1 //===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes implement wrappers around llvm::Value in order to
11 // fully represent the range of values for C L- and R- values.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
16 #define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
17 
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Type.h"
20 #include "llvm/IR/Value.h"
21 #include "llvm/IR/Type.h"
22 #include "Address.h"
23 
24 namespace llvm {
25   class Constant;
26   class MDNode;
27 }
28 
29 namespace clang {
30 namespace CodeGen {
31   class AggValueSlot;
32   struct CGBitFieldInfo;
33 
34 /// RValue - This trivial value class is used to represent the result of an
35 /// expression that is evaluated.  It can be one of three things: either a
36 /// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
37 /// address of an aggregate value in memory.
38 class RValue {
39   enum Flavor { Scalar, Complex, Aggregate };
40 
41   // The shift to make to an aggregate's alignment to make it look
42   // like a pointer.
43   enum { AggAlignShift = 4 };
44 
45   // Stores first value and flavor.
46   llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
47   // Stores second value and volatility.
48   llvm::PointerIntPair<llvm::Value *, 1, bool> V2;
49 
50 public:
isScalar()51   bool isScalar() const { return V1.getInt() == Scalar; }
isComplex()52   bool isComplex() const { return V1.getInt() == Complex; }
isAggregate()53   bool isAggregate() const { return V1.getInt() == Aggregate; }
54 
isVolatileQualified()55   bool isVolatileQualified() const { return V2.getInt(); }
56 
57   /// getScalarVal() - Return the Value* of this scalar value.
getScalarVal()58   llvm::Value *getScalarVal() const {
59     assert(isScalar() && "Not a scalar!");
60     return V1.getPointer();
61   }
62 
63   /// getComplexVal - Return the real/imag components of this complex value.
64   ///
getComplexVal()65   std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
66     return std::make_pair(V1.getPointer(), V2.getPointer());
67   }
68 
69   /// getAggregateAddr() - Return the Value* of the address of the aggregate.
getAggregateAddress()70   Address getAggregateAddress() const {
71     assert(isAggregate() && "Not an aggregate!");
72     auto align = reinterpret_cast<uintptr_t>(V2.getPointer()) >> AggAlignShift;
73     return Address(V1.getPointer(), CharUnits::fromQuantity(align));
74   }
getAggregatePointer()75   llvm::Value *getAggregatePointer() const {
76     assert(isAggregate() && "Not an aggregate!");
77     return V1.getPointer();
78   }
79 
getIgnored()80   static RValue getIgnored() {
81     // FIXME: should we make this a more explicit state?
82     return get(nullptr);
83   }
84 
get(llvm::Value * V)85   static RValue get(llvm::Value *V) {
86     RValue ER;
87     ER.V1.setPointer(V);
88     ER.V1.setInt(Scalar);
89     ER.V2.setInt(false);
90     return ER;
91   }
getComplex(llvm::Value * V1,llvm::Value * V2)92   static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
93     RValue ER;
94     ER.V1.setPointer(V1);
95     ER.V2.setPointer(V2);
96     ER.V1.setInt(Complex);
97     ER.V2.setInt(false);
98     return ER;
99   }
getComplex(const std::pair<llvm::Value *,llvm::Value * > & C)100   static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
101     return getComplex(C.first, C.second);
102   }
103   // FIXME: Aggregate rvalues need to retain information about whether they are
104   // volatile or not.  Remove default to find all places that probably get this
105   // wrong.
106   static RValue getAggregate(Address addr, bool isVolatile = false) {
107     RValue ER;
108     ER.V1.setPointer(addr.getPointer());
109     ER.V1.setInt(Aggregate);
110 
111     auto align = static_cast<uintptr_t>(addr.getAlignment().getQuantity());
112     ER.V2.setPointer(reinterpret_cast<llvm::Value*>(align << AggAlignShift));
113     ER.V2.setInt(isVolatile);
114     return ER;
115   }
116 };
117 
118 /// Does an ARC strong l-value have precise lifetime?
