op is marked as fusable.
2559 if (!op.FPContractable)
2560 return nullptr;
2561
2562 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2563 // either disabled, or handled entirely by the LLVM backend).
2564 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2565 return nullptr;
2566
2567 // We have a potentially fusable op. Look for a mul on one of the operands.
2568 // Also, make sure that the mul result isn't used directly. In that case,
2569 // there's no point creating a muladd operation.
2570 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2571 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2572 LHSBinOp->use_empty())
2573 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2574 }
2575 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2576 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
2577 RHSBinOp->use_empty())
2578 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2579 }
2580
2581 return nullptr;
2582 }
2583
EmitAdd(const BinOpInfo & op)2584 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2585 if (op.LHS->getType()->isPointerTy() ||
2586 op.RHS->getType()->isPointerTy())
2587 return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2588
2589 if (op.Ty->isSignedIntegerOrEnumerationType()) {
2590 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2591 case LangOptions::SOB_Defined:
2592 return Builder.CreateAdd(op.LHS, op.RHS, "add");
2593 case LangOptions::SOB_Undefined:
2594 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2595 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2596 // Fall through.
2597 case LangOptions::SOB_Trapping:
2598 return EmitOverflowCheckedBinOp(op);
2599 }
2600 }
2601
2602 if (op.Ty->isUnsignedIntegerType() &&
2603 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2604 return EmitOverflowCheckedBinOp(op);
2605
2606 if (op.LHS->getType()->isFPOrFPVectorTy()) {
2607 // Try to form an fmuladd.
2608 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2609 return FMulAdd;
2610
2611 return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2612 }
2613
2614 return Builder.CreateAdd(op.LHS, op.RHS, "add");
2615 }
2616
EmitSub(const BinOpInfo & op)2617 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2618 // The LHS is always a pointer if either side is.
2619 if (!op.LHS->getType()->isPointerTy()) {
2620 if (op.Ty->isSignedIntegerOrEnumerationType()) {
2621 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2622 case LangOptions::SOB_Defined:
2623 return Builder.CreateSub(op.LHS, op.RHS, "sub");
2624 case LangOptions::SOB_Undefined:
2625 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2626 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2627 // Fall through.
2628 case LangOptions::SOB_Trapping:
2629 return EmitOverflowCheckedBinOp(op);
2630 }
2631 }
2632
2633 if (op.Ty->isUnsignedIntegerType() &&
2634 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2635 return EmitOverflowCheckedBinOp(op);
2636
2637 if (op.LHS->getType()->isFPOrFPVectorTy()) {
2638 // Try to form an fmuladd.
2639 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2640 return FMulAdd;
2641 return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2642 }
2643
2644 return Builder.CreateSub(op.LHS, op.RHS, "sub");
2645 }
2646
2647 // If the RHS is not a pointer, then we have normal pointer
2648 // arithmetic.
2649 if (!op.RHS->getType()->isPointerTy())
2650 return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2651
2652 // Otherwise, this is a pointer subtraction.
2653
2654 // Do the raw subtraction part.
2655 llvm::Value *LHS
2656 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2657 llvm::Value *RHS
2658 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2659 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2660
2661 // Okay, figure out the element size.
2662 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2663 QualType elementType = expr->getLHS()->getType()->getPointeeType();
2664
2665 llvm::Value *divisor = nullptr;
2666
2667 // For a variable-length array, this is going to be non-constant.
2668 if (const VariableArrayType *vla
2669 = CGF.getContext().getAsVariableArrayType(elementType)) {
2670 llvm::Value *numElements;
2671 std::tie(numElements, elementType) = CGF.getVLASize(vla);
2672
2673 divisor = numElements;
2674
2675 // Scale the number of non-VLA elements by the non-VLA element size.
2676 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2677 if (!eltSize.isOne())
2678 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2679
2680 // For everything elese, we can just compute it, safe in the
2681 // assumption that Sema won't let anything through that we can't
2682 // safely compute the size of.
2683 } else {
2684 CharUnits elementSize;
2685 // Handle GCC extension for pointer arithmetic on void* and
2686 // function pointer types.
