1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for declarations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTLambda.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/CommentDiagnostic.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclTemplate.h"
25 #include "clang/AST/EvaluatedExprVisitor.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
33 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
34 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
35 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
36 #include "clang/Sema/CXXFieldCollector.h"
37 #include "clang/Sema/DeclSpec.h"
38 #include "clang/Sema/DelayedDiagnostic.h"
39 #include "clang/Sema/Initialization.h"
40 #include "clang/Sema/Lookup.h"
41 #include "clang/Sema/ParsedTemplate.h"
42 #include "clang/Sema/Scope.h"
43 #include "clang/Sema/ScopeInfo.h"
44 #include "clang/Sema/Template.h"
45 #include "llvm/ADT/SmallString.h"
46 #include "llvm/ADT/Triple.h"
47 #include <algorithm>
48 #include <cstring>
49 #include <functional>
50 using namespace clang;
51 using namespace sema;
52
ConvertDeclToDeclGroup(Decl * Ptr,Decl * OwnedType)53 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
54 if (OwnedType) {
55 Decl *Group[2] = { OwnedType, Ptr };
56 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
57 }
58
59 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
60 }
61
62 namespace {
63
64 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
65 public:
TypeNameValidatorCCC(bool AllowInvalid,bool WantClass=false,bool AllowTemplates=false)66 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false,
67 bool AllowTemplates=false)
68 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
69 AllowClassTemplates(AllowTemplates) {
70 WantExpressionKeywords = false;
71 WantCXXNamedCasts = false;
72 WantRemainingKeywords = false;
73 }
74
ValidateCandidate(const TypoCorrection & candidate)75 bool ValidateCandidate(const TypoCorrection &candidate) override {
76 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
77 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
78 bool AllowedTemplate = AllowClassTemplates && isa<ClassTemplateDecl>(ND);
79 return (IsType || AllowedTemplate) &&
80 (AllowInvalidDecl || !ND->isInvalidDecl());
81 }
82 return !WantClassName && candidate.isKeyword();
83 }
84
85 private:
86 bool AllowInvalidDecl;
87 bool WantClassName;
88 bool AllowClassTemplates;
89 };
90
91 }
92
93 /// \brief Determine whether the token kind starts a simple-type-specifier.
isSimpleTypeSpecifier(tok::TokenKind Kind) const94 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
95 switch (Kind) {
96 // FIXME: Take into account the current language when deciding whether a
97 // token kind is a valid type specifier
98 case tok::kw_short:
99 case tok::kw_long:
100 case tok::kw___int64:
101 case tok::kw___int128:
102 case tok::kw_signed:
103 case tok::kw_unsigned:
104 case tok::kw_void:
105 case tok::kw_char:
106 case tok::kw_int:
107 case tok::kw_half:
108 case tok::kw_float:
109 case tok::kw_double:
110 case tok::kw_wchar_t:
111 case tok::kw_bool:
112 case tok::kw___underlying_type:
113 case tok::kw___auto_type:
114 return true;
115
116 case tok::annot_typename:
117 case tok::kw_char16_t:
118 case tok::kw_char32_t:
119 case tok::kw_typeof:
120 case tok::annot_decltype:
121 case tok::kw_decltype:
122 return getLangOpts().CPlusPlus;
123
124 default:
125 break;
126 }
127
128 return false;
129 }
130
131 namespace {
132 enum class UnqualifiedTypeNameLookupResult {
133 NotFound,
134 FoundNonType,
135 FoundType
136 };
137 } // namespace
138
139 /// \brief Tries to perform unqualified lookup of the type decls in bases for
140 /// dependent class.
141 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
142 /// type decl, \a FoundType if only type decls are found.
143 static UnqualifiedTypeNameLookupResult
lookupUnqualifiedTypeNameInBase(Sema & S,const IdentifierInfo & II,SourceLocation NameLoc,const CXXRecordDecl * RD)144 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
145 SourceLocation NameLoc,
146 const CXXRecordDecl *RD) {
147 if (!RD->hasDefinition())
148 return UnqualifiedTypeNameLookupResult::NotFound;
149 // Look for type decls in base classes.
150 UnqualifiedTypeNameLookupResult FoundTypeDecl =
151 UnqualifiedTypeNameLookupResult::NotFound;
152 for (const auto &Base : RD->bases()) {
153 const CXXRecordDecl *BaseRD = nullptr;
154 if (auto *BaseTT = Base.getType()->getAs<TagType>())
155 BaseRD = BaseTT->getAsCXXRecordDecl();
156 else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
157 // Look for type decls in dependent base classes that have known primary
158 // templates.
159 if (!TST || !TST->isDependentType())
160 continue;
161 auto *TD = TST->getTemplateName().getAsTemplateDecl();
162 if (!TD)
163 continue;
164 auto *BasePrimaryTemplate =
165 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl());
166 if (!BasePrimaryTemplate)
167 continue;
168 BaseRD = BasePrimaryTemplate;
169 }
170 if (BaseRD) {
171 for (NamedDecl *ND : BaseRD->lookup(&II)) {
172 if (!isa<TypeDecl>(ND))
173 return UnqualifiedTypeNameLookupResult::FoundNonType;
174 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
175 }
176 if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
177 switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
178 case UnqualifiedTypeNameLookupResult::FoundNonType:
179 return UnqualifiedTypeNameLookupResult::FoundNonType;
180 case UnqualifiedTypeNameLookupResult::FoundType:
181 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
182 break;
183 case UnqualifiedTypeNameLookupResult::NotFound:
184 break;
185 }
186 }
187 }
188 }
189
190 return FoundTypeDecl;
191 }
192
recoverFromTypeInKnownDependentBase(Sema & S,const IdentifierInfo & II,SourceLocation NameLoc)193 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
194 const IdentifierInfo &II,
195 SourceLocation NameLoc) {
196 // Lookup in the parent class template context, if any.
197 const CXXRecordDecl *RD = nullptr;
198 UnqualifiedTypeNameLookupResult FoundTypeDecl =
199 UnqualifiedTypeNameLookupResult::NotFound;
200 for (DeclContext *DC = S.CurContext;
201 DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
202 DC = DC->getParent()) {
203 // Look for type decls in dependent base classes that have known primary
204 // templates.
205 RD = dyn_cast<CXXRecordDecl>(DC);
206 if (RD && RD->getDescribedClassTemplate())
207 FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
208 }
209 if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
210 return ParsedType();
211
212 // We found some types in dependent base classes. Recover as if the user
213 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
214 // lookup during template instantiation.
215 S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
216
217 ASTContext &Context = S.Context;
218 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
219 cast<Type>(Context.getRecordType(RD)));
220 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
221
222 CXXScopeSpec SS;
223 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
224
225 TypeLocBuilder Builder;
226 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
227 DepTL.setNameLoc(NameLoc);
228 DepTL.setElaboratedKeywordLoc(SourceLocation());
229 DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
230 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
231 }
232
233 /// \brief If the identifier refers to a type name within this scope,
234 /// return the declaration of that type.
235 ///
236 /// This routine performs ordinary name lookup of the identifier II
237 /// within the given scope, with optional C++ scope specifier SS, to
238 /// determine whether the name refers to a type. If so, returns an
239 /// opaque pointer (actually a QualType) corresponding to that
240 /// type. Otherwise, returns NULL.
getTypeName(const IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec * SS,bool isClassName,bool HasTrailingDot,ParsedType ObjectTypePtr,bool IsCtorOrDtorName,bool WantNontrivialTypeSourceInfo,IdentifierInfo ** CorrectedII)241 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
242 Scope *S, CXXScopeSpec *SS,
243 bool isClassName, bool HasTrailingDot,
244 ParsedType ObjectTypePtr,
245 bool IsCtorOrDtorName,
246 bool WantNontrivialTypeSourceInfo,
247 IdentifierInfo **CorrectedII) {
248 // Determine where we will perform name lookup.
249 DeclContext *LookupCtx = nullptr;
250 if (ObjectTypePtr) {
251 QualType ObjectType = ObjectTypePtr.get();
252 if (ObjectType->isRecordType())
253 LookupCtx = computeDeclContext(ObjectType);
254 } else if (SS && SS->isNotEmpty()) {
255 LookupCtx = computeDeclContext(*SS, false);
256
257 if (!LookupCtx) {
258 if (isDependentScopeSpecifier(*SS)) {
259 // C++ [temp.res]p3:
260 // A qualified-id that refers to a type and in which the
261 // nested-name-specifier depends on a template-parameter (14.6.2)
262 // shall be prefixed by the keyword typename to indicate that the
263 // qualified-id denotes a type, forming an
264 // elaborated-type-specifier (7.1.5.3).
265 //
266 // We therefore do not perform any name lookup if the result would
267 // refer to a member of an unknown specialization.
268 if (!isClassName && !IsCtorOrDtorName)
269 return ParsedType();
270
271 // We know from the grammar that this name refers to a type,
272 // so build a dependent node to describe the type.
273 if (WantNontrivialTypeSourceInfo)
274 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
275
276 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
277 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
278 II, NameLoc);
279 return ParsedType::make(T);
280 }
281
282 return ParsedType();
283 }
284
285 if (!LookupCtx->isDependentContext() &&
286 RequireCompleteDeclContext(*SS, LookupCtx))
287 return ParsedType();
288 }
289
290 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
291 // lookup for class-names.
292 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
293 LookupOrdinaryName;
294 LookupResult Result(*this, &II, NameLoc, Kind);
295 if (LookupCtx) {
296 // Perform "qualified" name lookup into the declaration context we
297 // computed, which is either the type of the base of a member access
298 // expression or the declaration context associated with a prior
299 // nested-name-specifier.
300 LookupQualifiedName(Result, LookupCtx);
301
302 if (ObjectTypePtr && Result.empty()) {
303 // C++ [basic.lookup.classref]p3:
304 // If the unqualified-id is ~type-name, the type-name is looked up
305 // in the context of the entire postfix-expression. If the type T of
306 // the object expression is of a class type C, the type-name is also
307 // looked up in the scope of class C. At least one of the lookups shall
308 // find a name that refers to (possibly cv-qualified) T.
309 LookupName(Result, S);
310 }
311 } else {
312 // Perform unqualified name lookup.
313 LookupName(Result, S);
314
315 // For unqualified lookup in a class template in MSVC mode, look into
316 // dependent base classes where the primary class template is known.
317 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
318 if (ParsedType TypeInBase =
319 recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
320 return TypeInBase;
321 }
322 }
323
324 NamedDecl *IIDecl = nullptr;
325 switch (Result.getResultKind()) {
326 case LookupResult::NotFound:
327 case LookupResult::NotFoundInCurrentInstantiation:
328 if (CorrectedII) {
329 TypoCorrection Correction = CorrectTypo(
330 Result.getLookupNameInfo(), Kind, S, SS,
331 llvm::make_unique<TypeNameValidatorCCC>(true, isClassName),
332 CTK_ErrorRecovery);
333 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
334 TemplateTy Template;
335 bool MemberOfUnknownSpecialization;
336 UnqualifiedId TemplateName;
337 TemplateName.setIdentifier(NewII, NameLoc);
338 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
339 CXXScopeSpec NewSS, *NewSSPtr = SS;
340 if (SS && NNS) {
341 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
342 NewSSPtr = &NewSS;
343 }
344 if (Correction && (NNS || NewII != &II) &&
345 // Ignore a correction to a template type as the to-be-corrected
346 // identifier is not a template (typo correction for template names
347 // is handled elsewhere).
348 !(getLangOpts().CPlusPlus && NewSSPtr &&
349 isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
350 false, Template, MemberOfUnknownSpecialization))) {
351 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
352 isClassName, HasTrailingDot, ObjectTypePtr,
353 IsCtorOrDtorName,
354 WantNontrivialTypeSourceInfo);
355 if (Ty) {
356 diagnoseTypo(Correction,
357 PDiag(diag::err_unknown_type_or_class_name_suggest)
358 << Result.getLookupName() << isClassName);
359 if (SS && NNS)
360 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
361 *CorrectedII = NewII;
362 return Ty;
363 }
364 }
365 }
366 // If typo correction failed or was not performed, fall through
367 case LookupResult::FoundOverloaded:
368 case LookupResult::FoundUnresolvedValue:
369 Result.suppressDiagnostics();
370 return ParsedType();
371
372 case LookupResult::Ambiguous:
373 // Recover from type-hiding ambiguities by hiding the type. We'll
374 // do the lookup again when looking for an object, and we can
375 // diagnose the error then. If we don't do this, then the error
376 // about hiding the type will be immediately followed by an error
377 // that only makes sense if the identifier was treated like a type.
378 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
379 Result.suppressDiagnostics();
380 return ParsedType();
381 }
382
383 // Look to see if we have a type anywhere in the list of results.
384 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
385 Res != ResEnd; ++Res) {
386 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
387 if (!IIDecl ||
388 (*Res)->getLocation().getRawEncoding() <
389 IIDecl->getLocation().getRawEncoding())
390 IIDecl = *Res;
391 }
392 }
393
394 if (!IIDecl) {
395 // None of the entities we found is a type, so there is no way
396 // to even assume that the result is a type. In this case, don't
397 // complain about the ambiguity. The parser will either try to
398 // perform this lookup again (e.g., as an object name), which
399 // will produce the ambiguity, or will complain that it expected
400 // a type name.
401 Result.suppressDiagnostics();
402 return ParsedType();
403 }
404
405 // We found a type within the ambiguous lookup; diagnose the
406 // ambiguity and then return that type. This might be the right
407 // answer, or it might not be, but it suppresses any attempt to
408 // perform the name lookup again.
409 break;
410
411 case LookupResult::Found:
412 IIDecl = Result.getFoundDecl();
413 break;
414 }
415
416 assert(IIDecl && "Didn't find decl");
417
418 QualType T;
419 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
420 DiagnoseUseOfDecl(IIDecl, NameLoc);
421
422 T = Context.getTypeDeclType(TD);
423 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
424
425 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
426 // constructor or destructor name (in such a case, the scope specifier
427 // will be attached to the enclosing Expr or Decl node).
428 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
429 if (WantNontrivialTypeSourceInfo) {
430 // Construct a type with type-source information.
431 TypeLocBuilder Builder;
432 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
433
434 T = getElaboratedType(ETK_None, *SS, T);
435 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
436 ElabTL.setElaboratedKeywordLoc(SourceLocation());
437 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
438 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
439 } else {
440 T = getElaboratedType(ETK_None, *SS, T);
441 }
442 }
443 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
444 (void)DiagnoseUseOfDecl(IDecl, NameLoc);
445 if (!HasTrailingDot)
446 T = Context.getObjCInterfaceType(IDecl);
447 }
448
449 if (T.isNull()) {
450 // If it's not plausibly a type, suppress diagnostics.
451 Result.suppressDiagnostics();
452 return ParsedType();
453 }
454 return ParsedType::make(T);
455 }
456
457 // Builds a fake NNS for the given decl context.
458 static NestedNameSpecifier *
synthesizeCurrentNestedNameSpecifier(ASTContext & Context,DeclContext * DC)459 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
460 for (;; DC = DC->getLookupParent()) {
461 DC = DC->getPrimaryContext();
462 auto *ND = dyn_cast<NamespaceDecl>(DC);
463 if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
464 return NestedNameSpecifier::Create(Context, nullptr, ND);
465 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
466 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
467 RD->getTypeForDecl());
468 else if (isa<TranslationUnitDecl>(DC))
469 return NestedNameSpecifier::GlobalSpecifier(Context);
470 }
471 llvm_unreachable("something isn't in TU scope?");
472 }
473
ActOnDelayedDefaultTemplateArg(const IdentifierInfo & II,SourceLocation NameLoc)474 ParsedType Sema::ActOnDelayedDefaultTemplateArg(const IdentifierInfo &II,
475 SourceLocation NameLoc) {
476 // Accepting an undeclared identifier as a default argument for a template
477 // type parameter is a Microsoft extension.
478 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
479
480 // Build a fake DependentNameType that will perform lookup into CurContext at
481 // instantiation time. The name specifier isn't dependent, so template
482 // instantiation won't transform it. It will retry the lookup, however.
483 NestedNameSpecifier *NNS =
484 synthesizeCurrentNestedNameSpecifier(Context, CurContext);
485 QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
486
487 // Build type location information. We synthesized the qualifier, so we have
488 // to build a fake NestedNameSpecifierLoc.
489 NestedNameSpecifierLocBuilder NNSLocBuilder;
490 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
491 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
492
493 TypeLocBuilder Builder;
494 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
495 DepTL.setNameLoc(NameLoc);
496 DepTL.setElaboratedKeywordLoc(SourceLocation());
497 DepTL.setQualifierLoc(QualifierLoc);
498 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
499 }
500
501 /// isTagName() - This method is called *for error recovery purposes only*
502 /// to determine if the specified name is a valid tag name ("struct foo"). If
503 /// so, this returns the TST for the tag corresponding to it (TST_enum,
504 /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
505 /// cases in C where the user forgot to specify the tag.
isTagName(IdentifierInfo & II,Scope * S)506 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
507 // Do a tag name lookup in this scope.
508 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
509 LookupName(R, S, false);
510 R.suppressDiagnostics();
511 if (R.getResultKind() == LookupResult::Found)
512 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
513 switch (TD->getTagKind()) {
514 case TTK_Struct: return DeclSpec::TST_struct;
515 case TTK_Interface: return DeclSpec::TST_interface;
516 case TTK_Union: return DeclSpec::TST_union;
517 case TTK_Class: return DeclSpec::TST_class;
518 case TTK_Enum: return DeclSpec::TST_enum;
519 }
520 }
521
522 return DeclSpec::TST_unspecified;
523 }
524
525 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
526 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
527 /// then downgrade the missing typename error to a warning.
528 /// This is needed for MSVC compatibility; Example:
529 /// @code
530 /// template<class T> class A {
531 /// public:
532 /// typedef int TYPE;
533 /// };
534 /// template<class T> class B : public A<T> {
535 /// public:
536 /// A<T>::TYPE a; // no typename required because A<T> is a base class.
537 /// };
538 /// @endcode
isMicrosoftMissingTypename(const CXXScopeSpec * SS,Scope * S)539 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
540 if (CurContext->isRecord()) {
541 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
542 return true;
543
544 const Type *Ty = SS->getScopeRep()->getAsType();
545
546 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
547 for (const auto &Base : RD->bases())
548 if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
549 return true;
550 return S->isFunctionPrototypeScope();
551 }
552 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
553 }
554
DiagnoseUnknownTypeName(IdentifierInfo * & II,SourceLocation IILoc,Scope * S,CXXScopeSpec * SS,ParsedType & SuggestedType,bool AllowClassTemplates)555 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
556 SourceLocation IILoc,
557 Scope *S,
558 CXXScopeSpec *SS,
559 ParsedType &SuggestedType,
560 bool AllowClassTemplates) {
561 // We don't have anything to suggest (yet).
562 SuggestedType = ParsedType();
563
564 // There may have been a typo in the name of the type. Look up typo
565 // results, in case we have something that we can suggest.
566 if (TypoCorrection Corrected =
567 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
568 llvm::make_unique<TypeNameValidatorCCC>(
569 false, false, AllowClassTemplates),
570 CTK_ErrorRecovery)) {
571 if (Corrected.isKeyword()) {
572 // We corrected to a keyword.
573 diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II);
574 II = Corrected.getCorrectionAsIdentifierInfo();
575 } else {
576 // We found a similarly-named type or interface; suggest that.
577 if (!SS || !SS->isSet()) {
578 diagnoseTypo(Corrected,
579 PDiag(diag::err_unknown_typename_suggest) << II);
580 } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
581 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
582 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
583 II->getName().equals(CorrectedStr);
584 diagnoseTypo(Corrected,
585 PDiag(diag::err_unknown_nested_typename_suggest)
586 << II << DC << DroppedSpecifier << SS->getRange());
587 } else {
588 llvm_unreachable("could not have corrected a typo here");
589 }
590
591 CXXScopeSpec tmpSS;
592 if (Corrected.getCorrectionSpecifier())
593 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
594 SourceRange(IILoc));
595 SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(),
596 IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false,
597 false, ParsedType(),
598 /*IsCtorOrDtorName=*/false,
599 /*NonTrivialTypeSourceInfo=*/true);
600 }
601 return;
602 }
603
604 if (getLangOpts().CPlusPlus) {
605 // See if II is a class template that the user forgot to pass arguments to.
606 UnqualifiedId Name;
607 Name.setIdentifier(II, IILoc);
608 CXXScopeSpec EmptySS;
609 TemplateTy TemplateResult;
610 bool MemberOfUnknownSpecialization;
611 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
612 Name, ParsedType(), true, TemplateResult,
613 MemberOfUnknownSpecialization) == TNK_Type_template) {
614 TemplateName TplName = TemplateResult.get();
615 Diag(IILoc, diag::err_template_missing_args) << TplName;
616 if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
617 Diag(TplDecl->getLocation(), diag::note_template_decl_here)
618 << TplDecl->getTemplateParameters()->getSourceRange();
619 }
620 return;
621 }
622 }
623
624 // FIXME: Should we move the logic that tries to recover from a missing tag
625 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
626
627 if (!SS || (!SS->isSet() && !SS->isInvalid()))
628 Diag(IILoc, diag::err_unknown_typename) << II;
629 else if (DeclContext *DC = computeDeclContext(*SS, false))
630 Diag(IILoc, diag::err_typename_nested_not_found)
631 << II << DC << SS->getRange();
632 else if (isDependentScopeSpecifier(*SS)) {
633 unsigned DiagID = diag::err_typename_missing;
634 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
635 DiagID = diag::ext_typename_missing;
636
637 Diag(SS->getRange().getBegin(), DiagID)
638 << SS->getScopeRep() << II->getName()
639 << SourceRange(SS->getRange().getBegin(), IILoc)
640 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
641 SuggestedType = ActOnTypenameType(S, SourceLocation(),
642 *SS, *II, IILoc).get();
643 } else {
644 assert(SS && SS->isInvalid() &&
645 "Invalid scope specifier has already been diagnosed");
646 }
647 }
648
649 /// \brief Determine whether the given result set contains either a type name
650 /// or
isResultTypeOrTemplate(LookupResult & R,const Token & NextToken)651 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
652 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
653 NextToken.is(tok::less);
654
655 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
656 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
657 return true;
658
659 if (CheckTemplate && isa<TemplateDecl>(*I))
660 return true;
661 }
662
663 return false;
664 }
665
isTagTypeWithMissingTag(Sema & SemaRef,LookupResult & Result,Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc)666 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
667 Scope *S, CXXScopeSpec &SS,
668 IdentifierInfo *&Name,
669 SourceLocation NameLoc) {
670 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
671 SemaRef.LookupParsedName(R, S, &SS);
672 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
673 StringRef FixItTagName;
674 switch (Tag->getTagKind()) {
675 case TTK_Class:
676 FixItTagName = "class ";
677 break;
678
679 case TTK_Enum:
680 FixItTagName = "enum ";
681 break;
682
683 case TTK_Struct:
684 FixItTagName = "struct ";
685 break;
686
687 case TTK_Interface:
688 FixItTagName = "__interface ";
689 break;
690
691 case TTK_Union:
692 FixItTagName = "union ";
693 break;
694 }
695
696 StringRef TagName = FixItTagName.drop_back();
697 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
698 << Name << TagName << SemaRef.getLangOpts().CPlusPlus
699 << FixItHint::CreateInsertion(NameLoc, FixItTagName);
700
701 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
702 I != IEnd; ++I)
703 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
704 << Name << TagName;
705
706 // Replace lookup results with just the tag decl.
707 Result.clear(Sema::LookupTagName);
708 SemaRef.LookupParsedName(Result, S, &SS);
709 return true;
710 }
711
712 return false;
713 }
714
715 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
buildNestedType(Sema & S,CXXScopeSpec & SS,QualType T,SourceLocation NameLoc)716 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
717 QualType T, SourceLocation NameLoc) {
718 ASTContext &Context = S.Context;
719
720 TypeLocBuilder Builder;
721 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
722
723 T = S.getElaboratedType(ETK_None, SS, T);
724 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
725 ElabTL.setElaboratedKeywordLoc(SourceLocation());
726 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
727 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
728 }
729
730 Sema::NameClassification
ClassifyName(Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc,const Token & NextToken,bool IsAddressOfOperand,std::unique_ptr<CorrectionCandidateCallback> CCC)731 Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
732 SourceLocation NameLoc, const Token &NextToken,
733 bool IsAddressOfOperand,
734 std::unique_ptr<CorrectionCandidateCallback> CCC) {
735 DeclarationNameInfo NameInfo(Name, NameLoc);
736 ObjCMethodDecl *CurMethod = getCurMethodDecl();
737
738 if (NextToken.is(tok::coloncolon)) {
739 BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
740 QualType(), false, SS, nullptr, false);
741 }
742
743 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
744 LookupParsedName(Result, S, &SS, !CurMethod);
745
746 // For unqualified lookup in a class template in MSVC mode, look into
747 // dependent base classes where the primary class template is known.
748 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
749 if (ParsedType TypeInBase =
750 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
751 return TypeInBase;
752 }
753
754 // Perform lookup for Objective-C instance variables (including automatically
755 // synthesized instance variables), if we're in an Objective-C method.
756 // FIXME: This lookup really, really needs to be folded in to the normal
757 // unqualified lookup mechanism.
758 if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
759 ExprResult E = LookupInObjCMethod(Result, S, Name, true);
760 if (E.get() || E.isInvalid())
761 return E;
762 }
763
764 bool SecondTry = false;
765 bool IsFilteredTemplateName = false;
766
767 Corrected:
768 switch (Result.getResultKind()) {
769 case LookupResult::NotFound:
770 // If an unqualified-id is followed by a '(', then we have a function
771 // call.
772 if (!SS.isSet() && NextToken.is(tok::l_paren)) {
773 // In C++, this is an ADL-only call.
774 // FIXME: Reference?
775 if (getLangOpts().CPlusPlus)
776 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
777
778 // C90 6.3.2.2:
779 // If the expression that precedes the parenthesized argument list in a
780 // function call consists solely of an identifier, and if no
781 // declaration is visible for this identifier, the identifier is
782 // implicitly declared exactly as if, in the innermost block containing
783 // the function call, the declaration
784 //
785 // extern int identifier ();
786 //
787 // appeared.
788 //
789 // We also allow this in C99 as an extension.
790 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
791 Result.addDecl(D);
792 Result.resolveKind();
793 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
794 }
795 }
796
797 // In C, we first see whether there is a tag type by the same name, in
798 // which case it's likely that the user just forget to write "enum",
799 // "struct", or "union".
800 if (!getLangOpts().CPlusPlus && !SecondTry &&
801 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
802 break;
803 }
804
805 // Perform typo correction to determine if there is another name that is
806 // close to this name.
807 if (!SecondTry && CCC) {
808 SecondTry = true;
809 if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
810 Result.getLookupKind(), S,
811 &SS, std::move(CCC),
812 CTK_ErrorRecovery)) {
813 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
814 unsigned QualifiedDiag = diag::err_no_member_suggest;
815
816 NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
817 NamedDecl *UnderlyingFirstDecl
818 = FirstDecl? FirstDecl->getUnderlyingDecl() : nullptr;
819 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
820 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
821 UnqualifiedDiag = diag::err_no_template_suggest;
822 QualifiedDiag = diag::err_no_member_template_suggest;
823 } else if (UnderlyingFirstDecl &&
824 (isa<TypeDecl>(UnderlyingFirstDecl) ||
825 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
826 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
827 UnqualifiedDiag = diag::err_unknown_typename_suggest;
828 QualifiedDiag = diag::err_unknown_nested_typename_suggest;
829 }
830
831 if (SS.isEmpty()) {
832 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
833 } else {// FIXME: is this even reachable? Test it.
834 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
835 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
836 Name->getName().equals(CorrectedStr);
837 diagnoseTypo(Corrected, PDiag(QualifiedDiag)
838 << Name << computeDeclContext(SS, false)
839 << DroppedSpecifier << SS.getRange());
840 }
841
842 // Update the name, so that the caller has the new name.
843 Name = Corrected.getCorrectionAsIdentifierInfo();
844
845 // Typo correction corrected to a keyword.
846 if (Corrected.isKeyword())
847 return Name;
848
849 // Also update the LookupResult...
850 // FIXME: This should probably go away at some point
851 Result.clear();
852 Result.setLookupName(Corrected.getCorrection());
853 if (FirstDecl)
854 Result.addDecl(FirstDecl);
855
856 // If we found an Objective-C instance variable, let
857 // LookupInObjCMethod build the appropriate expression to
858 // reference the ivar.
859 // FIXME: This is a gross hack.
860 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
861 Result.clear();
862 ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
863 return E;
864 }
865
866 goto Corrected;
867 }
868 }
869
870 // We failed to correct; just fall through and let the parser deal with it.
871 Result.suppressDiagnostics();
872 return NameClassification::Unknown();
873
874 case LookupResult::NotFoundInCurrentInstantiation: {
875 // We performed name lookup into the current instantiation, and there were
876 // dependent bases, so we treat this result the same way as any other
877 // dependent nested-name-specifier.
878
879 // C++ [temp.res]p2:
880 // A name used in a template declaration or definition and that is
881 // dependent on a template-parameter is assumed not to name a type
882 // unless the applicable name lookup finds a type name or the name is
883 // qualified by the keyword typename.
884 //
885 // FIXME: If the next token is '<', we might want to ask the parser to
886 // perform some heroics to see if we actually have a
887 // template-argument-list, which would indicate a missing 'template'
888 // keyword here.
889 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
890 NameInfo, IsAddressOfOperand,
891 /*TemplateArgs=*/nullptr);
892 }
893
894 case LookupResult::Found:
895 case LookupResult::FoundOverloaded:
896 case LookupResult::FoundUnresolvedValue:
897 break;
898
899 case LookupResult::Ambiguous:
900 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
901 hasAnyAcceptableTemplateNames(Result)) {
902 // C++ [temp.local]p3:
903 // A lookup that finds an injected-class-name (10.2) can result in an
904 // ambiguity in certain cases (for example, if it is found in more than
905 // one base class). If all of the injected-class-names that are found
906 // refer to specializations of the same class template, and if the name
907 // is followed by a template-argument-list, the reference refers to the
908 // class template itself and not a specialization thereof, and is not
909 // ambiguous.
910 //
911 // This filtering can make an ambiguous result into an unambiguous one,
912 // so try again after filtering out template names.
913 FilterAcceptableTemplateNames(Result);
914 if (!Result.isAmbiguous()) {
915 IsFilteredTemplateName = true;
916 break;
917 }
918 }
919
920 // Diagnose the ambiguity and return an error.
921 return NameClassification::Error();
922 }
923
924 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
925 (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
926 // C++ [temp.names]p3:
927 // After name lookup (3.4) finds that a name is a template-name or that
928 // an operator-function-id or a literal- operator-id refers to a set of
929 // overloaded functions any member of which is a function template if
930 // this is followed by a <, the < is always taken as the delimiter of a
931 // template-argument-list and never as the less-than operator.
932 if (!IsFilteredTemplateName)
933 FilterAcceptableTemplateNames(Result);
934
935 if (!Result.empty()) {
936 bool IsFunctionTemplate;
937 bool IsVarTemplate;
938 TemplateName Template;
939 if (Result.end() - Result.begin() > 1) {
940 IsFunctionTemplate = true;
941 Template = Context.getOverloadedTemplateName(Result.begin(),
942 Result.end());
943 } else {
944 TemplateDecl *TD
945 = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
946 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
947 IsVarTemplate = isa<VarTemplateDecl>(TD);
948
949 if (SS.isSet() && !SS.isInvalid())
950 Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
951 /*TemplateKeyword=*/false,
952 TD);
953 else
954 Template = TemplateName(TD);
955 }
956
957 if (IsFunctionTemplate) {
958 // Function templates always go through overload resolution, at which
959 // point we'll perform the various checks (e.g., accessibility) we need
960 // to based on which function we selected.
961 Result.suppressDiagnostics();
962
963 return NameClassification::FunctionTemplate(Template);
964 }
965
966 return IsVarTemplate ? NameClassification::VarTemplate(Template)
967 : NameClassification::TypeTemplate(Template);
968 }
969 }
970
971 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
972 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
973 DiagnoseUseOfDecl(Type, NameLoc);
974 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
975 QualType T = Context.getTypeDeclType(Type);
976 if (SS.isNotEmpty())
977 return buildNestedType(*this, SS, T, NameLoc);
978 return ParsedType::make(T);
979 }
980
981 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
982 if (!Class) {
983 // FIXME: It's unfortunate that we don't have a Type node for handling this.
984 if (ObjCCompatibleAliasDecl *Alias =
985 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
986 Class = Alias->getClassInterface();
987 }
988
989 if (Class) {
990 DiagnoseUseOfDecl(Class, NameLoc);
991
992 if (NextToken.is(tok::period)) {
993 // Interface. <something> is parsed as a property reference expression.
994 // Just return "unknown" as a fall-through for now.
995 Result.suppressDiagnostics();
996 return NameClassification::Unknown();
997 }
998
999 QualType T = Context.getObjCInterfaceType(Class);
1000 return ParsedType::make(T);
1001 }
1002
1003 // We can have a type template here if we're classifying a template argument.
1004 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
1005 return NameClassification::TypeTemplate(
1006 TemplateName(cast<TemplateDecl>(FirstDecl)));
1007
1008 // Check for a tag type hidden by a non-type decl in a few cases where it
1009 // seems likely a type is wanted instead of the non-type that was found.
1010 bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1011 if ((NextToken.is(tok::identifier) ||
1012 (NextIsOp &&
1013 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1014 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1015 TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1016 DiagnoseUseOfDecl(Type, NameLoc);
1017 QualType T = Context.getTypeDeclType(Type);
1018 if (SS.isNotEmpty())
1019 return buildNestedType(*this, SS, T, NameLoc);
1020 return ParsedType::make(T);
1021 }
1022
1023 if (FirstDecl->isCXXClassMember())
1024 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1025 nullptr, S);
1026
1027 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1028 return BuildDeclarationNameExpr(SS, Result, ADL);
1029 }
1030
1031 // Determines the context to return to after temporarily entering a
1032 // context. This depends in an unnecessarily complicated way on the
1033 // exact ordering of callbacks from the parser.
getContainingDC(DeclContext * DC)1034 DeclContext *Sema::getContainingDC(DeclContext *DC) {
1035
1036 // Functions defined inline within classes aren't parsed until we've
1037 // finished parsing the top-level class, so the top-level class is
1038 // the context we'll need to return to.
1039 // A Lambda call operator whose parent is a class must not be treated
1040 // as an inline member function. A Lambda can be used legally
1041 // either as an in-class member initializer or a default argument. These
1042 // are parsed once the class has been marked complete and so the containing
1043 // context would be the nested class (when the lambda is defined in one);
1044 // If the class is not complete, then the lambda is being used in an
1045 // ill-formed fashion (such as to specify the width of a bit-field, or
1046 // in an array-bound) - in which case we still want to return the
1047 // lexically containing DC (which could be a nested class).
1048 if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1049 DC = DC->getLexicalParent();
1050
1051 // A function not defined within a class will always return to its
1052 // lexical context.
1053 if (!isa<CXXRecordDecl>(DC))
1054 return DC;
1055
1056 // A C++ inline method/friend is parsed *after* the topmost class
1057 // it was declared in is fully parsed ("complete"); the topmost
1058 // class is the context we need to return to.
1059 while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1060 DC = RD;
1061
1062 // Return the declaration context of the topmost class the inline method is
1063 // declared in.
1064 return DC;
1065 }
1066
1067 return DC->getLexicalParent();
1068 }
1069
PushDeclContext(Scope * S,DeclContext * DC)1070 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1071 assert(getContainingDC(DC) == CurContext &&
1072 "The next DeclContext should be lexically contained in the current one.");
1073 CurContext = DC;
1074 S->setEntity(DC);
1075 }
1076
PopDeclContext()1077 void Sema::PopDeclContext() {
1078 assert(CurContext && "DeclContext imbalance!");
1079
1080 CurContext = getContainingDC(CurContext);
1081 assert(CurContext && "Popped translation unit!");
1082 }
1083
ActOnTagStartSkippedDefinition(Scope * S,Decl * D)1084 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1085 Decl *D) {
1086 // Unlike PushDeclContext, the context to which we return is not necessarily
1087 // the containing DC of TD, because the new context will be some pre-existing
1088 // TagDecl definition instead of a fresh one.
1089 auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1090 CurContext = cast<TagDecl>(D)->getDefinition();
1091 assert(CurContext && "skipping definition of undefined tag");
1092 // Start lookups from the parent of the current context; we don't want to look
1093 // into the pre-existing complete definition.
1094 S->setEntity(CurContext->getLookupParent());
1095 return Result;
1096 }
1097
ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context)1098 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1099 CurContext = static_cast<decltype(CurContext)>(Context);
1100 }
1101
1102 /// EnterDeclaratorContext - Used when we must lookup names in the context
1103 /// of a declarator's nested name specifier.
1104 ///
EnterDeclaratorContext(Scope * S,DeclContext * DC)1105 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1106 // C++0x [basic.lookup.unqual]p13:
1107 // A name used in the definition of a static data member of class
1108 // X (after the qualified-id of the static member) is looked up as
1109 // if the name was used in a member function of X.
1110 // C++0x [basic.lookup.unqual]p14:
1111 // If a variable member of a namespace is defined outside of the
1112 // scope of its namespace then any name used in the definition of
1113 // the variable member (after the declarator-id) is looked up as
1114 // if the definition of the variable member occurred in its
1115 // namespace.
1116 // Both of these imply that we should push a scope whose context
1117 // is the semantic context of the declaration. We can't use
1118 // PushDeclContext here because that context is not necessarily
1119 // lexically contained in the current context. Fortunately,
1120 // the containing scope should have the appropriate information.
1121
1122 assert(!S->getEntity() && "scope already has entity");
1123
1124 #ifndef NDEBUG
1125 Scope *Ancestor = S->getParent();
1126 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1127 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1128 #endif
1129
1130 CurContext = DC;
1131 S->setEntity(DC);
1132 }
1133
ExitDeclaratorContext(Scope * S)1134 void Sema::ExitDeclaratorContext(Scope *S) {
1135 assert(S->getEntity() == CurContext && "Context imbalance!");
1136
1137 // Switch back to the lexical context. The safety of this is
1138 // enforced by an assert in EnterDeclaratorContext.