119 enum ARCPreciseLifetime_t {
120   ARCImpreciseLifetime, ARCPreciseLifetime
121 };
122 
123 /// The source of the alignment of an l-value; an expression of
124 /// confidence in the alignment actually matching the estimate.
125 enum class AlignmentSource {
126   /// The l-value was an access to a declared entity or something
127   /// equivalently strong, like the address of an array allocated by a
128   /// language runtime.
129   Decl,
130 
131   /// The l-value was considered opaque, so the alignment was
132   /// determined from a type, but that type was an explicitly-aligned
133   /// typedef.
134   AttributedType,
135 
136   /// The l-value was considered opaque, so the alignment was
137   /// determined from a type.
138   Type
139 };
140 
141 /// Given that the base address has the given alignment source, what's
142 /// our confidence in the alignment of the field?
getFieldAlignmentSource(AlignmentSource Source)143 static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) {
144   // For now, we don't distinguish fields of opaque pointers from
145   // top-level declarations, but maybe we should.
146   return AlignmentSource::Decl;
147 }
148 
149 /// LValue - This represents an lvalue references.  Because C/C++ allow
150 /// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
151 /// bitrange.
152 class LValue {
153   enum {
154     Simple,       // This is a normal l-value, use getAddress().
155     VectorElt,    // This is a vector element l-value (V[i]), use getVector*
156     BitField,     // This is a bitfield l-value, use getBitfield*.
157     ExtVectorElt, // This is an extended vector subset, use getExtVectorComp
158     GlobalReg     // This is a register l-value, use getGlobalReg()
159   } LVType;
160 
161   llvm::Value *V;
162 
163   union {
164     // Index into a vector subscript: V[i]
165     llvm::Value *VectorIdx;
166 
167     // ExtVector element subset: V.xyx
168     llvm::Constant *VectorElts;
169 
170     // BitField start bit and size
171     const CGBitFieldInfo *BitFieldInfo;
172   };
173 
174   QualType Type;
175 
176   // 'const' is unused here
177   Qualifiers Quals;
178 
179   // The alignment to use when accessing this lvalue.  (For vector elements,
180   // this is the alignment of the whole vector.)
181   int64_t Alignment;
182 
183   // objective-c's ivar
184   bool Ivar:1;
185 
186   // objective-c's ivar is an array
187   bool ObjIsArray:1;
188 
189   // LValue is non-gc'able for any reason, including being a parameter or local
190   // variable.
191   bool NonGC: 1;
192 
193   // Lvalue is a global reference of an objective-c object
194   bool GlobalObjCRef : 1;
195 
196   // Lvalue is a thread local reference
197   bool ThreadLocalRef : 1;
198 
199   // Lvalue has ARC imprecise lifetime.  We store this inverted to try
200   // to make the default bitfield pattern all-zeroes.
201   bool ImpreciseLifetime : 1;
202 
203   unsigned AlignSource : 2;
204 
205   // This flag shows if a nontemporal load/stores should be used when accessing
206   // this lvalue.
207   bool Nontemporal : 1;
208 
209   Expr *BaseIvarExp;
210 
211   /// Used by struct-path-aware TBAA.
212   QualType TBAABaseType;
213   /// Offset relative to the base type.
214   uint64_t TBAAOffset;
215 
216   /// TBAAInfo - TBAA information to attach to dereferences of this LValue.
217   llvm::MDNode *TBAAInfo;
218 
219 private:
220   void Initialize(QualType Type, Qualifiers Quals,
221                   CharUnits Alignment, AlignmentSource AlignSource,
222                   llvm::MDNode *TBAAInfo = nullptr) {
223     assert((!Alignment.isZero() || Type->isIncompleteType()) &&
224            "initializing l-value with zero alignment!");
225     this->Type = Type;
226     this->Quals = Quals;
227     this->Alignment = Alignment.getQuantity();
228     assert(this->Alignment == Alignment.getQuantity() &&
229            "Alignment exceeds allowed max!");
230     this->AlignSource = unsigned(AlignSource);
231 
232     // Initialize Objective-C flags.