2687 if (elementType->isVoidType() || elementType->isFunctionType())
2688 elementSize = CharUnits::One();
2689 else
2690 elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2691
2692 // Don't even emit the divide for element size of 1.
2693 if (elementSize.isOne())
2694 return diffInChars;
2695
2696 divisor = CGF.CGM.getSize(elementSize);
2697 }
2698
2699 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2700 // pointer difference in C is only defined in the case where both operands
2701 // are pointing to elements of an array.
2702 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2703 }
2704
GetWidthMinusOneValue(Value * LHS,Value * RHS)2705 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2706 llvm::IntegerType *Ty;
2707 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2708 Ty = cast<llvm::IntegerType>(VT->getElementType());
2709 else
2710 Ty = cast<llvm::IntegerType>(LHS->getType());
2711 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2712 }
2713
EmitShl(const BinOpInfo & Ops)2714 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2715 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2716 // RHS to the same size as the LHS.
2717 Value *RHS = Ops.RHS;
2718 if (Ops.LHS->getType() != RHS->getType())
2719 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2720
2721 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2722 Ops.Ty->hasSignedIntegerRepresentation();
2723 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2724 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2725 if (CGF.getLangOpts().OpenCL)
2726 RHS =
2727 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2728 else if ((SanitizeBase || SanitizeExponent) &&
2729 isa<llvm::IntegerType>(Ops.LHS->getType())) {
2730 CodeGenFunction::SanitizerScope SanScope(&CGF);
2731 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2732 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2733 llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2734
2735 if (SanitizeExponent) {
2736 Checks.push_back(
2737 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2738 }
2739
2740 if (SanitizeBase) {
2741 // Check whether we are shifting any non-zero bits off the top of the
2742 // integer. We only emit this check if exponent is valid - otherwise
2743 // instructions below will have undefined behavior themselves.
2744 llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2745 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2746 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2747 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2748 CGF.EmitBlock(CheckShiftBase);
2749 llvm::Value *BitsShiftedOff =
2750 Builder.CreateLShr(Ops.LHS,
2751 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2752 /*NUW*/true, /*NSW*/true),
2753 "shl.check");
2754 if (CGF.getLangOpts().CPlusPlus) {
2755 // In C99, we are not permitted to shift a 1 bit into the sign bit.
2756 // Under C++11's rules, shifting a 1 bit into the sign bit is
2757 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2758 // define signed left shifts, so we use the C99 and C++11 rules there).
2759 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2760 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2761 }
2762 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2763 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2764 CGF.EmitBlock(Cont);
2765 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2766 BaseCheck->addIncoming(Builder.getTrue(), Orig);
2767 BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2768 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2769 }
2770
2771 assert(!Checks.empty());
2772 EmitBinOpCheck(Checks, Ops);
2773 }
2774
2775 return Builder.CreateShl(Ops.LHS, RHS, "shl");
2776 }
2777
EmitShr(const BinOpInfo & Ops)2778 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2779 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2780 // RHS to the same size as the LHS.