1139 Scope *Ancestor = S->getParent();
1140 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1141 CurContext = Ancestor->getEntity();
1142
1143 // We don't need to do anything with the scope, which is going to
1144 // disappear.
1145 }
1146
1147
ActOnReenterFunctionContext(Scope * S,Decl * D)1148 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1149 // We assume that the caller has already called
1150 // ActOnReenterTemplateScope so getTemplatedDecl() works.
1151 FunctionDecl *FD = D->getAsFunction();
1152 if (!FD)
1153 return;
1154
1155 // Same implementation as PushDeclContext, but enters the context
1156 // from the lexical parent, rather than the top-level class.
1157 assert(CurContext == FD->getLexicalParent() &&
1158 "The next DeclContext should be lexically contained in the current one.");
1159 CurContext = FD;
1160 S->setEntity(CurContext);
1161
1162 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1163 ParmVarDecl *Param = FD->getParamDecl(P);
1164 // If the parameter has an identifier, then add it to the scope
1165 if (Param->getIdentifier()) {
1166 S->AddDecl(Param);
1167 IdResolver.AddDecl(Param);
1168 }
1169 }
1170 }
1171
1172
ActOnExitFunctionContext()1173 void Sema::ActOnExitFunctionContext() {
1174 // Same implementation as PopDeclContext, but returns to the lexical parent,
1175 // rather than the top-level class.
1176 assert(CurContext && "DeclContext imbalance!");
1177 CurContext = CurContext->getLexicalParent();
1178 assert(CurContext && "Popped translation unit!");
1179 }
1180
1181
1182 /// \brief Determine whether we allow overloading of the function
1183 /// PrevDecl with another declaration.
1184 ///
1185 /// This routine determines whether overloading is possible, not
1186 /// whether some new function is actually an overload. It will return
1187 /// true in C++ (where we can always provide overloads) or, as an
1188 /// extension, in C when the previous function is already an
1189 /// overloaded function declaration or has the "overloadable"
1190 /// attribute.
AllowOverloadingOfFunction(LookupResult & Previous,ASTContext & Context)1191 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1192 ASTContext &Context) {
1193 if (Context.getLangOpts().CPlusPlus)
1194 return true;
1195
1196 if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1197 return true;
1198
1199 return (Previous.getResultKind() == LookupResult::Found
1200 && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1201 }
1202
1203 /// Add this decl to the scope shadowed decl chains.
PushOnScopeChains(NamedDecl * D,Scope * S,bool AddToContext)1204 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1205 // Move up the scope chain until we find the nearest enclosing
1206 // non-transparent context. The declaration will be introduced into this
1207 // scope.
1208 while (S->getEntity() && S->getEntity()->isTransparentContext())
1209 S = S->getParent();
1210
1211 // Add scoped declarations into their context, so that they can be
1212 // found later. Declarations without a context won't be inserted
1213 // into any context.
1214 if (AddToContext)
1215 CurContext->addDecl(D);
1216
1217 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1218 // are function-local declarations.
1219 if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1220 !D->getDeclContext()->getRedeclContext()->Equals(
1221 D->getLexicalDeclContext()->getRedeclContext()) &&
1222 !D->getLexicalDeclContext()->isFunctionOrMethod())
1223 return;
1224
1225 // Template instantiations should also not be pushed into scope.
1226 if (isa<FunctionDecl>(D) &&
1227 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1228 return;
1229
1230 // If this replaces anything in the current scope,
1231 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1232 IEnd = IdResolver.end();
1233 for (; I != IEnd; ++I) {
1234 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1235 S->RemoveDecl(*I);
1236 IdResolver.RemoveDecl(*I);
1237
1238 // Should only need to replace one decl.
1239 break;
1240 }
1241 }
1242
1243 S->AddDecl(D);
1244
1245 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1246 // Implicitly-generated labels may end up getting generated in an order that
1247 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1248 // the label at the appropriate place in the identifier chain.
1249 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1250 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1251 if (IDC == CurContext) {
1252 if (!S->isDeclScope(*I))
1253 continue;
1254 } else if (IDC->Encloses(CurContext))
1255 break;
1256 }
1257
1258 IdResolver.InsertDeclAfter(I, D);
1259 } else {
1260 IdResolver.AddDecl(D);
1261 }
1262 }
1263
pushExternalDeclIntoScope(NamedDecl * D,DeclarationName Name)1264 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1265 if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1266 TUScope->AddDecl(D);
1267 }
1268
isDeclInScope(NamedDecl * D,DeclContext * Ctx,Scope * S,bool AllowInlineNamespace)1269 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1270 bool AllowInlineNamespace) {
1271 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1272 }
1273
getScopeForDeclContext(Scope * S,DeclContext * DC)1274 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1275 DeclContext *TargetDC = DC->getPrimaryContext();
1276 do {
1277 if (DeclContext *ScopeDC = S->getEntity())
1278 if (ScopeDC->getPrimaryContext() == TargetDC)
1279 return S;
1280 } while ((S = S->getParent()));
1281
1282 return nullptr;
1283 }
1284
1285 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1286 DeclContext*,
1287 ASTContext&);
1288
1289 /// Filters out lookup results that don't fall within the given scope
1290 /// as determined by isDeclInScope.
FilterLookupForScope(LookupResult & R,DeclContext * Ctx,Scope * S,bool ConsiderLinkage,bool AllowInlineNamespace)1291 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1292 bool ConsiderLinkage,
1293 bool AllowInlineNamespace) {
1294 LookupResult::Filter F = R.makeFilter();
1295 while (F.hasNext()) {
1296 NamedDecl *D = F.next();
1297
1298 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1299 continue;
1300
1301 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1302 continue;
1303
1304 F.erase();
1305 }
1306
1307 F.done();
1308 }
1309
isUsingDecl(NamedDecl * D)1310 static bool isUsingDecl(NamedDecl *D) {
1311 return isa<UsingShadowDecl>(D) ||
1312 isa<UnresolvedUsingTypenameDecl>(D) ||
1313 isa<UnresolvedUsingValueDecl>(D);
1314 }
1315
1316 /// Removes using shadow declarations from the lookup results.
RemoveUsingDecls(LookupResult & R)1317 static void RemoveUsingDecls(LookupResult &R) {
1318 LookupResult::Filter F = R.makeFilter();
1319 while (F.hasNext())
1320 if (isUsingDecl(F.next()))
1321 F.erase();
1322
1323 F.done();
1324 }
1325
1326 /// \brief Check for this common pattern:
1327 /// @code
1328 /// class S {
1329 /// S(const S&); // DO NOT IMPLEMENT
1330 /// void operator=(const S&); // DO NOT IMPLEMENT
1331 /// };
1332 /// @endcode
IsDisallowedCopyOrAssign(const CXXMethodDecl * D)1333 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1334 // FIXME: Should check for private access too but access is set after we get
1335 // the decl here.
1336 if (D->doesThisDeclarationHaveABody())
1337 return false;
1338
1339 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1340 return CD->isCopyConstructor();
1341 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1342 return Method->isCopyAssignmentOperator();
1343 return false;
1344 }
1345
1346 // We need this to handle
1347 //
1348 // typedef struct {
1349 // void *foo() { return 0; }
1350 // } A;
1351 //
1352 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1353 // for example. If 'A', foo will have external linkage. If we have '*A',
1354 // foo will have no linkage. Since we can't know until we get to the end
1355 // of the typedef, this function finds out if D might have non-external linkage.
1356 // Callers should verify at the end of the TU if it D has external linkage or
1357 // not.
mightHaveNonExternalLinkage(const DeclaratorDecl * D)1358 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1359 const DeclContext *DC = D->getDeclContext();
1360 while (!DC->isTranslationUnit()) {
1361 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1362 if (!RD->hasNameForLinkage())
1363 return true;
1364 }
1365 DC = DC->getParent();
1366 }
1367
1368 return !D->isExternallyVisible();
1369 }
1370
1371 // FIXME: This needs to be refactored; some other isInMainFile users want
1372 // these semantics.
isMainFileLoc(const Sema & S,SourceLocation Loc)1373 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1374 if (S.TUKind != TU_Complete)
1375 return false;
1376 return S.SourceMgr.isInMainFile(Loc);
1377 }
1378
ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl * D) const1379 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1380 assert(D);
1381
1382 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1383 return false;
1384
1385 // Ignore all entities declared within templates, and out-of-line definitions
1386 // of members of class templates.
1387 if (D->getDeclContext()->isDependentContext() ||
1388 D->getLexicalDeclContext()->isDependentContext())
1389 return false;
1390
1391 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1392 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1393 return false;
1394
1395 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1396 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1397 return false;
1398 } else {
1399 // 'static inline' functions are defined in headers; don't warn.
1400 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1401 return false;
1402 }
1403
1404 if (FD->doesThisDeclarationHaveABody() &&
1405 Context.DeclMustBeEmitted(FD))
1406 return false;
1407 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1408 // Constants and utility variables are defined in headers with internal
1409 // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1410 // like "inline".)
1411 if (!isMainFileLoc(*this, VD->getLocation()))
1412 return false;
1413
1414 if (Context.DeclMustBeEmitted(VD))
1415 return false;
1416
1417 if (VD->isStaticDataMember() &&
1418 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1419 return false;
1420 } else {
1421 return false;
1422 }
1423
1424 // Only warn for unused decls internal to the translation unit.
1425 // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1426 // for inline functions defined in the main source file, for instance.
1427 return mightHaveNonExternalLinkage(D);
1428 }
1429
MarkUnusedFileScopedDecl(const DeclaratorDecl * D)1430 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1431 if (!D)
1432 return;
1433
1434 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1435 const FunctionDecl *First = FD->getFirstDecl();
1436 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1437 return; // First should already be in the vector.
1438 }
1439
1440 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1441 const VarDecl *First = VD->getFirstDecl();
1442 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1443 return; // First should already be in the vector.
1444 }
1445
1446 if (ShouldWarnIfUnusedFileScopedDecl(D))
1447 UnusedFileScopedDecls.push_back(D);
1448 }
1449
ShouldDiagnoseUnusedDecl(const NamedDecl * D)1450 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1451 if (D->isInvalidDecl())
1452 return false;
1453
1454 if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>() ||
1455 D->hasAttr<ObjCPreciseLifetimeAttr>())
1456 return false;
1457
1458 if (isa<LabelDecl>(D))
1459 return true;
1460
1461 // Except for labels, we only care about unused decls that are local to
1462 // functions.
1463 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1464 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1465 // For dependent types, the diagnostic is deferred.
1466 WithinFunction =
1467 WithinFunction || (R->isLocalClass() && !R->isDependentType());
1468 if (!WithinFunction)
1469 return false;
1470
1471 if (isa<TypedefNameDecl>(D))
1472 return true;
1473
1474 // White-list anything that isn't a local variable.
1475 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1476 return false;
1477
1478 // Types of valid local variables should be complete, so this should succeed.
1479 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1480
1481 // White-list anything with an __attribute__((unused)) type.
1482 QualType Ty = VD->getType();
1483
1484 // Only look at the outermost level of typedef.
1485 if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1486 if (TT->getDecl()->hasAttr<UnusedAttr>())
1487 return false;
1488 }
1489
1490 // If we failed to complete the type for some reason, or if the type is
1491 // dependent, don't diagnose the variable.
1492 if (Ty->isIncompleteType() || Ty->isDependentType())
1493 return false;
1494
1495 if (const TagType *TT = Ty->getAs<TagType>()) {
1496 const TagDecl *Tag = TT->getDecl();
1497 if (Tag->hasAttr<UnusedAttr>())
1498 return false;
1499
1500 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1501 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1502 return false;
1503
1504 if (const Expr *Init = VD->getInit()) {
1505 if (const ExprWithCleanups *Cleanups =
1506 dyn_cast<ExprWithCleanups>(Init))
1507 Init = Cleanups->getSubExpr();
1508 const CXXConstructExpr *Construct =
1509 dyn_cast<CXXConstructExpr>(Init);
1510 if (Construct && !Construct->isElidable()) {
1511 CXXConstructorDecl *CD = Construct->getConstructor();
1512 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
1513 return false;
1514 }
1515 }
1516 }
1517 }
1518
1519 // TODO: __attribute__((unused)) templates?
1520 }
1521
1522 return true;
1523 }
1524
GenerateFixForUnusedDecl(const NamedDecl * D,ASTContext & Ctx,FixItHint & Hint)1525 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1526 FixItHint &Hint) {
1527 if (isa<LabelDecl>(D)) {
1528 SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1529 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1530 if (AfterColon.isInvalid())
1531 return;
1532 Hint = FixItHint::CreateRemoval(CharSourceRange::
1533 getCharRange(D->getLocStart(), AfterColon));
1534 }
1535 return;
1536 }
1537
DiagnoseUnusedNestedTypedefs(const RecordDecl * D)1538 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1539 if (D->getTypeForDecl()->isDependentType())
1540 return;
1541
1542 for (auto *TmpD : D->decls()) {
1543 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1544 DiagnoseUnusedDecl(T);
1545 else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1546 DiagnoseUnusedNestedTypedefs(R);
1547 }
1548 }
1549
1550 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1551 /// unless they are marked attr(unused).
DiagnoseUnusedDecl(const NamedDecl * D)1552 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1553 if (!ShouldDiagnoseUnusedDecl(D))
1554 return;
1555
1556 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1557 // typedefs can be referenced later on, so the diagnostics are emitted
1558 // at end-of-translation-unit.
1559 UnusedLocalTypedefNameCandidates.insert(TD);
1560 return;
1561 }
1562
1563 FixItHint Hint;
1564 GenerateFixForUnusedDecl(D, Context, Hint);
1565
1566 unsigned DiagID;
1567 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1568 DiagID = diag::warn_unused_exception_param;
1569 else if (isa<LabelDecl>(D))
1570 DiagID = diag::warn_unused_label;
1571 else
1572 DiagID = diag::warn_unused_variable;
1573
1574 Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1575 }
1576
CheckPoppedLabel(LabelDecl * L,Sema & S)1577 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1578 // Verify that we have no forward references left. If so, there was a goto
1579 // or address of a label taken, but no definition of it. Label fwd
1580 // definitions are indicated with a null substmt which is also not a resolved
1581 // MS inline assembly label name.
1582 bool Diagnose = false;
1583 if (L->isMSAsmLabel())
1584 Diagnose = !L->isResolvedMSAsmLabel();
1585 else
1586 Diagnose = L->getStmt() == nullptr;
1587 if (Diagnose)
1588 S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1589 }
1590
ActOnPopScope(SourceLocation Loc,Scope * S)1591 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1592 S->mergeNRVOIntoParent();
1593
1594 if (S->decl_empty()) return;
1595 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1596 "Scope shouldn't contain decls!");
1597
1598 for (auto *TmpD : S->decls()) {
1599 assert(TmpD && "This decl didn't get pushed??");
1600
1601 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1602 NamedDecl *D = cast<NamedDecl>(TmpD);
1603
1604 if (!D->getDeclName()) continue;
1605
1606 // Diagnose unused variables in this scope.
1607 if (!S->hasUnrecoverableErrorOccurred()) {
1608 DiagnoseUnusedDecl(D);
1609 if (const auto *RD = dyn_cast<RecordDecl>(D))
1610 DiagnoseUnusedNestedTypedefs(RD);
1611 }
1612
1613 // If this was a forward reference to a label, verify it was defined.
1614 if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1615 CheckPoppedLabel(LD, *this);
1616
1617 // Remove this name from our lexical scope.
1618 IdResolver.RemoveDecl(D);
1619 }
1620 }
1621
1622 /// \brief Look for an Objective-C class in the translation unit.
1623 ///
1624 /// \param Id The name of the Objective-C class we're looking for. If
1625 /// typo-correction fixes this name, the Id will be updated
1626 /// to the fixed name.
1627 ///
1628 /// \param IdLoc The location of the name in the translation unit.
1629 ///
1630 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1631 /// if there is no class with the given name.
1632 ///
1633 /// \returns The declaration of the named Objective-C class, or NULL if the
1634 /// class could not be found.
getObjCInterfaceDecl(IdentifierInfo * & Id,SourceLocation IdLoc,bool DoTypoCorrection)1635 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1636 SourceLocation IdLoc,
1637 bool DoTypoCorrection) {
1638 // The third "scope" argument is 0 since we aren't enabling lazy built-in
1639 // creation from this context.
1640 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1641
1642 if (!IDecl && DoTypoCorrection) {
1643 // Perform typo correction at the given location, but only if we
1644 // find an Objective-C class name.
1645 if (TypoCorrection C = CorrectTypo(
1646 DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr,
1647 llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(),
1648 CTK_ErrorRecovery)) {
1649 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1650 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1651 Id = IDecl->getIdentifier();
1652 }
1653 }
1654 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1655 // This routine must always return a class definition, if any.
1656 if (Def && Def->getDefinition())
1657 Def = Def->getDefinition();
1658 return Def;
1659 }
1660
1661 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1662 /// from S, where a non-field would be declared. This routine copes
1663 /// with the difference between C and C++ scoping rules in structs and
1664 /// unions. For example, the following code is well-formed in C but
1665 /// ill-formed in C++:
1666 /// @code
1667 /// struct S6 {
1668 /// enum { BAR } e;
1669 /// };
1670 ///
1671 /// void test_S6() {
1672 /// struct S6 a;
1673 /// a.e = BAR;
1674 /// }
1675 /// @endcode
1676 /// For the declaration of BAR, this routine will return a different
1677 /// scope. The scope S will be the scope of the unnamed enumeration
1678 /// within S6. In C++, this routine will return the scope associated
1679 /// with S6, because the enumeration's scope is a transparent
1680 /// context but structures can contain non-field names. In C, this
1681 /// routine will return the translation unit scope, since the
1682 /// enumeration's scope is a transparent context and structures cannot
1683 /// contain non-field names.
getNonFieldDeclScope(Scope * S)1684 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1685 while (((S->getFlags() & Scope::DeclScope) == 0) ||
1686 (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1687 (S->isClassScope() && !getLangOpts().CPlusPlus))
1688 S = S->getParent();
1689 return S;
1690 }
1691
1692 /// \brief Looks up the declaration of "struct objc_super" and
1693 /// saves it for later use in building builtin declaration of
1694 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1695 /// pre-existing declaration exists no action takes place.
LookupPredefedObjCSuperType(Sema & ThisSema,Scope * S,IdentifierInfo * II)1696 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1697 IdentifierInfo *II) {
1698 if (!II->isStr("objc_msgSendSuper"))
1699 return;
1700 ASTContext &Context = ThisSema.Context;
1701
1702 LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1703 SourceLocation(), Sema::LookupTagName);
1704 ThisSema.LookupName(Result, S);
1705 if (Result.getResultKind() == LookupResult::Found)
1706 if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1707 Context.setObjCSuperType(Context.getTagDeclType(TD));
1708 }
1709
getHeaderName(ASTContext::GetBuiltinTypeError Error)1710 static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) {
1711 switch (Error) {
1712 case ASTContext::GE_None:
1713 return "";
1714 case ASTContext::GE_Missing_stdio:
1715 return "stdio.h";
1716 case ASTContext::GE_Missing_setjmp:
1717 return "setjmp.h";
1718 case ASTContext::GE_Missing_ucontext:
1719 return "ucontext.h";
1720 }
1721 llvm_unreachable("unhandled error kind");
1722 }
1723
1724 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1725 /// file scope. lazily create a decl for it. ForRedeclaration is true
1726 /// if we're creating this built-in in anticipation of redeclaring the
1727 /// built-in.
LazilyCreateBuiltin(IdentifierInfo * II,unsigned ID,Scope * S,bool ForRedeclaration,SourceLocation Loc)1728 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
1729 Scope *S, bool ForRedeclaration,
1730 SourceLocation Loc) {
1731 LookupPredefedObjCSuperType(*this, S, II);
1732
1733 ASTContext::GetBuiltinTypeError Error;
1734 QualType R = Context.GetBuiltinType(ID, Error);
1735 if (Error) {
1736 if (ForRedeclaration)
1737 Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
1738 << getHeaderName(Error) << Context.BuiltinInfo.getName(ID);
1739 return nullptr;
1740 }
1741
1742 if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(ID)) {
1743 Diag(Loc, diag::ext_implicit_lib_function_decl)
1744 << Context.BuiltinInfo.getName(ID) << R;
1745 if (Context.BuiltinInfo.getHeaderName(ID) &&
1746 !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
1747 Diag(Loc, diag::note_include_header_or_declare)
1748 << Context.BuiltinInfo.getHeaderName(ID)
1749 << Context.BuiltinInfo.getName(ID);
1750 }
1751
1752 DeclContext *Parent = Context.getTranslationUnitDecl();
1753 if (getLangOpts().CPlusPlus) {
1754 LinkageSpecDecl *CLinkageDecl =
1755 LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
1756 LinkageSpecDecl::lang_c, false);
1757 CLinkageDecl->setImplicit();
1758 Parent->addDecl(CLinkageDecl);
1759 Parent = CLinkageDecl;
1760 }
1761
1762 FunctionDecl *New = FunctionDecl::Create(Context,
1763 Parent,
1764 Loc, Loc, II, R, /*TInfo=*/nullptr,
1765 SC_Extern,
1766 false,
1767 R->isFunctionProtoType());
1768 New->setImplicit();
1769
1770 // Create Decl objects for each parameter, adding them to the
1771 // FunctionDecl.
1772 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1773 SmallVector<ParmVarDecl*, 16> Params;
1774 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1775 ParmVarDecl *parm =
1776 ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
1777 nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
1778 SC_None, nullptr);
1779 parm->setScopeInfo(0, i);
1780 Params.push_back(parm);
1781 }
1782 New->setParams(Params);
1783 }
1784
1785 AddKnownFunctionAttributes(New);
1786 RegisterLocallyScopedExternCDecl(New, S);
1787
1788 // TUScope is the translation-unit scope to insert this function into.
1789 // FIXME: This is hideous. We need to teach PushOnScopeChains to
1790 // relate Scopes to DeclContexts, and probably eliminate CurContext
1791 // entirely, but we're not there yet.
1792 DeclContext *SavedContext = CurContext;
1793 CurContext = Parent;
1794 PushOnScopeChains(New, TUScope);
1795 CurContext = SavedContext;
1796 return New;
1797 }
1798
1799 /// Typedef declarations don't have linkage, but they still denote the same
1800 /// entity if their types are the same.
1801 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
1802 /// isSameEntity.
filterNonConflictingPreviousTypedefDecls(Sema & S,TypedefNameDecl * Decl,LookupResult & Previous)1803 static void filterNonConflictingPreviousTypedefDecls(Sema &S,
1804 TypedefNameDecl *Decl,
1805 LookupResult &Previous) {
1806 // This is only interesting when modules are enabled.
1807 if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
1808 return;
1809
1810 // Empty sets are uninteresting.
1811 if (Previous.empty())
1812 return;
1813
1814 LookupResult::Filter Filter = Previous.makeFilter();
1815 while (Filter.hasNext()) {
1816 NamedDecl *Old = Filter.next();
1817
1818 // Non-hidden declarations are never ignored.
1819 if (S.isVisible(Old))
1820 continue;
1821
1822 // Declarations of the same entity are not ignored, even if they have
1823 // different linkages.
1824 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
1825 if (S.Context.hasSameType(OldTD->getUnderlyingType(),
1826 Decl->getUnderlyingType()))
1827 continue;
1828
1829 // If both declarations give a tag declaration a typedef name for linkage
1830 // purposes, then they declare the same entity.
1831 if (S.getLangOpts().CPlusPlus &&
1832 OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
1833 Decl->getAnonDeclWithTypedefName())
1834 continue;
1835 }
1836
1837 Filter.erase();
1838 }
1839
1840 Filter.done();
1841 }
1842
isIncompatibleTypedef(TypeDecl * Old,TypedefNameDecl * New)1843 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1844 QualType OldType;
1845 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1846 OldType = OldTypedef->getUnderlyingType();
1847 else
1848 OldType = Context.getTypeDeclType(Old);
1849 QualType NewType = New->getUnderlyingType();
1850
1851 if (NewType->isVariablyModifiedType()) {
1852 // Must not redefine a typedef with a variably-modified type.
1853 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1854 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1855 << Kind << NewType;
1856 if (Old->getLocation().isValid())
1857 Diag(Old->getLocation(), diag::note_previous_definition);
1858 New->setInvalidDecl();
1859 return true;
1860 }
1861
1862 if (OldType != NewType &&
1863 !OldType->isDependentType() &&
1864 !NewType->isDependentType() &&
1865 !Context.hasSameType(OldType, NewType)) {
1866 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1867 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1868 << Kind << NewType << OldType;
1869 if (Old->getLocation().isValid())
1870 Diag(Old->getLocation(), diag::note_previous_definition);
1871 New->setInvalidDecl();
1872 return true;
1873 }
1874 return false;
1875 }
1876
1877 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1878 /// same name and scope as a previous declaration 'Old'. Figure out
1879 /// how to resolve this situation, merging decls or emitting
1880 /// diagnostics as appropriate. If there was an error, set New to be invalid.
1881 ///
MergeTypedefNameDecl(Scope * S,TypedefNameDecl * New,LookupResult & OldDecls)1882 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
1883 LookupResult &OldDecls) {
1884 // If the new decl is known invalid already, don't bother doing any
1885 // merging checks.
1886 if (New->isInvalidDecl()) return;
1887
1888 // Allow multiple definitions for ObjC built-in typedefs.
1889 // FIXME: Verify the underlying types are equivalent!
1890 if (getLangOpts().ObjC1) {
1891 const IdentifierInfo *TypeID = New->getIdentifier();
1892 switch (TypeID->getLength()) {
1893 default: break;
1894 case 2:
1895 {
1896 if (!TypeID->isStr("id"))
1897 break;
1898 QualType T = New->getUnderlyingType();
1899 if (!T->isPointerType())
1900 break;
1901 if (!T->isVoidPointerType()) {
1902 QualType PT = T->getAs<PointerType>()->getPointeeType();
1903 if (!PT->isStructureType())
1904 break;
1905 }
1906 Context.setObjCIdRedefinitionType(T);
1907 // Install the built-in type for 'id', ignoring the current definition.
1908 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1909 return;
1910 }
1911 case 5:
1912 if (!TypeID->isStr("Class"))
1913 break;
1914 Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1915 // Install the built-in type for 'Class', ignoring the current definition.
1916 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1917 return;
1918 case 3:
1919 if (!TypeID->isStr("SEL"))
1920 break;
1921 Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1922 // Install the built-in type for 'SEL', ignoring the current definition.
1923 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1924 return;
1925 }
1926 // Fall through - the typedef name was not a builtin type.
1927 }
1928
1929 // Verify the old decl was also a type.
1930 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1931 if (!Old) {
1932 Diag(New->getLocation(), diag::err_redefinition_different_kind)
1933 << New->getDeclName();
1934
1935 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1936 if (OldD->getLocation().isValid())
1937 Diag(OldD->getLocation(), diag::note_previous_definition);
1938
1939 return New->setInvalidDecl();
1940 }
1941
1942 // If the old declaration is invalid, just give up here.
1943 if (Old->isInvalidDecl())
1944 return New->setInvalidDecl();
1945
1946 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
1947 auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
1948 auto *NewTag = New->getAnonDeclWithTypedefName();
1949 NamedDecl *Hidden = nullptr;
1950 if (getLangOpts().CPlusPlus && OldTag && NewTag &&
1951 OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
1952 !hasVisibleDefinition(OldTag, &Hidden)) {
1953 // There is a definition of this tag, but it is not visible. Use it
1954 // instead of our tag.
1955 New->setTypeForDecl(OldTD->getTypeForDecl());
1956 if (OldTD->isModed())
1957 New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
1958 OldTD->getUnderlyingType());
1959 else
1960 New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
1961
1962 // Make the old tag definition visible.
1963 makeMergedDefinitionVisible(Hidden, NewTag->getLocation());
1964
1965 // If this was an unscoped enumeration, yank all of its enumerators
1966 // out of the scope.
1967 if (isa<EnumDecl>(NewTag)) {
1968 Scope *EnumScope = getNonFieldDeclScope(S);
1969 for (auto *D : NewTag->decls()) {
1970 auto *ED = cast<EnumConstantDecl>(D);
1971 assert(EnumScope->isDeclScope(ED));
1972 EnumScope->RemoveDecl(ED);
1973 IdResolver.RemoveDecl(ED);
1974 ED->getLexicalDeclContext()->removeDecl(ED);
1975 }
1976 }
1977 }
1978 }
1979
1980 // If the typedef types are not identical, reject them in all languages and
1981 // with any extensions enabled.
1982 if (isIncompatibleTypedef(Old, New))
1983 return;
1984
1985 // The types match. Link up the redeclaration chain and merge attributes if
1986 // the old declaration was a typedef.
1987 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
1988 New->setPreviousDecl(Typedef);
1989 mergeDeclAttributes(New, Old);
1990 }
1991
1992 if (getLangOpts().MicrosoftExt)
1993 return;
1994
1995 if (getLangOpts().CPlusPlus) {
1996 // C++ [dcl.typedef]p2:
1997 // In a given non-class scope, a typedef specifier can be used to
1998 // redefine the name of any type declared in that scope to refer
1999 // to the type to which it already refers.
2000 if (!isa<CXXRecordDecl>(CurContext))
2001 return;
2002
2003 // C++0x [dcl.typedef]p4:
2004 // In a given class scope, a typedef specifier can be used to redefine
2005 // any class-name declared in that scope that is not also a typedef-name
2006 // to refer to the type to which it already refers.
2007 //
2008 // This wording came in via DR424, which was a correction to the
2009 // wording in DR56, which accidentally banned code like:
2010 //
2011 // struct S {
2012 // typedef struct A { } A;
2013 // };
2014 //
2015 // in the C++03 standard. We implement the C++0x semantics, which
2016 // allow the above but disallow
2017 //
2018 // struct S {
2019 // typedef int I;
2020 // typedef int I;
2021 // };
2022 //
2023 // since that was the intent of DR56.
2024 if (!isa<TypedefNameDecl>(Old))
2025 return;
2026
2027 Diag(New->getLocation(), diag::err_redefinition)
2028 << New->getDeclName();
2029 Diag(Old->getLocation(), diag::note_previous_definition);
2030 return New->setInvalidDecl();
2031 }
2032
2033 // Modules always permit redefinition of typedefs, as does C11.
2034 if (getLangOpts().Modules || getLangOpts().C11)
2035 return;
2036
2037 // If we have a redefinition of a typedef in C, emit a warning. This warning
2038 // is normally mapped to an error, but can be controlled with
2039 // -Wtypedef-redefinition. If either the original or the redefinition is
2040 // in a system header, don't emit this for compatibility with GCC.
2041 if (getDiagnostics().getSuppressSystemWarnings() &&
2042 (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2043 Context.getSourceManager().isInSystemHeader(New->getLocation())))
2044 return;
2045
2046 Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2047 << New->getDeclName();
2048 Diag(Old->getLocation(), diag::note_previous_definition);
2049 }
2050
2051 /// DeclhasAttr - returns true if decl Declaration already has the target
2052 /// attribute.
DeclHasAttr(const Decl * D,const Attr * A)2053 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2054 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2055 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2056 for (const auto *i : D->attrs())
2057 if (i->getKind() == A->getKind()) {
2058 if (Ann) {
2059 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2060 return true;
2061 continue;
2062 }
2063 // FIXME: Don't hardcode this check
2064 if (OA && isa<OwnershipAttr>(i))
2065 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2066 return true;
2067 }
2068
2069 return false;
2070 }
2071
isAttributeTargetADefinition(Decl * D)2072 static bool isAttributeTargetADefinition(Decl *D) {
2073 if (VarDecl *VD = dyn_cast<VarDecl>(D))
2074 return VD->isThisDeclarationADefinition();
2075 if (TagDecl *TD = dyn_cast<TagDecl>(D))
2076 return TD->isCompleteDefinition() || TD->isBeingDefined();
2077 return true;
2078 }
2079
2080 /// Merge alignment attributes from \p Old to \p New, taking into account the
2081 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2082 ///
2083 /// \return \c true if any attributes were added to \p New.
mergeAlignedAttrs(Sema & S,NamedDecl * New,Decl * Old)2084 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2085 // Look for alignas attributes on Old, and pick out whichever attribute
2086 // specifies the strictest alignment requirement.
2087 AlignedAttr *OldAlignasAttr = nullptr;
2088 AlignedAttr *OldStrictestAlignAttr = nullptr;
2089 unsigned OldAlign = 0;
2090 for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2091 // FIXME: We have no way of representing inherited dependent alignments
2092 // in a case like:
2093 // template<int A, int B> struct alignas(A) X;
2094 // template<int A, int B> struct alignas(B) X {};
2095 // For now, we just ignore any alignas attributes which are not on the
2096 // definition in such a case.
2097 if (I->isAlignmentDependent())
2098 return false;
2099
2100 if (I->isAlignas())
2101 OldAlignasAttr = I;
2102
2103 unsigned Align = I->getAlignment(S.Context);
2104 if (Align > OldAlign) {
2105 OldAlign = Align;
2106 OldStrictestAlignAttr = I;
2107 }
2108 }
2109
2110 // Look for alignas attributes on New.
2111 AlignedAttr *NewAlignasAttr = nullptr;
2112 unsigned NewAlign = 0;
2113 for (auto *I : New->specific_attrs<AlignedAttr>()) {
2114 if (I->isAlignmentDependent())
2115 return false;
2116
2117 if (I->isAlignas())
2118 NewAlignasAttr = I;
2119
2120 unsigned Align = I->getAlignment(S.Context);
2121 if (Align > NewAlign)
2122 NewAlign = Align;
2123 }
2124
2125 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2126 // Both declarations have 'alignas' attributes. We require them to match.
2127 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2128 // fall short. (If two declarations both have alignas, they must both match
2129 // every definition, and so must match each other if there is a definition.)
2130
2131 // If either declaration only contains 'alignas(0)' specifiers, then it
2132 // specifies the natural alignment for the type.
2133 if (OldAlign == 0 || NewAlign == 0) {
2134 QualType Ty;
2135 if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2136 Ty = VD->getType();
2137 else
2138 Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2139
2140 if (OldAlign == 0)
2141 OldAlign = S.Context.getTypeAlign(Ty);
2142 if (NewAlign == 0)
2143 NewAlign = S.Context.getTypeAlign(Ty);
2144 }
2145
2146 if (OldAlign != NewAlign) {
2147 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2148 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2149 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2150 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2151 }
2152 }
2153
2154 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2155 // C++11 [dcl.align]p6:
2156 // if any declaration of an entity has an alignment-specifier,
2157 // every defining declaration of that entity shall specify an
2158 // equivalent alignment.
2159 // C11 6.7.5/7:
2160 // If the definition of an object does not have an alignment
2161 // specifier, any other declaration of that object shall also
2162 // have no alignment specifier.
2163 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2164 << OldAlignasAttr;
2165 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2166 << OldAlignasAttr;
2167 }
2168
2169 bool AnyAdded = false;
2170
2171 // Ensure we have an attribute representing the strictest alignment.
2172 if (OldAlign > NewAlign) {
2173 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2174 Clone->setInherited(true);
2175 New->addAttr(Clone);
2176 AnyAdded = true;
2177 }
2178
2179 // Ensure we have an alignas attribute if the old declaration had one.
2180 if (OldAlignasAttr && !NewAlignasAttr &&
2181 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2182 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2183 Clone->setInherited(true);
2184 New->addAttr(Clone);
2185 AnyAdded = true;
2186 }
2187
2188 return AnyAdded;
2189 }
2190
mergeDeclAttribute(Sema & S,NamedDecl * D,const InheritableAttr * Attr,Sema::AvailabilityMergeKind AMK)2191 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2192 const InheritableAttr *Attr,
2193 Sema::AvailabilityMergeKind AMK) {
2194 InheritableAttr *NewAttr = nullptr;
2195 unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2196 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2197 NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
2198 AA->getIntroduced(), AA->getDeprecated(),
2199 AA->getObsoleted(), AA->getUnavailable(),
2200 AA->getMessage(), AMK,
2201 AttrSpellingListIndex);
2202 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2203 NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2204 AttrSpellingListIndex);
2205 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2206 NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2207 AttrSpellingListIndex);
2208 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2209 NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2210 AttrSpellingListIndex);
2211 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2212 NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2213 AttrSpellingListIndex);
2214 else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2215 NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2216 FA->getFormatIdx(), FA->getFirstArg(),
2217 AttrSpellingListIndex);
2218 else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2219 NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2220 AttrSpellingListIndex);
2221 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2222 NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2223 AttrSpellingListIndex,
2224 IA->getSemanticSpelling());
2225 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2226 NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
2227 &S.Context.Idents.get(AA->getSpelling()),
2228 AttrSpellingListIndex);
2229 else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2230 NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
2231 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2232 NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
2233 else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2234 NewAttr = S.mergeInternalLinkageAttr(
2235 D, InternalLinkageA->getRange(),
2236 &S.Context.Idents.get(InternalLinkageA->getSpelling()),
2237 AttrSpellingListIndex);
2238 else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2239 NewAttr = S.mergeCommonAttr(D, CommonA->getRange(),
2240 &S.Context.Idents.get(CommonA->getSpelling()),
2241 AttrSpellingListIndex);
2242 else if (isa<AlignedAttr>(Attr))
2243 // AlignedAttrs are handled separately, because we need to handle all
2244 // such attributes on a declaration at the same time.
2245 NewAttr = nullptr;
2246 else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2247 (AMK == Sema::AMK_Override ||
2248 AMK == Sema::AMK_ProtocolImplementation))
2249 NewAttr = nullptr;
2250 else if (Attr->duplicatesAllowed() || !DeclHasAttr(D, Attr))
2251 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2252
2253 if (NewAttr) {
2254 NewAttr->setInherited(true);
2255 D->addAttr(NewAttr);
2256 return true;
2257 }
2258
2259 return false;
2260 }
2261
getDefinition(const Decl * D)2262 static const Decl *getDefinition(const Decl *D) {
2263 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2264 return TD->getDefinition();
2265 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2266 const VarDecl *Def = VD->getDefinition();
2267 if (Def)
2268 return Def;
2269 return VD->getActingDefinition();
2270 }
2271 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2272 const FunctionDecl* Def;
2273 if (FD->isDefined(Def))
2274 return Def;
2275 }
2276 return nullptr;
2277 }
2278
hasAttribute(const Decl * D,attr::Kind Kind)2279 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2280 for (const auto *Attribute : D->attrs())
2281 if (Attribute->getKind() == Kind)
2282 return true;
2283 return false;
2284 }
2285
2286 /// checkNewAttributesAfterDef - If we already have a definition, check that
2287 /// there are no new attributes in this declaration.
checkNewAttributesAfterDef(Sema & S,Decl * New,const Decl * Old)2288 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2289 if (!New->hasAttrs())
2290 return;
2291
2292 const Decl *Def = getDefinition(Old);
2293 if (!Def || Def == New)
2294 return;
2295
2296 AttrVec &NewAttributes = New->getAttrs();
2297 for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2298 const Attr *NewAttribute = NewAttributes[I];
2299
2300 if (isa<AliasAttr>(NewAttribute)) {
2301 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2302 Sema::SkipBodyInfo SkipBody;
2303 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2304
2305 // If we're skipping this definition, drop the "alias" attribute.