233     this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
234     this->ImpreciseLifetime = false;
235     this->Nontemporal = false;
236     this->ThreadLocalRef = false;
237     this->BaseIvarExp = nullptr;
238 
239     // Initialize fields for TBAA.
240     this->TBAABaseType = Type;
241     this->TBAAOffset = 0;
242     this->TBAAInfo = TBAAInfo;
243   }
244 
245 public:
isSimple()246   bool isSimple() const { return LVType == Simple; }
isVectorElt()247   bool isVectorElt() const { return LVType == VectorElt; }
isBitField()248   bool isBitField() const { return LVType == BitField; }
isExtVectorElt()249   bool isExtVectorElt() const { return LVType == ExtVectorElt; }
isGlobalReg()250   bool isGlobalReg() const { return LVType == GlobalReg; }
251 
isVolatileQualified()252   bool isVolatileQualified() const { return Quals.hasVolatile(); }
isRestrictQualified()253   bool isRestrictQualified() const { return Quals.hasRestrict(); }
getVRQualifiers()254   unsigned getVRQualifiers() const {
255     return Quals.getCVRQualifiers() & ~Qualifiers::Const;
256   }
257 
getType()258   QualType getType() const { return Type; }
259 
getObjCLifetime()260   Qualifiers::ObjCLifetime getObjCLifetime() const {
261     return Quals.getObjCLifetime();
262   }
263 
isObjCIvar()264   bool isObjCIvar() const { return Ivar; }
setObjCIvar(bool Value)265   void setObjCIvar(bool Value) { Ivar = Value; }
266 
isObjCArray()267   bool isObjCArray() const { return ObjIsArray; }
setObjCArray(bool Value)268   void setObjCArray(bool Value) { ObjIsArray = Value; }
269 
isNonGC()270   bool isNonGC () const { return NonGC; }
setNonGC(bool Value)271   void setNonGC(bool Value) { NonGC = Value; }
272 
isGlobalObjCRef()273   bool isGlobalObjCRef() const { return GlobalObjCRef; }
setGlobalObjCRef(bool Value)274   void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }
275 
isThreadLocalRef()276   bool isThreadLocalRef() const { return ThreadLocalRef; }
setThreadLocalRef(bool Value)277   void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}
278 
isARCPreciseLifetime()279   ARCPreciseLifetime_t isARCPreciseLifetime() const {
280     return ARCPreciseLifetime_t(!ImpreciseLifetime);
281   }
setARCPreciseLifetime(ARCPreciseLifetime_t value)282   void setARCPreciseLifetime(ARCPreciseLifetime_t value) {
283     ImpreciseLifetime = (value == ARCImpreciseLifetime);
284   }
isNontemporal()285   bool isNontemporal() const { return Nontemporal; }
setNontemporal(bool Value)286   void setNontemporal(bool Value) { Nontemporal = Value; }
287 
isObjCWeak()288   bool isObjCWeak() const {
289     return Quals.getObjCGCAttr() == Qualifiers::Weak;
290   }
isObjCStrong()291   bool isObjCStrong() const {
292     return Quals.getObjCGCAttr() == Qualifiers::Strong;
293   }
294 
isVolatile()295   bool isVolatile() const {
296     return Quals.hasVolatile();
297   }
298 
getBaseIvarExp()299   Expr *getBaseIvarExp() const { return BaseIvarExp; }
setBaseIvarExp(Expr * V)300   void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }
301 
getTBAABaseType()302   QualType getTBAABaseType() const { return TBAABaseType; }
setTBAABaseType(QualType T)303   void setTBAABaseType(QualType T) { TBAABaseType = T; }
304 
getTBAAOffset()305   uint64_t getTBAAOffset() const { return TBAAOffset; }
setTBAAOffset(uint64_t O)306   void setTBAAOffset(uint64_t O) { TBAAOffset = O; }
307 
getTBAAInfo()308   llvm::MDNode *getTBAAInfo() const { return TBAAInfo; }
setTBAAInfo(llvm::MDNode * N)309   void setTBAAInfo(llvm::MDNode *N) { TBAAInfo = N; }
310 
getQuals()311   const Qualifiers &getQuals() const { return Quals; }
getQuals()312   Qualifiers &getQuals() { return Quals; }
313 
getAddressSpace()314   unsigned getAddressSpace() const { return Quals.getAddressSpace(); }
315 