2781 Value *RHS = Ops.RHS;
2782 if (Ops.LHS->getType() != RHS->getType())
2783 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2784
2785 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2786 if (CGF.getLangOpts().OpenCL)
2787 RHS =
2788 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2789 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2790 isa<llvm::IntegerType>(Ops.LHS->getType())) {
2791 CodeGenFunction::SanitizerScope SanScope(&CGF);
2792 llvm::Value *Valid =
2793 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2794 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2795 }
2796
2797 if (Ops.Ty->hasUnsignedIntegerRepresentation())
2798 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2799 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2800 }
2801
2802 enum IntrinsicType { VCMPEQ, VCMPGT };
2803 // return corresponding comparison intrinsic for given vector type
GetIntrinsic(IntrinsicType IT,BuiltinType::Kind ElemKind)2804 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2805 BuiltinType::Kind ElemKind) {
2806 switch (ElemKind) {
2807 default: llvm_unreachable("unexpected element type");
2808 case BuiltinType::Char_U:
2809 case BuiltinType::UChar:
2810 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2811 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2812 case BuiltinType::Char_S:
2813 case BuiltinType::SChar:
2814 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2815 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2816 case BuiltinType::UShort:
2817 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2818 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2819 case BuiltinType::Short:
2820 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2821 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2822 case BuiltinType::UInt:
2823 case BuiltinType::ULong:
2824 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2825 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2826 case BuiltinType::Int:
2827 case BuiltinType::Long:
2828 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2829 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2830 case BuiltinType::Float:
2831 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2832 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2833 }
2834 }
2835
EmitCompare(const BinaryOperator * E,llvm::CmpInst::Predicate UICmpOpc,llvm::CmpInst::Predicate SICmpOpc,llvm::CmpInst::Predicate FCmpOpc)2836 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
2837 llvm::CmpInst::Predicate UICmpOpc,
2838 llvm::CmpInst::Predicate SICmpOpc,
2839 llvm::CmpInst::Predicate FCmpOpc) {
2840 TestAndClearIgnoreResultAssign();
2841 Value *Result;
2842 QualType LHSTy = E->getLHS()->getType();
2843 QualType RHSTy = E->getRHS()->getType();
2844 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2845 assert(E->getOpcode() == BO_EQ ||
2846 E->getOpcode() == BO_NE);
2847 Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2848 Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2849 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2850 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2851 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2852 Value *LHS = Visit(E->getLHS());
2853 Value *RHS = Visit(E->getRHS());
2854
2855 // If AltiVec, the comparison results in a numeric type, so we use
2856 // intrinsics comparing vectors and giving 0 or 1 as a result
2857 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2858 // constants for mapping CR6 register bits to predicate result
2859 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2860
2861 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2862
2863 // in several cases vector arguments order will be reversed
2864 Value *FirstVecArg = LHS,
2865 *SecondVecArg = RHS;
2866
2867 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2868 const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2869 BuiltinType::Kind ElementKind = BTy->getKind();
2870
2871 switch(E->getOpcode()) {
2872 default: llvm_unreachable("is not a comparison operation");
2873 case BO_EQ:
2874 CR6 = CR6_LT;
2875 ID = GetIntrinsic(VCMPEQ, ElementKind);
2876 break;
2877 case BO_NE:
2878 CR6 = CR6_EQ;
2879 ID = GetIntrinsic(VCMPEQ, ElementKind);
2880 break;
2881 case BO_LT:
2882 CR6 = CR6_LT;
2883 ID = GetIntrinsic(VCMPGT, ElementKind);
2884 std::swap(FirstVecArg, SecondVecArg);
2885 break;
2886 case BO_GT:
2887 CR6 = CR6_LT;
2888 ID = GetIntrinsic(VCMPGT, ElementKind);
2889 break;
2890 case BO_LE:
2891 if (ElementKind == BuiltinType::Float) {
2892 CR6 = CR6_LT;
2893 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2894 std::swap(FirstVecArg, SecondVecArg);
2895 }
2896 else {
2897 CR6 = CR6_EQ;
2898 ID = GetIntrinsic(VCMPGT, ElementKind);
2899 }
2900 break;
2901 case BO_GE:
2902 if (ElementKind == BuiltinType::Float) {
2903 CR6 = CR6_LT;
2904 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2905 }
2906 else {
2907 CR6 = CR6_EQ;
2908 ID = GetIntrinsic(VCMPGT, ElementKind);
2909 std::swap(FirstVecArg, SecondVecArg);
2910 }
2911 break;
2912 }
2913
2914 Value *CR6Param = Builder.getInt32(CR6);
2915 llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2916 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
2917 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2918 E->getExprLoc());
2919 }
2920
2921 if (LHS->getType()->isFPOrFPVectorTy()) {
2922 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
2923 } else if (LHSTy->hasSignedIntegerRepresentation()) {
2924 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
2925 } else {
2926 // Unsigned integers and pointers.
2927 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
2928 }
2929
2930 // If this is a vector comparison, sign extend the result to the appropriate
2931 // vector integer type and return it (don't convert to bool).