2306 if (SkipBody.ShouldSkip) {
2307 NewAttributes.erase(NewAttributes.begin() + I);
2308 --E;
2309 continue;
2310 }
2311 } else {
2312 VarDecl *VD = cast<VarDecl>(New);
2313 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2314 VarDecl::TentativeDefinition
2315 ? diag::err_alias_after_tentative
2316 : diag::err_redefinition;
2317 S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2318 S.Diag(Def->getLocation(), diag::note_previous_definition);
2319 VD->setInvalidDecl();
2320 }
2321 ++I;
2322 continue;
2323 }
2324
2325 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2326 // Tentative definitions are only interesting for the alias check above.
2327 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2328 ++I;
2329 continue;
2330 }
2331 }
2332
2333 if (hasAttribute(Def, NewAttribute->getKind())) {
2334 ++I;
2335 continue; // regular attr merging will take care of validating this.
2336 }
2337
2338 if (isa<C11NoReturnAttr>(NewAttribute)) {
2339 // C's _Noreturn is allowed to be added to a function after it is defined.
2340 ++I;
2341 continue;
2342 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2343 if (AA->isAlignas()) {
2344 // C++11 [dcl.align]p6:
2345 // if any declaration of an entity has an alignment-specifier,
2346 // every defining declaration of that entity shall specify an
2347 // equivalent alignment.
2348 // C11 6.7.5/7:
2349 // If the definition of an object does not have an alignment
2350 // specifier, any other declaration of that object shall also
2351 // have no alignment specifier.
2352 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2353 << AA;
2354 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2355 << AA;
2356 NewAttributes.erase(NewAttributes.begin() + I);
2357 --E;
2358 continue;
2359 }
2360 }
2361
2362 S.Diag(NewAttribute->getLocation(),
2363 diag::warn_attribute_precede_definition);
2364 S.Diag(Def->getLocation(), diag::note_previous_definition);
2365 NewAttributes.erase(NewAttributes.begin() + I);
2366 --E;
2367 }
2368 }
2369
2370 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
mergeDeclAttributes(NamedDecl * New,Decl * Old,AvailabilityMergeKind AMK)2371 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2372 AvailabilityMergeKind AMK) {
2373 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2374 UsedAttr *NewAttr = OldAttr->clone(Context);
2375 NewAttr->setInherited(true);
2376 New->addAttr(NewAttr);
2377 }
2378
2379 if (!Old->hasAttrs() && !New->hasAttrs())
2380 return;
2381
2382 // Attributes declared post-definition are currently ignored.
2383 checkNewAttributesAfterDef(*this, New, Old);
2384
2385 if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2386 if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2387 if (OldA->getLabel() != NewA->getLabel()) {
2388 // This redeclaration changes __asm__ label.
2389 Diag(New->getLocation(), diag::err_different_asm_label);
2390 Diag(OldA->getLocation(), diag::note_previous_declaration);
2391 }
2392 } else if (Old->isUsed()) {
2393 // This redeclaration adds an __asm__ label to a declaration that has
2394 // already been ODR-used.
2395 Diag(New->getLocation(), diag::err_late_asm_label_name)
2396 << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2397 }
2398 }
2399
2400 if (!Old->hasAttrs())
2401 return;
2402
2403 bool foundAny = New->hasAttrs();
2404
2405 // Ensure that any moving of objects within the allocated map is done before
2406 // we process them.
2407 if (!foundAny) New->setAttrs(AttrVec());
2408
2409 for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2410 // Ignore deprecated/unavailable/availability attributes if requested.
2411 AvailabilityMergeKind LocalAMK = AMK_None;
2412 if (isa<DeprecatedAttr>(I) ||
2413 isa<UnavailableAttr>(I) ||
2414 isa<AvailabilityAttr>(I)) {
2415 switch (AMK) {
2416 case AMK_None:
2417 continue;
2418
2419 case AMK_Redeclaration:
2420 case AMK_Override:
2421 case AMK_ProtocolImplementation:
2422 LocalAMK = AMK;
2423 break;
2424 }
2425 }
2426
2427 // Already handled.
2428 if (isa<UsedAttr>(I))
2429 continue;
2430
2431 if (mergeDeclAttribute(*this, New, I, LocalAMK))
2432 foundAny = true;
2433 }
2434
2435 if (mergeAlignedAttrs(*this, New, Old))
2436 foundAny = true;
2437
2438 if (!foundAny) New->dropAttrs();
2439 }
2440
2441 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2442 /// to the new one.
mergeParamDeclAttributes(ParmVarDecl * newDecl,const ParmVarDecl * oldDecl,Sema & S)2443 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2444 const ParmVarDecl *oldDecl,
2445 Sema &S) {
2446 // C++11 [dcl.attr.depend]p2:
2447 // The first declaration of a function shall specify the
2448 // carries_dependency attribute for its declarator-id if any declaration
2449 // of the function specifies the carries_dependency attribute.
2450 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2451 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2452 S.Diag(CDA->getLocation(),
2453 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2454 // Find the first declaration of the parameter.
2455 // FIXME: Should we build redeclaration chains for function parameters?
2456 const FunctionDecl *FirstFD =
2457 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2458 const ParmVarDecl *FirstVD =
2459 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2460 S.Diag(FirstVD->getLocation(),
2461 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2462 }
2463
2464 if (!oldDecl->hasAttrs())
2465 return;
2466
2467 bool foundAny = newDecl->hasAttrs();
2468
2469 // Ensure that any moving of objects within the allocated map is
2470 // done before we process them.
2471 if (!foundAny) newDecl->setAttrs(AttrVec());
2472
2473 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2474 if (!DeclHasAttr(newDecl, I)) {
2475 InheritableAttr *newAttr =
2476 cast<InheritableParamAttr>(I->clone(S.Context));
2477 newAttr->setInherited(true);
2478 newDecl->addAttr(newAttr);
2479 foundAny = true;
2480 }
2481 }
2482
2483 if (!foundAny) newDecl->dropAttrs();
2484 }
2485
mergeParamDeclTypes(ParmVarDecl * NewParam,const ParmVarDecl * OldParam,Sema & S)2486 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
2487 const ParmVarDecl *OldParam,
2488 Sema &S) {
2489 if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
2490 if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
2491 if (*Oldnullability != *Newnullability) {
2492 S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
2493 << DiagNullabilityKind(
2494 *Newnullability,
2495 ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2496 != 0))
2497 << DiagNullabilityKind(
2498 *Oldnullability,
2499 ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2500 != 0));
2501 S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
2502 }
2503 } else {
2504 QualType NewT = NewParam->getType();
2505 NewT = S.Context.getAttributedType(
2506 AttributedType::getNullabilityAttrKind(*Oldnullability),
2507 NewT, NewT);
2508 NewParam->setType(NewT);
2509 }
2510 }
2511 }
2512
2513 namespace {
2514
2515 /// Used in MergeFunctionDecl to keep track of function parameters in
2516 /// C.
2517 struct GNUCompatibleParamWarning {
2518 ParmVarDecl *OldParm;
2519 ParmVarDecl *NewParm;
2520 QualType PromotedType;
2521 };
2522
2523 }
2524
2525 /// getSpecialMember - get the special member enum for a method.
getSpecialMember(const CXXMethodDecl * MD)2526 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2527 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2528 if (Ctor->isDefaultConstructor())
2529 return Sema::CXXDefaultConstructor;
2530
2531 if (Ctor->isCopyConstructor())
2532 return Sema::CXXCopyConstructor;
2533
2534 if (Ctor->isMoveConstructor())
2535 return Sema::CXXMoveConstructor;
2536 } else if (isa<CXXDestructorDecl>(MD)) {
2537 return Sema::CXXDestructor;
2538 } else if (MD->isCopyAssignmentOperator()) {
2539 return Sema::CXXCopyAssignment;
2540 } else if (MD->isMoveAssignmentOperator()) {
2541 return Sema::CXXMoveAssignment;
2542 }
2543
2544 return Sema::CXXInvalid;
2545 }
2546
2547 // Determine whether the previous declaration was a definition, implicit
2548 // declaration, or a declaration.
2549 template <typename T>
2550 static std::pair<diag::kind, SourceLocation>
getNoteDiagForInvalidRedeclaration(const T * Old,const T * New)2551 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2552 diag::kind PrevDiag;
2553 SourceLocation OldLocation = Old->getLocation();
2554 if (Old->isThisDeclarationADefinition())
2555 PrevDiag = diag::note_previous_definition;
2556 else if (Old->isImplicit()) {
2557 PrevDiag = diag::note_previous_implicit_declaration;
2558 if (OldLocation.isInvalid())
2559 OldLocation = New->getLocation();
2560 } else
2561 PrevDiag = diag::note_previous_declaration;
2562 return std::make_pair(PrevDiag, OldLocation);
2563 }
2564
2565 /// canRedefineFunction - checks if a function can be redefined. Currently,
2566 /// only extern inline functions can be redefined, and even then only in
2567 /// GNU89 mode.
canRedefineFunction(const FunctionDecl * FD,const LangOptions & LangOpts)2568 static bool canRedefineFunction(const FunctionDecl *FD,
2569 const LangOptions& LangOpts) {
2570 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2571 !LangOpts.CPlusPlus &&
2572 FD->isInlineSpecified() &&
2573 FD->getStorageClass() == SC_Extern);
2574 }
2575
getCallingConvAttributedType(QualType T) const2576 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2577 const AttributedType *AT = T->getAs<AttributedType>();
2578 while (AT && !AT->isCallingConv())
2579 AT = AT->getModifiedType()->getAs<AttributedType>();
2580 return AT;
2581 }
2582
2583 template <typename T>
haveIncompatibleLanguageLinkages(const T * Old,const T * New)2584 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2585 const DeclContext *DC = Old->getDeclContext();
2586 if (DC->isRecord())
2587 return false;
2588
2589 LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2590 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2591 return true;
2592 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2593 return true;
2594 return false;
2595 }
2596
isExternC(T * D)2597 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
isExternC(VarTemplateDecl *)2598 static bool isExternC(VarTemplateDecl *) { return false; }
2599
2600 /// \brief Check whether a redeclaration of an entity introduced by a
2601 /// using-declaration is valid, given that we know it's not an overload
2602 /// (nor a hidden tag declaration).
2603 template<typename ExpectedDecl>
checkUsingShadowRedecl(Sema & S,UsingShadowDecl * OldS,ExpectedDecl * New)2604 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
2605 ExpectedDecl *New) {
2606 // C++11 [basic.scope.declarative]p4:
2607 // Given a set of declarations in a single declarative region, each of
2608 // which specifies the same unqualified name,
2609 // -- they shall all refer to the same entity, or all refer to functions
2610 // and function templates; or
2611 // -- exactly one declaration shall declare a class name or enumeration
2612 // name that is not a typedef name and the other declarations shall all
2613 // refer to the same variable or enumerator, or all refer to functions
2614 // and function templates; in this case the class name or enumeration
2615 // name is hidden (3.3.10).
2616
2617 // C++11 [namespace.udecl]p14:
2618 // If a function declaration in namespace scope or block scope has the
2619 // same name and the same parameter-type-list as a function introduced
2620 // by a using-declaration, and the declarations do not declare the same
2621 // function, the program is ill-formed.
2622
2623 auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
2624 if (Old &&
2625 !Old->getDeclContext()->getRedeclContext()->Equals(
2626 New->getDeclContext()->getRedeclContext()) &&
2627 !(isExternC(Old) && isExternC(New)))
2628 Old = nullptr;
2629
2630 if (!Old) {
2631 S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2632 S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
2633 S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2634 return true;
2635 }
2636 return false;
2637 }
2638
hasIdenticalPassObjectSizeAttrs(const FunctionDecl * A,const FunctionDecl * B)2639 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
2640 const FunctionDecl *B) {
2641 assert(A->getNumParams() == B->getNumParams());
2642
2643 auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
2644 const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
2645 const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
2646 if (AttrA == AttrB)
2647 return true;
2648 return AttrA && AttrB && AttrA->getType() == AttrB->getType();
2649 };
2650
2651 return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
2652 }
2653
2654 /// MergeFunctionDecl - We just parsed a function 'New' from
2655 /// declarator D which has the same name and scope as a previous
2656 /// declaration 'Old'. Figure out how to resolve this situation,
2657 /// merging decls or emitting diagnostics as appropriate.
2658 ///
2659 /// In C++, New and Old must be declarations that are not
2660 /// overloaded. Use IsOverload to determine whether New and Old are
2661 /// overloaded, and to select the Old declaration that New should be
2662 /// merged with.
2663 ///
2664 /// Returns true if there was an error, false otherwise.
MergeFunctionDecl(FunctionDecl * New,NamedDecl * & OldD,Scope * S,bool MergeTypeWithOld)2665 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
2666 Scope *S, bool MergeTypeWithOld) {
2667 // Verify the old decl was also a function.
2668 FunctionDecl *Old = OldD->getAsFunction();
2669 if (!Old) {
2670 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2671 if (New->getFriendObjectKind()) {
2672 Diag(New->getLocation(), diag::err_using_decl_friend);
2673 Diag(Shadow->getTargetDecl()->getLocation(),
2674 diag::note_using_decl_target);
2675 Diag(Shadow->getUsingDecl()->getLocation(),
2676 diag::note_using_decl) << 0;
2677 return true;
2678 }
2679
2680 // Check whether the two declarations might declare the same function.
2681 if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
2682 return true;
2683 OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
2684 } else {
2685 Diag(New->getLocation(), diag::err_redefinition_different_kind)
2686 << New->getDeclName();
2687 Diag(OldD->getLocation(), diag::note_previous_definition);
2688 return true;
2689 }
2690 }
2691
2692 // If the old declaration is invalid, just give up here.
2693 if (Old->isInvalidDecl())
2694 return true;
2695
2696 diag::kind PrevDiag;
2697 SourceLocation OldLocation;
2698 std::tie(PrevDiag, OldLocation) =
2699 getNoteDiagForInvalidRedeclaration(Old, New);
2700
2701 // Don't complain about this if we're in GNU89 mode and the old function
2702 // is an extern inline function.
2703 // Don't complain about specializations. They are not supposed to have
2704 // storage classes.
2705 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2706 New->getStorageClass() == SC_Static &&
2707 Old->hasExternalFormalLinkage() &&
2708 !New->getTemplateSpecializationInfo() &&
2709 !canRedefineFunction(Old, getLangOpts())) {
2710 if (getLangOpts().MicrosoftExt) {
2711 Diag(New->getLocation(), diag::ext_static_non_static) << New;
2712 Diag(OldLocation, PrevDiag);
2713 } else {
2714 Diag(New->getLocation(), diag::err_static_non_static) << New;
2715 Diag(OldLocation, PrevDiag);
2716 return true;
2717 }
2718 }
2719
2720 if (New->hasAttr<InternalLinkageAttr>() &&
2721 !Old->hasAttr<InternalLinkageAttr>()) {
2722 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
2723 << New->getDeclName();
2724 Diag(Old->getLocation(), diag::note_previous_definition);
2725 New->dropAttr<InternalLinkageAttr>();
2726 }
2727
2728 // If a function is first declared with a calling convention, but is later
2729 // declared or defined without one, all following decls assume the calling
2730 // convention of the first.
2731 //
2732 // It's OK if a function is first declared without a calling convention,
2733 // but is later declared or defined with the default calling convention.
2734 //
2735 // To test if either decl has an explicit calling convention, we look for
2736 // AttributedType sugar nodes on the type as written. If they are missing or
2737 // were canonicalized away, we assume the calling convention was implicit.
2738 //
2739 // Note also that we DO NOT return at this point, because we still have
2740 // other tests to run.
2741 QualType OldQType = Context.getCanonicalType(Old->getType());
2742 QualType NewQType = Context.getCanonicalType(New->getType());
2743 const FunctionType *OldType = cast<FunctionType>(OldQType);
2744 const FunctionType *NewType = cast<FunctionType>(NewQType);
2745 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2746 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2747 bool RequiresAdjustment = false;
2748
2749 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
2750 FunctionDecl *First = Old->getFirstDecl();
2751 const FunctionType *FT =
2752 First->getType().getCanonicalType()->castAs<FunctionType>();
2753 FunctionType::ExtInfo FI = FT->getExtInfo();
2754 bool NewCCExplicit = getCallingConvAttributedType(New->getType());
2755 if (!NewCCExplicit) {
2756 // Inherit the CC from the previous declaration if it was specified
2757 // there but not here.
2758 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2759 RequiresAdjustment = true;
2760 } else {
2761 // Calling conventions aren't compatible, so complain.
2762 bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
2763 Diag(New->getLocation(), diag::err_cconv_change)
2764 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2765 << !FirstCCExplicit
2766 << (!FirstCCExplicit ? "" :
2767 FunctionType::getNameForCallConv(FI.getCC()));
2768
2769 // Put the note on the first decl, since it is the one that matters.
2770 Diag(First->getLocation(), diag::note_previous_declaration);
2771 return true;
2772 }
2773 }
2774
2775 // FIXME: diagnose the other way around?
2776 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2777 NewTypeInfo = NewTypeInfo.withNoReturn(true);
2778 RequiresAdjustment = true;
2779 }
2780
2781 // Merge regparm attribute.
2782 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2783 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2784 if (NewTypeInfo.getHasRegParm()) {
2785 Diag(New->getLocation(), diag::err_regparm_mismatch)
2786 << NewType->getRegParmType()
2787 << OldType->getRegParmType();
2788 Diag(OldLocation, diag::note_previous_declaration);
2789 return true;
2790 }
2791
2792 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2793 RequiresAdjustment = true;
2794 }
2795
2796 // Merge ns_returns_retained attribute.
2797 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2798 if (NewTypeInfo.getProducesResult()) {
2799 Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2800 Diag(OldLocation, diag::note_previous_declaration);
2801 return true;
2802 }
2803
2804 NewTypeInfo = NewTypeInfo.withProducesResult(true);
2805 RequiresAdjustment = true;
2806 }
2807
2808 if (RequiresAdjustment) {
2809 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
2810 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
2811 New->setType(QualType(AdjustedType, 0));
2812 NewQType = Context.getCanonicalType(New->getType());
2813 NewType = cast<FunctionType>(NewQType);
2814 }
2815
2816 // If this redeclaration makes the function inline, we may need to add it to
2817 // UndefinedButUsed.
2818 if (!Old->isInlined() && New->isInlined() &&
2819 !New->hasAttr<GNUInlineAttr>() &&
2820 !getLangOpts().GNUInline &&
2821 Old->isUsed(false) &&
2822 !Old->isDefined() && !New->isThisDeclarationADefinition())
2823 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2824 SourceLocation()));
2825
2826 // If this redeclaration makes it newly gnu_inline, we don't want to warn
2827 // about it.
2828 if (New->hasAttr<GNUInlineAttr>() &&
2829 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2830 UndefinedButUsed.erase(Old->getCanonicalDecl());
2831 }
2832
2833 // If pass_object_size params don't match up perfectly, this isn't a valid
2834 // redeclaration.
2835 if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
2836 !hasIdenticalPassObjectSizeAttrs(Old, New)) {
2837 Diag(New->getLocation(), diag::err_different_pass_object_size_params)
2838 << New->getDeclName();
2839 Diag(OldLocation, PrevDiag) << Old << Old->getType();
2840 return true;
2841 }
2842
2843 if (getLangOpts().CPlusPlus) {
2844 // (C++98 13.1p2):
2845 // Certain function declarations cannot be overloaded:
2846 // -- Function declarations that differ only in the return type
2847 // cannot be overloaded.
2848
2849 // Go back to the type source info to compare the declared return types,
2850 // per C++1y [dcl.type.auto]p13:
2851 // Redeclarations or specializations of a function or function template
2852 // with a declared return type that uses a placeholder type shall also
2853 // use that placeholder, not a deduced type.
2854 QualType OldDeclaredReturnType =
2855 (Old->getTypeSourceInfo()
2856 ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2857 : OldType)->getReturnType();
2858 QualType NewDeclaredReturnType =
2859 (New->getTypeSourceInfo()
2860 ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2861 : NewType)->getReturnType();
2862 QualType ResQT;
2863 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
2864 !((NewQType->isDependentType() || OldQType->isDependentType()) &&
2865 New->isLocalExternDecl())) {
2866 if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2867 OldDeclaredReturnType->isObjCObjectPointerType())
2868 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2869 if (ResQT.isNull()) {
2870 if (New->isCXXClassMember() && New->isOutOfLine())
2871 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
2872 << New << New->getReturnTypeSourceRange();
2873 else
2874 Diag(New->getLocation(), diag::err_ovl_diff_return_type)
2875 << New->getReturnTypeSourceRange();
2876 Diag(OldLocation, PrevDiag) << Old << Old->getType()
2877 << Old->getReturnTypeSourceRange();
2878 return true;
2879 }
2880 else
2881 NewQType = ResQT;
2882 }
2883
2884 QualType OldReturnType = OldType->getReturnType();
2885 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
2886 if (OldReturnType != NewReturnType) {
2887 // If this function has a deduced return type and has already been
2888 // defined, copy the deduced value from the old declaration.
2889 AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
2890 if (OldAT && OldAT->isDeduced()) {
2891 New->setType(
2892 SubstAutoType(New->getType(),
2893 OldAT->isDependentType() ? Context.DependentTy
2894 : OldAT->getDeducedType()));
2895 NewQType = Context.getCanonicalType(
2896 SubstAutoType(NewQType,
2897 OldAT->isDependentType() ? Context.DependentTy
2898 : OldAT->getDeducedType()));
2899 }
2900 }
2901
2902 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2903 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2904 if (OldMethod && NewMethod) {
2905 // Preserve triviality.
2906 NewMethod->setTrivial(OldMethod->isTrivial());
2907
2908 // MSVC allows explicit template specialization at class scope:
2909 // 2 CXXMethodDecls referring to the same function will be injected.
2910 // We don't want a redeclaration error.
2911 bool IsClassScopeExplicitSpecialization =
2912 OldMethod->isFunctionTemplateSpecialization() &&
2913 NewMethod->isFunctionTemplateSpecialization();
2914 bool isFriend = NewMethod->getFriendObjectKind();
2915
2916 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2917 !IsClassScopeExplicitSpecialization) {
2918 // -- Member function declarations with the same name and the
2919 // same parameter types cannot be overloaded if any of them
2920 // is a static member function declaration.
2921 if (OldMethod->isStatic() != NewMethod->isStatic()) {
2922 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2923 Diag(OldLocation, PrevDiag) << Old << Old->getType();
2924 return true;
2925 }
2926
2927 // C++ [class.mem]p1:
2928 // [...] A member shall not be declared twice in the
2929 // member-specification, except that a nested class or member
2930 // class template can be declared and then later defined.
2931 if (ActiveTemplateInstantiations.empty()) {
2932 unsigned NewDiag;
2933 if (isa<CXXConstructorDecl>(OldMethod))
2934 NewDiag = diag::err_constructor_redeclared;
2935 else if (isa<CXXDestructorDecl>(NewMethod))
2936 NewDiag = diag::err_destructor_redeclared;
2937 else if (isa<CXXConversionDecl>(NewMethod))
2938 NewDiag = diag::err_conv_function_redeclared;
2939 else
2940 NewDiag = diag::err_member_redeclared;
2941
2942 Diag(New->getLocation(), NewDiag);
2943 } else {
2944 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2945 << New << New->getType();
2946 }
2947 Diag(OldLocation, PrevDiag) << Old << Old->getType();
2948 return true;
2949
2950 // Complain if this is an explicit declaration of a special
2951 // member that was initially declared implicitly.
2952 //
2953 // As an exception, it's okay to befriend such methods in order
2954 // to permit the implicit constructor/destructor/operator calls.
2955 } else if (OldMethod->isImplicit()) {
2956 if (isFriend) {
2957 NewMethod->setImplicit();
2958 } else {
2959 Diag(NewMethod->getLocation(),
2960 diag::err_definition_of_implicitly_declared_member)
2961 << New << getSpecialMember(OldMethod);
2962 return true;
2963 }
2964 } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2965 Diag(NewMethod->getLocation(),
2966 diag::err_definition_of_explicitly_defaulted_member)
2967 << getSpecialMember(OldMethod);
2968 return true;
2969 }
2970 }
2971
2972 // C++11 [dcl.attr.noreturn]p1:
2973 // The first declaration of a function shall specify the noreturn
2974 // attribute if any declaration of that function specifies the noreturn
2975 // attribute.
2976 const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
2977 if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
2978 Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
2979 Diag(Old->getFirstDecl()->getLocation(),
2980 diag::note_noreturn_missing_first_decl);
2981 }
2982
2983 // C++11 [dcl.attr.depend]p2:
2984 // The first declaration of a function shall specify the
2985 // carries_dependency attribute for its declarator-id if any declaration
2986 // of the function specifies the carries_dependency attribute.
2987 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
2988 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
2989 Diag(CDA->getLocation(),
2990 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2991 Diag(Old->getFirstDecl()->getLocation(),
2992 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2993 }
2994
2995 // (C++98 8.3.5p3):
2996 // All declarations for a function shall agree exactly in both the
2997 // return type and the parameter-type-list.
2998 // We also want to respect all the extended bits except noreturn.
2999
3000 // noreturn should now match unless the old type info didn't have it.
3001 QualType OldQTypeForComparison = OldQType;
3002 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3003 assert(OldQType == QualType(OldType, 0));
3004 const FunctionType *OldTypeForComparison
3005 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3006 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3007 assert(OldQTypeForComparison.isCanonical());
3008 }
3009
3010 if (haveIncompatibleLanguageLinkages(Old, New)) {
3011 // As a special case, retain the language linkage from previous
3012 // declarations of a friend function as an extension.
3013 //
3014 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3015 // and is useful because there's otherwise no way to specify language
3016 // linkage within class scope.
3017 //
3018 // Check cautiously as the friend object kind isn't yet complete.
3019 if (New->getFriendObjectKind() != Decl::FOK_None) {
3020 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3021 Diag(OldLocation, PrevDiag);
3022 } else {
3023 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3024 Diag(OldLocation, PrevDiag);
3025 return true;
3026 }
3027 }
3028
3029 if (OldQTypeForComparison == NewQType)
3030 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3031
3032 if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
3033 New->isLocalExternDecl()) {
3034 // It's OK if we couldn't merge types for a local function declaraton
3035 // if either the old or new type is dependent. We'll merge the types
3036 // when we instantiate the function.
3037 return false;
3038 }
3039
3040 // Fall through for conflicting redeclarations and redefinitions.
3041 }
3042
3043 // C: Function types need to be compatible, not identical. This handles
3044 // duplicate function decls like "void f(int); void f(enum X);" properly.
3045 if (!getLangOpts().CPlusPlus &&
3046 Context.typesAreCompatible(OldQType, NewQType)) {
3047 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3048 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3049 const FunctionProtoType *OldProto = nullptr;
3050 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3051 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3052 // The old declaration provided a function prototype, but the
3053 // new declaration does not. Merge in the prototype.
3054 assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
3055 SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3056 NewQType =
3057 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3058 OldProto->getExtProtoInfo());
3059 New->setType(NewQType);
3060 New->setHasInheritedPrototype();
3061
3062 // Synthesize parameters with the same types.
3063 SmallVector<ParmVarDecl*, 16> Params;
3064 for (const auto &ParamType : OldProto->param_types()) {
3065 ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3066 SourceLocation(), nullptr,
3067 ParamType, /*TInfo=*/nullptr,
3068 SC_None, nullptr);
3069 Param->setScopeInfo(0, Params.size());
3070 Param->setImplicit();
3071 Params.push_back(Param);
3072 }
3073
3074 New->setParams(Params);
3075 }
3076
3077 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3078 }
3079
3080 // GNU C permits a K&R definition to follow a prototype declaration
3081 // if the declared types of the parameters in the K&R definition
3082 // match the types in the prototype declaration, even when the
3083 // promoted types of the parameters from the K&R definition differ
3084 // from the types in the prototype. GCC then keeps the types from
3085 // the prototype.
3086 //
3087 // If a variadic prototype is followed by a non-variadic K&R definition,
3088 // the K&R definition becomes variadic. This is sort of an edge case, but
3089 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3090 // C99 6.9.1p8.
3091 if (!getLangOpts().CPlusPlus &&
3092 Old->hasPrototype() && !New->hasPrototype() &&
3093 New->getType()->getAs<FunctionProtoType>() &&
3094 Old->getNumParams() == New->getNumParams()) {
3095 SmallVector<QualType, 16> ArgTypes;
3096 SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3097 const FunctionProtoType *OldProto
3098 = Old->getType()->getAs<FunctionProtoType>();
3099 const FunctionProtoType *NewProto
3100 = New->getType()->getAs<FunctionProtoType>();
3101
3102 // Determine whether this is the GNU C extension.
3103 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3104 NewProto->getReturnType());
3105 bool LooseCompatible = !MergedReturn.isNull();
3106 for (unsigned Idx = 0, End = Old->getNumParams();
3107 LooseCompatible && Idx != End; ++Idx) {
3108 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3109 ParmVarDecl *NewParm = New->getParamDecl(Idx);
3110 if (Context.typesAreCompatible(OldParm->getType(),
3111 NewProto->getParamType(Idx))) {
3112 ArgTypes.push_back(NewParm->getType());
3113 } else if (Context.typesAreCompatible(OldParm->getType(),
3114 NewParm->getType(),
3115 /*CompareUnqualified=*/true)) {
3116 GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3117 NewProto->getParamType(Idx) };
3118 Warnings.push_back(Warn);
3119 ArgTypes.push_back(NewParm->getType());
3120 } else
3121 LooseCompatible = false;
3122 }
3123
3124 if (LooseCompatible) {
3125 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3126 Diag(Warnings[Warn].NewParm->getLocation(),
3127 diag::ext_param_promoted_not_compatible_with_prototype)
3128 << Warnings[Warn].PromotedType
3129 << Warnings[Warn].OldParm->getType();
3130 if (Warnings[Warn].OldParm->getLocation().isValid())
3131 Diag(Warnings[Warn].OldParm->getLocation(),
3132 diag::note_previous_declaration);
3133 }
3134
3135 if (MergeTypeWithOld)
3136 New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3137 OldProto->getExtProtoInfo()));
3138 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3139 }
3140
3141 // Fall through to diagnose conflicting types.
3142 }
3143
3144 // A function that has already been declared has been redeclared or
3145 // defined with a different type; show an appropriate diagnostic.
3146
3147 // If the previous declaration was an implicitly-generated builtin
3148 // declaration, then at the very least we should use a specialized note.
3149 unsigned BuiltinID;
3150 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3151 // If it's actually a library-defined builtin function like 'malloc'
3152 // or 'printf', just warn about the incompatible redeclaration.
3153 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3154 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3155 Diag(OldLocation, diag::note_previous_builtin_declaration)
3156 << Old << Old->getType();
3157
3158 // If this is a global redeclaration, just forget hereafter
3159 // about the "builtin-ness" of the function.
3160 //
3161 // Doing this for local extern declarations is problematic. If
3162 // the builtin declaration remains visible, a second invalid
3163 // local declaration will produce a hard error; if it doesn't
3164 // remain visible, a single bogus local redeclaration (which is
3165 // actually only a warning) could break all the downstream code.
3166 if (!New->getLexicalDeclContext()->isFunctionOrMethod())
3167 New->getIdentifier()->revertBuiltin();
3168
3169 return false;
3170 }
3171
3172 PrevDiag = diag::note_previous_builtin_declaration;
3173 }
3174
3175 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3176 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3177 return true;
3178 }
3179
3180 /// \brief Completes the merge of two function declarations that are
3181 /// known to be compatible.
3182 ///
3183 /// This routine handles the merging of attributes and other
3184 /// properties of function declarations from the old declaration to
3185 /// the new declaration, once we know that New is in fact a
3186 /// redeclaration of Old.
3187 ///
3188 /// \returns false
MergeCompatibleFunctionDecls(FunctionDecl * New,FunctionDecl * Old,Scope * S,bool MergeTypeWithOld)3189 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3190 Scope *S, bool MergeTypeWithOld) {
3191 // Merge the attributes
3192 mergeDeclAttributes(New, Old);
3193
3194 // Merge "pure" flag.
3195 if (Old->isPure())
3196 New->setPure();
3197
3198 // Merge "used" flag.
3199 if (Old->getMostRecentDecl()->isUsed(false))
3200 New->setIsUsed();
3201
3202 // Merge attributes from the parameters. These can mismatch with K&R
3203 // declarations.
3204 if (New->getNumParams() == Old->getNumParams())
3205 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3206 ParmVarDecl *NewParam = New->getParamDecl(i);
3207 ParmVarDecl *OldParam = Old->getParamDecl(i);
3208 mergeParamDeclAttributes(NewParam, OldParam, *this);
3209 mergeParamDeclTypes(NewParam, OldParam, *this);
3210 }
3211
3212 if (getLangOpts().CPlusPlus)
3213 return MergeCXXFunctionDecl(New, Old, S);
3214
3215 // Merge the function types so the we get the composite types for the return
3216 // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3217 // was visible.
3218 QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3219 if (!Merged.isNull() && MergeTypeWithOld)
3220 New->setType(Merged);
3221
3222 return false;
3223 }
3224
3225
mergeObjCMethodDecls(ObjCMethodDecl * newMethod,ObjCMethodDecl * oldMethod)3226 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3227 ObjCMethodDecl *oldMethod) {
3228
3229 // Merge the attributes, including deprecated/unavailable
3230 AvailabilityMergeKind MergeKind =
3231 isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3232 ? AMK_ProtocolImplementation
3233 : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3234 : AMK_Override;
3235
3236 mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3237
3238 // Merge attributes from the parameters.
3239 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3240 oe = oldMethod->param_end();
3241 for (ObjCMethodDecl::param_iterator
3242 ni = newMethod->param_begin(), ne = newMethod->param_end();
3243 ni != ne && oi != oe; ++ni, ++oi)
3244 mergeParamDeclAttributes(*ni, *oi, *this);
3245
3246 CheckObjCMethodOverride(newMethod, oldMethod);
3247 }
3248
3249 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3250 /// scope as a previous declaration 'Old'. Figure out how to merge their types,
3251 /// emitting diagnostics as appropriate.
3252 ///
3253 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3254 /// to here in AddInitializerToDecl. We can't check them before the initializer
3255 /// is attached.
MergeVarDeclTypes(VarDecl * New,VarDecl * Old,bool MergeTypeWithOld)3256 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3257 bool MergeTypeWithOld) {
3258 if (New->isInvalidDecl() || Old->isInvalidDecl())
3259 return;
3260
3261 QualType MergedT;
3262 if (getLangOpts().CPlusPlus) {
3263 if (New->getType()->isUndeducedType()) {
3264 // We don't know what the new type is until the initializer is attached.
3265 return;
3266 } else if (Context.hasSameType(New->getType(), Old->getType())) {
3267 // These could still be something that needs exception specs checked.
3268 return MergeVarDeclExceptionSpecs(New, Old);
3269 }
3270 // C++ [basic.link]p10:
3271 // [...] the types specified by all declarations referring to a given
3272 // object or function shall be identical, except that declarations for an
3273 // array object can specify array types that differ by the presence or
3274 // absence of a major array bound (8.3.4).
3275 else if (Old->getType()->isIncompleteArrayType() &&
3276 New->getType()->isArrayType()) {
3277 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3278 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3279 if (Context.hasSameType(OldArray->getElementType(),
3280 NewArray->getElementType()))
3281 MergedT = New->getType();
3282 } else if (Old->getType()->isArrayType() &&
3283 New->getType()->isIncompleteArrayType()) {
3284 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3285 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3286 if (Context.hasSameType(OldArray->getElementType(),
3287 NewArray->getElementType()))
3288 MergedT = Old->getType();
3289 } else if (New->getType()->isObjCObjectPointerType() &&
3290 Old->getType()->isObjCObjectPointerType()) {
3291 MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3292 Old->getType());
3293 }
3294 } else {
3295 // C 6.2.7p2:
3296 // All declarations that refer to the same object or function shall have
3297 // compatible type.
3298 MergedT = Context.mergeTypes(New->getType(), Old->getType());
3299 }
3300 if (MergedT.isNull()) {
3301 // It's OK if we couldn't merge types if either type is dependent, for a
3302 // block-scope variable. In other cases (static data members of class
3303 // templates, variable templates, ...), we require the types to be
3304 // equivalent.
3305 // FIXME: The C++ standard doesn't say anything about this.
3306 if ((New->getType()->isDependentType() ||
3307 Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3308 // If the old type was dependent, we can't merge with it, so the new type
3309 // becomes dependent for now. We'll reproduce the original type when we
3310 // instantiate the TypeSourceInfo for the variable.
3311 if (!New->getType()->isDependentType() && MergeTypeWithOld)
3312 New->setType(Context.DependentTy);
3313 return;
3314 }
3315
3316 // FIXME: Even if this merging succeeds, some other non-visible declaration
3317 // of this variable might have an incompatible type. For instance:
3318 //
3319 // extern int arr[];
3320 // void f() { extern int arr[2]; }
3321 // void g() { extern int arr[3]; }
3322 //
3323 // Neither C nor C++ requires a diagnostic for this, but we should still try
3324 // to diagnose it.
3325 Diag(New->getLocation(), New->isThisDeclarationADefinition()
3326 ? diag::err_redefinition_different_type
3327 : diag::err_redeclaration_different_type)
3328 << New->getDeclName() << New->getType() << Old->getType();
3329
3330 diag::kind PrevDiag;
3331 SourceLocation OldLocation;
3332 std::tie(PrevDiag, OldLocation) =
3333 getNoteDiagForInvalidRedeclaration(Old, New);
3334 Diag(OldLocation, PrevDiag);
3335 return New->setInvalidDecl();
3336 }
3337
3338 // Don't actually update the type on the new declaration if the old
3339 // declaration was an extern declaration in a different scope.