getAlignment()316   CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); }
setAlignment(CharUnits A)317   void setAlignment(CharUnits A) { Alignment = A.getQuantity(); }
318 
getAlignmentSource()319   AlignmentSource getAlignmentSource() const {
320     return AlignmentSource(AlignSource);
321   }
setAlignmentSource(AlignmentSource Source)322   void setAlignmentSource(AlignmentSource Source) {
323     AlignSource = unsigned(Source);
324   }
325 
326   // simple lvalue
getPointer()327   llvm::Value *getPointer() const {
328     assert(isSimple());
329     return V;
330   }
getAddress()331   Address getAddress() const { return Address(getPointer(), getAlignment()); }
setAddress(Address address)332   void setAddress(Address address) {
333     assert(isSimple());
334     V = address.getPointer();
335     Alignment = address.getAlignment().getQuantity();
336   }
337 
338   // vector elt lvalue
getVectorAddress()339   Address getVectorAddress() const {
340     return Address(getVectorPointer(), getAlignment());
341   }
getVectorPointer()342   llvm::Value *getVectorPointer() const { assert(isVectorElt()); return V; }
getVectorIdx()343   llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }
344 
345   // extended vector elements.
getExtVectorAddress()346   Address getExtVectorAddress() const {
347     return Address(getExtVectorPointer(), getAlignment());
348   }
getExtVectorPointer()349   llvm::Value *getExtVectorPointer() const {
350     assert(isExtVectorElt());
351     return V;
352   }
getExtVectorElts()353   llvm::Constant *getExtVectorElts() const {
354     assert(isExtVectorElt());
355     return VectorElts;
356   }
357 
358   // bitfield lvalue
getBitFieldAddress()359   Address getBitFieldAddress() const {
360     return Address(getBitFieldPointer(), getAlignment());
361   }
getBitFieldPointer()362   llvm::Value *getBitFieldPointer() const { assert(isBitField()); return V; }
getBitFieldInfo()363   const CGBitFieldInfo &getBitFieldInfo() const {
364     assert(isBitField());
365     return *BitFieldInfo;
366   }
367 
368   // global register lvalue
getGlobalReg()369   llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; }
370 
371   static LValue MakeAddr(Address address, QualType type,
372                          ASTContext &Context,
373                          AlignmentSource alignSource,
374                          llvm::MDNode *TBAAInfo = nullptr) {
375     Qualifiers qs = type.getQualifiers();
376     qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));
377 
378     LValue R;
379     R.LVType = Simple;
380     assert(address.getPointer()->getType()->isPointerTy());
381     R.V = address.getPointer();
382     R.Initialize(type, qs, address.getAlignment(), alignSource, TBAAInfo);
383     return R;
384   }
385 
MakeVectorElt(Address vecAddress,llvm::Value * Idx,QualType type,AlignmentSource alignSource)386   static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx,
387                               QualType type, AlignmentSource alignSource) {
388     LValue R;
389     R.LVType = VectorElt;
390     R.V = vecAddress.getPointer();
391     R.VectorIdx = Idx;
392     R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
393                  alignSource);
394     return R;
395   }
396 
MakeExtVectorElt(Address vecAddress,llvm::Constant * Elts,QualType type,AlignmentSource alignSource)397   static LValue MakeExtVectorElt(Address vecAddress, llvm::Constant *Elts,
398                                  QualType type, AlignmentSource alignSource) {
399     LValue R;
400     R.LVType = ExtVectorElt;
401     R.V = vecAddress.getPointer();
402     R.VectorElts = Elts;
403     R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
404                  alignSource);
405     return R;
406   }
407 
408   /// \brief Create a new object to represent a bit-field access.