2932 if (LHSTy->isVectorType())
2933 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2934
2935 } else {
2936 // Complex Comparison: can only be an equality comparison.
2937 CodeGenFunction::ComplexPairTy LHS, RHS;
2938 QualType CETy;
2939 if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2940 LHS = CGF.EmitComplexExpr(E->getLHS());
2941 CETy = CTy->getElementType();
2942 } else {
2943 LHS.first = Visit(E->getLHS());
2944 LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2945 CETy = LHSTy;
2946 }
2947 if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2948 RHS = CGF.EmitComplexExpr(E->getRHS());
2949 assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2950 CTy->getElementType()) &&
2951 "The element types must always match.");
2952 (void)CTy;
2953 } else {
2954 RHS.first = Visit(E->getRHS());
2955 RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2956 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2957 "The element types must always match.");
2958 }
2959
2960 Value *ResultR, *ResultI;
2961 if (CETy->isRealFloatingType()) {
2962 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
2963 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
2964 } else {
2965 // Complex comparisons can only be equality comparisons. As such, signed
2966 // and unsigned opcodes are the same.
2967 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
2968 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
2969 }
2970
2971 if (E->getOpcode() == BO_EQ) {
2972 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2973 } else {
2974 assert(E->getOpcode() == BO_NE &&
2975 "Complex comparison other than == or != ?");
2976 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2977 }
2978 }
2979
2980 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
2981 E->getExprLoc());
2982 }
2983
VisitBinAssign(const BinaryOperator * E)2984 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2985 bool Ignore = TestAndClearIgnoreResultAssign();
2986
2987 Value *RHS;
2988 LValue LHS;
2989
2990 switch (E->getLHS()->getType().getObjCLifetime()) {
2991 case Qualifiers::OCL_Strong:
2992 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2993 break;
2994
2995 case Qualifiers::OCL_Autoreleasing:
2996 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
2997 break;
2998
2999 case Qualifiers::OCL_Weak:
3000 RHS = Visit(E->getRHS());
3001 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3002 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3003 break;
3004
3005 // No reason to do any of these differently.
3006 case Qualifiers::OCL_None:
3007 case Qualifiers::OCL_ExplicitNone:
3008 // __block variables need to have the rhs evaluated first, plus
3009 // this should improve codegen just a little.
3010 RHS = Visit(E->getRHS());
3011 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3012
3013 // Store the value into the LHS. Bit-fields are handled specially
3014 // because the result is altered by the store, i.e., [C99 6.5.16p1]
3015 // 'An assignment expression has the value of the left operand after
3016 // the assignment...'.
3017 if (LHS.isBitField())
3018 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3019 else
3020 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3021 }
3022
3023 // If the result is clearly ignored, return now.
3024 if (Ignore)
3025 return nullptr;
3026
3027 // The result of an assignment in C is the assigned r-value.
3028 if (!CGF.getLangOpts().CPlusPlus)
3029 return RHS;
3030
3031 // If the lvalue is non-volatile, return the computed value of the assignment.
3032 if (!LHS.isVolatileQualified())
3033 return RHS;
3034
3035 // Otherwise, reload the value.
3036 return EmitLoadOfLValue(LHS, E->getExprLoc());
3037 }
3038
VisitBinLAnd(const BinaryOperator * E)3039 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3040 // Perform vector logical and on comparisons with zero vectors.
3041 if (E->getType()->isVectorType()) {
3042 CGF.incrementProfileCounter(E);
3043
3044 Value *LHS = Visit(E->getLHS());
3045 Value *RHS = Visit(E->getRHS());
3046 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3047 if (LHS->getType()->isFPOrFPVectorTy()) {
3048 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3049 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3050 } else {
3051 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3052 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3053 }
3054 Value *And = Builder.CreateAnd(LHS, RHS);
3055 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3056 }
3057
3058 llvm::Type *ResTy = ConvertType(E->getType());
3059
3060 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3061 // If we have 1 && X, just emit X without inserting the control flow.
3062 bool LHSCondVal;
3063 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3064 if (LHSCondVal) { // If we have 1 && X, just emit X.