3340 if (MergeTypeWithOld)
3341 New->setType(MergedT);
3342 }
3343
mergeTypeWithPrevious(Sema & S,VarDecl * NewVD,VarDecl * OldVD,LookupResult & Previous)3344 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3345 LookupResult &Previous) {
3346 // C11 6.2.7p4:
3347 // For an identifier with internal or external linkage declared
3348 // in a scope in which a prior declaration of that identifier is
3349 // visible, if the prior declaration specifies internal or
3350 // external linkage, the type of the identifier at the later
3351 // declaration becomes the composite type.
3352 //
3353 // If the variable isn't visible, we do not merge with its type.
3354 if (Previous.isShadowed())
3355 return false;
3356
3357 if (S.getLangOpts().CPlusPlus) {
3358 // C++11 [dcl.array]p3:
3359 // If there is a preceding declaration of the entity in the same
3360 // scope in which the bound was specified, an omitted array bound
3361 // is taken to be the same as in that earlier declaration.
3362 return NewVD->isPreviousDeclInSameBlockScope() ||
3363 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3364 !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3365 } else {
3366 // If the old declaration was function-local, don't merge with its
3367 // type unless we're in the same function.
3368 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3369 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3370 }
3371 }
3372
3373 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
3374 /// and scope as a previous declaration 'Old'. Figure out how to resolve this
3375 /// situation, merging decls or emitting diagnostics as appropriate.
3376 ///
3377 /// Tentative definition rules (C99 6.9.2p2) are checked by
3378 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3379 /// definitions here, since the initializer hasn't been attached.
3380 ///
MergeVarDecl(VarDecl * New,LookupResult & Previous)3381 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3382 // If the new decl is already invalid, don't do any other checking.
3383 if (New->isInvalidDecl())
3384 return;
3385
3386 if (!shouldLinkPossiblyHiddenDecl(Previous, New))
3387 return;
3388
3389 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3390
3391 // Verify the old decl was also a variable or variable template.
3392 VarDecl *Old = nullptr;
3393 VarTemplateDecl *OldTemplate = nullptr;
3394 if (Previous.isSingleResult()) {
3395 if (NewTemplate) {
3396 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3397 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3398
3399 if (auto *Shadow =
3400 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3401 if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
3402 return New->setInvalidDecl();
3403 } else {
3404 Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3405
3406 if (auto *Shadow =
3407 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3408 if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
3409 return New->setInvalidDecl();
3410 }
3411 }
3412 if (!Old) {
3413 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3414 << New->getDeclName();
3415 Diag(Previous.getRepresentativeDecl()->getLocation(),
3416 diag::note_previous_definition);
3417 return New->setInvalidDecl();
3418 }
3419
3420 // Ensure the template parameters are compatible.
3421 if (NewTemplate &&
3422 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3423 OldTemplate->getTemplateParameters(),
3424 /*Complain=*/true, TPL_TemplateMatch))
3425 return New->setInvalidDecl();
3426
3427 // C++ [class.mem]p1:
3428 // A member shall not be declared twice in the member-specification [...]
3429 //
3430 // Here, we need only consider static data members.
3431 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3432 Diag(New->getLocation(), diag::err_duplicate_member)
3433 << New->getIdentifier();
3434 Diag(Old->getLocation(), diag::note_previous_declaration);
3435 New->setInvalidDecl();
3436 }
3437
3438 mergeDeclAttributes(New, Old);
3439 // Warn if an already-declared variable is made a weak_import in a subsequent
3440 // declaration
3441 if (New->hasAttr<WeakImportAttr>() &&
3442 Old->getStorageClass() == SC_None &&
3443 !Old->hasAttr<WeakImportAttr>()) {
3444 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3445 Diag(Old->getLocation(), diag::note_previous_definition);
3446 // Remove weak_import attribute on new declaration.
3447 New->dropAttr<WeakImportAttr>();
3448 }
3449
3450 if (New->hasAttr<InternalLinkageAttr>() &&
3451 !Old->hasAttr<InternalLinkageAttr>()) {
3452 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3453 << New->getDeclName();
3454 Diag(Old->getLocation(), diag::note_previous_definition);
3455 New->dropAttr<InternalLinkageAttr>();
3456 }
3457
3458 // Merge the types.
3459 VarDecl *MostRecent = Old->getMostRecentDecl();
3460 if (MostRecent != Old) {
3461 MergeVarDeclTypes(New, MostRecent,
3462 mergeTypeWithPrevious(*this, New, MostRecent, Previous));
3463 if (New->isInvalidDecl())
3464 return;
3465 }
3466
3467 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3468 if (New->isInvalidDecl())
3469 return;
3470
3471 diag::kind PrevDiag;
3472 SourceLocation OldLocation;
3473 std::tie(PrevDiag, OldLocation) =
3474 getNoteDiagForInvalidRedeclaration(Old, New);
3475
3476 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3477 if (New->getStorageClass() == SC_Static &&
3478 !New->isStaticDataMember() &&
3479 Old->hasExternalFormalLinkage()) {
3480 if (getLangOpts().MicrosoftExt) {
3481 Diag(New->getLocation(), diag::ext_static_non_static)
3482 << New->getDeclName();
3483 Diag(OldLocation, PrevDiag);
3484 } else {
3485 Diag(New->getLocation(), diag::err_static_non_static)
3486 << New->getDeclName();
3487 Diag(OldLocation, PrevDiag);
3488 return New->setInvalidDecl();
3489 }
3490 }
3491 // C99 6.2.2p4:
3492 // For an identifier declared with the storage-class specifier
3493 // extern in a scope in which a prior declaration of that
3494 // identifier is visible,23) if the prior declaration specifies
3495 // internal or external linkage, the linkage of the identifier at
3496 // the later declaration is the same as the linkage specified at
3497 // the prior declaration. If no prior declaration is visible, or
3498 // if the prior declaration specifies no linkage, then the
3499 // identifier has external linkage.
3500 if (New->hasExternalStorage() && Old->hasLinkage())
3501 /* Okay */;
3502 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3503 !New->isStaticDataMember() &&
3504 Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3505 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3506 Diag(OldLocation, PrevDiag);
3507 return New->setInvalidDecl();
3508 }
3509
3510 // Check if extern is followed by non-extern and vice-versa.
3511 if (New->hasExternalStorage() &&
3512 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
3513 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3514 Diag(OldLocation, PrevDiag);
3515 return New->setInvalidDecl();
3516 }
3517 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
3518 !New->hasExternalStorage()) {
3519 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3520 Diag(OldLocation, PrevDiag);
3521 return New->setInvalidDecl();
3522 }
3523
3524 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3525
3526 // FIXME: The test for external storage here seems wrong? We still
3527 // need to check for mismatches.
3528 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3529 // Don't complain about out-of-line definitions of static members.
3530 !(Old->getLexicalDeclContext()->isRecord() &&
3531 !New->getLexicalDeclContext()->isRecord())) {
3532 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3533 Diag(OldLocation, PrevDiag);
3534 return New->setInvalidDecl();
3535 }
3536
3537 if (New->getTLSKind() != Old->getTLSKind()) {
3538 if (!Old->getTLSKind()) {
3539 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3540 Diag(OldLocation, PrevDiag);
3541 } else if (!New->getTLSKind()) {
3542 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3543 Diag(OldLocation, PrevDiag);
3544 } else {
3545 // Do not allow redeclaration to change the variable between requiring
3546 // static and dynamic initialization.
3547 // FIXME: GCC allows this, but uses the TLS keyword on the first
3548 // declaration to determine the kind. Do we need to be compatible here?
3549 Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3550 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3551 Diag(OldLocation, PrevDiag);
3552 }
3553 }
3554
3555 // C++ doesn't have tentative definitions, so go right ahead and check here.
3556 VarDecl *Def;
3557 if (getLangOpts().CPlusPlus &&
3558 New->isThisDeclarationADefinition() == VarDecl::Definition &&
3559 (Def = Old->getDefinition())) {
3560 NamedDecl *Hidden = nullptr;
3561 if (!hasVisibleDefinition(Def, &Hidden) &&
3562 (New->getFormalLinkage() == InternalLinkage ||
3563 New->getDescribedVarTemplate() ||
3564 New->getNumTemplateParameterLists() ||
3565 New->getDeclContext()->isDependentContext())) {
3566 // The previous definition is hidden, and multiple definitions are
3567 // permitted (in separate TUs). Form another definition of it.
3568 } else {
3569 Diag(New->getLocation(), diag::err_redefinition) << New;
3570 Diag(Def->getLocation(), diag::note_previous_definition);
3571 New->setInvalidDecl();
3572 return;
3573 }
3574 }
3575
3576 if (haveIncompatibleLanguageLinkages(Old, New)) {
3577 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3578 Diag(OldLocation, PrevDiag);
3579 New->setInvalidDecl();
3580 return;
3581 }
3582
3583 // Merge "used" flag.
3584 if (Old->getMostRecentDecl()->isUsed(false))
3585 New->setIsUsed();
3586
3587 // Keep a chain of previous declarations.
3588 New->setPreviousDecl(Old);
3589 if (NewTemplate)
3590 NewTemplate->setPreviousDecl(OldTemplate);
3591
3592 // Inherit access appropriately.
3593 New->setAccess(Old->getAccess());
3594 if (NewTemplate)
3595 NewTemplate->setAccess(New->getAccess());
3596 }
3597
3598 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3599 /// no declarator (e.g. "struct foo;") is parsed.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS)3600 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3601 DeclSpec &DS) {
3602 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3603 }
3604
3605 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
3606 // disambiguate entities defined in different scopes.
3607 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
3608 // compatibility.
3609 // We will pick our mangling number depending on which version of MSVC is being
3610 // targeted.
getMSManglingNumber(const LangOptions & LO,Scope * S)3611 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
3612 return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
3613 ? S->getMSCurManglingNumber()
3614 : S->getMSLastManglingNumber();
3615 }
3616
handleTagNumbering(const TagDecl * Tag,Scope * TagScope)3617 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
3618 if (!Context.getLangOpts().CPlusPlus)
3619 return;
3620
3621 if (isa<CXXRecordDecl>(Tag->getParent())) {
3622 // If this tag is the direct child of a class, number it if
3623 // it is anonymous.
3624 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
3625 return;
3626 MangleNumberingContext &MCtx =
3627 Context.getManglingNumberContext(Tag->getParent());
3628 Context.setManglingNumber(
3629 Tag, MCtx.getManglingNumber(
3630 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
3631 return;
3632 }
3633
3634 // If this tag isn't a direct child of a class, number it if it is local.
3635 Decl *ManglingContextDecl;
3636 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
3637 Tag->getDeclContext(), ManglingContextDecl)) {
3638 Context.setManglingNumber(
3639 Tag, MCtx->getManglingNumber(
3640 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
3641 }
3642 }
3643
setTagNameForLinkagePurposes(TagDecl * TagFromDeclSpec,TypedefNameDecl * NewTD)3644 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
3645 TypedefNameDecl *NewTD) {
3646 if (TagFromDeclSpec->isInvalidDecl())
3647 return;
3648
3649 // Do nothing if the tag already has a name for linkage purposes.
3650 if (TagFromDeclSpec->hasNameForLinkage())
3651 return;
3652
3653 // A well-formed anonymous tag must always be a TUK_Definition.
3654 assert(TagFromDeclSpec->isThisDeclarationADefinition());
3655
3656 // The type must match the tag exactly; no qualifiers allowed.
3657 if (!Context.hasSameType(NewTD->getUnderlyingType(),
3658 Context.getTagDeclType(TagFromDeclSpec))) {
3659 if (getLangOpts().CPlusPlus)
3660 Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
3661 return;
3662 }
3663
3664 // If we've already computed linkage for the anonymous tag, then
3665 // adding a typedef name for the anonymous decl can change that
3666 // linkage, which might be a serious problem. Diagnose this as
3667 // unsupported and ignore the typedef name. TODO: we should
3668 // pursue this as a language defect and establish a formal rule
3669 // for how to handle it.
3670 if (TagFromDeclSpec->hasLinkageBeenComputed()) {
3671 Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
3672
3673 SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
3674 tagLoc = getLocForEndOfToken(tagLoc);
3675
3676 llvm::SmallString<40> textToInsert;
3677 textToInsert += ' ';
3678 textToInsert += NewTD->getIdentifier()->getName();
3679 Diag(tagLoc, diag::note_typedef_changes_linkage)
3680 << FixItHint::CreateInsertion(tagLoc, textToInsert);
3681 return;
3682 }
3683
3684 // Otherwise, set this is the anon-decl typedef for the tag.
3685 TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
3686 }
3687
GetDiagnosticTypeSpecifierID(DeclSpec::TST T)3688 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
3689 switch (T) {
3690 case DeclSpec::TST_class:
3691 return 0;
3692 case DeclSpec::TST_struct:
3693 return 1;
3694 case DeclSpec::TST_interface:
3695 return 2;
3696 case DeclSpec::TST_union:
3697 return 3;
3698 case DeclSpec::TST_enum:
3699 return 4;
3700 default:
3701 llvm_unreachable("unexpected type specifier");
3702 }
3703 }
3704
3705 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3706 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3707 /// parameters to cope with template friend declarations.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS,MultiTemplateParamsArg TemplateParams,bool IsExplicitInstantiation)3708 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3709 DeclSpec &DS,
3710 MultiTemplateParamsArg TemplateParams,
3711 bool IsExplicitInstantiation) {
3712 Decl *TagD = nullptr;
3713 TagDecl *Tag = nullptr;
3714 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3715 DS.getTypeSpecType() == DeclSpec::TST_struct ||
3716 DS.getTypeSpecType() == DeclSpec::TST_interface ||
3717 DS.getTypeSpecType() == DeclSpec::TST_union ||
3718 DS.getTypeSpecType() == DeclSpec::TST_enum) {
3719 TagD = DS.getRepAsDecl();
3720
3721 if (!TagD) // We probably had an error
3722 return nullptr;
3723
3724 // Note that the above type specs guarantee that the
3725 // type rep is a Decl, whereas in many of the others
3726 // it's a Type.
3727 if (isa<TagDecl>(TagD))
3728 Tag = cast<TagDecl>(TagD);
3729 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3730 Tag = CTD->getTemplatedDecl();
3731 }
3732
3733 if (Tag) {
3734 handleTagNumbering(Tag, S);
3735 Tag->setFreeStanding();
3736 if (Tag->isInvalidDecl())
3737 return Tag;
3738 }
3739
3740 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3741 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3742 // or incomplete types shall not be restrict-qualified."
3743 if (TypeQuals & DeclSpec::TQ_restrict)
3744 Diag(DS.getRestrictSpecLoc(),
3745 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3746 << DS.getSourceRange();
3747 }
3748
3749 if (DS.isConstexprSpecified()) {
3750 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3751 // and definitions of functions and variables.
3752 if (Tag)
3753 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3754 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType());
3755 else
3756 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3757 // Don't emit warnings after this error.
3758 return TagD;
3759 }
3760
3761 if (DS.isConceptSpecified()) {
3762 // C++ Concepts TS [dcl.spec.concept]p1: A concept definition refers to
3763 // either a function concept and its definition or a variable concept and
3764 // its initializer.
3765 Diag(DS.getConceptSpecLoc(), diag::err_concept_wrong_decl_kind);
3766 return TagD;
3767 }
3768
3769 DiagnoseFunctionSpecifiers(DS);
3770
3771 if (DS.isFriendSpecified()) {
3772 // If we're dealing with a decl but not a TagDecl, assume that
3773 // whatever routines created it handled the friendship aspect.
3774 if (TagD && !Tag)
3775 return nullptr;
3776 return ActOnFriendTypeDecl(S, DS, TemplateParams);
3777 }
3778
3779 const CXXScopeSpec &SS = DS.getTypeSpecScope();
3780 bool IsExplicitSpecialization =
3781 !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3782 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3783 !IsExplicitInstantiation && !IsExplicitSpecialization &&
3784 !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
3785 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3786 // nested-name-specifier unless it is an explicit instantiation
3787 // or an explicit specialization.
3788 //
3789 // FIXME: We allow class template partial specializations here too, per the
3790 // obvious intent of DR1819.
3791 //
3792 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3793 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3794 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
3795 return nullptr;
3796 }
3797
3798 // Track whether this decl-specifier declares anything.
3799 bool DeclaresAnything = true;
3800
3801 // Handle anonymous struct definitions.
3802 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3803 if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3804 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3805 if (getLangOpts().CPlusPlus ||
3806 Record->getDeclContext()->isRecord())
3807 return BuildAnonymousStructOrUnion(S, DS, AS, Record,
3808 Context.getPrintingPolicy());
3809
3810 DeclaresAnything = false;
3811 }
3812 }
3813
3814 // C11 6.7.2.1p2:
3815 // A struct-declaration that does not declare an anonymous structure or
3816 // anonymous union shall contain a struct-declarator-list.
3817 //
3818 // This rule also existed in C89 and C99; the grammar for struct-declaration
3819 // did not permit a struct-declaration without a struct-declarator-list.
3820 if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
3821 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3822 // Check for Microsoft C extension: anonymous struct/union member.
3823 // Handle 2 kinds of anonymous struct/union:
3824 // struct STRUCT;
3825 // union UNION;
3826 // and
3827 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
3828 // UNION_TYPE; <- where UNION_TYPE is a typedef union.
3829 if ((Tag && Tag->getDeclName()) ||
3830 DS.getTypeSpecType() == DeclSpec::TST_typename) {
3831 RecordDecl *Record = nullptr;
3832 if (Tag)
3833 Record = dyn_cast<RecordDecl>(Tag);
3834 else if (const RecordType *RT =
3835 DS.getRepAsType().get()->getAsStructureType())
3836 Record = RT->getDecl();
3837 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
3838 Record = UT->getDecl();
3839
3840 if (Record && getLangOpts().MicrosoftExt) {
3841 Diag(DS.getLocStart(), diag::ext_ms_anonymous_record)
3842 << Record->isUnion() << DS.getSourceRange();
3843 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3844 }
3845
3846 DeclaresAnything = false;
3847 }
3848 }
3849
3850 // Skip all the checks below if we have a type error.
3851 if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3852 (TagD && TagD->isInvalidDecl()))
3853 return TagD;
3854
3855 if (getLangOpts().CPlusPlus &&
3856 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3857 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3858 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3859 !Enum->getIdentifier() && !Enum->isInvalidDecl())
3860 DeclaresAnything = false;
3861
3862 if (!DS.isMissingDeclaratorOk()) {
3863 // Customize diagnostic for a typedef missing a name.
3864 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3865 Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3866 << DS.getSourceRange();
3867 else
3868 DeclaresAnything = false;
3869 }
3870
3871 if (DS.isModulePrivateSpecified() &&
3872 Tag && Tag->getDeclContext()->isFunctionOrMethod())
3873 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3874 << Tag->getTagKind()
3875 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3876
3877 ActOnDocumentableDecl(TagD);
3878
3879 // C 6.7/2:
3880 // A declaration [...] shall declare at least a declarator [...], a tag,
3881 // or the members of an enumeration.
3882 // C++ [dcl.dcl]p3:
3883 // [If there are no declarators], and except for the declaration of an
3884 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
3885 // names into the program, or shall redeclare a name introduced by a
3886 // previous declaration.
3887 if (!DeclaresAnything) {
3888 // In C, we allow this as a (popular) extension / bug. Don't bother
3889 // producing further diagnostics for redundant qualifiers after this.
3890 Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3891 return TagD;
3892 }
3893
3894 // C++ [dcl.stc]p1:
3895 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3896 // init-declarator-list of the declaration shall not be empty.
3897 // C++ [dcl.fct.spec]p1:
3898 // If a cv-qualifier appears in a decl-specifier-seq, the
3899 // init-declarator-list of the declaration shall not be empty.
3900 //
3901 // Spurious qualifiers here appear to be valid in C.
3902 unsigned DiagID = diag::warn_standalone_specifier;
3903 if (getLangOpts().CPlusPlus)
3904 DiagID = diag::ext_standalone_specifier;
3905
3906 // Note that a linkage-specification sets a storage class, but
3907 // 'extern "C" struct foo;' is actually valid and not theoretically
3908 // useless.
3909 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
3910 if (SCS == DeclSpec::SCS_mutable)
3911 // Since mutable is not a viable storage class specifier in C, there is
3912 // no reason to treat it as an extension. Instead, diagnose as an error.
3913 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
3914 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3915 Diag(DS.getStorageClassSpecLoc(), DiagID)
3916 << DeclSpec::getSpecifierName(SCS);
3917 }
3918
3919 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3920 Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3921 << DeclSpec::getSpecifierName(TSCS);
3922 if (DS.getTypeQualifiers()) {
3923 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3924 Diag(DS.getConstSpecLoc(), DiagID) << "const";
3925 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3926 Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3927 // Restrict is covered above.
3928 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3929 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3930 }
3931
3932 // Warn about ignored type attributes, for example:
3933 // __attribute__((aligned)) struct A;
3934 // Attributes should be placed after tag to apply to type declaration.
3935 if (!DS.getAttributes().empty()) {
3936 DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3937 if (TypeSpecType == DeclSpec::TST_class ||
3938 TypeSpecType == DeclSpec::TST_struct ||
3939 TypeSpecType == DeclSpec::TST_interface ||
3940 TypeSpecType == DeclSpec::TST_union ||
3941 TypeSpecType == DeclSpec::TST_enum) {
3942 for (AttributeList* attrs = DS.getAttributes().getList(); attrs;
3943 attrs = attrs->getNext())
3944 Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3945 << attrs->getName() << GetDiagnosticTypeSpecifierID(TypeSpecType);
3946 }
3947 }
3948
3949 return TagD;
3950 }
3951
3952 /// We are trying to inject an anonymous member into the given scope;
3953 /// check if there's an existing declaration that can't be overloaded.
3954 ///
3955 /// \return true if this is a forbidden redeclaration
CheckAnonMemberRedeclaration(Sema & SemaRef,Scope * S,DeclContext * Owner,DeclarationName Name,SourceLocation NameLoc,bool IsUnion)3956 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3957 Scope *S,
3958 DeclContext *Owner,
3959 DeclarationName Name,
3960 SourceLocation NameLoc,
3961 bool IsUnion) {
3962 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3963 Sema::ForRedeclaration);
3964 if (!SemaRef.LookupName(R, S)) return false;
3965
3966 if (R.getAsSingle<TagDecl>())
3967 return false;
3968
3969 // Pick a representative declaration.
3970 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3971 assert(PrevDecl && "Expected a non-null Decl");
3972
3973 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3974 return false;
3975
3976 SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
3977 << IsUnion << Name;
3978 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3979
3980 return true;
3981 }
3982
3983 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
3984 /// anonymous struct or union AnonRecord into the owning context Owner
3985 /// and scope S. This routine will be invoked just after we realize
3986 /// that an unnamed union or struct is actually an anonymous union or
3987 /// struct, e.g.,
3988 ///
3989 /// @code
3990 /// union {
3991 /// int i;
3992 /// float f;
3993 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3994 /// // f into the surrounding scope.x
3995 /// @endcode
3996 ///
3997 /// This routine is recursive, injecting the names of nested anonymous
3998 /// structs/unions into the owning context and scope as well.
InjectAnonymousStructOrUnionMembers(Sema & SemaRef,Scope * S,DeclContext * Owner,RecordDecl * AnonRecord,AccessSpecifier AS,SmallVectorImpl<NamedDecl * > & Chaining,bool MSAnonStruct)3999 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
4000 DeclContext *Owner,
4001 RecordDecl *AnonRecord,
4002 AccessSpecifier AS,
4003 SmallVectorImpl<NamedDecl *> &Chaining,
4004 bool MSAnonStruct) {
4005 bool Invalid = false;
4006
4007 // Look every FieldDecl and IndirectFieldDecl with a name.
4008 for (auto *D : AnonRecord->decls()) {
4009 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4010 cast<NamedDecl>(D)->getDeclName()) {
4011 ValueDecl *VD = cast<ValueDecl>(D);
4012 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4013 VD->getLocation(),
4014 AnonRecord->isUnion())) {
4015 // C++ [class.union]p2:
4016 // The names of the members of an anonymous union shall be
4017 // distinct from the names of any other entity in the
4018 // scope in which the anonymous union is declared.
4019 Invalid = true;
4020 } else {
4021 // C++ [class.union]p2:
4022 // For the purpose of name lookup, after the anonymous union
4023 // definition, the members of the anonymous union are
4024 // considered to have been defined in the scope in which the
4025 // anonymous union is declared.
4026 unsigned OldChainingSize = Chaining.size();
4027 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4028 Chaining.append(IF->chain_begin(), IF->chain_end());
4029 else
4030 Chaining.push_back(VD);
4031
4032 assert(Chaining.size() >= 2);
4033 NamedDecl **NamedChain =
4034 new (SemaRef.Context)NamedDecl*[Chaining.size()];
4035 for (unsigned i = 0; i < Chaining.size(); i++)
4036 NamedChain[i] = Chaining[i];
4037
4038 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4039 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4040 VD->getType(), NamedChain, Chaining.size());
4041
4042 for (const auto *Attr : VD->attrs())
4043 IndirectField->addAttr(Attr->clone(SemaRef.Context));
4044
4045 IndirectField->setAccess(AS);
4046 IndirectField->setImplicit();
4047 SemaRef.PushOnScopeChains(IndirectField, S);
4048
4049 // That includes picking up the appropriate access specifier.
4050 if (AS != AS_none) IndirectField->setAccess(AS);
4051
4052 Chaining.resize(OldChainingSize);
4053 }
4054 }
4055 }
4056
4057 return Invalid;
4058 }
4059
4060 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4061 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
4062 /// illegal input values are mapped to SC_None.
4063 static StorageClass
StorageClassSpecToVarDeclStorageClass(const DeclSpec & DS)4064 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4065 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4066 assert(StorageClassSpec != DeclSpec::SCS_typedef &&
4067 "Parser allowed 'typedef' as storage class VarDecl.");
4068 switch (StorageClassSpec) {
4069 case DeclSpec::SCS_unspecified: return SC_None;
4070 case DeclSpec::SCS_extern:
4071 if (DS.isExternInLinkageSpec())
4072 return SC_None;
4073 return SC_Extern;
4074 case DeclSpec::SCS_static: return SC_Static;
4075 case DeclSpec::SCS_auto: return SC_Auto;
4076 case DeclSpec::SCS_register: return SC_Register;
4077 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4078 // Illegal SCSs map to None: error reporting is up to the caller.
4079 case DeclSpec::SCS_mutable: // Fall through.
4080 case DeclSpec::SCS_typedef: return SC_None;
4081 }
4082 llvm_unreachable("unknown storage class specifier");
4083 }
4084
findDefaultInitializer(const CXXRecordDecl * Record)4085 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4086 assert(Record->hasInClassInitializer());
4087
4088 for (const auto *I : Record->decls()) {
4089 const auto *FD = dyn_cast<FieldDecl>(I);
4090 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4091 FD = IFD->getAnonField();
4092 if (FD && FD->hasInClassInitializer())
4093 return FD->getLocation();
4094 }
4095
4096 llvm_unreachable("couldn't find in-class initializer");
4097 }
4098
checkDuplicateDefaultInit(Sema & S,CXXRecordDecl * Parent,SourceLocation DefaultInitLoc)4099 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4100 SourceLocation DefaultInitLoc) {
4101 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4102 return;
4103
4104 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4105 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4106 }
4107
checkDuplicateDefaultInit(Sema & S,CXXRecordDecl * Parent,CXXRecordDecl * AnonUnion)4108 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4109 CXXRecordDecl *AnonUnion) {
4110 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4111 return;
4112
4113 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4114 }
4115
4116 /// BuildAnonymousStructOrUnion - Handle the declaration of an
4117 /// anonymous structure or union. Anonymous unions are a C++ feature
4118 /// (C++ [class.union]) and a C11 feature; anonymous structures
4119 /// are a C11 feature and GNU C++ extension.
BuildAnonymousStructOrUnion(Scope * S,DeclSpec & DS,AccessSpecifier AS,RecordDecl * Record,const PrintingPolicy & Policy)4120 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4121 AccessSpecifier AS,
4122 RecordDecl *Record,
4123 const PrintingPolicy &Policy) {
4124 DeclContext *Owner = Record->getDeclContext();
4125
4126 // Diagnose whether this anonymous struct/union is an extension.
4127 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4128 Diag(Record->getLocation(), diag::ext_anonymous_union);
4129 else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4130 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4131 else if (!Record->isUnion() && !getLangOpts().C11)
4132 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4133
4134 // C and C++ require different kinds of checks for anonymous
4135 // structs/unions.
4136 bool Invalid = false;
4137 if (getLangOpts().CPlusPlus) {
4138 const char *PrevSpec = nullptr;
4139 unsigned DiagID;
4140 if (Record->isUnion()) {
4141 // C++ [class.union]p6:
4142 // Anonymous unions declared in a named namespace or in the
4143 // global namespace shall be declared static.
4144 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
4145 (isa<TranslationUnitDecl>(Owner) ||
4146 (isa<NamespaceDecl>(Owner) &&
4147 cast<NamespaceDecl>(Owner)->getDeclName()))) {
4148 Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
4149 << FixItHint::CreateInsertion(Record->getLocation(), "static ");
4150
4151 // Recover by adding 'static'.
4152 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
4153 PrevSpec, DiagID, Policy);
4154 }
4155 // C++ [class.union]p6:
4156 // A storage class is not allowed in a declaration of an
4157 // anonymous union in a class scope.
4158 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
4159 isa<RecordDecl>(Owner)) {
4160 Diag(DS.getStorageClassSpecLoc(),
4161 diag::err_anonymous_union_with_storage_spec)
4162 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
4163
4164 // Recover by removing the storage specifier.
4165 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
4166 SourceLocation(),
4167 PrevSpec, DiagID, Context.getPrintingPolicy());
4168 }
4169 }
4170
4171 // Ignore const/volatile/restrict qualifiers.
4172 if (DS.getTypeQualifiers()) {
4173 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4174 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
4175 << Record->isUnion() << "const"
4176 << FixItHint::CreateRemoval(DS.getConstSpecLoc());
4177 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4178 Diag(DS.getVolatileSpecLoc(),
4179 diag::ext_anonymous_struct_union_qualified)
4180 << Record->isUnion() << "volatile"
4181 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
4182 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
4183 Diag(DS.getRestrictSpecLoc(),
4184 diag::ext_anonymous_struct_union_qualified)
4185 << Record->isUnion() << "restrict"
4186 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
4187 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4188 Diag(DS.getAtomicSpecLoc(),
4189 diag::ext_anonymous_struct_union_qualified)
4190 << Record->isUnion() << "_Atomic"
4191 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
4192
4193 DS.ClearTypeQualifiers();
4194 }
4195
4196 // C++ [class.union]p2:
4197 // The member-specification of an anonymous union shall only
4198 // define non-static data members. [Note: nested types and
4199 // functions cannot be declared within an anonymous union. ]
4200 for (auto *Mem : Record->decls()) {
4201 if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
4202 // C++ [class.union]p3:
4203 // An anonymous union shall not have private or protected
4204 // members (clause 11).
4205 assert(FD->getAccess() != AS_none);
4206 if (FD->getAccess() != AS_public) {
4207 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
4208 << Record->isUnion() << (FD->getAccess() == AS_protected);
4209 Invalid = true;
4210 }
4211
4212 // C++ [class.union]p1
4213 // An object of a class with a non-trivial constructor, a non-trivial
4214 // copy constructor, a non-trivial destructor, or a non-trivial copy
4215 // assignment operator cannot be a member of a union, nor can an
4216 // array of such objects.
4217 if (CheckNontrivialField(FD))
4218 Invalid = true;
4219 } else if (Mem->isImplicit()) {
4220 // Any implicit members are fine.
4221 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
4222 // This is a type that showed up in an
4223 // elaborated-type-specifier inside the anonymous struct or
4224 // union, but which actually declares a type outside of the
4225 // anonymous struct or union. It's okay.
4226 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
4227 if (!MemRecord->isAnonymousStructOrUnion() &&
4228 MemRecord->getDeclName()) {
4229 // Visual C++ allows type definition in anonymous struct or union.
4230 if (getLangOpts().MicrosoftExt)
4231 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
4232 << Record->isUnion();
4233 else {
4234 // This is a nested type declaration.
4235 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
4236 << Record->isUnion();
4237 Invalid = true;
4238 }
4239 } else {
4240 // This is an anonymous type definition within another anonymous type.
4241 // This is a popular extension, provided by Plan9, MSVC and GCC, but
4242 // not part of standard C++.
4243 Diag(MemRecord->getLocation(),
4244 diag::ext_anonymous_record_with_anonymous_type)
4245 << Record->isUnion();
4246 }
4247 } else if (isa<AccessSpecDecl>(Mem)) {
4248 // Any access specifier is fine.
4249 } else if (isa<StaticAssertDecl>(Mem)) {
4250 // In C++1z, static_assert declarations are also fine.
4251 } else {
4252 // We have something that isn't a non-static data
4253 // member. Complain about it.
4254 unsigned DK = diag::err_anonymous_record_bad_member;
4255 if (isa<TypeDecl>(Mem))
4256 DK = diag::err_anonymous_record_with_type;
4257 else if (isa<FunctionDecl>(Mem))
4258 DK = diag::err_anonymous_record_with_function;
4259 else if (isa<VarDecl>(Mem))
4260 DK = diag::err_anonymous_record_with_static;
4261
4262 // Visual C++ allows type definition in anonymous struct or union.
4263 if (getLangOpts().MicrosoftExt &&
4264 DK == diag::err_anonymous_record_with_type)
4265 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
4266 << Record->isUnion();
4267 else {
4268 Diag(Mem->getLocation(), DK) << Record->isUnion();
4269 Invalid = true;
4270 }
4271 }
4272 }
4273
4274 // C++11 [class.union]p8 (DR1460):
4275 // At most one variant member of a union may have a
4276 // brace-or-equal-initializer.
4277 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
4278 Owner->isRecord())
4279 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
4280 cast<CXXRecordDecl>(Record));
4281 }
4282
4283 if (!Record->isUnion() && !Owner->isRecord()) {
4284 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
4285 << getLangOpts().CPlusPlus;
4286 Invalid = true;
4287 }
4288
4289 // Mock up a declarator.
4290 Declarator Dc(DS, Declarator::MemberContext);
4291 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4292 assert(TInfo && "couldn't build declarator info for anonymous struct/union");
4293
4294 // Create a declaration for this anonymous struct/union.
4295 NamedDecl *Anon = nullptr;
4296 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
4297 Anon = FieldDecl::Create(Context, OwningClass,
4298 DS.getLocStart(),
4299 Record->getLocation(),
4300 /*IdentifierInfo=*/nullptr,
4301 Context.getTypeDeclType(Record),
4302 TInfo,
4303 /*BitWidth=*/nullptr, /*Mutable=*/false,
4304 /*InitStyle=*/ICIS_NoInit);
4305 Anon->setAccess(AS);
4306 if (getLangOpts().CPlusPlus)
4307 FieldCollector->Add(cast<FieldDecl>(Anon));
4308 } else {
4309 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
4310 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
4311 if (SCSpec == DeclSpec::SCS_mutable) {
4312 // mutable can only appear on non-static class members, so it's always
4313 // an error here
4314 Diag(Record->getLocation(), diag::err_mutable_nonmember);
4315 Invalid = true;
4316 SC = SC_None;
4317 }
4318
4319 Anon = VarDecl::Create(Context, Owner,
4320 DS.getLocStart(),
4321 Record->getLocation(), /*IdentifierInfo=*/nullptr,
4322 Context.getTypeDeclType(Record),
4323 TInfo, SC);
4324
4325 // Default-initialize the implicit variable. This initialization will be
4326 // trivial in almost all cases, except if a union member has an in-class
4327 // initializer:
4328 // union { int n = 0; };
4329 ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
4330 }
4331 Anon->setImplicit();
4332
4333 // Mark this as an anonymous struct/union type.
4334 Record->setAnonymousStructOrUnion(true);
4335
4336 // Add the anonymous struct/union object to the current
4337 // context. We'll be referencing this object when we refer to one of
4338 // its members.
4339 Owner->addDecl(Anon);
4340
4341 // Inject the members of the anonymous struct/union into the owning
4342 // context and into the identifier resolver chain for name lookup
4343 // purposes.
4344 SmallVector<NamedDecl*, 2> Chain;
4345 Chain.push_back(Anon);
4346
4347 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
4348 Chain, false))
4349 Invalid = true;
4350
4351 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
4352 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
4353 Decl *ManglingContextDecl;
4354 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4355 NewVD->getDeclContext(), ManglingContextDecl)) {
4356 Context.setManglingNumber(
4357 NewVD, MCtx->getManglingNumber(
4358 NewVD, getMSManglingNumber(getLangOpts(), S)));
4359 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
4360 }
4361 }
4362 }
4363
4364 if (Invalid)
4365 Anon->setInvalidDecl();
4366
4367 return Anon;
4368 }
4369
4370 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
4371 /// Microsoft C anonymous structure.
4372 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
4373 /// Example:
4374 ///
4375 /// struct A { int a; };
4376 /// struct B { struct A; int b; };
4377 ///
4378 /// void foo() {
4379 /// B var;
4380 /// var.a = 3;
4381 /// }
4382 ///
BuildMicrosoftCAnonymousStruct(Scope * S,DeclSpec & DS,RecordDecl * Record)4383 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
4384 RecordDecl *Record) {
4385 assert(Record && "expected a record!");
4386
4387 // Mock up a declarator.
4388 Declarator Dc(DS, Declarator::TypeNameContext);
4389 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4390 assert(TInfo && "couldn't build declarator info for anonymous struct");
4391
4392 auto *ParentDecl = cast<RecordDecl>(CurContext);
4393 QualType RecTy = Context.getTypeDeclType(Record);
4394
4395 // Create a declaration for this anonymous struct.
4396 NamedDecl *Anon = FieldDecl::Create(Context,
4397 ParentDecl,
4398 DS.getLocStart(),
4399 DS.getLocStart(),
4400 /*IdentifierInfo=*/nullptr,
4401 RecTy,
4402 TInfo,
4403 /*BitWidth=*/nullptr, /*Mutable=*/false,
4404 /*InitStyle=*/ICIS_NoInit);
4405 Anon->setImplicit();
4406
4407 // Add the anonymous struct object to the current context.