409   ///
410   /// \param Addr - The base address of the bit-field sequence this
411   /// bit-field refers to.
412   /// \param Info - The information describing how to perform the bit-field
413   /// access.
MakeBitfield(Address Addr,const CGBitFieldInfo & Info,QualType type,AlignmentSource alignSource)414   static LValue MakeBitfield(Address Addr,
415                              const CGBitFieldInfo &Info,
416                              QualType type,
417                              AlignmentSource alignSource) {
418     LValue R;
419     R.LVType = BitField;
420     R.V = Addr.getPointer();
421     R.BitFieldInfo = &Info;
422     R.Initialize(type, type.getQualifiers(), Addr.getAlignment(), alignSource);
423     return R;
424   }
425 
MakeGlobalReg(Address Reg,QualType type)426   static LValue MakeGlobalReg(Address Reg, QualType type) {
427     LValue R;
428     R.LVType = GlobalReg;
429     R.V = Reg.getPointer();
430     R.Initialize(type, type.getQualifiers(), Reg.getAlignment(),
431                  AlignmentSource::Decl);
432     return R;
433   }
434 
asAggregateRValue()435   RValue asAggregateRValue() const {
436     return RValue::getAggregate(getAddress(), isVolatileQualified());
437   }
438 };
439 
440 /// An aggregate value slot.
441 class AggValueSlot {
442   /// The address.
443   llvm::Value *Addr;
444 
445   // Qualifiers
446   Qualifiers Quals;
447 
448   unsigned short Alignment;
449 
450   /// DestructedFlag - This is set to true if some external code is
451   /// responsible for setting up a destructor for the slot.  Otherwise
452   /// the code which constructs it should push the appropriate cleanup.
453   bool DestructedFlag : 1;
454 
455   /// ObjCGCFlag - This is set to true if writing to the memory in the
456   /// slot might require calling an appropriate Objective-C GC
457   /// barrier.  The exact interaction here is unnecessarily mysterious.
458   bool ObjCGCFlag : 1;
459 
460   /// ZeroedFlag - This is set to true if the memory in the slot is
461   /// known to be zero before the assignment into it.  This means that
462   /// zero fields don't need to be set.
463   bool ZeroedFlag : 1;
464 
465   /// AliasedFlag - This is set to true if the slot might be aliased
466   /// and it's not undefined behavior to access it through such an
467   /// alias.  Note that it's always undefined behavior to access a C++
468   /// object that's under construction through an alias derived from
469   /// outside the construction process.
470   ///
471   /// This flag controls whether calls that produce the aggregate
472   /// value may be evaluated directly into the slot, or whether they
473   /// must be evaluated into an unaliased temporary and then memcpy'ed
474   /// over.  Since it's invalid in general to memcpy a non-POD C++
475   /// object, it's important that this flag never be set when
476   /// evaluating an expression which constructs such an object.
477   bool AliasedFlag : 1;
478 
479 public:
480   enum IsAliased_t { IsNotAliased, IsAliased };
481   enum IsDestructed_t { IsNotDestructed, IsDestructed };
482   enum IsZeroed_t { IsNotZeroed, IsZeroed };
483   enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };
484 
485   /// ignored - Returns an aggregate value slot indicating that the
486   /// aggregate value is being ignored.
ignored()487   static AggValueSlot ignored() {
488     return forAddr(Address::invalid(), Qualifiers(), IsNotDestructed,
489                    DoesNotNeedGCBarriers, IsNotAliased);
490   }
491 
492   /// forAddr - Make a slot for an aggregate value.