3065 CGF.incrementProfileCounter(E);
3066
3067 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3068 // ZExt result to int or bool.
3069 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3070 }
3071
3072 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3073 if (!CGF.ContainsLabel(E->getRHS()))
3074 return llvm::Constant::getNullValue(ResTy);
3075 }
3076
3077 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3078 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
3079
3080 CodeGenFunction::ConditionalEvaluation eval(CGF);
3081
3082 // Branch on the LHS first. If it is false, go to the failure (cont) block.
3083 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3084 CGF.getProfileCount(E->getRHS()));
3085
3086 // Any edges into the ContBlock are now from an (indeterminate number of)
3087 // edges from this first condition. All of these values will be false. Start
3088 // setting up the PHI node in the Cont Block for this.
3089 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3090 "", ContBlock);
3091 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3092 PI != PE; ++PI)
3093 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3094
3095 eval.begin(CGF);
3096 CGF.EmitBlock(RHSBlock);
3097 CGF.incrementProfileCounter(E);
3098 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3099 eval.end(CGF);
3100
3101 // Reaquire the RHS block, as there may be subblocks inserted.
3102 RHSBlock = Builder.GetInsertBlock();
3103
3104 // Emit an unconditional branch from this block to ContBlock.
3105 {
3106 // There is no need to emit line number for unconditional branch.
3107 auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3108 CGF.EmitBlock(ContBlock);
3109 }
3110 // Insert an entry into the phi node for the edge with the value of RHSCond.
3111 PN->addIncoming(RHSCond, RHSBlock);
3112
3113 // ZExt result to int.
3114 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3115 }
3116
VisitBinLOr(const BinaryOperator * E)3117 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3118 // Perform vector logical or on comparisons with zero vectors.
3119 if (E->getType()->isVectorType()) {
3120 CGF.incrementProfileCounter(E);
3121
3122 Value *LHS = Visit(E->getLHS());
3123 Value *RHS = Visit(E->getRHS());
3124 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3125 if (LHS->getType()->isFPOrFPVectorTy()) {
3126 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3127 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3128 } else {
3129 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3130 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3131 }
3132 Value *Or = Builder.CreateOr(LHS, RHS);
3133 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3134 }
3135
3136 llvm::Type *ResTy = ConvertType(E->getType());
3137
3138 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3139 // If we have 0 || X, just emit X without inserting the control flow.
3140 bool LHSCondVal;
3141 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3142 if (!LHSCondVal) { // If we have 0 || X, just emit X.
3143 CGF.incrementProfileCounter(E);
3144
3145 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3146 // ZExt result to int or bool.
3147 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3148 }
3149
3150 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3151 if (!CGF.ContainsLabel(E->getRHS()))
3152 return llvm::ConstantInt::get(ResTy, 1);
3153 }
3154
3155 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3156 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3157
3158 CodeGenFunction::ConditionalEvaluation eval(CGF);
3159
3160 // Branch on the LHS first. If it is true, go to the success (cont) block.
3161 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3162 CGF.getCurrentProfileCount() -
3163 CGF.getProfileCount(E->getRHS()));
3164
3165 // Any edges into the ContBlock are now from an (indeterminate number of)
3166 // edges from this first condition. All of these values will be true. Start
3167 // setting up the PHI node in the Cont Block for this.
3168 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3169 "", ContBlock);
3170 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3171 PI != PE; ++PI)
3172 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3173
3174 eval.begin(CGF);
3175
3176 // Emit the RHS condition as a bool value.
3177 CGF.EmitBlock(RHSBlock);
3178 CGF.incrementProfileCounter(E);
3179 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3180
3181 eval.end(CGF);
3182
3183 // Reaquire the RHS block, as there may be subblocks inserted.
3184 RHSBlock = Builder.GetInsertBlock();
3185
3186 // Emit an unconditional branch from this block to ContBlock. Insert an entry
3187 // into the phi node for the edge with the value of RHSCond.
3188 CGF.EmitBlock(ContBlock);
3189 PN->addIncoming(RHSCond, RHSBlock);
3190
3191 // ZExt result to int.