4408 CurContext->addDecl(Anon);
4409
4410 // Inject the members of the anonymous struct into the current
4411 // context and into the identifier resolver chain for name lookup
4412 // purposes.
4413 SmallVector<NamedDecl*, 2> Chain;
4414 Chain.push_back(Anon);
4415
4416 RecordDecl *RecordDef = Record->getDefinition();
4417 if (RequireCompleteType(Anon->getLocation(), RecTy,
4418 diag::err_field_incomplete) ||
4419 InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
4420 AS_none, Chain, true)) {
4421 Anon->setInvalidDecl();
4422 ParentDecl->setInvalidDecl();
4423 }
4424
4425 return Anon;
4426 }
4427
4428 /// GetNameForDeclarator - Determine the full declaration name for the
4429 /// given Declarator.
GetNameForDeclarator(Declarator & D)4430 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
4431 return GetNameFromUnqualifiedId(D.getName());
4432 }
4433
4434 /// \brief Retrieves the declaration name from a parsed unqualified-id.
4435 DeclarationNameInfo
GetNameFromUnqualifiedId(const UnqualifiedId & Name)4436 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
4437 DeclarationNameInfo NameInfo;
4438 NameInfo.setLoc(Name.StartLocation);
4439
4440 switch (Name.getKind()) {
4441
4442 case UnqualifiedId::IK_ImplicitSelfParam:
4443 case UnqualifiedId::IK_Identifier:
4444 NameInfo.setName(Name.Identifier);
4445 NameInfo.setLoc(Name.StartLocation);
4446 return NameInfo;
4447
4448 case UnqualifiedId::IK_OperatorFunctionId:
4449 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
4450 Name.OperatorFunctionId.Operator));
4451 NameInfo.setLoc(Name.StartLocation);
4452 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
4453 = Name.OperatorFunctionId.SymbolLocations[0];
4454 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
4455 = Name.EndLocation.getRawEncoding();
4456 return NameInfo;
4457
4458 case UnqualifiedId::IK_LiteralOperatorId:
4459 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
4460 Name.Identifier));
4461 NameInfo.setLoc(Name.StartLocation);
4462 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
4463 return NameInfo;
4464
4465 case UnqualifiedId::IK_ConversionFunctionId: {
4466 TypeSourceInfo *TInfo;
4467 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
4468 if (Ty.isNull())
4469 return DeclarationNameInfo();
4470 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
4471 Context.getCanonicalType(Ty)));
4472 NameInfo.setLoc(Name.StartLocation);
4473 NameInfo.setNamedTypeInfo(TInfo);
4474 return NameInfo;
4475 }
4476
4477 case UnqualifiedId::IK_ConstructorName: {
4478 TypeSourceInfo *TInfo;
4479 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
4480 if (Ty.isNull())
4481 return DeclarationNameInfo();
4482 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
4483 Context.getCanonicalType(Ty)));
4484 NameInfo.setLoc(Name.StartLocation);
4485 NameInfo.setNamedTypeInfo(TInfo);
4486 return NameInfo;
4487 }
4488
4489 case UnqualifiedId::IK_ConstructorTemplateId: {
4490 // In well-formed code, we can only have a constructor
4491 // template-id that refers to the current context, so go there
4492 // to find the actual type being constructed.
4493 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
4494 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
4495 return DeclarationNameInfo();
4496
4497 // Determine the type of the class being constructed.
4498 QualType CurClassType = Context.getTypeDeclType(CurClass);
4499
4500 // FIXME: Check two things: that the template-id names the same type as
4501 // CurClassType, and that the template-id does not occur when the name
4502 // was qualified.
4503
4504 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
4505 Context.getCanonicalType(CurClassType)));
4506 NameInfo.setLoc(Name.StartLocation);
4507 // FIXME: should we retrieve TypeSourceInfo?
4508 NameInfo.setNamedTypeInfo(nullptr);
4509 return NameInfo;
4510 }
4511
4512 case UnqualifiedId::IK_DestructorName: {
4513 TypeSourceInfo *TInfo;
4514 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
4515 if (Ty.isNull())
4516 return DeclarationNameInfo();
4517 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
4518 Context.getCanonicalType(Ty)));
4519 NameInfo.setLoc(Name.StartLocation);
4520 NameInfo.setNamedTypeInfo(TInfo);
4521 return NameInfo;
4522 }
4523
4524 case UnqualifiedId::IK_TemplateId: {
4525 TemplateName TName = Name.TemplateId->Template.get();
4526 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
4527 return Context.getNameForTemplate(TName, TNameLoc);
4528 }
4529
4530 } // switch (Name.getKind())
4531
4532 llvm_unreachable("Unknown name kind");
4533 }
4534
getCoreType(QualType Ty)4535 static QualType getCoreType(QualType Ty) {
4536 do {
4537 if (Ty->isPointerType() || Ty->isReferenceType())
4538 Ty = Ty->getPointeeType();
4539 else if (Ty->isArrayType())
4540 Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
4541 else
4542 return Ty.withoutLocalFastQualifiers();
4543 } while (true);
4544 }
4545
4546 /// hasSimilarParameters - Determine whether the C++ functions Declaration
4547 /// and Definition have "nearly" matching parameters. This heuristic is
4548 /// used to improve diagnostics in the case where an out-of-line function
4549 /// definition doesn't match any declaration within the class or namespace.
4550 /// Also sets Params to the list of indices to the parameters that differ
4551 /// between the declaration and the definition. If hasSimilarParameters
4552 /// returns true and Params is empty, then all of the parameters match.
hasSimilarParameters(ASTContext & Context,FunctionDecl * Declaration,FunctionDecl * Definition,SmallVectorImpl<unsigned> & Params)4553 static bool hasSimilarParameters(ASTContext &Context,
4554 FunctionDecl *Declaration,
4555 FunctionDecl *Definition,
4556 SmallVectorImpl<unsigned> &Params) {
4557 Params.clear();
4558 if (Declaration->param_size() != Definition->param_size())
4559 return false;
4560 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
4561 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
4562 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
4563
4564 // The parameter types are identical
4565 if (Context.hasSameType(DefParamTy, DeclParamTy))
4566 continue;
4567
4568 QualType DeclParamBaseTy = getCoreType(DeclParamTy);
4569 QualType DefParamBaseTy = getCoreType(DefParamTy);
4570 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
4571 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
4572
4573 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
4574 (DeclTyName && DeclTyName == DefTyName))
4575 Params.push_back(Idx);
4576 else // The two parameters aren't even close
4577 return false;
4578 }
4579
4580 return true;
4581 }
4582
4583 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
4584 /// declarator needs to be rebuilt in the current instantiation.
4585 /// Any bits of declarator which appear before the name are valid for
4586 /// consideration here. That's specifically the type in the decl spec
4587 /// and the base type in any member-pointer chunks.
RebuildDeclaratorInCurrentInstantiation(Sema & S,Declarator & D,DeclarationName Name)4588 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
4589 DeclarationName Name) {
4590 // The types we specifically need to rebuild are:
4591 // - typenames, typeofs, and decltypes
4592 // - types which will become injected class names
4593 // Of course, we also need to rebuild any type referencing such a
4594 // type. It's safest to just say "dependent", but we call out a
4595 // few cases here.
4596
4597 DeclSpec &DS = D.getMutableDeclSpec();
4598 switch (DS.getTypeSpecType()) {
4599 case DeclSpec::TST_typename:
4600 case DeclSpec::TST_typeofType:
4601 case DeclSpec::TST_underlyingType:
4602 case DeclSpec::TST_atomic: {
4603 // Grab the type from the parser.
4604 TypeSourceInfo *TSI = nullptr;
4605 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
4606 if (T.isNull() || !T->isDependentType()) break;
4607
4608 // Make sure there's a type source info. This isn't really much
4609 // of a waste; most dependent types should have type source info
4610 // attached already.
4611 if (!TSI)
4612 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
4613
4614 // Rebuild the type in the current instantiation.
4615 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
4616 if (!TSI) return true;
4617
4618 // Store the new type back in the decl spec.
4619 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
4620 DS.UpdateTypeRep(LocType);
4621 break;
4622 }
4623
4624 case DeclSpec::TST_decltype:
4625 case DeclSpec::TST_typeofExpr: {
4626 Expr *E = DS.getRepAsExpr();
4627 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
4628 if (Result.isInvalid()) return true;
4629 DS.UpdateExprRep(Result.get());
4630 break;
4631 }
4632
4633 default:
4634 // Nothing to do for these decl specs.
4635 break;
4636 }
4637
4638 // It doesn't matter what order we do this in.
4639 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4640 DeclaratorChunk &Chunk = D.getTypeObject(I);
4641
4642 // The only type information in the declarator which can come
4643 // before the declaration name is the base type of a member
4644 // pointer.
4645 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
4646 continue;
4647
4648 // Rebuild the scope specifier in-place.
4649 CXXScopeSpec &SS = Chunk.Mem.Scope();
4650 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
4651 return true;
4652 }
4653
4654 return false;
4655 }
4656
ActOnDeclarator(Scope * S,Declarator & D)4657 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
4658 D.setFunctionDefinitionKind(FDK_Declaration);
4659 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
4660
4661 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
4662 Dcl && Dcl->getDeclContext()->isFileContext())
4663 Dcl->setTopLevelDeclInObjCContainer();
4664
4665 return Dcl;
4666 }
4667
4668 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
4669 /// If T is the name of a class, then each of the following shall have a
4670 /// name different from T:
4671 /// - every static data member of class T;
4672 /// - every member function of class T
4673 /// - every member of class T that is itself a type;
4674 /// \returns true if the declaration name violates these rules.
DiagnoseClassNameShadow(DeclContext * DC,DeclarationNameInfo NameInfo)4675 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
4676 DeclarationNameInfo NameInfo) {
4677 DeclarationName Name = NameInfo.getName();
4678
4679 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
4680 if (Record->getIdentifier() && Record->getDeclName() == Name) {
4681 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
4682 return true;
4683 }
4684
4685 return false;
4686 }
4687
4688 /// \brief Diagnose a declaration whose declarator-id has the given
4689 /// nested-name-specifier.
4690 ///
4691 /// \param SS The nested-name-specifier of the declarator-id.
4692 ///
4693 /// \param DC The declaration context to which the nested-name-specifier
4694 /// resolves.
4695 ///
4696 /// \param Name The name of the entity being declared.
4697 ///
4698 /// \param Loc The location of the name of the entity being declared.
4699 ///
4700 /// \returns true if we cannot safely recover from this error, false otherwise.
diagnoseQualifiedDeclaration(CXXScopeSpec & SS,DeclContext * DC,DeclarationName Name,SourceLocation Loc)4701 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
4702 DeclarationName Name,
4703 SourceLocation Loc) {
4704 DeclContext *Cur = CurContext;
4705 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
4706 Cur = Cur->getParent();
4707
4708 // If the user provided a superfluous scope specifier that refers back to the
4709 // class in which the entity is already declared, diagnose and ignore it.
4710 //
4711 // class X {
4712 // void X::f();
4713 // };
4714 //
4715 // Note, it was once ill-formed to give redundant qualification in all
4716 // contexts, but that rule was removed by DR482.
4717 if (Cur->Equals(DC)) {
4718 if (Cur->isRecord()) {
4719 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
4720 : diag::err_member_extra_qualification)
4721 << Name << FixItHint::CreateRemoval(SS.getRange());
4722 SS.clear();
4723 } else {
4724 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
4725 }
4726 return false;
4727 }
4728
4729 // Check whether the qualifying scope encloses the scope of the original
4730 // declaration.
4731 if (!Cur->Encloses(DC)) {
4732 if (Cur->isRecord())
4733 Diag(Loc, diag::err_member_qualification)
4734 << Name << SS.getRange();
4735 else if (isa<TranslationUnitDecl>(DC))
4736 Diag(Loc, diag::err_invalid_declarator_global_scope)
4737 << Name << SS.getRange();
4738 else if (isa<FunctionDecl>(Cur))
4739 Diag(Loc, diag::err_invalid_declarator_in_function)
4740 << Name << SS.getRange();
4741 else if (isa<BlockDecl>(Cur))
4742 Diag(Loc, diag::err_invalid_declarator_in_block)
4743 << Name << SS.getRange();
4744 else
4745 Diag(Loc, diag::err_invalid_declarator_scope)
4746 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4747
4748 return true;
4749 }
4750
4751 if (Cur->isRecord()) {
4752 // Cannot qualify members within a class.
4753 Diag(Loc, diag::err_member_qualification)
4754 << Name << SS.getRange();
4755 SS.clear();
4756
4757 // C++ constructors and destructors with incorrect scopes can break
4758 // our AST invariants by having the wrong underlying types. If
4759 // that's the case, then drop this declaration entirely.
4760 if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4761 Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4762 !Context.hasSameType(Name.getCXXNameType(),
4763 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4764 return true;
4765
4766 return false;
4767 }
4768
4769 // C++11 [dcl.meaning]p1:
4770 // [...] "The nested-name-specifier of the qualified declarator-id shall
4771 // not begin with a decltype-specifer"
4772 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4773 while (SpecLoc.getPrefix())
4774 SpecLoc = SpecLoc.getPrefix();
4775 if (dyn_cast_or_null<DecltypeType>(
4776 SpecLoc.getNestedNameSpecifier()->getAsType()))
4777 Diag(Loc, diag::err_decltype_in_declarator)
4778 << SpecLoc.getTypeLoc().getSourceRange();
4779
4780 return false;
4781 }
4782
HandleDeclarator(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParamLists)4783 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4784 MultiTemplateParamsArg TemplateParamLists) {
4785 // TODO: consider using NameInfo for diagnostic.
4786 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4787 DeclarationName Name = NameInfo.getName();
4788
4789 // All of these full declarators require an identifier. If it doesn't have
4790 // one, the ParsedFreeStandingDeclSpec action should be used.
4791 if (!Name) {
4792 if (!D.isInvalidType()) // Reject this if we think it is valid.
4793 Diag(D.getDeclSpec().getLocStart(),
4794 diag::err_declarator_need_ident)
4795 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4796 return nullptr;
4797 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4798 return nullptr;
4799
4800 // The scope passed in may not be a decl scope. Zip up the scope tree until
4801 // we find one that is.
4802 while ((S->getFlags() & Scope::DeclScope) == 0 ||
4803 (S->getFlags() & Scope::TemplateParamScope) != 0)
4804 S = S->getParent();
4805
4806 DeclContext *DC = CurContext;
4807 if (D.getCXXScopeSpec().isInvalid())
4808 D.setInvalidType();
4809 else if (D.getCXXScopeSpec().isSet()) {
4810 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4811 UPPC_DeclarationQualifier))
4812 return nullptr;
4813
4814 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4815 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4816 if (!DC || isa<EnumDecl>(DC)) {
4817 // If we could not compute the declaration context, it's because the
4818 // declaration context is dependent but does not refer to a class,
4819 // class template, or class template partial specialization. Complain
4820 // and return early, to avoid the coming semantic disaster.
4821 Diag(D.getIdentifierLoc(),
4822 diag::err_template_qualified_declarator_no_match)
4823 << D.getCXXScopeSpec().getScopeRep()
4824 << D.getCXXScopeSpec().getRange();
4825 return nullptr;
4826 }
4827 bool IsDependentContext = DC->isDependentContext();
4828
4829 if (!IsDependentContext &&
4830 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4831 return nullptr;
4832
4833 // If a class is incomplete, do not parse entities inside it.
4834 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4835 Diag(D.getIdentifierLoc(),
4836 diag::err_member_def_undefined_record)
4837 << Name << DC << D.getCXXScopeSpec().getRange();
4838 return nullptr;
4839 }
4840 if (!D.getDeclSpec().isFriendSpecified()) {
4841 if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4842 Name, D.getIdentifierLoc())) {
4843 if (DC->isRecord())
4844 return nullptr;
4845
4846 D.setInvalidType();
4847 }
4848 }
4849
4850 // Check whether we need to rebuild the type of the given
4851 // declaration in the current instantiation.
4852 if (EnteringContext && IsDependentContext &&
4853 TemplateParamLists.size() != 0) {
4854 ContextRAII SavedContext(*this, DC);
4855 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4856 D.setInvalidType();
4857 }
4858 }
4859
4860 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4861 QualType R = TInfo->getType();
4862
4863 if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
4864 // If this is a typedef, we'll end up spewing multiple diagnostics.
4865 // Just return early; it's safer. If this is a function, let the
4866 // "constructor cannot have a return type" diagnostic handle it.
4867 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4868 return nullptr;
4869
4870 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4871 UPPC_DeclarationType))
4872 D.setInvalidType();
4873
4874 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4875 ForRedeclaration);
4876
4877 // See if this is a redefinition of a variable in the same scope.
4878 if (!D.getCXXScopeSpec().isSet()) {
4879 bool IsLinkageLookup = false;
4880 bool CreateBuiltins = false;
4881
4882 // If the declaration we're planning to build will be a function
4883 // or object with linkage, then look for another declaration with
4884 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4885 //
4886 // If the declaration we're planning to build will be declared with
4887 // external linkage in the translation unit, create any builtin with
4888 // the same name.
4889 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4890 /* Do nothing*/;
4891 else if (CurContext->isFunctionOrMethod() &&
4892 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
4893 R->isFunctionType())) {
4894 IsLinkageLookup = true;
4895 CreateBuiltins =
4896 CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
4897 } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4898 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4899 CreateBuiltins = true;
4900
4901 if (IsLinkageLookup)
4902 Previous.clear(LookupRedeclarationWithLinkage);
4903
4904 LookupName(Previous, S, CreateBuiltins);
4905 } else { // Something like "int foo::x;"
4906 LookupQualifiedName(Previous, DC);
4907
4908 // C++ [dcl.meaning]p1:
4909 // When the declarator-id is qualified, the declaration shall refer to a
4910 // previously declared member of the class or namespace to which the
4911 // qualifier refers (or, in the case of a namespace, of an element of the
4912 // inline namespace set of that namespace (7.3.1)) or to a specialization
4913 // thereof; [...]
4914 //
4915 // Note that we already checked the context above, and that we do not have
4916 // enough information to make sure that Previous contains the declaration
4917 // we want to match. For example, given:
4918 //
4919 // class X {
4920 // void f();
4921 // void f(float);
4922 // };
4923 //
4924 // void X::f(int) { } // ill-formed
4925 //
4926 // In this case, Previous will point to the overload set
4927 // containing the two f's declared in X, but neither of them
4928 // matches.
4929
4930 // C++ [dcl.meaning]p1:
4931 // [...] the member shall not merely have been introduced by a
4932 // using-declaration in the scope of the class or namespace nominated by
4933 // the nested-name-specifier of the declarator-id.
4934 RemoveUsingDecls(Previous);
4935 }
4936
4937 if (Previous.isSingleResult() &&
4938 Previous.getFoundDecl()->isTemplateParameter()) {
4939 // Maybe we will complain about the shadowed template parameter.
4940 if (!D.isInvalidType())
4941 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4942 Previous.getFoundDecl());
4943
4944 // Just pretend that we didn't see the previous declaration.
4945 Previous.clear();
4946 }
4947
4948 // In C++, the previous declaration we find might be a tag type
4949 // (class or enum). In this case, the new declaration will hide the
4950 // tag type. Note that this does does not apply if we're declaring a
4951 // typedef (C++ [dcl.typedef]p4).
4952 if (Previous.isSingleTagDecl() &&
4953 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4954 Previous.clear();
4955
4956 // Check that there are no default arguments other than in the parameters
4957 // of a function declaration (C++ only).
4958 if (getLangOpts().CPlusPlus)
4959 CheckExtraCXXDefaultArguments(D);
4960
4961 if (D.getDeclSpec().isConceptSpecified()) {
4962 // C++ Concepts TS [dcl.spec.concept]p1: The concept specifier shall be
4963 // applied only to the definition of a function template or variable
4964 // template, declared in namespace scope
4965 if (!TemplateParamLists.size()) {
4966 Diag(D.getDeclSpec().getConceptSpecLoc(),
4967 diag:: err_concept_wrong_decl_kind);
4968 return nullptr;
4969 }
4970
4971 if (!DC->getRedeclContext()->isFileContext()) {
4972 Diag(D.getIdentifierLoc(),
4973 diag::err_concept_decls_may_only_appear_in_namespace_scope);
4974 return nullptr;
4975 }
4976 }
4977
4978 NamedDecl *New;
4979
4980 bool AddToScope = true;
4981 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4982 if (TemplateParamLists.size()) {
4983 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4984 return nullptr;
4985 }
4986
4987 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4988 } else if (R->isFunctionType()) {
4989 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4990 TemplateParamLists,
4991 AddToScope);
4992 } else {
4993 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
4994 AddToScope);
4995 }
4996
4997 if (!New)
4998 return nullptr;
4999
5000 // If this has an identifier and is not an invalid redeclaration or
5001 // function template specialization, add it to the scope stack.
5002 if (New->getDeclName() && AddToScope &&
5003 !(D.isRedeclaration() && New->isInvalidDecl())) {
5004 // Only make a locally-scoped extern declaration visible if it is the first
5005 // declaration of this entity. Qualified lookup for such an entity should
5006 // only find this declaration if there is no visible declaration of it.
5007 bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
5008 PushOnScopeChains(New, S, AddToContext);
5009 if (!AddToContext)
5010 CurContext->addHiddenDecl(New);
5011 }
5012
5013 return New;
5014 }
5015
5016 /// Helper method to turn variable array types into constant array
5017 /// types in certain situations which would otherwise be errors (for
5018 /// GCC compatibility).
TryToFixInvalidVariablyModifiedType(QualType T,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)5019 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5020 ASTContext &Context,
5021 bool &SizeIsNegative,
5022 llvm::APSInt &Oversized) {
5023 // This method tries to turn a variable array into a constant
5024 // array even when the size isn't an ICE. This is necessary
5025 // for compatibility with code that depends on gcc's buggy
5026 // constant expression folding, like struct {char x[(int)(char*)2];}
5027 SizeIsNegative = false;
5028 Oversized = 0;
5029
5030 if (T->isDependentType())
5031 return QualType();
5032
5033 QualifierCollector Qs;
5034 const Type *Ty = Qs.strip(T);
5035
5036 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5037 QualType Pointee = PTy->getPointeeType();
5038 QualType FixedType =
5039 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5040 Oversized);
5041 if (FixedType.isNull()) return FixedType;
5042 FixedType = Context.getPointerType(FixedType);
5043 return Qs.apply(Context, FixedType);
5044 }
5045 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5046 QualType Inner = PTy->getInnerType();
5047 QualType FixedType =
5048 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5049 Oversized);
5050 if (FixedType.isNull()) return FixedType;
5051 FixedType = Context.getParenType(FixedType);
5052 return Qs.apply(Context, FixedType);
5053 }
5054
5055 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5056 if (!VLATy)
5057 return QualType();
5058 // FIXME: We should probably handle this case
5059 if (VLATy->getElementType()->isVariablyModifiedType())
5060 return QualType();
5061
5062 llvm::APSInt Res;
5063 if (!VLATy->getSizeExpr() ||
5064 !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
5065 return QualType();
5066
5067 // Check whether the array size is negative.
5068 if (Res.isSigned() && Res.isNegative()) {
5069 SizeIsNegative = true;
5070 return QualType();
5071 }
5072
5073 // Check whether the array is too large to be addressed.
5074 unsigned ActiveSizeBits
5075 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
5076 Res);
5077 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5078 Oversized = Res;
5079 return QualType();
5080 }
5081
5082 return Context.getConstantArrayType(VLATy->getElementType(),
5083 Res, ArrayType::Normal, 0);
5084 }
5085
5086 static void
FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL,TypeLoc DstTL)5087 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5088 SrcTL = SrcTL.getUnqualifiedLoc();
5089 DstTL = DstTL.getUnqualifiedLoc();
5090 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5091 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5092 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5093 DstPTL.getPointeeLoc());
5094 DstPTL.setStarLoc(SrcPTL.getStarLoc());
5095 return;
5096 }
5097 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5098 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5099 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5100 DstPTL.getInnerLoc());
5101 DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5102 DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5103 return;
5104 }
5105 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5106 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5107 TypeLoc SrcElemTL = SrcATL.getElementLoc();
5108 TypeLoc DstElemTL = DstATL.getElementLoc();
5109 DstElemTL.initializeFullCopy(SrcElemTL);
5110 DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
5111 DstATL.setSizeExpr(SrcATL.getSizeExpr());
5112 DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
5113 }
5114
5115 /// Helper method to turn variable array types into constant array
5116 /// types in certain situations which would otherwise be errors (for
5117 /// GCC compatibility).
5118 static TypeSourceInfo*
TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo * TInfo,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)5119 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
5120 ASTContext &Context,
5121 bool &SizeIsNegative,
5122 llvm::APSInt &Oversized) {
5123 QualType FixedTy
5124 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
5125 SizeIsNegative, Oversized);
5126 if (FixedTy.isNull())
5127 return nullptr;
5128 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
5129 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
5130 FixedTInfo->getTypeLoc());
5131 return FixedTInfo;
5132 }
5133
5134 /// \brief Register the given locally-scoped extern "C" declaration so
5135 /// that it can be found later for redeclarations. We include any extern "C"
5136 /// declaration that is not visible in the translation unit here, not just
5137 /// function-scope declarations.
5138 void
RegisterLocallyScopedExternCDecl(NamedDecl * ND,Scope * S)5139 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
5140 if (!getLangOpts().CPlusPlus &&
5141 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
5142 // Don't need to track declarations in the TU in C.
5143 return;
5144
5145 // Note that we have a locally-scoped external with this name.
5146 Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
5147 }
5148
findLocallyScopedExternCDecl(DeclarationName Name)5149 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
5150 // FIXME: We can have multiple results via __attribute__((overloadable)).
5151 auto Result = Context.getExternCContextDecl()->lookup(Name);
5152 return Result.empty() ? nullptr : *Result.begin();
5153 }
5154
5155 /// \brief Diagnose function specifiers on a declaration of an identifier that
5156 /// does not identify a function.
DiagnoseFunctionSpecifiers(const DeclSpec & DS)5157 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
5158 // FIXME: We should probably indicate the identifier in question to avoid
5159 // confusion for constructs like "inline int a(), b;"
5160 if (DS.isInlineSpecified())
5161 Diag(DS.getInlineSpecLoc(),
5162 diag::err_inline_non_function);
5163
5164 if (DS.isVirtualSpecified())
5165 Diag(DS.getVirtualSpecLoc(),
5166 diag::err_virtual_non_function);
5167
5168 if (DS.isExplicitSpecified())
5169 Diag(DS.getExplicitSpecLoc(),
5170 diag::err_explicit_non_function);
5171
5172 if (DS.isNoreturnSpecified())
5173 Diag(DS.getNoreturnSpecLoc(),
5174 diag::err_noreturn_non_function);
5175 }
5176
5177 NamedDecl*
ActOnTypedefDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous)5178 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
5179 TypeSourceInfo *TInfo, LookupResult &Previous) {
5180 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
5181 if (D.getCXXScopeSpec().isSet()) {
5182 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
5183 << D.getCXXScopeSpec().getRange();
5184 D.setInvalidType();
5185 // Pretend we didn't see the scope specifier.
5186 DC = CurContext;
5187 Previous.clear();
5188 }
5189
5190 DiagnoseFunctionSpecifiers(D.getDeclSpec());
5191
5192 if (D.getDeclSpec().isConstexprSpecified())
5193 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
5194 << 1;
5195 if (D.getDeclSpec().isConceptSpecified())
5196 Diag(D.getDeclSpec().getConceptSpecLoc(),
5197 diag::err_concept_wrong_decl_kind);
5198
5199 if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
5200 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
5201 << D.getName().getSourceRange();
5202 return nullptr;
5203 }
5204
5205 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
5206 if (!NewTD) return nullptr;
5207
5208 // Handle attributes prior to checking for duplicates in MergeVarDecl
5209 ProcessDeclAttributes(S, NewTD, D);
5210
5211 CheckTypedefForVariablyModifiedType(S, NewTD);
5212
5213 bool Redeclaration = D.isRedeclaration();
5214 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
5215 D.setRedeclaration(Redeclaration);
5216 return ND;
5217 }
5218
5219 void
CheckTypedefForVariablyModifiedType(Scope * S,TypedefNameDecl * NewTD)5220 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
5221 // C99 6.7.7p2: If a typedef name specifies a variably modified type
5222 // then it shall have block scope.
5223 // Note that variably modified types must be fixed before merging the decl so
5224 // that redeclarations will match.
5225 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
5226 QualType T = TInfo->getType();
5227 if (T->isVariablyModifiedType()) {
5228 getCurFunction()->setHasBranchProtectedScope();
5229
5230 if (S->getFnParent() == nullptr) {
5231 bool SizeIsNegative;
5232 llvm::APSInt Oversized;
5233 TypeSourceInfo *FixedTInfo =
5234 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5235 SizeIsNegative,
5236 Oversized);
5237 if (FixedTInfo) {
5238 Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
5239 NewTD->setTypeSourceInfo(FixedTInfo);
5240 } else {
5241 if (SizeIsNegative)
5242 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
5243 else if (T->isVariableArrayType())
5244 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
5245 else if (Oversized.getBoolValue())
5246 Diag(NewTD->getLocation(), diag::err_array_too_large)
5247 << Oversized.toString(10);
5248 else
5249 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
5250 NewTD->setInvalidDecl();
5251 }
5252 }
5253 }
5254 }
5255
5256
5257 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
5258 /// declares a typedef-name, either using the 'typedef' type specifier or via
5259 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
5260 NamedDecl*
ActOnTypedefNameDecl(Scope * S,DeclContext * DC,TypedefNameDecl * NewTD,LookupResult & Previous,bool & Redeclaration)5261 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
5262 LookupResult &Previous, bool &Redeclaration) {
5263 // Merge the decl with the existing one if appropriate. If the decl is
5264 // in an outer scope, it isn't the same thing.
5265 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
5266 /*AllowInlineNamespace*/false);
5267 filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
5268 if (!Previous.empty()) {
5269 Redeclaration = true;
5270 MergeTypedefNameDecl(S, NewTD, Previous);
5271 }
5272
5273 // If this is the C FILE type, notify the AST context.
5274 if (IdentifierInfo *II = NewTD->getIdentifier())
5275 if (!NewTD->isInvalidDecl() &&
5276 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5277 if (II->isStr("FILE"))
5278 Context.setFILEDecl(NewTD);
5279 else if (II->isStr("jmp_buf"))
5280 Context.setjmp_bufDecl(NewTD);
5281 else if (II->isStr("sigjmp_buf"))
5282 Context.setsigjmp_bufDecl(NewTD);
5283 else if (II->isStr("ucontext_t"))
5284 Context.setucontext_tDecl(NewTD);
5285 }
5286
5287 return NewTD;
5288 }
5289
5290 /// \brief Determines whether the given declaration is an out-of-scope
5291 /// previous declaration.
5292 ///
5293 /// This routine should be invoked when name lookup has found a
5294 /// previous declaration (PrevDecl) that is not in the scope where a
5295 /// new declaration by the same name is being introduced. If the new
5296 /// declaration occurs in a local scope, previous declarations with
5297 /// linkage may still be considered previous declarations (C99
5298 /// 6.2.2p4-5, C++ [basic.link]p6).
5299 ///
5300 /// \param PrevDecl the previous declaration found by name
5301 /// lookup
5302 ///
5303 /// \param DC the context in which the new declaration is being
5304 /// declared.
5305 ///
5306 /// \returns true if PrevDecl is an out-of-scope previous declaration
5307 /// for a new delcaration with the same name.
5308 static bool
isOutOfScopePreviousDeclaration(NamedDecl * PrevDecl,DeclContext * DC,ASTContext & Context)5309 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
5310 ASTContext &Context) {
5311 if (!PrevDecl)
5312 return false;
5313
5314 if (!PrevDecl->hasLinkage())
5315 return false;
5316
5317 if (Context.getLangOpts().CPlusPlus) {
5318 // C++ [basic.link]p6:
5319 // If there is a visible declaration of an entity with linkage
5320 // having the same name and type, ignoring entities declared
5321 // outside the innermost enclosing namespace scope, the block
5322 // scope declaration declares that same entity and receives the
5323 // linkage of the previous declaration.
5324 DeclContext *OuterContext = DC->getRedeclContext();
5325 if (!OuterContext->isFunctionOrMethod())
5326 // This rule only applies to block-scope declarations.
5327 return false;
5328
5329 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
5330 if (PrevOuterContext->isRecord())
5331 // We found a member function: ignore it.
5332 return false;
5333
5334 // Find the innermost enclosing namespace for the new and
5335 // previous declarations.
5336 OuterContext = OuterContext->getEnclosingNamespaceContext();
5337 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
5338
5339 // The previous declaration is in a different namespace, so it
5340 // isn't the same function.
5341 if (!OuterContext->Equals(PrevOuterContext))
5342 return false;
5343 }
5344
5345 return true;
5346 }
5347
SetNestedNameSpecifier(DeclaratorDecl * DD,Declarator & D)5348 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
5349 CXXScopeSpec &SS = D.getCXXScopeSpec();
5350 if (!SS.isSet()) return;
5351 DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
5352 }
5353
inferObjCARCLifetime(ValueDecl * decl)5354 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
5355 QualType type = decl->getType();
5356 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5357 if (lifetime == Qualifiers::OCL_Autoreleasing) {
5358 // Various kinds of declaration aren't allowed to be __autoreleasing.
5359 unsigned kind = -1U;
5360 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5361 if (var->hasAttr<BlocksAttr>())
5362 kind = 0; // __block
5363 else if (!var->hasLocalStorage())
5364 kind = 1; // global
5365 } else if (isa<ObjCIvarDecl>(decl)) {
5366 kind = 3; // ivar
5367 } else if (isa<FieldDecl>(decl)) {
5368 kind = 2; // field
5369 }
5370
5371 if (kind != -1U) {
5372 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
5373 << kind;
5374 }
5375 } else if (lifetime == Qualifiers::OCL_None) {
5376 // Try to infer lifetime.
5377 if (!type->isObjCLifetimeType())
5378 return false;
5379
5380 lifetime = type->getObjCARCImplicitLifetime();
5381 type = Context.getLifetimeQualifiedType(type, lifetime);
5382 decl->setType(type);
5383 }
5384
5385 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5386 // Thread-local variables cannot have lifetime.
5387 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5388 var->getTLSKind()) {
5389 Diag(var->getLocation(), diag::err_arc_thread_ownership)
5390 << var->getType();
5391 return true;
5392 }
5393 }
5394
5395 return false;
5396 }
5397
checkAttributesAfterMerging(Sema & S,NamedDecl & ND)5398 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
5399 // Ensure that an auto decl is deduced otherwise the checks below might cache
5400 // the wrong linkage.
5401 assert(S.ParsingInitForAutoVars.count(&ND) == 0);
5402
5403 // 'weak' only applies to declarations with external linkage.
5404 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
5405 if (!ND.isExternallyVisible()) {
5406 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
5407 ND.dropAttr<WeakAttr>();
5408 }
5409 }
5410 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
5411 if (ND.isExternallyVisible()) {
5412 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
5413 ND.dropAttr<WeakRefAttr>();
5414 ND.dropAttr<AliasAttr>();
5415 }
5416 }
5417
5418 if (auto *VD = dyn_cast<VarDecl>(&ND)) {
5419 if (VD->hasInit()) {
5420 if (const auto *Attr = VD->getAttr<AliasAttr>()) {
5421 assert(VD->isThisDeclarationADefinition() &&
5422 !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
5423 S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD;
5424 VD->dropAttr<AliasAttr>();
5425 }
5426 }
5427 }
5428
5429 // 'selectany' only applies to externally visible variable declarations.
5430 // It does not apply to functions.
5431 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
5432 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
5433 S.Diag(Attr->getLocation(),
5434 diag::err_attribute_selectany_non_extern_data);
5435 ND.dropAttr<SelectAnyAttr>();
5436 }
5437 }
5438
5439 if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
5440 // dll attributes require external linkage. Static locals may have external
5441 // linkage but still cannot be explicitly imported or exported.
5442 auto *VD = dyn_cast<VarDecl>(&ND);
5443 if (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())) {
5444 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
5445 << &ND << Attr;
5446 ND.setInvalidDecl();
5447 }
5448 }
5449
5450 // Virtual functions cannot be marked as 'notail'.
5451 if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
5452 if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
5453 if (MD->isVirtual()) {
5454 S.Diag(ND.getLocation(),
5455 diag::err_invalid_attribute_on_virtual_function)
5456 << Attr;
5457 ND.dropAttr<NotTailCalledAttr>();
5458 }
5459 }
5460
checkDLLAttributeRedeclaration(Sema & S,NamedDecl * OldDecl,NamedDecl * NewDecl,bool IsSpecialization)5461 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
5462 NamedDecl *NewDecl,
5463 bool IsSpecialization) {
5464 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl))
5465 OldDecl = OldTD->getTemplatedDecl();
5466 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl))
5467 NewDecl = NewTD->getTemplatedDecl();
5468
5469 if (!OldDecl || !NewDecl)
5470 return;
5471
5472 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
5473 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
5474 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
5475 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
5476
5477 // dllimport and dllexport are inheritable attributes so we have to exclude
5478 // inherited attribute instances.
5479 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
5480 (NewExportAttr && !NewExportAttr->isInherited());
5481
5482 // A redeclaration is not allowed to add a dllimport or dllexport attribute,
5483 // the only exception being explicit specializations.
5484 // Implicitly generated declarations are also excluded for now because there
5485 // is no other way to switch these to use dllimport or dllexport.
5486 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
5487
5488 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
5489 // Allow with a warning for free functions and global variables.
5490 bool JustWarn = false;
5491 if (!OldDecl->isCXXClassMember()) {
5492 auto *VD = dyn_cast<VarDecl>(OldDecl);
5493 if (VD && !VD->getDescribedVarTemplate())
5494 JustWarn = true;
5495 auto *FD = dyn_cast<FunctionDecl>(OldDecl);
5496 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
5497 JustWarn = true;
5498 }
5499
5500 // We cannot change a declaration that's been used because IR has already
5501 // been emitted. Dllimported functions will still work though (modulo
5502 // address equality) as they can use the thunk.
5503 if (OldDecl->isUsed())
5504 if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
5505 JustWarn = false;
5506
5507 unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
5508 : diag::err_attribute_dll_redeclaration;
5509 S.Diag(NewDecl->getLocation(), DiagID)
5510 << NewDecl
5511 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
5512 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
5513 if (!JustWarn) {
5514 NewDecl->setInvalidDecl();
5515 return;
5516 }
5517 }
5518
5519 // A redeclaration is not allowed to drop a dllimport attribute, the only
5520 // exceptions being inline function definitions, local extern declarations,
5521 // and qualified friend declarations.