493   ///
494   /// \param quals - The qualifiers that dictate how the slot should
495   /// be initialied. Only 'volatile' and the Objective-C lifetime
496   /// qualifiers matter.
497   ///
498   /// \param isDestructed - true if something else is responsible
499   ///   for calling destructors on this object
500   /// \param needsGC - true if the slot is potentially located
501   ///   somewhere that ObjC GC calls should be emitted for
502   static AggValueSlot forAddr(Address addr,
503                               Qualifiers quals,
504                               IsDestructed_t isDestructed,
505                               NeedsGCBarriers_t needsGC,
506                               IsAliased_t isAliased,
507                               IsZeroed_t isZeroed = IsNotZeroed) {
508     AggValueSlot AV;
509     if (addr.isValid()) {
510       AV.Addr = addr.getPointer();
511       AV.Alignment = addr.getAlignment().getQuantity();
512     } else {
513       AV.Addr = nullptr;
514       AV.Alignment = 0;
515     }
516     AV.Quals = quals;
517     AV.DestructedFlag = isDestructed;
518     AV.ObjCGCFlag = needsGC;
519     AV.ZeroedFlag = isZeroed;
520     AV.AliasedFlag = isAliased;
521     return AV;
522   }
523 
524   static AggValueSlot forLValue(const LValue &LV,
525                                 IsDestructed_t isDestructed,
526                                 NeedsGCBarriers_t needsGC,
527                                 IsAliased_t isAliased,
528                                 IsZeroed_t isZeroed = IsNotZeroed) {
529     return forAddr(LV.getAddress(),
530                    LV.getQuals(), isDestructed, needsGC, isAliased, isZeroed);
531   }
532 
isExternallyDestructed()533   IsDestructed_t isExternallyDestructed() const {
534     return IsDestructed_t(DestructedFlag);
535   }
536   void setExternallyDestructed(bool destructed = true) {
537     DestructedFlag = destructed;
538   }
539 
getQualifiers()540   Qualifiers getQualifiers() const { return Quals; }
541 
isVolatile()542   bool isVolatile() const {
543     return Quals.hasVolatile();
544   }
545 
setVolatile(bool flag)546   void setVolatile(bool flag) {
547     Quals.setVolatile(flag);
548   }
549 
getObjCLifetime()550   Qualifiers::ObjCLifetime getObjCLifetime() const {
551     return Quals.getObjCLifetime();
552   }
553 
requiresGCollection()554   NeedsGCBarriers_t requiresGCollection() const {
555     return NeedsGCBarriers_t(ObjCGCFlag);
556   }
557 
getPointer()558   llvm::Value *getPointer() const {
559     return Addr;
560   }
561 
getAddress()562   Address getAddress() const {
563     return Address(Addr, getAlignment());
564   }
565 
isIgnored()566   bool isIgnored() const {
567     return Addr == nullptr;
568   }
569 
getAlignment()570   CharUnits getAlignment() const {
571     return CharUnits::fromQuantity(Alignment);
572   }
573 
isPotentiallyAliased()574   IsAliased_t isPotentiallyAliased() const {
575     return IsAliased_t(AliasedFlag);
576   }
577 
asRValue()578   RValue asRValue() const {
579     if (isIgnored()) {
580       return RValue::getIgnored();
581     } else {
582       return RValue::getAggregate(getAddress(), isVolatile());
583     }
584   }
585 
586   void setZeroed(bool V = true) { ZeroedFlag = V; }
isZeroed()587   IsZeroed_t isZeroed() const {
588     return IsZeroed_t(ZeroedFlag);
589   }
590 };
591 
592 }  // end namespace CodeGen
593 }  // end namespace clang
594 
595 #endif
596