3192 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3193 }
3194
VisitBinComma(const BinaryOperator * E)3195 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3196 CGF.EmitIgnoredExpr(E->getLHS());
3197 CGF.EnsureInsertPoint();
3198 return Visit(E->getRHS());
3199 }
3200
3201 //===----------------------------------------------------------------------===//
3202 // Other Operators
3203 //===----------------------------------------------------------------------===//
3204
3205 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3206 /// expression is cheap enough and side-effect-free enough to evaluate
3207 /// unconditionally instead of conditionally. This is used to convert control
3208 /// flow into selects in some cases.
isCheapEnoughToEvaluateUnconditionally(const Expr * E,CodeGenFunction & CGF)3209 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3210 CodeGenFunction &CGF) {
3211 // Anything that is an integer or floating point constant is fine.
3212 return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3213
3214 // Even non-volatile automatic variables can't be evaluated unconditionally.
3215 // Referencing a thread_local may cause non-trivial initialization work to
3216 // occur. If we're inside a lambda and one of the variables is from the scope
3217 // outside the lambda, that function may have returned already. Reading its
3218 // locals is a bad idea. Also, these reads may introduce races there didn't
3219 // exist in the source-level program.
3220 }
3221
3222
3223 Value *ScalarExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)3224 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3225 TestAndClearIgnoreResultAssign();
3226
3227 // Bind the common expression if necessary.
3228 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3229
3230 Expr *condExpr = E->getCond();
3231 Expr *lhsExpr = E->getTrueExpr();
3232 Expr *rhsExpr = E->getFalseExpr();
3233
3234 // If the condition constant folds and can be elided, try to avoid emitting
3235 // the condition and the dead arm.
3236 bool CondExprBool;
3237 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3238 Expr *live = lhsExpr, *dead = rhsExpr;
3239 if (!CondExprBool) std::swap(live, dead);
3240
3241 // If the dead side doesn't have labels we need, just emit the Live part.
3242 if (!CGF.ContainsLabel(dead)) {
3243 if (CondExprBool)
3244 CGF.incrementProfileCounter(E);
3245 Value *Result = Visit(live);
3246
3247 // If the live part is a throw expression, it acts like it has a void
3248 // type, so evaluating it returns a null Value*. However, a conditional
3249 // with non-void type must return a non-null Value*.
3250 if (!Result && !E->getType()->isVoidType())
3251 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3252
3253 return Result;
3254 }
3255 }
3256
3257 // OpenCL: If the condition is a vector, we can treat this condition like
3258 // the select function.
3259 if (CGF.getLangOpts().OpenCL
3260 && condExpr->getType()->isVectorType()) {
3261 CGF.incrementProfileCounter(E);
3262
3263 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3264 llvm::Value *LHS = Visit(lhsExpr);
3265 llvm::Value *RHS = Visit(rhsExpr);
3266
3267 llvm::Type *condType = ConvertType(condExpr->getType());
3268 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3269
3270 unsigned numElem = vecTy->getNumElements();
3271 llvm::Type *elemType = vecTy->getElementType();
3272
3273 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3274 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3275 llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3276 llvm::VectorType::get(elemType,
3277 numElem),
3278 "sext");
3279 llvm::Value *tmp2 = Builder.CreateNot(tmp);
3280
3281 // Cast float to int to perform ANDs if necessary.
3282 llvm::Value *RHSTmp = RHS;
3283 llvm::Value *LHSTmp = LHS;
3284 bool wasCast = false;
3285 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3286 if (rhsVTy->getElementType()->isFloatingPointTy()) {
3287 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3288 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3289 wasCast = true;
3290 }
3291
3292 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3293 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3294 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3295 if (wasCast)
3296 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3297
3298 return tmp5;
3299 }
3300
3301 // If this is a really simple expression (like x ? 4 : 5), emit this as a
3302 // select instead of as control flow. We can only do this if it is cheap and
3303 // safe to evaluate the LHS and RHS unconditionally.
3304 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3305 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3306 CGF.incrementProfileCounter(E);
3307
3308 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3309 llvm::Value *LHS = Visit(lhsExpr);
3310 llvm::Value *RHS = Visit(rhsExpr);
3311 if (!LHS) {
3312 // If the conditional has void type, make sure we return a null Value*.