5522 // NB: MSVC converts such a declaration to dllexport.
5523 bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
5524 if (const auto *VD = dyn_cast<VarDecl>(NewDecl))
5525 // Ignore static data because out-of-line definitions are diagnosed
5526 // separately.
5527 IsStaticDataMember = VD->isStaticDataMember();
5528 else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
5529 IsInline = FD->isInlined();
5530 IsQualifiedFriend = FD->getQualifier() &&
5531 FD->getFriendObjectKind() == Decl::FOK_Declared;
5532 }
5533
5534 if (OldImportAttr && !HasNewAttr && !IsInline && !IsStaticDataMember &&
5535 !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
5536 S.Diag(NewDecl->getLocation(),
5537 diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5538 << NewDecl << OldImportAttr;
5539 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
5540 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
5541 OldDecl->dropAttr<DLLImportAttr>();
5542 NewDecl->dropAttr<DLLImportAttr>();
5543 } else if (IsInline && OldImportAttr &&
5544 !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5545 // In MinGW, seeing a function declared inline drops the dllimport attribute.
5546 OldDecl->dropAttr<DLLImportAttr>();
5547 NewDecl->dropAttr<DLLImportAttr>();
5548 S.Diag(NewDecl->getLocation(),
5549 diag::warn_dllimport_dropped_from_inline_function)
5550 << NewDecl << OldImportAttr;
5551 }
5552 }
5553
5554 /// Given that we are within the definition of the given function,
5555 /// will that definition behave like C99's 'inline', where the
5556 /// definition is discarded except for optimization purposes?
isFunctionDefinitionDiscarded(Sema & S,FunctionDecl * FD)5557 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
5558 // Try to avoid calling GetGVALinkageForFunction.
5559
5560 // All cases of this require the 'inline' keyword.
5561 if (!FD->isInlined()) return false;
5562
5563 // This is only possible in C++ with the gnu_inline attribute.
5564 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
5565 return false;
5566
5567 // Okay, go ahead and call the relatively-more-expensive function.
5568
5569 #ifndef NDEBUG
5570 // AST quite reasonably asserts that it's working on a function
5571 // definition. We don't really have a way to tell it that we're
5572 // currently defining the function, so just lie to it in +Asserts
5573 // builds. This is an awful hack.
5574 FD->setLazyBody(1);
5575 #endif
5576
5577 bool isC99Inline =
5578 S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
5579
5580 #ifndef NDEBUG
5581 FD->setLazyBody(0);
5582 #endif
5583
5584 return isC99Inline;
5585 }
5586
5587 /// Determine whether a variable is extern "C" prior to attaching
5588 /// an initializer. We can't just call isExternC() here, because that
5589 /// will also compute and cache whether the declaration is externally
5590 /// visible, which might change when we attach the initializer.
5591 ///
5592 /// This can only be used if the declaration is known to not be a
5593 /// redeclaration of an internal linkage declaration.
5594 ///
5595 /// For instance:
5596 ///
5597 /// auto x = []{};
5598 ///
5599 /// Attaching the initializer here makes this declaration not externally
5600 /// visible, because its type has internal linkage.
5601 ///
5602 /// FIXME: This is a hack.
5603 template<typename T>
isIncompleteDeclExternC(Sema & S,const T * D)5604 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
5605 if (S.getLangOpts().CPlusPlus) {
5606 // In C++, the overloadable attribute negates the effects of extern "C".
5607 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
5608 return false;
5609
5610 // So do CUDA's host/device attributes if overloading is enabled.
5611 if (S.getLangOpts().CUDA && S.getLangOpts().CUDATargetOverloads &&
5612 (D->template hasAttr<CUDADeviceAttr>() ||
5613 D->template hasAttr<CUDAHostAttr>()))
5614 return false;
5615 }
5616 return D->isExternC();
5617 }
5618
shouldConsiderLinkage(const VarDecl * VD)5619 static bool shouldConsiderLinkage(const VarDecl *VD) {
5620 const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
5621 if (DC->isFunctionOrMethod())
5622 return VD->hasExternalStorage();
5623 if (DC->isFileContext())
5624 return true;
5625 if (DC->isRecord())
5626 return false;
5627 llvm_unreachable("Unexpected context");
5628 }
5629
shouldConsiderLinkage(const FunctionDecl * FD)5630 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
5631 const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
5632 if (DC->isFileContext() || DC->isFunctionOrMethod())
5633 return true;
5634 if (DC->isRecord())
5635 return false;
5636 llvm_unreachable("Unexpected context");
5637 }
5638
hasParsedAttr(Scope * S,const AttributeList * AttrList,AttributeList::Kind Kind)5639 static bool hasParsedAttr(Scope *S, const AttributeList *AttrList,
5640 AttributeList::Kind Kind) {
5641 for (const AttributeList *L = AttrList; L; L = L->getNext())
5642 if (L->getKind() == Kind)
5643 return true;
5644 return false;
5645 }
5646
hasParsedAttr(Scope * S,const Declarator & PD,AttributeList::Kind Kind)5647 static bool hasParsedAttr(Scope *S, const Declarator &PD,
5648 AttributeList::Kind Kind) {
5649 // Check decl attributes on the DeclSpec.
5650 if (hasParsedAttr(S, PD.getDeclSpec().getAttributes().getList(), Kind))
5651 return true;
5652
5653 // Walk the declarator structure, checking decl attributes that were in a type
5654 // position to the decl itself.
5655 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
5656 if (hasParsedAttr(S, PD.getTypeObject(I).getAttrs(), Kind))
5657 return true;
5658 }
5659
5660 // Finally, check attributes on the decl itself.
5661 return hasParsedAttr(S, PD.getAttributes(), Kind);
5662 }
5663
5664 /// Adjust the \c DeclContext for a function or variable that might be a
5665 /// function-local external declaration.
adjustContextForLocalExternDecl(DeclContext * & DC)5666 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
5667 if (!DC->isFunctionOrMethod())
5668 return false;
5669
5670 // If this is a local extern function or variable declared within a function
5671 // template, don't add it into the enclosing namespace scope until it is
5672 // instantiated; it might have a dependent type right now.
5673 if (DC->isDependentContext())
5674 return true;
5675
5676 // C++11 [basic.link]p7:
5677 // When a block scope declaration of an entity with linkage is not found to
5678 // refer to some other declaration, then that entity is a member of the
5679 // innermost enclosing namespace.
5680 //
5681 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
5682 // semantically-enclosing namespace, not a lexically-enclosing one.
5683 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
5684 DC = DC->getParent();
5685 return true;
5686 }
5687
5688 /// \brief Returns true if given declaration has external C language linkage.
isDeclExternC(const Decl * D)5689 static bool isDeclExternC(const Decl *D) {
5690 if (const auto *FD = dyn_cast<FunctionDecl>(D))
5691 return FD->isExternC();
5692 if (const auto *VD = dyn_cast<VarDecl>(D))
5693 return VD->isExternC();
5694
5695 llvm_unreachable("Unknown type of decl!");
5696 }
5697
5698 NamedDecl *
ActOnVariableDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)5699 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5700 TypeSourceInfo *TInfo, LookupResult &Previous,
5701 MultiTemplateParamsArg TemplateParamLists,
5702 bool &AddToScope) {
5703 QualType R = TInfo->getType();
5704 DeclarationName Name = GetNameForDeclarator(D).getName();
5705
5706 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
5707 StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
5708
5709 // dllimport globals without explicit storage class are treated as extern. We
5710 // have to change the storage class this early to get the right DeclContext.
5711 if (SC == SC_None && !DC->isRecord() &&
5712 hasParsedAttr(S, D, AttributeList::AT_DLLImport) &&
5713 !hasParsedAttr(S, D, AttributeList::AT_DLLExport))
5714 SC = SC_Extern;
5715
5716 DeclContext *OriginalDC = DC;
5717 bool IsLocalExternDecl = SC == SC_Extern &&
5718 adjustContextForLocalExternDecl(DC);
5719
5720 if (getLangOpts().OpenCL) {
5721 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
5722 QualType NR = R;
5723 while (NR->isPointerType()) {
5724 if (NR->isFunctionPointerType()) {
5725 Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer_variable);
5726 D.setInvalidType();
5727 break;
5728 }
5729 NR = NR->getPointeeType();
5730 }
5731
5732 if (!getOpenCLOptions().cl_khr_fp16) {
5733 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
5734 // half array type (unless the cl_khr_fp16 extension is enabled).
5735 if (Context.getBaseElementType(R)->isHalfType()) {
5736 Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
5737 D.setInvalidType();
5738 }
5739 }
5740 }
5741
5742 if (SCSpec == DeclSpec::SCS_mutable) {
5743 // mutable can only appear on non-static class members, so it's always
5744 // an error here
5745 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
5746 D.setInvalidType();
5747 SC = SC_None;
5748 }
5749
5750 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
5751 !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
5752 D.getDeclSpec().getStorageClassSpecLoc())) {
5753 // In C++11, the 'register' storage class specifier is deprecated.
5754 // Suppress the warning in system macros, it's used in macros in some
5755 // popular C system headers, such as in glibc's htonl() macro.
5756 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5757 getLangOpts().CPlusPlus1z ? diag::ext_register_storage_class
5758 : diag::warn_deprecated_register)
5759 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5760 }
5761
5762 IdentifierInfo *II = Name.getAsIdentifierInfo();
5763 if (!II) {
5764 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
5765 << Name;
5766 return nullptr;
5767 }
5768
5769 DiagnoseFunctionSpecifiers(D.getDeclSpec());
5770
5771 if (!DC->isRecord() && S->getFnParent() == nullptr) {
5772 // C99 6.9p2: The storage-class specifiers auto and register shall not
5773 // appear in the declaration specifiers in an external declaration.
5774 // Global Register+Asm is a GNU extension we support.
5775 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
5776 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
5777 D.setInvalidType();
5778 }
5779 }
5780
5781 if (getLangOpts().OpenCL) {
5782 // OpenCL v1.2 s6.9.b p4:
5783 // The sampler type cannot be used with the __local and __global address
5784 // space qualifiers.
5785 if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
5786 R.getAddressSpace() == LangAS::opencl_global)) {
5787 Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
5788 }
5789
5790 // OpenCL 1.2 spec, p6.9 r:
5791 // The event type cannot be used to declare a program scope variable.
5792 // The event type cannot be used with the __local, __constant and __global
5793 // address space qualifiers.
5794 if (R->isEventT()) {
5795 if (S->getParent() == nullptr) {
5796 Diag(D.getLocStart(), diag::err_event_t_global_var);
5797 D.setInvalidType();
5798 }
5799
5800 if (R.getAddressSpace()) {
5801 Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
5802 D.setInvalidType();
5803 }
5804 }
5805 }
5806
5807 bool IsExplicitSpecialization = false;
5808 bool IsVariableTemplateSpecialization = false;
5809 bool IsPartialSpecialization = false;
5810 bool IsVariableTemplate = false;
5811 VarDecl *NewVD = nullptr;
5812 VarTemplateDecl *NewTemplate = nullptr;
5813 TemplateParameterList *TemplateParams = nullptr;
5814 if (!getLangOpts().CPlusPlus) {
5815 NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5816 D.getIdentifierLoc(), II,
5817 R, TInfo, SC);
5818
5819 if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5820 ParsingInitForAutoVars.insert(NewVD);
5821
5822 if (D.isInvalidType())
5823 NewVD->setInvalidDecl();
5824 } else {
5825 bool Invalid = false;
5826
5827 if (DC->isRecord() && !CurContext->isRecord()) {
5828 // This is an out-of-line definition of a static data member.
5829 switch (SC) {
5830 case SC_None:
5831 break;
5832 case SC_Static:
5833 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5834 diag::err_static_out_of_line)
5835 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5836 break;
5837 case SC_Auto:
5838 case SC_Register:
5839 case SC_Extern:
5840 // [dcl.stc] p2: The auto or register specifiers shall be applied only
5841 // to names of variables declared in a block or to function parameters.
5842 // [dcl.stc] p6: The extern specifier cannot be used in the declaration
5843 // of class members
5844
5845 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5846 diag::err_storage_class_for_static_member)
5847 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5848 break;
5849 case SC_PrivateExtern:
5850 llvm_unreachable("C storage class in c++!");
5851 }
5852 }
5853
5854 if (SC == SC_Static && CurContext->isRecord()) {
5855 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
5856 if (RD->isLocalClass())
5857 Diag(D.getIdentifierLoc(),
5858 diag::err_static_data_member_not_allowed_in_local_class)
5859 << Name << RD->getDeclName();
5860
5861 // C++98 [class.union]p1: If a union contains a static data member,
5862 // the program is ill-formed. C++11 drops this restriction.
5863 if (RD->isUnion())
5864 Diag(D.getIdentifierLoc(),
5865 getLangOpts().CPlusPlus11
5866 ? diag::warn_cxx98_compat_static_data_member_in_union
5867 : diag::ext_static_data_member_in_union) << Name;
5868 // We conservatively disallow static data members in anonymous structs.
5869 else if (!RD->getDeclName())
5870 Diag(D.getIdentifierLoc(),
5871 diag::err_static_data_member_not_allowed_in_anon_struct)
5872 << Name << RD->isUnion();
5873 }
5874 }
5875
5876 // Match up the template parameter lists with the scope specifier, then
5877 // determine whether we have a template or a template specialization.
5878 TemplateParams = MatchTemplateParametersToScopeSpecifier(
5879 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
5880 D.getCXXScopeSpec(),
5881 D.getName().getKind() == UnqualifiedId::IK_TemplateId
5882 ? D.getName().TemplateId
5883 : nullptr,
5884 TemplateParamLists,
5885 /*never a friend*/ false, IsExplicitSpecialization, Invalid);
5886
5887 if (TemplateParams) {
5888 if (!TemplateParams->size() &&
5889 D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5890 // There is an extraneous 'template<>' for this variable. Complain
5891 // about it, but allow the declaration of the variable.
5892 Diag(TemplateParams->getTemplateLoc(),
5893 diag::err_template_variable_noparams)
5894 << II
5895 << SourceRange(TemplateParams->getTemplateLoc(),
5896 TemplateParams->getRAngleLoc());
5897 TemplateParams = nullptr;
5898 } else {
5899 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5900 // This is an explicit specialization or a partial specialization.
5901 // FIXME: Check that we can declare a specialization here.
5902 IsVariableTemplateSpecialization = true;
5903 IsPartialSpecialization = TemplateParams->size() > 0;
5904 } else { // if (TemplateParams->size() > 0)
5905 // This is a template declaration.
5906 IsVariableTemplate = true;
5907
5908 // Check that we can declare a template here.
5909 if (CheckTemplateDeclScope(S, TemplateParams))
5910 return nullptr;
5911
5912 // Only C++1y supports variable templates (N3651).
5913 Diag(D.getIdentifierLoc(),
5914 getLangOpts().CPlusPlus14
5915 ? diag::warn_cxx11_compat_variable_template
5916 : diag::ext_variable_template);
5917 }
5918 }
5919 } else {
5920 assert(
5921 (Invalid || D.getName().getKind() != UnqualifiedId::IK_TemplateId) &&
5922 "should have a 'template<>' for this decl");
5923 }
5924
5925 if (IsVariableTemplateSpecialization) {
5926 SourceLocation TemplateKWLoc =
5927 TemplateParamLists.size() > 0
5928 ? TemplateParamLists[0]->getTemplateLoc()
5929 : SourceLocation();
5930 DeclResult Res = ActOnVarTemplateSpecialization(
5931 S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
5932 IsPartialSpecialization);
5933 if (Res.isInvalid())
5934 return nullptr;
5935 NewVD = cast<VarDecl>(Res.get());
5936 AddToScope = false;
5937 } else
5938 NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5939 D.getIdentifierLoc(), II, R, TInfo, SC);
5940
5941 // If this is supposed to be a variable template, create it as such.
5942 if (IsVariableTemplate) {
5943 NewTemplate =
5944 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
5945 TemplateParams, NewVD);
5946 NewVD->setDescribedVarTemplate(NewTemplate);
5947 }
5948
5949 // If this decl has an auto type in need of deduction, make a note of the
5950 // Decl so we can diagnose uses of it in its own initializer.
5951 if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5952 ParsingInitForAutoVars.insert(NewVD);
5953
5954 if (D.isInvalidType() || Invalid) {
5955 NewVD->setInvalidDecl();
5956 if (NewTemplate)
5957 NewTemplate->setInvalidDecl();
5958 }
5959
5960 SetNestedNameSpecifier(NewVD, D);
5961
5962 // If we have any template parameter lists that don't directly belong to
5963 // the variable (matching the scope specifier), store them.
5964 unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
5965 if (TemplateParamLists.size() > VDTemplateParamLists)
5966 NewVD->setTemplateParameterListsInfo(
5967 Context, TemplateParamLists.drop_back(VDTemplateParamLists));
5968
5969 if (D.getDeclSpec().isConstexprSpecified())
5970 NewVD->setConstexpr(true);
5971
5972 if (D.getDeclSpec().isConceptSpecified()) {
5973 NewVD->setConcept(true);
5974
5975 // C++ Concepts TS [dcl.spec.concept]p2: A concept definition shall not
5976 // be declared with the thread_local, inline, friend, or constexpr
5977 // specifiers, [...]
5978 if (D.getDeclSpec().getThreadStorageClassSpec() == TSCS_thread_local) {
5979 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5980 diag::err_concept_decl_invalid_specifiers)
5981 << 0 << 0;
5982 NewVD->setInvalidDecl(true);
5983 }
5984
5985 if (D.getDeclSpec().isConstexprSpecified()) {
5986 Diag(D.getDeclSpec().getConstexprSpecLoc(),
5987 diag::err_concept_decl_invalid_specifiers)
5988 << 0 << 3;
5989 NewVD->setInvalidDecl(true);
5990 }
5991 }
5992 }
5993
5994 // Set the lexical context. If the declarator has a C++ scope specifier, the
5995 // lexical context will be different from the semantic context.
5996 NewVD->setLexicalDeclContext(CurContext);
5997 if (NewTemplate)
5998 NewTemplate->setLexicalDeclContext(CurContext);
5999
6000 if (IsLocalExternDecl)
6001 NewVD->setLocalExternDecl();
6002
6003 bool EmitTLSUnsupportedError = false;
6004 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
6005 // C++11 [dcl.stc]p4:
6006 // When thread_local is applied to a variable of block scope the
6007 // storage-class-specifier static is implied if it does not appear
6008 // explicitly.
6009 // Core issue: 'static' is not implied if the variable is declared
6010 // 'extern'.
6011 if (NewVD->hasLocalStorage() &&
6012 (SCSpec != DeclSpec::SCS_unspecified ||
6013 TSCS != DeclSpec::TSCS_thread_local ||
6014 !DC->isFunctionOrMethod()))
6015 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6016 diag::err_thread_non_global)
6017 << DeclSpec::getSpecifierName(TSCS);
6018 else if (!Context.getTargetInfo().isTLSSupported()) {
6019 if (getLangOpts().CUDA) {
6020 // Postpone error emission until we've collected attributes required to
6021 // figure out whether it's a host or device variable and whether the
6022 // error should be ignored.
6023 EmitTLSUnsupportedError = true;
6024 // We still need to mark the variable as TLS so it shows up in AST with
6025 // proper storage class for other tools to use even if we're not going
6026 // to emit any code for it.
6027 NewVD->setTSCSpec(TSCS);
6028 } else
6029 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6030 diag::err_thread_unsupported);
6031 } else
6032 NewVD->setTSCSpec(TSCS);
6033 }
6034
6035 // C99 6.7.4p3
6036 // An inline definition of a function with external linkage shall
6037 // not contain a definition of a modifiable object with static or
6038 // thread storage duration...
6039 // We only apply this when the function is required to be defined
6040 // elsewhere, i.e. when the function is not 'extern inline'. Note
6041 // that a local variable with thread storage duration still has to
6042 // be marked 'static'. Also note that it's possible to get these
6043 // semantics in C++ using __attribute__((gnu_inline)).
6044 if (SC == SC_Static && S->getFnParent() != nullptr &&
6045 !NewVD->getType().isConstQualified()) {
6046 FunctionDecl *CurFD = getCurFunctionDecl();
6047 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
6048 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6049 diag::warn_static_local_in_extern_inline);
6050 MaybeSuggestAddingStaticToDecl(CurFD);
6051 }
6052 }
6053
6054 if (D.getDeclSpec().isModulePrivateSpecified()) {
6055 if (IsVariableTemplateSpecialization)
6056 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6057 << (IsPartialSpecialization ? 1 : 0)
6058 << FixItHint::CreateRemoval(
6059 D.getDeclSpec().getModulePrivateSpecLoc());
6060 else if (IsExplicitSpecialization)
6061 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6062 << 2
6063 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6064 else if (NewVD->hasLocalStorage())
6065 Diag(NewVD->getLocation(), diag::err_module_private_local)
6066 << 0 << NewVD->getDeclName()
6067 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6068 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6069 else {
6070 NewVD->setModulePrivate();
6071 if (NewTemplate)
6072 NewTemplate->setModulePrivate();
6073 }
6074 }
6075
6076 // Handle attributes prior to checking for duplicates in MergeVarDecl
6077 ProcessDeclAttributes(S, NewVD, D);
6078
6079 if (getLangOpts().CUDA) {
6080 if (EmitTLSUnsupportedError && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD))
6081 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6082 diag::err_thread_unsupported);
6083 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
6084 // storage [duration]."
6085 if (SC == SC_None && S->getFnParent() != nullptr &&
6086 (NewVD->hasAttr<CUDASharedAttr>() ||
6087 NewVD->hasAttr<CUDAConstantAttr>())) {
6088 NewVD->setStorageClass(SC_Static);
6089 }
6090 }
6091
6092 // Ensure that dllimport globals without explicit storage class are treated as
6093 // extern. The storage class is set above using parsed attributes. Now we can
6094 // check the VarDecl itself.
6095 assert(!NewVD->hasAttr<DLLImportAttr>() ||
6096 NewVD->getAttr<DLLImportAttr>()->isInherited() ||
6097 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
6098
6099 // In auto-retain/release, infer strong retension for variables of
6100 // retainable type.
6101 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
6102 NewVD->setInvalidDecl();
6103
6104 // Handle GNU asm-label extension (encoded as an attribute).
6105 if (Expr *E = (Expr*)D.getAsmLabel()) {
6106 // The parser guarantees this is a string.
6107 StringLiteral *SE = cast<StringLiteral>(E);
6108 StringRef Label = SE->getString();
6109 if (S->getFnParent() != nullptr) {
6110 switch (SC) {
6111 case SC_None:
6112 case SC_Auto:
6113 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
6114 break;
6115 case SC_Register:
6116 // Local Named register
6117 if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
6118 DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
6119 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6120 break;
6121 case SC_Static:
6122 case SC_Extern:
6123 case SC_PrivateExtern:
6124 break;
6125 }
6126 } else if (SC == SC_Register) {
6127 // Global Named register
6128 if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
6129 const auto &TI = Context.getTargetInfo();
6130 bool HasSizeMismatch;
6131
6132 if (!TI.isValidGCCRegisterName(Label))
6133 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6134 else if (!TI.validateGlobalRegisterVariable(Label,
6135 Context.getTypeSize(R),
6136 HasSizeMismatch))
6137 Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
6138 else if (HasSizeMismatch)
6139 Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
6140 }
6141
6142 if (!R->isIntegralType(Context) && !R->isPointerType()) {
6143 Diag(D.getLocStart(), diag::err_asm_bad_register_type);
6144 NewVD->setInvalidDecl(true);
6145 }
6146 }
6147
6148 NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
6149 Context, Label, 0));
6150 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6151 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6152 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
6153 if (I != ExtnameUndeclaredIdentifiers.end()) {
6154 if (isDeclExternC(NewVD)) {
6155 NewVD->addAttr(I->second);
6156 ExtnameUndeclaredIdentifiers.erase(I);
6157 } else
6158 Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
6159 << /*Variable*/1 << NewVD;
6160 }
6161 }
6162
6163 // Diagnose shadowed variables before filtering for scope.
6164 if (D.getCXXScopeSpec().isEmpty())
6165 CheckShadow(S, NewVD, Previous);
6166
6167 // Don't consider existing declarations that are in a different
6168 // scope and are out-of-semantic-context declarations (if the new
6169 // declaration has linkage).
6170 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
6171 D.getCXXScopeSpec().isNotEmpty() ||
6172 IsExplicitSpecialization ||
6173 IsVariableTemplateSpecialization);
6174
6175 // Check whether the previous declaration is in the same block scope. This
6176 // affects whether we merge types with it, per C++11 [dcl.array]p3.
6177 if (getLangOpts().CPlusPlus &&
6178 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
6179 NewVD->setPreviousDeclInSameBlockScope(
6180 Previous.isSingleResult() && !Previous.isShadowed() &&
6181 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
6182
6183 if (!getLangOpts().CPlusPlus) {
6184 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6185 } else {
6186 // If this is an explicit specialization of a static data member, check it.
6187 if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
6188 CheckMemberSpecialization(NewVD, Previous))
6189 NewVD->setInvalidDecl();
6190
6191 // Merge the decl with the existing one if appropriate.
6192 if (!Previous.empty()) {
6193 if (Previous.isSingleResult() &&
6194 isa<FieldDecl>(Previous.getFoundDecl()) &&
6195 D.getCXXScopeSpec().isSet()) {
6196 // The user tried to define a non-static data member
6197 // out-of-line (C++ [dcl.meaning]p1).
6198 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
6199 << D.getCXXScopeSpec().getRange();
6200 Previous.clear();
6201 NewVD->setInvalidDecl();
6202 }
6203 } else if (D.getCXXScopeSpec().isSet()) {
6204 // No previous declaration in the qualifying scope.
6205 Diag(D.getIdentifierLoc(), diag::err_no_member)
6206 << Name << computeDeclContext(D.getCXXScopeSpec(), true)
6207 << D.getCXXScopeSpec().getRange();
6208 NewVD->setInvalidDecl();
6209 }
6210
6211 if (!IsVariableTemplateSpecialization)
6212 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6213
6214 if (NewTemplate) {
6215 VarTemplateDecl *PrevVarTemplate =
6216 NewVD->getPreviousDecl()
6217 ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
6218 : nullptr;
6219
6220 // Check the template parameter list of this declaration, possibly
6221 // merging in the template parameter list from the previous variable
6222 // template declaration.
6223 if (CheckTemplateParameterList(
6224 TemplateParams,
6225 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
6226 : nullptr,
6227 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
6228 DC->isDependentContext())
6229 ? TPC_ClassTemplateMember
6230 : TPC_VarTemplate))
6231 NewVD->setInvalidDecl();
6232
6233 // If we are providing an explicit specialization of a static variable
6234 // template, make a note of that.
6235 if (PrevVarTemplate &&
6236 PrevVarTemplate->getInstantiatedFromMemberTemplate())
6237 PrevVarTemplate->setMemberSpecialization();
6238 }
6239 }
6240
6241 ProcessPragmaWeak(S, NewVD);
6242
6243 // If this is the first declaration of an extern C variable, update
6244 // the map of such variables.
6245 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
6246 isIncompleteDeclExternC(*this, NewVD))
6247 RegisterLocallyScopedExternCDecl(NewVD, S);
6248
6249 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
6250 Decl *ManglingContextDecl;
6251 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
6252 NewVD->getDeclContext(), ManglingContextDecl)) {
6253 Context.setManglingNumber(
6254 NewVD, MCtx->getManglingNumber(
6255 NewVD, getMSManglingNumber(getLangOpts(), S)));
6256 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
6257 }
6258 }
6259
6260 // Special handling of variable named 'main'.
6261 if (Name.isIdentifier() && Name.getAsIdentifierInfo()->isStr("main") &&
6262 NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6263 !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
6264
6265 // C++ [basic.start.main]p3
6266 // A program that declares a variable main at global scope is ill-formed.
6267 if (getLangOpts().CPlusPlus)
6268 Diag(D.getLocStart(), diag::err_main_global_variable);
6269
6270 // In C, and external-linkage variable named main results in undefined
6271 // behavior.
6272 else if (NewVD->hasExternalFormalLinkage())
6273 Diag(D.getLocStart(), diag::warn_main_redefined);
6274 }
6275
6276 if (D.isRedeclaration() && !Previous.empty()) {
6277 checkDLLAttributeRedeclaration(
6278 *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewVD,
6279 IsExplicitSpecialization);
6280 }
6281
6282 if (NewTemplate) {
6283 if (NewVD->isInvalidDecl())
6284 NewTemplate->setInvalidDecl();
6285 ActOnDocumentableDecl(NewTemplate);
6286 return NewTemplate;
6287 }
6288
6289 return NewVD;
6290 }
6291
6292 /// \brief Diagnose variable or built-in function shadowing. Implements
6293 /// -Wshadow.
6294 ///
6295 /// This method is called whenever a VarDecl is added to a "useful"
6296 /// scope.
6297 ///
6298 /// \param S the scope in which the shadowing name is being declared
6299 /// \param R the lookup of the name
6300 ///
CheckShadow(Scope * S,VarDecl * D,const LookupResult & R)6301 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
6302 // Return if warning is ignored.
6303 if (Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()))
6304 return;
6305
6306 // Don't diagnose declarations at file scope.
6307 if (D->hasGlobalStorage())
6308 return;
6309
6310 DeclContext *NewDC = D->getDeclContext();
6311
6312 // Only diagnose if we're shadowing an unambiguous field or variable.
6313 if (R.getResultKind() != LookupResult::Found)
6314 return;
6315
6316 NamedDecl* ShadowedDecl = R.getFoundDecl();
6317 if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
6318 return;
6319
6320 // Fields are not shadowed by variables in C++ static methods.
6321 if (isa<FieldDecl>(ShadowedDecl))
6322 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
6323 if (MD->isStatic())
6324 return;
6325
6326 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
6327 if (shadowedVar->isExternC()) {
6328 // For shadowing external vars, make sure that we point to the global
6329 // declaration, not a locally scoped extern declaration.
6330 for (auto I : shadowedVar->redecls())
6331 if (I->isFileVarDecl()) {
6332 ShadowedDecl = I;
6333 break;
6334 }
6335 }
6336
6337 DeclContext *OldDC = ShadowedDecl->getDeclContext();
6338
6339 // Only warn about certain kinds of shadowing for class members.
6340 if (NewDC && NewDC->isRecord()) {
6341 // In particular, don't warn about shadowing non-class members.
6342 if (!OldDC->isRecord())
6343 return;
6344
6345 // TODO: should we warn about static data members shadowing
6346 // static data members from base classes?
6347
6348 // TODO: don't diagnose for inaccessible shadowed members.
6349 // This is hard to do perfectly because we might friend the
6350 // shadowing context, but that's just a false negative.
6351 }
6352
6353 // Determine what kind of declaration we're shadowing.
6354 unsigned Kind;
6355 if (isa<RecordDecl>(OldDC)) {
6356 if (isa<FieldDecl>(ShadowedDecl))
6357 Kind = 3; // field
6358 else
6359 Kind = 2; // static data member
6360 } else if (OldDC->isFileContext())
6361 Kind = 1; // global
6362 else
6363 Kind = 0; // local
6364
6365 DeclarationName Name = R.getLookupName();
6366
6367 // Emit warning and note.
6368 if (getSourceManager().isInSystemMacro(R.getNameLoc()))
6369 return;
6370 Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
6371 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
6372 }
6373
6374 /// \brief Check -Wshadow without the advantage of a previous lookup.
CheckShadow(Scope * S,VarDecl * D)6375 void Sema::CheckShadow(Scope *S, VarDecl *D) {
6376 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
6377 return;
6378
6379 LookupResult R(*this, D->getDeclName(), D->getLocation(),
6380 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
6381 LookupName(R, S);
6382 CheckShadow(S, D, R);
6383 }
6384
6385 /// Check for conflict between this global or extern "C" declaration and
6386 /// previous global or extern "C" declarations. This is only used in C++.
6387 template<typename T>
checkGlobalOrExternCConflict(Sema & S,const T * ND,bool IsGlobal,LookupResult & Previous)6388 static bool checkGlobalOrExternCConflict(
6389 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
6390 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
6391 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
6392
6393 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
6394 // The common case: this global doesn't conflict with any extern "C"
6395 // declaration.
6396 return false;
6397 }
6398
6399 if (Prev) {
6400 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
6401 // Both the old and new declarations have C language linkage. This is a
6402 // redeclaration.
6403 Previous.clear();
6404 Previous.addDecl(Prev);
6405 return true;
6406 }
6407
6408 // This is a global, non-extern "C" declaration, and there is a previous
6409 // non-global extern "C" declaration. Diagnose if this is a variable
6410 // declaration.
6411 if (!isa<VarDecl>(ND))
6412 return false;
6413 } else {
6414 // The declaration is extern "C". Check for any declaration in the
6415 // translation unit which might conflict.
6416 if (IsGlobal) {
6417 // We have already performed the lookup into the translation unit.
6418 IsGlobal = false;
6419 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6420 I != E; ++I) {
6421 if (isa<VarDecl>(*I)) {
6422 Prev = *I;
6423 break;
6424 }
6425 }
6426 } else {
6427 DeclContext::lookup_result R =
6428 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
6429 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
6430 I != E; ++I) {
6431 if (isa<VarDecl>(*I)) {
6432 Prev = *I;
6433 break;
6434 }
6435 // FIXME: If we have any other entity with this name in global scope,
6436 // the declaration is ill-formed, but that is a defect: it breaks the
6437 // 'stat' hack, for instance. Only variables can have mangled name
6438 // clashes with extern "C" declarations, so only they deserve a
6439 // diagnostic.
6440 }
6441 }
6442
6443 if (!Prev)
6444 return false;
6445 }
6446
6447 // Use the first declaration's location to ensure we point at something which
6448 // is lexically inside an extern "C" linkage-spec.
6449 assert(Prev && "should have found a previous declaration to diagnose");
6450 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
6451 Prev = FD->getFirstDecl();
6452 else
6453 Prev = cast<VarDecl>(Prev)->getFirstDecl();
6454
6455 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
6456 << IsGlobal << ND;
6457 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
6458 << IsGlobal;
6459 return false;
6460 }
6461
6462 /// Apply special rules for handling extern "C" declarations. Returns \c true
6463 /// if we have found that this is a redeclaration of some prior entity.
6464 ///
6465 /// Per C++ [dcl.link]p6:
6466 /// Two declarations [for a function or variable] with C language linkage
6467 /// with the same name that appear in different scopes refer to the same
6468 /// [entity]. An entity with C language linkage shall not be declared with
6469 /// the same name as an entity in global scope.
6470 template<typename T>
checkForConflictWithNonVisibleExternC(Sema & S,const T * ND,LookupResult & Previous)6471 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
6472 LookupResult &Previous) {
6473 if (!S.getLangOpts().CPlusPlus) {
6474 // In C, when declaring a global variable, look for a corresponding 'extern'
6475 // variable declared in function scope. We don't need this in C++, because
6476 // we find local extern decls in the surrounding file-scope DeclContext.
6477 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6478 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
6479 Previous.clear();
6480 Previous.addDecl(Prev);
6481 return true;
6482 }
6483 }
6484 return false;
6485 }
6486
6487 // A declaration in the translation unit can conflict with an extern "C"
6488 // declaration.
6489 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
6490 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
6491
6492 // An extern "C" declaration can conflict with a declaration in the
6493 // translation unit or can be a redeclaration of an extern "C" declaration
6494 // in another scope.
6495 if (isIncompleteDeclExternC(S,ND))
6496 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
6497
6498 // Neither global nor extern "C": nothing to do.
6499 return false;
6500 }
6501
CheckVariableDeclarationType(VarDecl * NewVD)6502 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
6503 // If the decl is already known invalid, don't check it.
6504 if (NewVD->isInvalidDecl())
6505 return;
6506
6507 TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
6508 QualType T = TInfo->getType();
6509
6510 // Defer checking an 'auto' type until its initializer is attached.
6511 if (T->isUndeducedType())
6512 return;
6513
6514 if (NewVD->hasAttrs())
6515 CheckAlignasUnderalignment(NewVD);
6516
6517 if (T->isObjCObjectType()) {
6518 Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
6519 << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
6520 T = Context.getObjCObjectPointerType(T);
6521 NewVD->setType(T);
6522 }
6523
6524 // Emit an error if an address space was applied to decl with local storage.
6525 // This includes arrays of objects with address space qualifiers, but not
6526 // automatic variables that point to other address spaces.
6527 // ISO/IEC TR 18037 S5.1.2
6528 if (!getLangOpts().OpenCL
6529 && NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
6530 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
6531 NewVD->setInvalidDecl();
6532 return;
6533 }
6534
6535 // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
6536 // scope.
6537 if (getLangOpts().OpenCLVersion == 120 &&
6538 !getOpenCLOptions().cl_clang_storage_class_specifiers &&
6539 NewVD->isStaticLocal()) {
6540 Diag(NewVD->getLocation(), diag::err_static_function_scope);
6541 NewVD->setInvalidDecl();
6542 return;
6543 }
6544
6545 // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
6546 // __constant address space.
6547 // OpenCL v2.0 s6.5.1 - Variables defined at program scope and static
6548 // variables inside a function can also be declared in the global
6549 // address space.
6550 if (getLangOpts().OpenCL) {
6551 if (NewVD->isFileVarDecl()) {
6552 if (!T->isSamplerT() &&
6553 !(T.getAddressSpace() == LangAS::opencl_constant ||
6554 (T.getAddressSpace() == LangAS::opencl_global &&
6555 getLangOpts().OpenCLVersion == 200))) {
6556 if (getLangOpts().OpenCLVersion == 200)
6557 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
6558 << "global or constant";
6559 else
6560 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
6561 << "constant";
6562 NewVD->setInvalidDecl();
6563 return;
6564 }
6565 } else {
6566 // OpenCL v2.0 s6.5.1 - Variables defined at program scope and static
6567 // variables inside a function can also be declared in the global
6568 // address space.
6569 if (NewVD->isStaticLocal() &&
6570 !(T.getAddressSpace() == LangAS::opencl_constant ||
6571 (T.getAddressSpace() == LangAS::opencl_global &&
6572 getLangOpts().OpenCLVersion == 200))) {
6573 if (getLangOpts().OpenCLVersion == 200)
6574 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
6575 << "global or constant";
6576 else
6577 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
6578 << "constant";
6579 NewVD->setInvalidDecl();
6580 return;
6581 }
6582 // OpenCL v1.1 s6.5.2 and s6.5.3 no local or constant variables
6583 // in functions.
