1 //===--- DeltaTree.cpp - B-Tree for Rewrite Delta tracking ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the DeltaTree and related classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Rewrite/Core/DeltaTree.h"
15 #include "clang/Basic/LLVM.h"
16 #include <cstdio>
17 #include <cstring>
18 using namespace clang;
19 
20 /// The DeltaTree class is a multiway search tree (BTree) structure with some
21 /// fancy features.  B-Trees are generally more memory and cache efficient
22 /// than binary trees, because they store multiple keys/values in each node.
23 ///
24 /// DeltaTree implements a key/value mapping from FileIndex to Delta, allowing
25 /// fast lookup by FileIndex.  However, an added (important) bonus is that it
26 /// can also efficiently tell us the full accumulated delta for a specific
27 /// file offset as well, without traversing the whole tree.
28 ///
29 /// The nodes of the tree are made up of instances of two classes:
30 /// DeltaTreeNode and DeltaTreeInteriorNode.  The later subclasses the
31 /// former and adds children pointers.  Each node knows the full delta of all
32 /// entries (recursively) contained inside of it, which allows us to get the
33 /// full delta implied by a whole subtree in constant time.
34 
35 namespace {
36   /// SourceDelta - As code in the original input buffer is added and deleted,
37   /// SourceDelta records are used to keep track of how the input SourceLocation
38   /// object is mapped into the output buffer.
39   struct SourceDelta {
40     unsigned FileLoc;
41     int Delta;
42 
get__anonb8815fa70111::SourceDelta43     static SourceDelta get(unsigned Loc, int D) {
44       SourceDelta Delta;
45       Delta.FileLoc = Loc;
46       Delta.Delta = D;
47       return Delta;
48     }
49   };
50 
51   /// DeltaTreeNode - The common part of all nodes.
52   ///
53   class DeltaTreeNode {
54   public:
55     struct InsertResult {
56       DeltaTreeNode *LHS, *RHS;
57       SourceDelta Split;
58     };
59 
60   private:
61     friend class DeltaTreeInteriorNode;
62 
63     /// WidthFactor - This controls the number of K/V slots held in the BTree:
64     /// how wide it is.  Each level of the BTree is guaranteed to have at least
65     /// WidthFactor-1 K/V pairs (except the root) and may have at most
66     /// 2*WidthFactor-1 K/V pairs.
67     enum { WidthFactor = 8 };
68 
69     /// Values - This tracks the SourceDelta's currently in this node.
70     ///
71     SourceDelta Values[2*WidthFactor-1];
72 
73     /// NumValuesUsed - This tracks the number of values this node currently
74     /// holds.
75     unsigned char NumValuesUsed;
76 
77     /// IsLeaf - This is true if this is a leaf of the btree.  If false, this is
78     /// an interior node, and is actually an instance of DeltaTreeInteriorNode.
79     bool IsLeaf;
80 
81     /// FullDelta - This is the full delta of all the values in this node and
82     /// all children nodes.
83     int FullDelta;
84   public:
DeltaTreeNode(bool isLeaf=true)85     DeltaTreeNode(bool isLeaf = true)
86       : NumValuesUsed(0), IsLeaf(isLeaf), FullDelta(0) {}
87 
isLeaf() const88     bool isLeaf() const { return IsLeaf; }
getFullDelta() const89     int getFullDelta() const { return FullDelta; }
isFull() const90     bool isFull() const { return NumValuesUsed == 2*WidthFactor-1; }
91 
getNumValuesUsed() const92     unsigned getNumValuesUsed() const { return NumValuesUsed; }
getValue(unsigned i) const93     const SourceDelta &getValue(unsigned i) const {
94       assert(i < NumValuesUsed && "Invalid value #");
95       return Values[i];
96     }
getValue(unsigned i)97     SourceDelta &getValue(unsigned i) {
98       assert(i < NumValuesUsed && "Invalid value #");
99       return Values[i];
100     }
101 
102     /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
103     /// this node.  If insertion is easy, do it and return false.  Otherwise,
104     /// split the node, populate InsertRes with info about the split, and return
105     /// true.