3313 assert(!RHS && "LHS and RHS types must match");
3314 return nullptr;
3315 }
3316 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3317 }
3318
3319 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3320 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3321 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3322
3323 CodeGenFunction::ConditionalEvaluation eval(CGF);
3324 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3325 CGF.getProfileCount(lhsExpr));
3326
3327 CGF.EmitBlock(LHSBlock);
3328 CGF.incrementProfileCounter(E);
3329 eval.begin(CGF);
3330 Value *LHS = Visit(lhsExpr);
3331 eval.end(CGF);
3332
3333 LHSBlock = Builder.GetInsertBlock();
3334 Builder.CreateBr(ContBlock);
3335
3336 CGF.EmitBlock(RHSBlock);
3337 eval.begin(CGF);
3338 Value *RHS = Visit(rhsExpr);
3339 eval.end(CGF);
3340
3341 RHSBlock = Builder.GetInsertBlock();
3342 CGF.EmitBlock(ContBlock);
3343
3344 // If the LHS or RHS is a throw expression, it will be legitimately null.
3345 if (!LHS)
3346 return RHS;
3347 if (!RHS)
3348 return LHS;
3349
3350 // Create a PHI node for the real part.
3351 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3352 PN->addIncoming(LHS, LHSBlock);
3353 PN->addIncoming(RHS, RHSBlock);
3354 return PN;
3355 }
3356
VisitChooseExpr(ChooseExpr * E)3357 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3358 return Visit(E->getChosenSubExpr());
3359 }
3360
VisitVAArgExpr(VAArgExpr * VE)3361 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3362 QualType Ty = VE->getType();
3363
3364 if (Ty->isVariablyModifiedType())
3365 CGF.EmitVariablyModifiedType(Ty);
3366
3367 Address ArgValue = Address::invalid();
3368 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
3369
3370 llvm::Type *ArgTy = ConvertType(VE->getType());
3371
3372 // If EmitVAArg fails, we fall back to the LLVM instruction.
3373 if (!ArgPtr.isValid())
3374 return Builder.CreateVAArg(ArgValue.getPointer(), ArgTy);
3375
3376 // FIXME Volatility.
3377 llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3378
3379 // If EmitVAArg promoted the type, we must truncate it.
3380 if (ArgTy != Val->getType()) {
3381 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3382 Val = Builder.CreateIntToPtr(Val, ArgTy);
3383 else
3384 Val = Builder.CreateTrunc(Val, ArgTy);
3385 }
3386
3387 return Val;
3388 }
3389
VisitBlockExpr(const BlockExpr * block)3390 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3391 return CGF.EmitBlockLiteral(block);
3392 }
3393
VisitAsTypeExpr(AsTypeExpr * E)3394 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3395 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
3396 llvm::Type *DstTy = ConvertType(E->getType());
3397
3398 // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3399 // a shuffle vector instead of a bitcast.
3400 llvm::Type *SrcTy = Src->getType();
3401 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3402 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3403 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3404 if ((numElementsDst == 3 && numElementsSrc == 4)
3405 || (numElementsDst == 4 && numElementsSrc == 3)) {
3406
3407
3408 // In the case of going from int4->float3, a bitcast is needed before
3409 // doing a shuffle.
3410 llvm::Type *srcElemTy =
3411 cast<llvm::VectorType>(SrcTy)->getElementType();
3412 llvm::Type *dstElemTy =
3413 cast<llvm::VectorType>(DstTy)->getElementType();
3414
3415 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3416 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3417 // Create a float type of the same size as the source or destination.