6584 if (T.getAddressSpace() == LangAS::opencl_constant ||
6585 T.getAddressSpace() == LangAS::opencl_local) {
6586 FunctionDecl *FD = getCurFunctionDecl();
6587 if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
6588 if (T.getAddressSpace() == LangAS::opencl_constant)
6589 Diag(NewVD->getLocation(), diag::err_opencl_non_kernel_variable)
6590 << "constant";
6591 else
6592 Diag(NewVD->getLocation(), diag::err_opencl_non_kernel_variable)
6593 << "local";
6594 NewVD->setInvalidDecl();
6595 return;
6596 }
6597 }
6598 }
6599 }
6600
6601 if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
6602 && !NewVD->hasAttr<BlocksAttr>()) {
6603 if (getLangOpts().getGC() != LangOptions::NonGC)
6604 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
6605 else {
6606 assert(!getLangOpts().ObjCAutoRefCount);
6607 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
6608 }
6609 }
6610
6611 bool isVM = T->isVariablyModifiedType();
6612 if (isVM || NewVD->hasAttr<CleanupAttr>() ||
6613 NewVD->hasAttr<BlocksAttr>())
6614 getCurFunction()->setHasBranchProtectedScope();
6615
6616 if ((isVM && NewVD->hasLinkage()) ||
6617 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
6618 bool SizeIsNegative;
6619 llvm::APSInt Oversized;
6620 TypeSourceInfo *FixedTInfo =
6621 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6622 SizeIsNegative, Oversized);
6623 if (!FixedTInfo && T->isVariableArrayType()) {
6624 const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
6625 // FIXME: This won't give the correct result for
6626 // int a[10][n];
6627 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
6628
6629 if (NewVD->isFileVarDecl())
6630 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
6631 << SizeRange;
6632 else if (NewVD->isStaticLocal())
6633 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
6634 << SizeRange;
6635 else
6636 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
6637 << SizeRange;
6638 NewVD->setInvalidDecl();
6639 return;
6640 }
6641
6642 if (!FixedTInfo) {
6643 if (NewVD->isFileVarDecl())
6644 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
6645 else
6646 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
6647 NewVD->setInvalidDecl();
6648 return;
6649 }
6650
6651 Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
6652 NewVD->setType(FixedTInfo->getType());
6653 NewVD->setTypeSourceInfo(FixedTInfo);
6654 }
6655
6656 if (T->isVoidType()) {
6657 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
6658 // of objects and functions.
6659 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
6660 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
6661 << T;
6662 NewVD->setInvalidDecl();
6663 return;
6664 }
6665 }
6666
6667 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
6668 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
6669 NewVD->setInvalidDecl();
6670 return;
6671 }
6672
6673 if (isVM && NewVD->hasAttr<BlocksAttr>()) {
6674 Diag(NewVD->getLocation(), diag::err_block_on_vm);
6675 NewVD->setInvalidDecl();
6676 return;
6677 }
6678
6679 if (NewVD->isConstexpr() && !T->isDependentType() &&
6680 RequireLiteralType(NewVD->getLocation(), T,
6681 diag::err_constexpr_var_non_literal)) {
6682 NewVD->setInvalidDecl();
6683 return;
6684 }
6685 }
6686
6687 /// \brief Perform semantic checking on a newly-created variable
6688 /// declaration.
6689 ///
6690 /// This routine performs all of the type-checking required for a
6691 /// variable declaration once it has been built. It is used both to
6692 /// check variables after they have been parsed and their declarators
6693 /// have been translated into a declaration, and to check variables
6694 /// that have been instantiated from a template.
6695 ///
6696 /// Sets NewVD->isInvalidDecl() if an error was encountered.
6697 ///
6698 /// Returns true if the variable declaration is a redeclaration.
CheckVariableDeclaration(VarDecl * NewVD,LookupResult & Previous)6699 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
6700 CheckVariableDeclarationType(NewVD);
6701
6702 // If the decl is already known invalid, don't check it.
6703 if (NewVD->isInvalidDecl())
6704 return false;
6705
6706 // If we did not find anything by this name, look for a non-visible
6707 // extern "C" declaration with the same name.
6708 if (Previous.empty() &&
6709 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
6710 Previous.setShadowed();
6711
6712 if (!Previous.empty()) {
6713 MergeVarDecl(NewVD, Previous);
6714 return true;
6715 }
6716 return false;
6717 }
6718
6719 namespace {
6720 struct FindOverriddenMethod {
6721 Sema *S;
6722 CXXMethodDecl *Method;
6723
6724 /// Member lookup function that determines whether a given C++
6725 /// method overrides a method in a base class, to be used with
6726 /// CXXRecordDecl::lookupInBases().
operator ()__anonb54c7a2f0511::FindOverriddenMethod6727 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
6728 RecordDecl *BaseRecord =
6729 Specifier->getType()->getAs<RecordType>()->getDecl();
6730
6731 DeclarationName Name = Method->getDeclName();
6732
6733 // FIXME: Do we care about other names here too?
6734 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6735 // We really want to find the base class destructor here.
6736 QualType T = S->Context.getTypeDeclType(BaseRecord);
6737 CanQualType CT = S->Context.getCanonicalType(T);
6738
6739 Name = S->Context.DeclarationNames.getCXXDestructorName(CT);
6740 }
6741
6742 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
6743 Path.Decls = Path.Decls.slice(1)) {
6744 NamedDecl *D = Path.Decls.front();
6745 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
6746 if (MD->isVirtual() && !S->IsOverload(Method, MD, false))
6747 return true;
6748 }
6749 }
6750
6751 return false;
6752 }
6753 };
6754
6755 enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
6756 } // end anonymous namespace
6757
6758 /// \brief Report an error regarding overriding, along with any relevant
6759 /// overriden methods.
6760 ///
6761 /// \param DiagID the primary error to report.
6762 /// \param MD the overriding method.
6763 /// \param OEK which overrides to include as notes.
ReportOverrides(Sema & S,unsigned DiagID,const CXXMethodDecl * MD,OverrideErrorKind OEK=OEK_All)6764 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
6765 OverrideErrorKind OEK = OEK_All) {
6766 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
6767 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
6768 E = MD->end_overridden_methods();
6769 I != E; ++I) {
6770 // This check (& the OEK parameter) could be replaced by a predicate, but
6771 // without lambdas that would be overkill. This is still nicer than writing
6772 // out the diag loop 3 times.
6773 if ((OEK == OEK_All) ||
6774 (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
6775 (OEK == OEK_Deleted && (*I)->isDeleted()))
6776 S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
6777 }
6778 }
6779
6780 /// AddOverriddenMethods - See if a method overrides any in the base classes,
6781 /// and if so, check that it's a valid override and remember it.
AddOverriddenMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)6782 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
6783 // Look for methods in base classes that this method might override.
6784 CXXBasePaths Paths;
6785 FindOverriddenMethod FOM;
6786 FOM.Method = MD;
6787 FOM.S = this;
6788 bool hasDeletedOverridenMethods = false;
6789 bool hasNonDeletedOverridenMethods = false;
6790 bool AddedAny = false;
6791 if (DC->lookupInBases(FOM, Paths)) {
6792 for (auto *I : Paths.found_decls()) {
6793 if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
6794 MD->addOverriddenMethod(OldMD->getCanonicalDecl());
6795 if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
6796 !CheckOverridingFunctionAttributes(MD, OldMD) &&
6797 !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
6798 !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
6799 hasDeletedOverridenMethods |= OldMD->isDeleted();
6800 hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
6801 AddedAny = true;
6802 }
6803 }
6804 }
6805 }
6806
6807 if (hasDeletedOverridenMethods && !MD->isDeleted()) {
6808 ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
6809 }
6810 if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
6811 ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
6812 }
6813
6814 return AddedAny;
6815 }
6816
6817 namespace {
6818 // Struct for holding all of the extra arguments needed by
6819 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
6820 struct ActOnFDArgs {
6821 Scope *S;
6822 Declarator &D;
6823 MultiTemplateParamsArg TemplateParamLists;
6824 bool AddToScope;
6825 };
6826 }
6827
6828 namespace {
6829
6830 // Callback to only accept typo corrections that have a non-zero edit distance.
6831 // Also only accept corrections that have the same parent decl.
6832 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
6833 public:
DifferentNameValidatorCCC(ASTContext & Context,FunctionDecl * TypoFD,CXXRecordDecl * Parent)6834 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
6835 CXXRecordDecl *Parent)
6836 : Context(Context), OriginalFD(TypoFD),
6837 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
6838
ValidateCandidate(const TypoCorrection & candidate)6839 bool ValidateCandidate(const TypoCorrection &candidate) override {
6840 if (candidate.getEditDistance() == 0)
6841 return false;
6842
6843 SmallVector<unsigned, 1> MismatchedParams;
6844 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
6845 CDeclEnd = candidate.end();
6846 CDecl != CDeclEnd; ++CDecl) {
6847 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6848
6849 if (FD && !FD->hasBody() &&
6850 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
6851 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6852 CXXRecordDecl *Parent = MD->getParent();
6853 if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
6854 return true;
6855 } else if (!ExpectedParent) {
6856 return true;
6857 }
6858 }
6859 }
6860
6861 return false;
6862 }
6863
6864 private:
6865 ASTContext &Context;
6866 FunctionDecl *OriginalFD;
6867 CXXRecordDecl *ExpectedParent;
6868 };
6869
6870 }
6871
6872 /// \brief Generate diagnostics for an invalid function redeclaration.
6873 ///
6874 /// This routine handles generating the diagnostic messages for an invalid
6875 /// function redeclaration, including finding possible similar declarations
6876 /// or performing typo correction if there are no previous declarations with
6877 /// the same name.
6878 ///
6879 /// Returns a NamedDecl iff typo correction was performed and substituting in
6880 /// the new declaration name does not cause new errors.
DiagnoseInvalidRedeclaration(Sema & SemaRef,LookupResult & Previous,FunctionDecl * NewFD,ActOnFDArgs & ExtraArgs,bool IsLocalFriend,Scope * S)6881 static NamedDecl *DiagnoseInvalidRedeclaration(
6882 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
6883 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
6884 DeclarationName Name = NewFD->getDeclName();
6885 DeclContext *NewDC = NewFD->getDeclContext();
6886 SmallVector<unsigned, 1> MismatchedParams;
6887 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
6888 TypoCorrection Correction;
6889 bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
6890 unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
6891 : diag::err_member_decl_does_not_match;
6892 LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
6893 IsLocalFriend ? Sema::LookupLocalFriendName
6894 : Sema::LookupOrdinaryName,
6895 Sema::ForRedeclaration);
6896
6897 NewFD->setInvalidDecl();
6898 if (IsLocalFriend)
6899 SemaRef.LookupName(Prev, S);
6900 else
6901 SemaRef.LookupQualifiedName(Prev, NewDC);
6902 assert(!Prev.isAmbiguous() &&
6903 "Cannot have an ambiguity in previous-declaration lookup");
6904 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6905 if (!Prev.empty()) {
6906 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
6907 Func != FuncEnd; ++Func) {
6908 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
6909 if (FD &&
6910 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6911 // Add 1 to the index so that 0 can mean the mismatch didn't
6912 // involve a parameter
6913 unsigned ParamNum =
6914 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
6915 NearMatches.push_back(std::make_pair(FD, ParamNum));
6916 }
6917 }
6918 // If the qualified name lookup yielded nothing, try typo correction
6919 } else if ((Correction = SemaRef.CorrectTypo(
6920 Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
6921 &ExtraArgs.D.getCXXScopeSpec(),
6922 llvm::make_unique<DifferentNameValidatorCCC>(
6923 SemaRef.Context, NewFD, MD ? MD->getParent() : nullptr),
6924 Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) {
6925 // Set up everything for the call to ActOnFunctionDeclarator
6926 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
6927 ExtraArgs.D.getIdentifierLoc());
6928 Previous.clear();
6929 Previous.setLookupName(Correction.getCorrection());
6930 for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
6931 CDeclEnd = Correction.end();
6932 CDecl != CDeclEnd; ++CDecl) {
6933 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6934 if (FD && !FD->hasBody() &&
6935 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6936 Previous.addDecl(FD);
6937 }
6938 }
6939 bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
6940
6941 NamedDecl *Result;
6942 // Retry building the function declaration with the new previous
6943 // declarations, and with errors suppressed.
6944 {
6945 // Trap errors.
6946 Sema::SFINAETrap Trap(SemaRef);
6947
6948 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
6949 // pieces need to verify the typo-corrected C++ declaration and hopefully
6950 // eliminate the need for the parameter pack ExtraArgs.
6951 Result = SemaRef.ActOnFunctionDeclarator(
6952 ExtraArgs.S, ExtraArgs.D,
6953 Correction.getCorrectionDecl()->getDeclContext(),
6954 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
6955 ExtraArgs.AddToScope);
6956
6957 if (Trap.hasErrorOccurred())
6958 Result = nullptr;
6959 }
6960
6961 if (Result) {
6962 // Determine which correction we picked.
6963 Decl *Canonical = Result->getCanonicalDecl();
6964 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6965 I != E; ++I)
6966 if ((*I)->getCanonicalDecl() == Canonical)
6967 Correction.setCorrectionDecl(*I);
6968
6969 SemaRef.diagnoseTypo(
6970 Correction,
6971 SemaRef.PDiag(IsLocalFriend
6972 ? diag::err_no_matching_local_friend_suggest
6973 : diag::err_member_decl_does_not_match_suggest)
6974 << Name << NewDC << IsDefinition);
6975 return Result;
6976 }
6977
6978 // Pretend the typo correction never occurred
6979 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
6980 ExtraArgs.D.getIdentifierLoc());
6981 ExtraArgs.D.setRedeclaration(wasRedeclaration);
6982 Previous.clear();
6983 Previous.setLookupName(Name);
6984 }
6985
6986 SemaRef.Diag(NewFD->getLocation(), DiagMsg)
6987 << Name << NewDC << IsDefinition << NewFD->getLocation();
6988
6989 bool NewFDisConst = false;
6990 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
6991 NewFDisConst = NewMD->isConst();
6992
6993 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
6994 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
6995 NearMatch != NearMatchEnd; ++NearMatch) {
6996 FunctionDecl *FD = NearMatch->first;
6997 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6998 bool FDisConst = MD && MD->isConst();
6999 bool IsMember = MD || !IsLocalFriend;
7000
7001 // FIXME: These notes are poorly worded for the local friend case.
7002 if (unsigned Idx = NearMatch->second) {
7003 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
7004 SourceLocation Loc = FDParam->getTypeSpecStartLoc();
7005 if (Loc.isInvalid()) Loc = FD->getLocation();
7006 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
7007 : diag::note_local_decl_close_param_match)
7008 << Idx << FDParam->getType()
7009 << NewFD->getParamDecl(Idx - 1)->getType();
7010 } else if (FDisConst != NewFDisConst) {
7011 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
7012 << NewFDisConst << FD->getSourceRange().getEnd();
7013 } else
7014 SemaRef.Diag(FD->getLocation(),
7015 IsMember ? diag::note_member_def_close_match
7016 : diag::note_local_decl_close_match);
7017 }
7018 return nullptr;
7019 }
7020
getFunctionStorageClass(Sema & SemaRef,Declarator & D)7021 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
7022 switch (D.getDeclSpec().getStorageClassSpec()) {
7023 default: llvm_unreachable("Unknown storage class!");
7024 case DeclSpec::SCS_auto:
7025 case DeclSpec::SCS_register:
7026 case DeclSpec::SCS_mutable:
7027 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7028 diag::err_typecheck_sclass_func);
7029 D.setInvalidType();
7030 break;
7031 case DeclSpec::SCS_unspecified: break;
7032 case DeclSpec::SCS_extern:
7033 if (D.getDeclSpec().isExternInLinkageSpec())
7034 return SC_None;
7035 return SC_Extern;
7036 case DeclSpec::SCS_static: {
7037 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
7038 // C99 6.7.1p5:
7039 // The declaration of an identifier for a function that has
7040 // block scope shall have no explicit storage-class specifier
7041 // other than extern
7042 // See also (C++ [dcl.stc]p4).
7043 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7044 diag::err_static_block_func);
7045 break;
7046 } else
7047 return SC_Static;
7048 }
7049 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
7050 }
7051
7052 // No explicit storage class has already been returned
7053 return SC_None;
7054 }
7055
CreateNewFunctionDecl(Sema & SemaRef,Declarator & D,DeclContext * DC,QualType & R,TypeSourceInfo * TInfo,StorageClass SC,bool & IsVirtualOkay)7056 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
7057 DeclContext *DC, QualType &R,
7058 TypeSourceInfo *TInfo,
7059 StorageClass SC,
7060 bool &IsVirtualOkay) {
7061 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
7062 DeclarationName Name = NameInfo.getName();
7063
7064 FunctionDecl *NewFD = nullptr;
7065 bool isInline = D.getDeclSpec().isInlineSpecified();
7066
7067 if (!SemaRef.getLangOpts().CPlusPlus) {
7068 // Determine whether the function was written with a
7069 // prototype. This true when:
7070 // - there is a prototype in the declarator, or
7071 // - the type R of the function is some kind of typedef or other reference
7072 // to a type name (which eventually refers to a function type).
7073 bool HasPrototype =
7074 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
7075 (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
7076
7077 NewFD = FunctionDecl::Create(SemaRef.Context, DC,
7078 D.getLocStart(), NameInfo, R,
7079 TInfo, SC, isInline,
7080 HasPrototype, false);
7081 if (D.isInvalidType())
7082 NewFD->setInvalidDecl();
7083
7084 return NewFD;
7085 }
7086
7087 bool isExplicit = D.getDeclSpec().isExplicitSpecified();
7088 bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
7089
7090 // Check that the return type is not an abstract class type.
7091 // For record types, this is done by the AbstractClassUsageDiagnoser once
7092 // the class has been completely parsed.
7093 if (!DC->isRecord() &&
7094 SemaRef.RequireNonAbstractType(
7095 D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
7096 diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
7097 D.setInvalidType();
7098
7099 if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
7100 // This is a C++ constructor declaration.
7101 assert(DC->isRecord() &&
7102 "Constructors can only be declared in a member context");
7103
7104 R = SemaRef.CheckConstructorDeclarator(D, R, SC);
7105 return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
7106 D.getLocStart(), NameInfo,
7107 R, TInfo, isExplicit, isInline,
7108 /*isImplicitlyDeclared=*/false,
7109 isConstexpr);
7110
7111 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7112 // This is a C++ destructor declaration.
7113 if (DC->isRecord()) {
7114 R = SemaRef.CheckDestructorDeclarator(D, R, SC);
7115 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
7116 CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
7117 SemaRef.Context, Record,
7118 D.getLocStart(),
7119 NameInfo, R, TInfo, isInline,
7120 /*isImplicitlyDeclared=*/false);
7121
7122 // If the class is complete, then we now create the implicit exception
7123 // specification. If the class is incomplete or dependent, we can't do
7124 // it yet.
7125 if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
7126 Record->getDefinition() && !Record->isBeingDefined() &&
7127 R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
7128 SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
7129 }
7130
7131 IsVirtualOkay = true;
7132 return NewDD;
7133
7134 } else {
7135 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
7136 D.setInvalidType();
7137
7138 // Create a FunctionDecl to satisfy the function definition parsing
7139 // code path.
7140 return FunctionDecl::Create(SemaRef.Context, DC,
7141 D.getLocStart(),
7142 D.getIdentifierLoc(), Name, R, TInfo,
7143 SC, isInline,
7144 /*hasPrototype=*/true, isConstexpr);
7145 }
7146
7147 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
7148 if (!DC->isRecord()) {
7149 SemaRef.Diag(D.getIdentifierLoc(),
7150 diag::err_conv_function_not_member);
7151 return nullptr;
7152 }
7153
7154 SemaRef.CheckConversionDeclarator(D, R, SC);
7155 IsVirtualOkay = true;
7156 return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
7157 D.getLocStart(), NameInfo,
7158 R, TInfo, isInline, isExplicit,
7159 isConstexpr, SourceLocation());
7160
7161 } else if (DC->isRecord()) {
7162 // If the name of the function is the same as the name of the record,
7163 // then this must be an invalid constructor that has a return type.
7164 // (The parser checks for a return type and makes the declarator a
7165 // constructor if it has no return type).
7166 if (Name.getAsIdentifierInfo() &&
7167 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
7168 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
7169 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
7170 << SourceRange(D.getIdentifierLoc());
7171 return nullptr;
7172 }
7173
7174 // This is a C++ method declaration.
7175 CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
7176 cast<CXXRecordDecl>(DC),
7177 D.getLocStart(), NameInfo, R,
7178 TInfo, SC, isInline,
7179 isConstexpr, SourceLocation());
7180 IsVirtualOkay = !Ret->isStatic();
7181 return Ret;
7182 } else {
7183 bool isFriend =
7184 SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
7185 if (!isFriend && SemaRef.CurContext->isRecord())
7186 return nullptr;
7187
7188 // Determine whether the function was written with a
7189 // prototype. This true when:
7190 // - we're in C++ (where every function has a prototype),
7191 return FunctionDecl::Create(SemaRef.Context, DC,
7192 D.getLocStart(),
7193 NameInfo, R, TInfo, SC, isInline,
7194 true/*HasPrototype*/, isConstexpr);
7195 }
7196 }
7197
7198 enum OpenCLParamType {
7199 ValidKernelParam,
7200 PtrPtrKernelParam,
7201 PtrKernelParam,
7202 PrivatePtrKernelParam,
7203 InvalidKernelParam,
7204 RecordKernelParam
7205 };
7206
getOpenCLKernelParameterType(QualType PT)7207 static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
7208 if (PT->isPointerType()) {
7209 QualType PointeeType = PT->getPointeeType();
7210 if (PointeeType->isPointerType())
7211 return PtrPtrKernelParam;
7212 return PointeeType.getAddressSpace() == 0 ? PrivatePtrKernelParam
7213 : PtrKernelParam;
7214 }
7215
7216 // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
7217 // be used as builtin types.
7218
7219 if (PT->isImageType())
7220 return PtrKernelParam;
7221
7222 if (PT->isBooleanType())
7223 return InvalidKernelParam;
7224
7225 if (PT->isEventT())
7226 return InvalidKernelParam;
7227
7228 if (PT->isHalfType())
7229 return InvalidKernelParam;
7230
7231 if (PT->isRecordType())
7232 return RecordKernelParam;
7233
7234 return ValidKernelParam;
7235 }
7236
checkIsValidOpenCLKernelParameter(Sema & S,Declarator & D,ParmVarDecl * Param,llvm::SmallPtrSetImpl<const Type * > & ValidTypes)7237 static void checkIsValidOpenCLKernelParameter(
7238 Sema &S,
7239 Declarator &D,
7240 ParmVarDecl *Param,
7241 llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
7242 QualType PT = Param->getType();
7243
7244 // Cache the valid types we encounter to avoid rechecking structs that are
7245 // used again
7246 if (ValidTypes.count(PT.getTypePtr()))
7247 return;
7248
7249 switch (getOpenCLKernelParameterType(PT)) {
7250 case PtrPtrKernelParam:
7251 // OpenCL v1.2 s6.9.a:
7252 // A kernel function argument cannot be declared as a
7253 // pointer to a pointer type.
7254 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
7255 D.setInvalidType();
7256 return;
7257
7258 case PrivatePtrKernelParam:
7259 // OpenCL v1.2 s6.9.a:
7260 // A kernel function argument cannot be declared as a
7261 // pointer to the private address space.
7262 S.Diag(Param->getLocation(), diag::err_opencl_private_ptr_kernel_param);
7263 D.setInvalidType();
7264 return;
7265
7266 // OpenCL v1.2 s6.9.k:
7267 // Arguments to kernel functions in a program cannot be declared with the
7268 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
7269 // uintptr_t or a struct and/or union that contain fields declared to be
7270 // one of these built-in scalar types.
7271
7272 case InvalidKernelParam:
7273 // OpenCL v1.2 s6.8 n:
7274 // A kernel function argument cannot be declared
7275 // of event_t type.
7276 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
7277 D.setInvalidType();
7278 return;
7279
7280 case PtrKernelParam:
7281 case ValidKernelParam:
7282 ValidTypes.insert(PT.getTypePtr());
7283 return;
7284
7285 case RecordKernelParam:
7286 break;
7287 }
7288
7289 // Track nested structs we will inspect
7290 SmallVector<const Decl *, 4> VisitStack;
7291
7292 // Track where we are in the nested structs. Items will migrate from
7293 // VisitStack to HistoryStack as we do the DFS for bad field.
7294 SmallVector<const FieldDecl *, 4> HistoryStack;
7295 HistoryStack.push_back(nullptr);
7296
7297 const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
7298 VisitStack.push_back(PD);
7299
7300 assert(VisitStack.back() && "First decl null?");
7301
7302 do {
7303 const Decl *Next = VisitStack.pop_back_val();
7304 if (!Next) {
7305 assert(!HistoryStack.empty());
7306 // Found a marker, we have gone up a level
7307 if (const FieldDecl *Hist = HistoryStack.pop_back_val())
7308 ValidTypes.insert(Hist->getType().getTypePtr());
7309
7310 continue;
7311 }
7312
7313 // Adds everything except the original parameter declaration (which is not a
7314 // field itself) to the history stack.
7315 const RecordDecl *RD;
7316 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
7317 HistoryStack.push_back(Field);
7318 RD = Field->getType()->castAs<RecordType>()->getDecl();
7319 } else {
7320 RD = cast<RecordDecl>(Next);
7321 }
7322
7323 // Add a null marker so we know when we've gone back up a level
7324 VisitStack.push_back(nullptr);
7325
7326 for (const auto *FD : RD->fields()) {
7327 QualType QT = FD->getType();
7328
7329 if (ValidTypes.count(QT.getTypePtr()))
7330 continue;
7331
7332 OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
7333 if (ParamType == ValidKernelParam)
7334 continue;
7335
7336 if (ParamType == RecordKernelParam) {
7337 VisitStack.push_back(FD);
7338 continue;
7339 }
7340
7341 // OpenCL v1.2 s6.9.p:
7342 // Arguments to kernel functions that are declared to be a struct or union
7343 // do not allow OpenCL objects to be passed as elements of the struct or
7344 // union.
7345 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
7346 ParamType == PrivatePtrKernelParam) {
7347 S.Diag(Param->getLocation(),
7348 diag::err_record_with_pointers_kernel_param)
7349 << PT->isUnionType()
7350 << PT;
7351 } else {
7352 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
7353 }
7354
7355 S.Diag(PD->getLocation(), diag::note_within_field_of_type)
7356 << PD->getDeclName();
7357
7358 // We have an error, now let's go back up through history and show where
7359 // the offending field came from
7360 for (ArrayRef<const FieldDecl *>::const_iterator
7361 I = HistoryStack.begin() + 1,
7362 E = HistoryStack.end();
7363 I != E; ++I) {
7364 const FieldDecl *OuterField = *I;
7365 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
7366 << OuterField->getType();
7367 }
7368
7369 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
7370 << QT->isPointerType()
7371 << QT;
7372 D.setInvalidType();
7373 return;
7374 }
7375 } while (!VisitStack.empty());
7376 }
7377
7378 NamedDecl*
ActOnFunctionDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)7379 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
7380 TypeSourceInfo *TInfo, LookupResult &Previous,
7381 MultiTemplateParamsArg TemplateParamLists,
7382 bool &AddToScope) {
7383 QualType R = TInfo->getType();
7384
7385 assert(R.getTypePtr()->isFunctionType());
7386
7387 // TODO: consider using NameInfo for diagnostic.
7388 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7389 DeclarationName Name = NameInfo.getName();
7390 StorageClass SC = getFunctionStorageClass(*this, D);
7391
7392 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
7393 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7394 diag::err_invalid_thread)
7395 << DeclSpec::getSpecifierName(TSCS);
7396
7397 if (D.isFirstDeclarationOfMember())
7398 adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
7399 D.getIdentifierLoc());
7400
7401 bool isFriend = false;
7402 FunctionTemplateDecl *FunctionTemplate = nullptr;
7403 bool isExplicitSpecialization = false;
7404 bool isFunctionTemplateSpecialization = false;
7405
7406 bool isDependentClassScopeExplicitSpecialization = false;
7407 bool HasExplicitTemplateArgs = false;
7408 TemplateArgumentListInfo TemplateArgs;
7409
7410 bool isVirtualOkay = false;
7411
7412 DeclContext *OriginalDC = DC;
7413 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
7414
7415 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
7416 isVirtualOkay);
7417 if (!NewFD) return nullptr;
7418
7419 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
7420 NewFD->setTopLevelDeclInObjCContainer();
7421
7422 // Set the lexical context. If this is a function-scope declaration, or has a
7423 // C++ scope specifier, or is the object of a friend declaration, the lexical
7424 // context will be different from the semantic context.
7425 NewFD->setLexicalDeclContext(CurContext);
7426
7427 if (IsLocalExternDecl)
7428 NewFD->setLocalExternDecl();
7429
7430 if (getLangOpts().CPlusPlus) {
7431 bool isInline = D.getDeclSpec().isInlineSpecified();
7432 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
7433 bool isExplicit = D.getDeclSpec().isExplicitSpecified();
7434 bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
7435 bool isConcept = D.getDeclSpec().isConceptSpecified();
7436 isFriend = D.getDeclSpec().isFriendSpecified();
7437 if (isFriend && !isInline && D.isFunctionDefinition()) {
7438 // C++ [class.friend]p5
7439 // A function can be defined in a friend declaration of a
7440 // class . . . . Such a function is implicitly inline.
7441 NewFD->setImplicitlyInline();
7442 }
7443
7444 // If this is a method defined in an __interface, and is not a constructor
7445 // or an overloaded operator, then set the pure flag (isVirtual will already
7446 // return true).
7447 if (const CXXRecordDecl *Parent =
7448 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
7449 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
7450 NewFD->setPure(true);
7451
7452 // C++ [class.union]p2
7453 // A union can have member functions, but not virtual functions.
7454 if (isVirtual && Parent->isUnion())
7455 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
7456 }
7457
7458 SetNestedNameSpecifier(NewFD, D);
7459 isExplicitSpecialization = false;
7460 isFunctionTemplateSpecialization = false;
7461 if (D.isInvalidType())
7462 NewFD->setInvalidDecl();
7463
7464 // Match up the template parameter lists with the scope specifier, then
7465 // determine whether we have a template or a template specialization.
7466 bool Invalid = false;
7467 if (TemplateParameterList *TemplateParams =
7468 MatchTemplateParametersToScopeSpecifier(
7469 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
7470 D.getCXXScopeSpec(),
7471 D.getName().getKind() == UnqualifiedId::IK_TemplateId
7472 ? D.getName().TemplateId
7473 : nullptr,
7474 TemplateParamLists, isFriend, isExplicitSpecialization,
7475 Invalid)) {
7476 if (TemplateParams->size() > 0) {
7477 // This is a function template
7478
7479 // Check that we can declare a template here.
7480 if (CheckTemplateDeclScope(S, TemplateParams))
7481 NewFD->setInvalidDecl();
7482
7483 // A destructor cannot be a template.
7484 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7485 Diag(NewFD->getLocation(), diag::err_destructor_template);
7486 NewFD->setInvalidDecl();
7487 }
7488
7489 // If we're adding a template to a dependent context, we may need to
7490 // rebuilding some of the types used within the template parameter list,
7491 // now that we know what the current instantiation is.
7492 if (DC->isDependentContext()) {
7493 ContextRAII SavedContext(*this, DC);
7494 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
7495 Invalid = true;
7496 }
7497
7498
7499 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
7500 NewFD->getLocation(),
7501 Name, TemplateParams,
7502 NewFD);
7503 FunctionTemplate->setLexicalDeclContext(CurContext);
7504 NewFD->setDescribedFunctionTemplate(FunctionTemplate);
7505
7506 // For source fidelity, store the other template param lists.
7507 if (TemplateParamLists.size() > 1) {
7508 NewFD->setTemplateParameterListsInfo(Context,
7509 TemplateParamLists.drop_back(1));
7510 }
7511 } else {
7512 // This is a function template specialization.
7513 isFunctionTemplateSpecialization = true;
7514 // For source fidelity, store all the template param lists.
7515 if (TemplateParamLists.size() > 0)
7516 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
7517
7518 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
7519 if (isFriend) {
7520 // We want to remove the "template<>", found here.
7521 SourceRange RemoveRange = TemplateParams->getSourceRange();
7522
7523 // If we remove the template<> and the name is not a
7524 // template-id, we're actually silently creating a problem:
7525 // the friend declaration will refer to an untemplated decl,
7526 // and clearly the user wants a template specialization. So
7527 // we need to insert '<>' after the name.
7528 SourceLocation InsertLoc;
7529 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
7530 InsertLoc = D.getName().getSourceRange().getEnd();
7531 InsertLoc = getLocForEndOfToken(InsertLoc);
7532 }
7533
7534 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
7535 << Name << RemoveRange
7536 << FixItHint::CreateRemoval(RemoveRange)
7537 << FixItHint::CreateInsertion(InsertLoc, "<>");
7538 }
7539 }
7540 }
7541 else {
7542 // All template param lists were matched against the scope specifier:
7543 // this is NOT (an explicit specialization of) a template.
7544 if (TemplateParamLists.size() > 0)
7545 // For source fidelity, store all the template param lists.
7546 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
7547 }
7548
7549 if (Invalid) {
7550 NewFD->setInvalidDecl();
7551 if (FunctionTemplate)
7552 FunctionTemplate->setInvalidDecl();
7553 }
7554
7555 // C++ [dcl.fct.spec]p5:
7556 // The virtual specifier shall only be used in declarations of
7557 // nonstatic class member functions that appear within a
7558 // member-specification of a class declaration; see 10.3.
7559 //
7560 if (isVirtual && !NewFD->isInvalidDecl()) {
7561 if (!isVirtualOkay) {
7562 Diag(D.getDeclSpec().getVirtualSpecLoc(),
7563 diag::err_virtual_non_function);
7564 } else if (!CurContext->isRecord()) {
7565 // 'virtual' was specified outside of the class.
7566 Diag(D.getDeclSpec().getVirtualSpecLoc(),
7567 diag::err_virtual_out_of_class)
7568 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
7569 } else if (NewFD->getDescribedFunctionTemplate()) {
7570 // C++ [temp.mem]p3:
7571 // A member function template shall not be virtual.
7572 Diag(D.getDeclSpec().getVirtualSpecLoc(),
7573 diag::err_virtual_member_function_template)
7574 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
7575 } else {
7576 // Okay: Add virtual to the method.
7577 NewFD->setVirtualAsWritten(true);
7578 }
7579
7580 if (getLangOpts().CPlusPlus14 &&
7581 NewFD->getReturnType()->isUndeducedType())
7582 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
7583 }
7584
7585 if (getLangOpts().CPlusPlus14 &&
7586 (NewFD->isDependentContext() ||
7587 (isFriend && CurContext->isDependentContext())) &&
7588 NewFD->getReturnType()->isUndeducedType()) {
7589 // If the function template is referenced directly (for instance, as a
7590 // member of the current instantiation), pretend it has a dependent type.
7591 // This is not really justified by the standard, but is the only sane
7592 // thing to do.
7593 // FIXME: For a friend function, we have not marked the function as being
7594 // a friend yet, so 'isDependentContext' on the FD doesn't work.
7595 const FunctionProtoType *FPT =
7596 NewFD->getType()->castAs<FunctionProtoType>();
7597 QualType Result =
7598 SubstAutoType(FPT->getReturnType(), Context.DependentTy);
7599 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
7600 FPT->getExtProtoInfo()));
7601 }
7602
7603 // C++ [dcl.fct.spec]p3:
7604 // The inline specifier shall not appear on a block scope function
7605 // declaration.
7606 if (isInline && !NewFD->isInvalidDecl()) {
7607 if (CurContext->isFunctionOrMethod()) {
7608 // 'inline' is not allowed on block scope function declaration.
7609 Diag(D.getDeclSpec().getInlineSpecLoc(),
7610 diag::err_inline_declaration_block_scope) << Name
7611 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7612 }
7613 }
7614
7615 // C++ [dcl.fct.spec]p6:
7616 // The explicit specifier shall be used only in the declaration of a
7617 // constructor or conversion function within its class definition;
7618 // see 12.3.1 and 12.3.2.
7619 if (isExplicit && !NewFD->isInvalidDecl()) {
7620 if (!CurContext->isRecord()) {
7621 // 'explicit' was specified outside of the class.
7622 Diag(D.getDeclSpec().getExplicitSpecLoc(),
7623 diag::err_explicit_out_of_class)
7624 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
7625 } else if (!isa<CXXConstructorDecl>(NewFD) &&
7626 !isa<CXXConversionDecl>(NewFD)) {
7627 // 'explicit' was specified on a function that wasn't a constructor
7628 // or conversion function.
7629 Diag(D.getDeclSpec().getExplicitSpecLoc(),
7630 diag::err_explicit_non_ctor_or_conv_function)
7631 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
7632 }
7633 }
7634
7635 if (isConstexpr) {
7636 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
7637 // are implicitly inline.
7638 NewFD->setImplicitlyInline();
7639
7640 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
7641 // be either constructors or to return a literal type. Therefore,
7642 // destructors cannot be declared constexpr.
7643 if (isa<CXXDestructorDecl>(NewFD))
7644 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
7645 }
7646
7647 if (isConcept) {
7648 // C++ Concepts TS [dcl.spec.concept]p1: The concept specifier shall be
7649 // applied only to the definition of a function template [...]
7650 if (!D.isFunctionDefinition()) {
7651 Diag(D.getDeclSpec().getConceptSpecLoc(),
7652 diag::err_function_concept_not_defined);
7653 NewFD->setInvalidDecl();
7654 }
7655
7656 // C++ Concepts TS [dcl.spec.concept]p1: [...] A function concept shall
7657 // have no exception-specification and is treated as if it were specified
7658 // with noexcept(true) (15.4). [...]