106     bool DoInsertion(unsigned FileIndex, int Delta, InsertResult *InsertRes);
107 
108     void DoSplit(InsertResult &InsertRes);
109 
110 
111     /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
112     /// local walk over our contained deltas.
113     void RecomputeFullDeltaLocally();
114 
115     void Destroy();
116   };
117 } // end anonymous namespace
118 
119 namespace {
120   /// DeltaTreeInteriorNode - When isLeaf = false, a node has child pointers.
121   /// This class tracks them.
122   class DeltaTreeInteriorNode : public DeltaTreeNode {
123     DeltaTreeNode *Children[2*WidthFactor];
~DeltaTreeInteriorNode()124     ~DeltaTreeInteriorNode() {
125       for (unsigned i = 0, e = NumValuesUsed+1; i != e; ++i)
126         Children[i]->Destroy();
127     }
128     friend class DeltaTreeNode;
129   public:
DeltaTreeInteriorNode()130     DeltaTreeInteriorNode() : DeltaTreeNode(false /*nonleaf*/) {}
131 
DeltaTreeInteriorNode(const InsertResult & IR)132     DeltaTreeInteriorNode(const InsertResult &IR)
133       : DeltaTreeNode(false /*nonleaf*/) {
134       Children[0] = IR.LHS;
135       Children[1] = IR.RHS;
136       Values[0] = IR.Split;
137       FullDelta = IR.LHS->getFullDelta()+IR.RHS->getFullDelta()+IR.Split.Delta;
138       NumValuesUsed = 1;
139     }
140 
getChild(unsigned i) const141     const DeltaTreeNode *getChild(unsigned i) const {
142       assert(i < getNumValuesUsed()+1 && "Invalid child");
143       return Children[i];
144     }
getChild(unsigned i)145     DeltaTreeNode *getChild(unsigned i) {
146       assert(i < getNumValuesUsed()+1 && "Invalid child");
147       return Children[i];
148     }
149 
classof(const DeltaTreeNode * N)150     static inline bool classof(const DeltaTreeNode *N) { return !N->isLeaf(); }
151   };
152 }
153 
154 
155 /// Destroy - A 'virtual' destructor.
Destroy()156 void DeltaTreeNode::Destroy() {
157   if (isLeaf())
158     delete this;
159   else
160     delete cast<DeltaTreeInteriorNode>(this);
161 }
162 
163 /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
164 /// local walk over our contained deltas.
RecomputeFullDeltaLocally()165 void DeltaTreeNode::RecomputeFullDeltaLocally() {
166   int NewFullDelta = 0;
167   for (unsigned i = 0, e = getNumValuesUsed(); i != e; ++i)
168     NewFullDelta += Values[i].Delta;
169   if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this))
170     for (unsigned i = 0, e = getNumValuesUsed()+1; i != e; ++i)
171       NewFullDelta += IN->getChild(i)->getFullDelta();
172   FullDelta = NewFullDelta;
173 }
174 
175 /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
176 /// this node.  If insertion is easy, do it and return false.  Otherwise,
177 /// split the node, populate InsertRes with info about the split, and return
178 /// true.
DoInsertion(unsigned FileIndex,int Delta,InsertResult * InsertRes)179 bool DeltaTreeNode::DoInsertion(unsigned FileIndex, int Delta,
180                                 InsertResult *InsertRes) {
181   // Maintain full delta for this node.
182   FullDelta += Delta;
183 
184   // Find the insertion point, the first delta whose index is >= FileIndex.
185   unsigned i = 0, e = getNumValuesUsed();
186   while (i != e && FileIndex > getValue(i).FileLoc)
187     ++i;
188 
189   // If we found an a record for exactly this file index, just merge this
190   // value into the pre-existing record and finish early.