3418 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3419 numElementsSrc);
3420
3421 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3422 }
3423
3424 llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3425
3426 SmallVector<llvm::Constant*, 3> Args;
3427 Args.push_back(Builder.getInt32(0));
3428 Args.push_back(Builder.getInt32(1));
3429 Args.push_back(Builder.getInt32(2));
3430
3431 if (numElementsDst == 4)
3432 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3433
3434 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3435
3436 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3437 }
3438 }
3439
3440 return Builder.CreateBitCast(Src, DstTy, "astype");
3441 }
3442
VisitAtomicExpr(AtomicExpr * E)3443 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3444 return CGF.EmitAtomicExpr(E).getScalarVal();
3445 }
3446
3447 //===----------------------------------------------------------------------===//
3448 // Entry Point into this File
3449 //===----------------------------------------------------------------------===//
3450
3451 /// Emit the computation of the specified expression of scalar type, ignoring
3452 /// the result.
EmitScalarExpr(const Expr * E,bool IgnoreResultAssign)3453 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3454 assert(E && hasScalarEvaluationKind(E->getType()) &&
3455 "Invalid scalar expression to emit");
3456
3457 return ScalarExprEmitter(*this, IgnoreResultAssign)
3458 .Visit(const_cast<Expr *>(E));
3459 }
3460
3461 /// Emit a conversion from the specified type to the specified destination type,
3462 /// both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)3463 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3464 QualType DstTy,
3465 SourceLocation Loc) {
3466 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3467 "Invalid scalar expression to emit");
3468 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
3469 }
3470
3471 /// Emit a conversion from the specified complex type to the specified
3472 /// destination type, where the destination type is an LLVM scalar type.
EmitComplexToScalarConversion(ComplexPairTy Src,QualType SrcTy,QualType DstTy,SourceLocation Loc)3473 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3474 QualType SrcTy,
3475 QualType DstTy,
3476 SourceLocation Loc) {
3477 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3478 "Invalid complex -> scalar conversion");
3479 return ScalarExprEmitter(*this)
3480 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
3481 }
3482
3483
3484 llvm::Value *CodeGenFunction::
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)3485 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3486 bool isInc, bool isPre) {
3487 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3488 }
3489
EmitObjCIsaExpr(const ObjCIsaExpr * E)3490 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3491 // object->isa or (*object).isa
3492 // Generate code as for: *(Class*)object
3493
3494 Expr *BaseExpr = E->getBase();
3495 Address Addr = Address::invalid();
3496 if (BaseExpr->isRValue()) {
3497 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
3498 } else {
3499 Addr = EmitLValue(BaseExpr).getAddress();
3500 }
3501
3502 // Cast the address to Class*.
3503 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
3504 return MakeAddrLValue(Addr, E->getType());
3505 }
3506
3507
EmitCompoundAssignmentLValue(const CompoundAssignOperator * E)3508 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3509 const CompoundAssignOperator *E) {
3510 ScalarExprEmitter Scalar(*this);
3511 Value *Result = nullptr;
3512 switch (E->getOpcode()) {
3513 #define COMPOUND_OP(Op) \
3514 case BO_##Op##Assign: \
3515 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3516 Result)
3517 COMPOUND_OP(Mul);
3518 COMPOUND_OP(Div);
3519 COMPOUND_OP(Rem);
3520 COMPOUND_OP(Add);
3521 COMPOUND_OP(Sub);
3522 COMPOUND_OP(Shl);
3523 COMPOUND_OP(Shr);
3524 COMPOUND_OP(And);
3525 COMPOUND_OP(Xor);
3526 COMPOUND_OP(Or);
3527 #undef COMPOUND_OP
3528
3529 case BO_PtrMemD:
3530 case BO_PtrMemI:
3531 case BO_Mul:
3532 case BO_Div:
3533 case BO_Rem:
3534 case BO_Add:
3535 case BO_Sub:
3536 case BO_Shl:
3537 case BO_Shr:
3538 case BO_LT:
3539 case BO_GT:
3540 case BO_LE:
3541 case BO_GE:
3542 case BO_EQ:
3543 case BO_NE:
3544 case BO_And:
3545 case BO_Xor:
3546 case BO_Or:
3547 case BO_LAnd:
3548 case BO_LOr:
3549 case BO_Assign:
3550 case BO_Comma:
3551 llvm_unreachable("Not valid compound assignment operators");
3552 }
3553
3554 llvm_unreachable("Unhandled compound assignment operator");
3555 }
3556