191   if (i != e && getValue(i).FileLoc == FileIndex) {
192     // NOTE: Delta could drop to zero here.  This means that the delta entry is
193     // useless and could be removed.  Supporting erases is more complex than
194     // leaving an entry with Delta=0, so we just leave an entry with Delta=0 in
195     // the tree.
196     Values[i].Delta += Delta;
197     return false;
198   }
199 
200   // Otherwise, we found an insertion point, and we know that the value at the
201   // specified index is > FileIndex.  Handle the leaf case first.
202   if (isLeaf()) {
203     if (!isFull()) {
204       // For an insertion into a non-full leaf node, just insert the value in
205       // its sorted position.  This requires moving later values over.
206       if (i != e)
207         memmove(&Values[i+1], &Values[i], sizeof(Values[0])*(e-i));
208       Values[i] = SourceDelta::get(FileIndex, Delta);
209       ++NumValuesUsed;
210       return false;
211     }
212 
213     // Otherwise, if this is leaf is full, split the node at its median, insert
214     // the value into one of the children, and return the result.
215     assert(InsertRes && "No result location specified");
216     DoSplit(*InsertRes);
217 
218     if (InsertRes->Split.FileLoc > FileIndex)
219       InsertRes->LHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/);
220     else
221       InsertRes->RHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/);
222     return true;
223   }
224 
225   // Otherwise, this is an interior node.  Send the request down the tree.
226   DeltaTreeInteriorNode *IN = cast<DeltaTreeInteriorNode>(this);
227   if (!IN->Children[i]->DoInsertion(FileIndex, Delta, InsertRes))
228     return false; // If there was space in the child, just return.
229 
230   // Okay, this split the subtree, producing a new value and two children to
231   // insert here.  If this node is non-full, we can just insert it directly.
232   if (!isFull()) {
233     // Now that we have two nodes and a new element, insert the perclated value
234     // into ourself by moving all the later values/children down, then inserting
235     // the new one.
236     if (i != e)
237       memmove(&IN->Children[i+2], &IN->Children[i+1],
238               (e-i)*sizeof(IN->Children[0]));
239     IN->Children[i] = InsertRes->LHS;
240     IN->Children[i+1] = InsertRes->RHS;
241 
242     if (e != i)
243       memmove(&Values[i+1], &Values[i], (e-i)*sizeof(Values[0]));
244     Values[i] = InsertRes->Split;
245     ++NumValuesUsed;
246     return false;
247   }
248 
249   // Finally, if this interior node was full and a node is percolated up, split
250   // ourself and return that up the chain.  Start by saving all our info to
251   // avoid having the split clobber it.
252   IN->Children[i] = InsertRes->LHS;
253   DeltaTreeNode *SubRHS = InsertRes->RHS;
254   SourceDelta SubSplit = InsertRes->Split;
255 
256   // Do the split.
257   DoSplit(*InsertRes);
258 
259   // Figure out where to insert SubRHS/NewSplit.
260   DeltaTreeInteriorNode *InsertSide;
261   if (SubSplit.FileLoc < InsertRes->Split.FileLoc)
262     InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->LHS);
263   else
264     InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->RHS);
265 
266   // We now have a non-empty interior node 'InsertSide' to insert
267   // SubRHS/SubSplit into.  Find out where to insert SubSplit.
268 
269   // Find the insertion point, the first delta whose index is >SubSplit.FileLoc.
270   i = 0; e = InsertSide->getNumValuesUsed();
271   while (i != e && SubSplit.FileLoc > InsertSide->getValue(i).FileLoc)
272     ++i;
273 
274   // Now we know that i is the place to insert the split value into.  Insert it
275   // and the child right after it.
276   if (i != e)
277     memmove(&InsertSide->Children[i+2], &InsertSide->Children[i+1],
278             (e-i)*sizeof(IN->Children[0]));
279   InsertSide->Children[i+1] = SubRHS;
280 
281   if (e != i)
282     memmove(&InsertSide->Values[i+1], &InsertSide->Values[i],
283             (e-i)*sizeof(Values[0]));
284   InsertSide->Values[i] = SubSplit;
285   ++InsertSide->NumValuesUsed;
286   InsertSide->FullDelta += SubSplit.Delta + SubRHS->getFullDelta();
287   return true;
288 }
289 
290 /// DoSplit - Split the currently full node (which has 2*WidthFactor-1 values)
291 /// into two subtrees each with "WidthFactor-1" values and a pivot value.
292 /// Return the pieces in InsertRes.
DoSplit(InsertResult & InsertRes)293 void DeltaTreeNode::DoSplit(InsertResult &InsertRes) {
294   assert(isFull() && "Why split a non-full node?");
295 
296   // Since this node is full, it contains 2*WidthFactor-1 values.  We move
297   // the first 'WidthFactor-1' values to the LHS child (which we leave in this
298   // node), propagate one value up, and move the last 'WidthFactor-1' values
299   // into the RHS child.
300 
301   // Create the new child node.
302   DeltaTreeNode *NewNode;
303   if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this)) {
304     // If this is an interior node, also move over 'WidthFactor' children
305     // into the new node.
306     DeltaTreeInteriorNode *New = new DeltaTreeInteriorNode();
307     memcpy(&New->Children[0], &IN->Children[WidthFactor],
308            WidthFactor*sizeof(IN->Children[0]));
309     NewNode = New;
310   } else {
311     // Just create the new leaf node.
312     NewNode = new DeltaTreeNode();
313   }
314 
315   // Move over the last 'WidthFactor-1' values from here to NewNode.
316   memcpy(&NewNode->Values[0], &Values[WidthFactor],
317          (WidthFactor-1)*sizeof(Values[0]));
318 
319   // Decrease the number of values in the two nodes.
320   NewNode->NumValuesUsed = NumValuesUsed = WidthFactor-1;
321 
322   // Recompute the two nodes' full delta.
323   NewNode->RecomputeFullDeltaLocally();
324   RecomputeFullDeltaLocally();
325 
326   InsertRes.LHS = this;
327   InsertRes.RHS = NewNode;
328   InsertRes.Split = Values[WidthFactor-1];
329 }
330 
331 
332 
333 //===----------------------------------------------------------------------===//
334 //                        DeltaTree Implementation
335 //===----------------------------------------------------------------------===//
336 
337 //#define VERIFY_TREE
338 
339 #ifdef VERIFY_TREE
340 /// VerifyTree - Walk the btree performing assertions on various properties to
341 /// verify consistency.  This is useful for debugging new changes to the tree.
VerifyTree(const DeltaTreeNode * N)342 static void VerifyTree(const DeltaTreeNode *N) {
343   const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(N);
344   if (IN == 0) {
345     // Verify leaves, just ensure that FullDelta matches up and the elements
346     // are in proper order.
347     int FullDelta = 0;
348     for (unsigned i = 0, e = N->getNumValuesUsed(); i != e; ++i) {
349       if (i)
350         assert(N->getValue(i-1).FileLoc < N->getValue(i).FileLoc);
351       FullDelta += N->getValue(i).Delta;
352     }
353     assert(FullDelta == N->getFullDelta());
354     return;
355   }
356 
357   // Verify interior nodes: Ensure that FullDelta matches up and the
358   // elements are in proper order and the children are in proper order.
359   int FullDelta = 0;
360   for (unsigned i = 0, e = IN->getNumValuesUsed(); i != e; ++i) {
361     const SourceDelta &IVal = N->getValue(i);
362     const DeltaTreeNode *IChild = IN->getChild(i);
363     if (i)
364       assert(IN->getValue(i-1).FileLoc < IVal.FileLoc);
365     FullDelta += IVal.Delta;
366     FullDelta += IChild->getFullDelta();
367 
368     // The largest value in child #i should be smaller than FileLoc.
369     assert(IChild->getValue(IChild->getNumValuesUsed()-1).FileLoc <
370            IVal.FileLoc);
371 
372     // The smallest value in child #i+1 should be larger than FileLoc.
373     assert(IN->getChild(i+1)->getValue(0).FileLoc > IVal.FileLoc);
374     VerifyTree(IChild);
375   }
376 
377   FullDelta += IN->getChild(IN->getNumValuesUsed())->getFullDelta();
378 
379   assert(FullDelta == N->getFullDelta());
380 }
381 #endif  // VERIFY_TREE
382 
getRoot(void * Root)383 static DeltaTreeNode *getRoot(void *Root) {
384   return (DeltaTreeNode*)Root;
385 }
386 
DeltaTree()387 DeltaTree::DeltaTree() {
388   Root = new DeltaTreeNode();
389 }
DeltaTree(const DeltaTree & RHS)390 DeltaTree::DeltaTree(const DeltaTree &RHS) {
391   // Currently we only support copying when the RHS is empty.
392   assert(getRoot(RHS.Root)->getNumValuesUsed() == 0 &&
393          "Can only copy empty tree");
394   Root = new DeltaTreeNode();
395 }
396 
~DeltaTree()397 DeltaTree::~DeltaTree() {
398   getRoot(Root)->Destroy();
399 }
400 
401 /// getDeltaAt - Return the accumulated delta at the specified file offset.
402 /// This includes all insertions or delections that occurred *before* the
403 /// specified file index.
getDeltaAt(unsigned FileIndex) const404 int DeltaTree::getDeltaAt(unsigned FileIndex) const {
405   const DeltaTreeNode *Node = getRoot(Root);
406 
407   int Result = 0;
408 
409   // Walk down the tree.
410   while (1) {
411     // For all nodes, include any local deltas before the specified file
412     // index by summing them up directly.  Keep track of how many were
413     // included.
414     unsigned NumValsGreater = 0;
415     for (unsigned e = Node->getNumValuesUsed(); NumValsGreater != e;
416          ++NumValsGreater) {
417       const SourceDelta &Val = Node->getValue(NumValsGreater);
418 
419       if (Val.FileLoc >= FileIndex)
420         break;
421       Result += Val.Delta;
422     }
423 
424     // If we have an interior node, include information about children and
425     // recurse.  Otherwise, if we have a leaf, we're done.
426     const DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(Node);
427     if (!IN) return Result;
428 
429     // Include any children to the left of the values we skipped, all of
430     // their deltas should be included as well.
431     for (unsigned i = 0; i != NumValsGreater; ++i)
432       Result += IN->getChild(i)->getFullDelta();
433 
434     // If we found exactly the value we were looking for, break off the
435     // search early.  There is no need to search the RHS of the value for
436     // partial results.
437     if (NumValsGreater != Node->getNumValuesUsed() &&
438         Node->getValue(NumValsGreater).FileLoc == FileIndex)
439       return Result+IN->getChild(NumValsGreater)->getFullDelta();
440 
441     // Otherwise, traverse down the tree.  The selected subtree may be
442     // partially included in the range.
443     Node = IN->getChild(NumValsGreater);
444   }
445   // NOT REACHED.
446 }
447 
448 /// AddDelta - When a change is made that shifts around the text buffer,
449 /// this method is used to record that info.  It inserts a delta of 'Delta'
450 /// into the current DeltaTree at offset FileIndex.
AddDelta(unsigned FileIndex,int Delta)451 void DeltaTree::AddDelta(unsigned FileIndex, int Delta) {
452   assert(Delta && "Adding a noop?");
453   DeltaTreeNode *MyRoot = getRoot(Root);
454 
455   DeltaTreeNode::InsertResult InsertRes;
456   if (MyRoot->DoInsertion(FileIndex, Delta, &InsertRes)) {
457     Root = MyRoot = new DeltaTreeInteriorNode(InsertRes);
458   }
459 
460 #ifdef VERIFY_TREE
461   VerifyTree(MyRoot);
462 #endif
463 }
464 
465