7659 if (const FunctionProtoType *FPT = R->getAs<FunctionProtoType>()) {
7660 if (FPT->hasExceptionSpec()) {
7661 SourceRange Range;
7662 if (D.isFunctionDeclarator())
7663 Range = D.getFunctionTypeInfo().getExceptionSpecRange();
7664 Diag(NewFD->getLocation(), diag::err_function_concept_exception_spec)
7665 << FixItHint::CreateRemoval(Range);
7666 NewFD->setInvalidDecl();
7667 } else {
7668 Context.adjustExceptionSpec(NewFD, EST_BasicNoexcept);
7669 }
7670
7671 // C++ Concepts TS [dcl.spec.concept]p5: A function concept has the
7672 // following restrictions:
7673 // - The declaration's parameter list shall be equivalent to an empty
7674 // parameter list.
7675 if (FPT->getNumParams() > 0 || FPT->isVariadic())
7676 Diag(NewFD->getLocation(), diag::err_function_concept_with_params);
7677 }
7678
7679 // C++ Concepts TS [dcl.spec.concept]p2: Every concept definition is
7680 // implicity defined to be a constexpr declaration (implicitly inline)
7681 NewFD->setImplicitlyInline();
7682
7683 // C++ Concepts TS [dcl.spec.concept]p2: A concept definition shall not
7684 // be declared with the thread_local, inline, friend, or constexpr
7685 // specifiers, [...]
7686 if (isInline) {
7687 Diag(D.getDeclSpec().getInlineSpecLoc(),
7688 diag::err_concept_decl_invalid_specifiers)
7689 << 1 << 1;
7690 NewFD->setInvalidDecl(true);
7691 }
7692
7693 if (isFriend) {
7694 Diag(D.getDeclSpec().getFriendSpecLoc(),
7695 diag::err_concept_decl_invalid_specifiers)
7696 << 1 << 2;
7697 NewFD->setInvalidDecl(true);
7698 }
7699
7700 if (isConstexpr) {
7701 Diag(D.getDeclSpec().getConstexprSpecLoc(),
7702 diag::err_concept_decl_invalid_specifiers)
7703 << 1 << 3;
7704 NewFD->setInvalidDecl(true);
7705 }
7706 }
7707
7708 // If __module_private__ was specified, mark the function accordingly.
7709 if (D.getDeclSpec().isModulePrivateSpecified()) {
7710 if (isFunctionTemplateSpecialization) {
7711 SourceLocation ModulePrivateLoc
7712 = D.getDeclSpec().getModulePrivateSpecLoc();
7713 Diag(ModulePrivateLoc, diag::err_module_private_specialization)
7714 << 0
7715 << FixItHint::CreateRemoval(ModulePrivateLoc);
7716 } else {
7717 NewFD->setModulePrivate();
7718 if (FunctionTemplate)
7719 FunctionTemplate->setModulePrivate();
7720 }
7721 }
7722
7723 if (isFriend) {
7724 if (FunctionTemplate) {
7725 FunctionTemplate->setObjectOfFriendDecl();
7726 FunctionTemplate->setAccess(AS_public);
7727 }
7728 NewFD->setObjectOfFriendDecl();
7729 NewFD->setAccess(AS_public);
7730 }
7731
7732 // If a function is defined as defaulted or deleted, mark it as such now.
7733 // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
7734 // definition kind to FDK_Definition.
7735 switch (D.getFunctionDefinitionKind()) {
7736 case FDK_Declaration:
7737 case FDK_Definition:
7738 break;
7739
7740 case FDK_Defaulted:
7741 NewFD->setDefaulted();
7742 break;
7743
7744 case FDK_Deleted:
7745 NewFD->setDeletedAsWritten();
7746 break;
7747 }
7748
7749 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
7750 D.isFunctionDefinition()) {
7751 // C++ [class.mfct]p2:
7752 // A member function may be defined (8.4) in its class definition, in
7753 // which case it is an inline member function (7.1.2)
7754 NewFD->setImplicitlyInline();
7755 }
7756
7757 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
7758 !CurContext->isRecord()) {
7759 // C++ [class.static]p1:
7760 // A data or function member of a class may be declared static
7761 // in a class definition, in which case it is a static member of
7762 // the class.
7763
7764 // Complain about the 'static' specifier if it's on an out-of-line
7765 // member function definition.
7766 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7767 diag::err_static_out_of_line)
7768 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7769 }
7770
7771 // C++11 [except.spec]p15:
7772 // A deallocation function with no exception-specification is treated
7773 // as if it were specified with noexcept(true).
7774 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
7775 if ((Name.getCXXOverloadedOperator() == OO_Delete ||
7776 Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
7777 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
7778 NewFD->setType(Context.getFunctionType(
7779 FPT->getReturnType(), FPT->getParamTypes(),
7780 FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
7781 }
7782
7783 // Filter out previous declarations that don't match the scope.
7784 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
7785 D.getCXXScopeSpec().isNotEmpty() ||
7786 isExplicitSpecialization ||
7787 isFunctionTemplateSpecialization);
7788
7789 // Handle GNU asm-label extension (encoded as an attribute).
7790 if (Expr *E = (Expr*) D.getAsmLabel()) {
7791 // The parser guarantees this is a string.
7792 StringLiteral *SE = cast<StringLiteral>(E);
7793 NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
7794 SE->getString(), 0));
7795 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7796 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7797 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
7798 if (I != ExtnameUndeclaredIdentifiers.end()) {
7799 if (isDeclExternC(NewFD)) {
7800 NewFD->addAttr(I->second);
7801 ExtnameUndeclaredIdentifiers.erase(I);
7802 } else
7803 Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
7804 << /*Variable*/0 << NewFD;
7805 }
7806 }
7807
7808 // Copy the parameter declarations from the declarator D to the function
7809 // declaration NewFD, if they are available. First scavenge them into Params.
7810 SmallVector<ParmVarDecl*, 16> Params;
7811 if (D.isFunctionDeclarator()) {
7812 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7813
7814 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
7815 // function that takes no arguments, not a function that takes a
7816 // single void argument.
7817 // We let through "const void" here because Sema::GetTypeForDeclarator
7818 // already checks for that case.
7819 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
7820 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
7821 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
7822 assert(Param->getDeclContext() != NewFD && "Was set before ?");
7823 Param->setDeclContext(NewFD);
7824 Params.push_back(Param);
7825
7826 if (Param->isInvalidDecl())
7827 NewFD->setInvalidDecl();
7828 }
7829 }
7830
7831 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
7832 // When we're declaring a function with a typedef, typeof, etc as in the
7833 // following example, we'll need to synthesize (unnamed)
7834 // parameters for use in the declaration.
7835 //
7836 // @code
7837 // typedef void fn(int);
7838 // fn f;
7839 // @endcode
7840
7841 // Synthesize a parameter for each argument type.
7842 for (const auto &AI : FT->param_types()) {
7843 ParmVarDecl *Param =
7844 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
7845 Param->setScopeInfo(0, Params.size());
7846 Params.push_back(Param);
7847 }
7848 } else {
7849 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
7850 "Should not need args for typedef of non-prototype fn");
7851 }
7852
7853 // Finally, we know we have the right number of parameters, install them.
7854 NewFD->setParams(Params);
7855
7856 // Find all anonymous symbols defined during the declaration of this function
7857 // and add to NewFD. This lets us track decls such 'enum Y' in:
7858 //
7859 // void f(enum Y {AA} x) {}
7860 //
7861 // which would otherwise incorrectly end up in the translation unit scope.
7862 NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
7863 DeclsInPrototypeScope.clear();
7864
7865 if (D.getDeclSpec().isNoreturnSpecified())
7866 NewFD->addAttr(
7867 ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
7868 Context, 0));
7869
7870 // Functions returning a variably modified type violate C99 6.7.5.2p2
7871 // because all functions have linkage.
7872 if (!NewFD->isInvalidDecl() &&
7873 NewFD->getReturnType()->isVariablyModifiedType()) {
7874 Diag(NewFD->getLocation(), diag::err_vm_func_decl);
7875 NewFD->setInvalidDecl();
7876 }
7877
7878 // Apply an implicit SectionAttr if #pragma code_seg is active.
7879 if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
7880 !NewFD->hasAttr<SectionAttr>()) {
7881 NewFD->addAttr(
7882 SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
7883 CodeSegStack.CurrentValue->getString(),
7884 CodeSegStack.CurrentPragmaLocation));
7885 if (UnifySection(CodeSegStack.CurrentValue->getString(),
7886 ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
7887 ASTContext::PSF_Read,
7888 NewFD))
7889 NewFD->dropAttr<SectionAttr>();
7890 }
7891
7892 // Handle attributes.
7893 ProcessDeclAttributes(S, NewFD, D);
7894
7895 if (getLangOpts().OpenCL) {
7896 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
7897 // type declaration will generate a compilation error.
7898 unsigned AddressSpace = NewFD->getReturnType().getAddressSpace();
7899 if (AddressSpace == LangAS::opencl_local ||
7900 AddressSpace == LangAS::opencl_global ||
7901 AddressSpace == LangAS::opencl_constant) {
7902 Diag(NewFD->getLocation(),
7903 diag::err_opencl_return_value_with_address_space);
7904 NewFD->setInvalidDecl();
7905 }
7906 }
7907
7908 if (!getLangOpts().CPlusPlus) {
7909 // Perform semantic checking on the function declaration.
7910 bool isExplicitSpecialization=false;
7911 if (!NewFD->isInvalidDecl() && NewFD->isMain())
7912 CheckMain(NewFD, D.getDeclSpec());
7913
7914 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7915 CheckMSVCRTEntryPoint(NewFD);
7916
7917 if (!NewFD->isInvalidDecl())
7918 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7919 isExplicitSpecialization));
7920 else if (!Previous.empty())
7921 // Recover gracefully from an invalid redeclaration.
7922 D.setRedeclaration(true);
7923 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7924 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7925 "previous declaration set still overloaded");
7926
7927 // Diagnose no-prototype function declarations with calling conventions that
7928 // don't support variadic calls. Only do this in C and do it after merging
7929 // possibly prototyped redeclarations.
7930 const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
7931 if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
7932 CallingConv CC = FT->getExtInfo().getCC();
7933 if (!supportsVariadicCall(CC)) {
7934 // Windows system headers sometimes accidentally use stdcall without
7935 // (void) parameters, so we relax this to a warning.
7936 int DiagID =
7937 CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
7938 Diag(NewFD->getLocation(), DiagID)
7939 << FunctionType::getNameForCallConv(CC);
7940 }
7941 }
7942 } else {
7943 // C++11 [replacement.functions]p3:
7944 // The program's definitions shall not be specified as inline.
7945 //
7946 // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
7947 //
7948 // Suppress the diagnostic if the function is __attribute__((used)), since
7949 // that forces an external definition to be emitted.
7950 if (D.getDeclSpec().isInlineSpecified() &&
7951 NewFD->isReplaceableGlobalAllocationFunction() &&
7952 !NewFD->hasAttr<UsedAttr>())
7953 Diag(D.getDeclSpec().getInlineSpecLoc(),
7954 diag::ext_operator_new_delete_declared_inline)
7955 << NewFD->getDeclName();
7956
7957 // If the declarator is a template-id, translate the parser's template
7958 // argument list into our AST format.
7959 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7960 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7961 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7962 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7963 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7964 TemplateId->NumArgs);
7965 translateTemplateArguments(TemplateArgsPtr,
7966 TemplateArgs);
7967
7968 HasExplicitTemplateArgs = true;
7969
7970 if (NewFD->isInvalidDecl()) {
7971 HasExplicitTemplateArgs = false;
7972 } else if (FunctionTemplate) {
7973 // Function template with explicit template arguments.
7974 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
7975 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
7976
7977 HasExplicitTemplateArgs = false;
7978 } else {
7979 assert((isFunctionTemplateSpecialization ||
7980 D.getDeclSpec().isFriendSpecified()) &&
7981 "should have a 'template<>' for this decl");
7982 // "friend void foo<>(int);" is an implicit specialization decl.
7983 isFunctionTemplateSpecialization = true;
7984 }
7985 } else if (isFriend && isFunctionTemplateSpecialization) {
7986 // This combination is only possible in a recovery case; the user
7987 // wrote something like:
7988 // template <> friend void foo(int);
7989 // which we're recovering from as if the user had written:
7990 // friend void foo<>(int);
7991 // Go ahead and fake up a template id.
7992 HasExplicitTemplateArgs = true;
7993 TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
7994 TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
7995 }
7996
7997 // If it's a friend (and only if it's a friend), it's possible
7998 // that either the specialized function type or the specialized
7999 // template is dependent, and therefore matching will fail. In
8000 // this case, don't check the specialization yet.
8001 bool InstantiationDependent = false;
8002 if (isFunctionTemplateSpecialization && isFriend &&
8003 (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
8004 TemplateSpecializationType::anyDependentTemplateArguments(
8005 TemplateArgs.getArgumentArray(), TemplateArgs.size(),
8006 InstantiationDependent))) {
8007 assert(HasExplicitTemplateArgs &&
8008 "friend function specialization without template args");
8009 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
8010 Previous))
8011 NewFD->setInvalidDecl();
8012 } else if (isFunctionTemplateSpecialization) {
8013 if (CurContext->isDependentContext() && CurContext->isRecord()
8014 && !isFriend) {
8015 isDependentClassScopeExplicitSpecialization = true;
8016 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
8017 diag::ext_function_specialization_in_class :
8018 diag::err_function_specialization_in_class)
8019 << NewFD->getDeclName();
8020 } else if (CheckFunctionTemplateSpecialization(NewFD,
8021 (HasExplicitTemplateArgs ? &TemplateArgs
8022 : nullptr),
8023 Previous))
8024 NewFD->setInvalidDecl();
8025
8026 // C++ [dcl.stc]p1:
8027 // A storage-class-specifier shall not be specified in an explicit
8028 // specialization (14.7.3)
8029 FunctionTemplateSpecializationInfo *Info =
8030 NewFD->getTemplateSpecializationInfo();
8031 if (Info && SC != SC_None) {
8032 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
8033 Diag(NewFD->getLocation(),
8034 diag::err_explicit_specialization_inconsistent_storage_class)
8035 << SC
8036 << FixItHint::CreateRemoval(
8037 D.getDeclSpec().getStorageClassSpecLoc());
8038
8039 else
8040 Diag(NewFD->getLocation(),
8041 diag::ext_explicit_specialization_storage_class)
8042 << FixItHint::CreateRemoval(
8043 D.getDeclSpec().getStorageClassSpecLoc());
8044 }
8045
8046 } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
8047 if (CheckMemberSpecialization(NewFD, Previous))
8048 NewFD->setInvalidDecl();
8049 }
8050
8051 // Perform semantic checking on the function declaration.
8052 if (!isDependentClassScopeExplicitSpecialization) {
8053 if (!NewFD->isInvalidDecl() && NewFD->isMain())
8054 CheckMain(NewFD, D.getDeclSpec());
8055
8056 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
8057 CheckMSVCRTEntryPoint(NewFD);
8058
8059 if (!NewFD->isInvalidDecl())
8060 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
8061 isExplicitSpecialization));
8062 else if (!Previous.empty())
8063 // Recover gracefully from an invalid redeclaration.
8064 D.setRedeclaration(true);
8065 }
8066
8067 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
8068 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
8069 "previous declaration set still overloaded");
8070
8071 NamedDecl *PrincipalDecl = (FunctionTemplate
8072 ? cast<NamedDecl>(FunctionTemplate)
8073 : NewFD);
8074
8075 if (isFriend && D.isRedeclaration()) {
8076 AccessSpecifier Access = AS_public;
8077 if (!NewFD->isInvalidDecl())
8078 Access = NewFD->getPreviousDecl()->getAccess();
8079
8080 NewFD->setAccess(Access);
8081 if (FunctionTemplate) FunctionTemplate->setAccess(Access);
8082 }
8083
8084 if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
8085 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
8086 PrincipalDecl->setNonMemberOperator();
8087
8088 // If we have a function template, check the template parameter
8089 // list. This will check and merge default template arguments.
8090 if (FunctionTemplate) {
8091 FunctionTemplateDecl *PrevTemplate =
8092 FunctionTemplate->getPreviousDecl();
8093 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
8094 PrevTemplate ? PrevTemplate->getTemplateParameters()
8095 : nullptr,
8096 D.getDeclSpec().isFriendSpecified()
8097 ? (D.isFunctionDefinition()
8098 ? TPC_FriendFunctionTemplateDefinition
8099 : TPC_FriendFunctionTemplate)
8100 : (D.getCXXScopeSpec().isSet() &&
8101 DC && DC->isRecord() &&
8102 DC->isDependentContext())
8103 ? TPC_ClassTemplateMember
8104 : TPC_FunctionTemplate);
8105 }
8106
8107 if (NewFD->isInvalidDecl()) {
8108 // Ignore all the rest of this.
8109 } else if (!D.isRedeclaration()) {
8110 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
8111 AddToScope };
8112 // Fake up an access specifier if it's supposed to be a class member.
8113 if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
8114 NewFD->setAccess(AS_public);
8115
8116 // Qualified decls generally require a previous declaration.
8117 if (D.getCXXScopeSpec().isSet()) {
8118 // ...with the major exception of templated-scope or
8119 // dependent-scope friend declarations.
8120
8121 // TODO: we currently also suppress this check in dependent
8122 // contexts because (1) the parameter depth will be off when
8123 // matching friend templates and (2) we might actually be
8124 // selecting a friend based on a dependent factor. But there
8125 // are situations where these conditions don't apply and we
8126 // can actually do this check immediately.
8127 if (isFriend &&
8128 (TemplateParamLists.size() ||
8129 D.getCXXScopeSpec().getScopeRep()->isDependent() ||
8130 CurContext->isDependentContext())) {
8131 // ignore these
8132 } else {
8133 // The user tried to provide an out-of-line definition for a
8134 // function that is a member of a class or namespace, but there
8135 // was no such member function declared (C++ [class.mfct]p2,
8136 // C++ [namespace.memdef]p2). For example:
8137 //
8138 // class X {
8139 // void f() const;
8140 // };
8141 //
8142 // void X::f() { } // ill-formed
8143 //
8144 // Complain about this problem, and attempt to suggest close
8145 // matches (e.g., those that differ only in cv-qualifiers and
8146 // whether the parameter types are references).
8147
8148 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
8149 *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
8150 AddToScope = ExtraArgs.AddToScope;
8151 return Result;
8152 }
8153 }
8154
8155 // Unqualified local friend declarations are required to resolve
8156 // to something.
8157 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
8158 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
8159 *this, Previous, NewFD, ExtraArgs, true, S)) {
8160 AddToScope = ExtraArgs.AddToScope;
8161 return Result;
8162 }
8163 }
8164
8165 } else if (!D.isFunctionDefinition() &&
8166 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
8167 !isFriend && !isFunctionTemplateSpecialization &&
8168 !isExplicitSpecialization) {
8169 // An out-of-line member function declaration must also be a
8170 // definition (C++ [class.mfct]p2).
8171 // Note that this is not the case for explicit specializations of
8172 // function templates or member functions of class templates, per
8173 // C++ [temp.expl.spec]p2. We also allow these declarations as an
8174 // extension for compatibility with old SWIG code which likes to
8175 // generate them.
8176 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
8177 << D.getCXXScopeSpec().getRange();
8178 }
8179 }
8180
8181 ProcessPragmaWeak(S, NewFD);
8182 checkAttributesAfterMerging(*this, *NewFD);
8183
8184 AddKnownFunctionAttributes(NewFD);
8185
8186 if (NewFD->hasAttr<OverloadableAttr>() &&
8187 !NewFD->getType()->getAs<FunctionProtoType>()) {
8188 Diag(NewFD->getLocation(),
8189 diag::err_attribute_overloadable_no_prototype)
8190 << NewFD;
8191
8192 // Turn this into a variadic function with no parameters.
8193 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
8194 FunctionProtoType::ExtProtoInfo EPI(
8195 Context.getDefaultCallingConvention(true, false));
8196 EPI.Variadic = true;
8197 EPI.ExtInfo = FT->getExtInfo();
8198
8199 QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
8200 NewFD->setType(R);
8201 }
8202
8203 // If there's a #pragma GCC visibility in scope, and this isn't a class
8204 // member, set the visibility of this function.
8205 if (!DC->isRecord() && NewFD->isExternallyVisible())
8206 AddPushedVisibilityAttribute(NewFD);
8207
8208 // If there's a #pragma clang arc_cf_code_audited in scope, consider
8209 // marking the function.
8210 AddCFAuditedAttribute(NewFD);
8211
8212 // If this is a function definition, check if we have to apply optnone due to
8213 // a pragma.
8214 if(D.isFunctionDefinition())
8215 AddRangeBasedOptnone(NewFD);
8216
8217 // If this is the first declaration of an extern C variable, update
8218 // the map of such variables.
8219 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
8220 isIncompleteDeclExternC(*this, NewFD))
8221 RegisterLocallyScopedExternCDecl(NewFD, S);
8222
8223 // Set this FunctionDecl's range up to the right paren.
8224 NewFD->setRangeEnd(D.getSourceRange().getEnd());
8225
8226 if (D.isRedeclaration() && !Previous.empty()) {
8227 checkDLLAttributeRedeclaration(
8228 *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewFD,
8229 isExplicitSpecialization || isFunctionTemplateSpecialization);
8230 }
8231
8232 if (getLangOpts().CPlusPlus) {
8233 if (FunctionTemplate) {
8234 if (NewFD->isInvalidDecl())
8235 FunctionTemplate->setInvalidDecl();
8236 return FunctionTemplate;
8237 }
8238 }
8239
8240 if (NewFD->hasAttr<OpenCLKernelAttr>()) {
8241 // OpenCL v1.2 s6.8 static is invalid for kernel functions.
8242 if ((getLangOpts().OpenCLVersion >= 120)
8243 && (SC == SC_Static)) {
8244 Diag(D.getIdentifierLoc(), diag::err_static_kernel);
8245 D.setInvalidType();
8246 }
8247
8248 // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
8249 if (!NewFD->getReturnType()->isVoidType()) {
8250 SourceRange RTRange = NewFD->getReturnTypeSourceRange();
8251 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
8252 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
8253 : FixItHint());
8254 D.setInvalidType();
8255 }
8256
8257 llvm::SmallPtrSet<const Type *, 16> ValidTypes;
8258 for (auto Param : NewFD->params())
8259 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
8260 }
8261
8262 MarkUnusedFileScopedDecl(NewFD);
8263
8264 if (getLangOpts().CUDA)
8265 if (IdentifierInfo *II = NewFD->getIdentifier())
8266 if (!NewFD->isInvalidDecl() &&
8267 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
8268 if (II->isStr("cudaConfigureCall")) {
8269 if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
8270 Diag(NewFD->getLocation(), diag::err_config_scalar_return);
8271
8272 Context.setcudaConfigureCallDecl(NewFD);
8273 }
8274 }
8275
8276 // Here we have an function template explicit specialization at class scope.
8277 // The actually specialization will be postponed to template instatiation
8278 // time via the ClassScopeFunctionSpecializationDecl node.
8279 if (isDependentClassScopeExplicitSpecialization) {
8280 ClassScopeFunctionSpecializationDecl *NewSpec =
8281 ClassScopeFunctionSpecializationDecl::Create(
8282 Context, CurContext, SourceLocation(),
8283 cast<CXXMethodDecl>(NewFD),
8284 HasExplicitTemplateArgs, TemplateArgs);
8285 CurContext->addDecl(NewSpec);
8286 AddToScope = false;
8287 }
8288
8289 return NewFD;
8290 }
8291
8292 /// \brief Perform semantic checking of a new function declaration.
8293 ///
8294 /// Performs semantic analysis of the new function declaration
8295 /// NewFD. This routine performs all semantic checking that does not
8296 /// require the actual declarator involved in the declaration, and is
8297 /// used both for the declaration of functions as they are parsed
8298 /// (called via ActOnDeclarator) and for the declaration of functions
8299 /// that have been instantiated via C++ template instantiation (called
8300 /// via InstantiateDecl).
8301 ///
8302 /// \param IsExplicitSpecialization whether this new function declaration is
8303 /// an explicit specialization of the previous declaration.
8304 ///
8305 /// This sets NewFD->isInvalidDecl() to true if there was an error.
8306 ///
8307 /// \returns true if the function declaration is a redeclaration.
CheckFunctionDeclaration(Scope * S,FunctionDecl * NewFD,LookupResult & Previous,bool IsExplicitSpecialization)8308 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
8309 LookupResult &Previous,
8310 bool IsExplicitSpecialization) {
8311 assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
8312 "Variably modified return types are not handled here");
8313
8314 // Determine whether the type of this function should be merged with
8315 // a previous visible declaration. This never happens for functions in C++,
8316 // and always happens in C if the previous declaration was visible.
8317 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
8318 !Previous.isShadowed();
8319
8320 bool Redeclaration = false;
8321 NamedDecl *OldDecl = nullptr;
8322
8323 // Merge or overload the declaration with an existing declaration of
8324 // the same name, if appropriate.
8325 if (!Previous.empty()) {
8326 // Determine whether NewFD is an overload of PrevDecl or
8327 // a declaration that requires merging. If it's an overload,
8328 // there's no more work to do here; we'll just add the new
8329 // function to the scope.
8330 if (!AllowOverloadingOfFunction(Previous, Context)) {
8331 NamedDecl *Candidate = Previous.getRepresentativeDecl();
8332 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
8333 Redeclaration = true;
8334 OldDecl = Candidate;
8335 }
8336 } else {
8337 switch (CheckOverload(S, NewFD, Previous, OldDecl,
8338 /*NewIsUsingDecl*/ false)) {
8339 case Ovl_Match:
8340 Redeclaration = true;
8341 break;
8342
8343 case Ovl_NonFunction:
8344 Redeclaration = true;
8345 break;
8346
8347 case Ovl_Overload:
8348 Redeclaration = false;
8349 break;
8350 }
8351
8352 if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
8353 // If a function name is overloadable in C, then every function
8354 // with that name must be marked "overloadable".
8355 Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
8356 << Redeclaration << NewFD;
8357 NamedDecl *OverloadedDecl = nullptr;
8358 if (Redeclaration)
8359 OverloadedDecl = OldDecl;
8360 else if (!Previous.empty())
8361 OverloadedDecl = Previous.getRepresentativeDecl();
8362 if (OverloadedDecl)
8363 Diag(OverloadedDecl->getLocation(),
8364 diag::note_attribute_overloadable_prev_overload);
8365 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
8366 }
8367 }
8368 }
8369
8370 // Check for a previous extern "C" declaration with this name.
8371 if (!Redeclaration &&
8372 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
8373 if (!Previous.empty()) {
8374 // This is an extern "C" declaration with the same name as a previous
8375 // declaration, and thus redeclares that entity...
8376 Redeclaration = true;
8377 OldDecl = Previous.getFoundDecl();
8378 MergeTypeWithPrevious = false;
8379
8380 // ... except in the presence of __attribute__((overloadable)).
8381 if (OldDecl->hasAttr<OverloadableAttr>()) {
8382 if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
8383 Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
8384 << Redeclaration << NewFD;
8385 Diag(Previous.getFoundDecl()->getLocation(),
8386 diag::note_attribute_overloadable_prev_overload);
8387 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
8388 }
8389 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
8390 Redeclaration = false;
8391 OldDecl = nullptr;
8392 }
8393 }
8394 }
8395 }
8396
8397 // C++11 [dcl.constexpr]p8:
8398 // A constexpr specifier for a non-static member function that is not
8399 // a constructor declares that member function to be const.
8400 //
8401 // This needs to be delayed until we know whether this is an out-of-line
8402 // definition of a static member function.
8403 //
8404 // This rule is not present in C++1y, so we produce a backwards
8405 // compatibility warning whenever it happens in C++11.
8406 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
8407 if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
8408 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
8409 (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
8410 CXXMethodDecl *OldMD = nullptr;
8411 if (OldDecl)
8412 OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
8413 if (!OldMD || !OldMD->isStatic()) {
8414 const FunctionProtoType *FPT =
8415 MD->getType()->castAs<FunctionProtoType>();
8416 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8417 EPI.TypeQuals |= Qualifiers::Const;
8418 MD->setType(Context.getFunctionType(FPT->getReturnType(),
8419 FPT->getParamTypes(), EPI));
8420
8421 // Warn that we did this, if we're not performing template instantiation.
8422 // In that case, we'll have warned already when the template was defined.
8423 if (ActiveTemplateInstantiations.empty()) {
8424 SourceLocation AddConstLoc;
8425 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
8426 .IgnoreParens().getAs<FunctionTypeLoc>())
8427 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
8428
8429 Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
8430 << FixItHint::CreateInsertion(AddConstLoc, " const");
8431 }
8432 }
8433 }
8434
8435 if (Redeclaration) {
8436 // NewFD and OldDecl represent declarations that need to be
8437 // merged.
8438 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
8439 NewFD->setInvalidDecl();
8440 return Redeclaration;
8441 }
8442
8443 Previous.clear();
8444 Previous.addDecl(OldDecl);
8445
8446 if (FunctionTemplateDecl *OldTemplateDecl
8447 = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
8448 NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
8449 FunctionTemplateDecl *NewTemplateDecl
8450 = NewFD->getDescribedFunctionTemplate();
8451 assert(NewTemplateDecl && "Template/non-template mismatch");
8452 if (CXXMethodDecl *Method
8453 = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
8454 Method->setAccess(OldTemplateDecl->getAccess());
8455 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
8456 }
8457
8458 // If this is an explicit specialization of a member that is a function
8459 // template, mark it as a member specialization.
8460 if (IsExplicitSpecialization &&
8461 NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
8462 NewTemplateDecl->setMemberSpecialization();
8463 assert(OldTemplateDecl->isMemberSpecialization());
8464 }
8465
8466 } else {
8467 // This needs to happen first so that 'inline' propagates.
8468 NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
8469
8470 if (isa<CXXMethodDecl>(NewFD))
8471 NewFD->setAccess(OldDecl->getAccess());
8472 }
8473 }
8474
8475 // Semantic checking for this function declaration (in isolation).
8476
8477 if (getLangOpts().CPlusPlus) {
8478 // C++-specific checks.
8479 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
8480 CheckConstructor(Constructor);
8481 } else if (CXXDestructorDecl *Destructor =
8482 dyn_cast<CXXDestructorDecl>(NewFD)) {
8483 CXXRecordDecl *Record = Destructor->getParent();
8484 QualType ClassType = Context.getTypeDeclType(Record);
8485
8486 // FIXME: Shouldn't we be able to perform this check even when the class
8487 // type is dependent? Both gcc and edg can handle that.
8488 if (!ClassType->isDependentType()) {
8489 DeclarationName Name
8490 = Context.DeclarationNames.getCXXDestructorName(
8491 Context.getCanonicalType(ClassType));
8492 if (NewFD->getDeclName() != Name) {
8493 Diag(NewFD->getLocation(), diag::err_destructor_name);
8494 NewFD->setInvalidDecl();
8495 return Redeclaration;
8496 }
8497 }
8498 } else if (CXXConversionDecl *Conversion
8499 = dyn_cast<CXXConversionDecl>(NewFD)) {
8500 ActOnConversionDeclarator(Conversion);
8501 }
8502
8503 // Find any virtual functions that this function overrides.
8504 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
8505 if (!Method->isFunctionTemplateSpecialization() &&
8506 !Method->getDescribedFunctionTemplate() &&
8507 Method->isCanonicalDecl()) {
8508 if (AddOverriddenMethods(Method->getParent(), Method)) {
8509 // If the function was marked as "static", we have a problem.
8510 if (NewFD->getStorageClass() == SC_Static) {
8511 ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
8512 }
8513 }
8514 }
8515
8516 if (Method->isStatic())
8517 checkThisInStaticMemberFunctionType(Method);
8518 }
8519
8520 // Extra checking for C++ overloaded operators (C++ [over.oper]).
8521 if (NewFD->isOverloadedOperator() &&
8522 CheckOverloadedOperatorDeclaration(NewFD)) {
8523 NewFD->setInvalidDecl();
8524 return Redeclaration;
8525 }
8526
8527 // Extra checking for C++0x literal operators (C++0x [over.literal]).
8528 if (NewFD->getLiteralIdentifier() &&
8529 CheckLiteralOperatorDeclaration(NewFD)) {
8530 NewFD->setInvalidDecl();
8531 return Redeclaration;
8532 }
8533
8534 // In C++, check default arguments now that we have merged decls. Unless
8535 // the lexical context is the class, because in this case this is done
8536 // during delayed parsing anyway.
8537 if (!CurContext->isRecord())
8538 CheckCXXDefaultArguments(NewFD);
8539
8540 // If this function declares a builtin function, check the type of this
8541 // declaration against the expected type for the builtin.
8542 if (unsigned BuiltinID = NewFD->getBuiltinID()) {
8543 ASTContext::GetBuiltinTypeError Error;
8544 LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
8545 QualType T = Context.GetBuiltinType(BuiltinID, Error);
8546 if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
8547 // The type of this function differs from the type of the builtin,
8548 // so forget about the builtin entirely.
8549 Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
8550 }
8551 }
8552
8553 // If this function is declared as being extern "C", then check to see if
8554 // the function returns a UDT (class, struct, or union type) that is not C
8555 // compatible, and if it does, warn the user.
8556 // But, issue any diagnostic on the first declaration only.
8557 if (Previous.empty() && NewFD->isExternC()) {
8558 QualType R = NewFD->getReturnType();
8559 if (R->isIncompleteType() && !R->isVoidType())
8560 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
8561 << NewFD << R;
8562 else if (!R.isPODType(Context) && !R->isVoidType() &&
8563 !R->isObjCObjectPointerType())
8564 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
8565 }
8566 }
8567 return Redeclaration;
8568 }
8569
CheckMain(FunctionDecl * FD,const DeclSpec & DS)8570 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
8571 // C++11 [basic.start.main]p3:
8572 // A program that [...] declares main to be inline, static or
8573 // constexpr is ill-formed.
8574 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
8575 // appear in a declaration of main.
8576 // static main is not an error under C99, but we should warn about it.
8577 // We accept _Noreturn main as an extension.
8578 if (FD->getStorageClass() == SC_Static)
8579 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
8580 ? diag::err_static_main : diag::warn_static_main)
8581 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
8582 if (FD->isInlineSpecified())
8583 Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
8584 << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
8585 if (DS.isNoreturnSpecified()) {
8586 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
8587 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
8588 Diag(NoreturnLoc, diag::ext_noreturn_main);
8589 Diag(NoreturnLoc, diag::note_main_remove_noreturn)
8590 << FixItHint::CreateRemoval(NoreturnRange);
8591 }
8592 if (FD->isConstexpr()) {
8593 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
8594 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
8595 FD->setConstexpr(false);
8596 }
8597
8598 if (getLangOpts().OpenCL) {
8599 Diag(FD->getLocation(), diag::err_opencl_no_main)
8600 << FD->hasAttr<OpenCLKernelAttr>();
8601 FD->setInvalidDecl();
8602 return;
8603 }
8604
8605 QualType T = FD->getType();
8606 assert(T->isFunctionType() && "function decl is not of function type");
8607 const FunctionType* FT = T->castAs<FunctionType>();
8608
8609 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
8610 // In C with GNU extensions we allow main() to have non-integer return
8611 // type, but we should warn about the extension, and we disable the
8612 // implicit-return-zero rule.
8613
8614 // GCC in C mode accepts qualified 'int'.
8615 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
8616 FD->setHasImplicitReturnZero(true);
8617 else {
8618 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
8619 SourceRange RTRange = FD->getReturnTypeSourceRange();
8620 if (RTRange.isValid())
8621 Diag(RTRange.getBegin(), diag::note_main_change_return_type)
8622 << FixItHint::CreateReplacement(RTRange, "int");
8623 }
8624 } else {
8625 // In C and C++, main magically returns 0 if you fall off the end;
8626 // set the flag which tells us that.
8627 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
8628
8629 // All the standards say that main() should return 'int'.
8630 if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
8631 FD->setHasImplicitReturnZero(true);
8632 else {
8633 // Otherwise, this is just a flat-out error.
8634 SourceRange RTRange = FD->getReturnTypeSourceRange();
8635 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
8636 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
8637 : FixItHint());
8638 FD->setInvalidDecl(true);
8639 }
8640 }
8641
8642 // Treat protoless main() as nullary.
8643 if (isa<FunctionNoProtoType>(FT)) return;
8644
8645 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
8646 unsigned nparams = FTP->getNumParams();
8647 assert(FD->getNumParams() == nparams);
8648
8649 bool HasExtraParameters = (nparams > 3);
8650
8651 if (FTP->isVariadic()) {
8652 Diag(FD->getLocation(), diag::ext_variadic_main);
8653 // FIXME: if we had information about the location of the ellipsis, we
8654 // could add a FixIt hint to remove it as a parameter.
8655 }
8656
8657 // Darwin passes an undocumented fourth argument of type char**. If
8658 // other platforms start sprouting these, the logic below will start
8659 // getting shifty.
8660 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
8661 HasExtraParameters = false;
8662
8663 if (HasExtraParameters) {
8664 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
8665 FD->setInvalidDecl(true);
8666 nparams = 3;
8667 }
8668
8669 // FIXME: a lot of the following diagnostics would be improved
8670 // if we had some location information about types.
8671
8672 QualType CharPP =
8673 Context.getPointerType(Context.getPointerType(Context.CharTy));
8674 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
8675
8676 for (unsigned i = 0; i < nparams; ++i) {
8677 QualType AT = FTP->getParamType(i);
8678
8679 bool mismatch = true;
8680
8681 if (Context.hasSameUnqualifiedType(AT, Expected[i]))
8682 mismatch = false;
8683 else if (Expected[i] == CharPP) {
8684 // As an extension, the following forms are okay:
8685 // char const **
8686 // char const * const *
8687 // char * const *
8688
8689 QualifierCollector qs;
8690 const PointerType* PT;
8691 if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
8692 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
8693 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
8694 Context.CharTy)) {
8695 qs.removeConst();
8696 mismatch = !qs.empty();
8697 }
8698 }
8699
8700 if (mismatch) {
8701 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
8702 // TODO: suggest replacing given type with expected type
8703 FD->setInvalidDecl(true);
8704 }
8705 }
8706
8707 if (nparams == 1 && !FD->isInvalidDecl()) {
8708 Diag(FD->getLocation(), diag::warn_main_one_arg);
8709 }
8710
8711 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
8712 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
8713 FD->setInvalidDecl();
8714 }
8715 }
8716
CheckMSVCRTEntryPoint(FunctionDecl * FD)8717 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
8718 QualType T = FD->getType();
8719 assert(T->isFunctionType() && "function decl is not of function type");
8720 const FunctionType *FT = T->castAs<FunctionType>();
8721
8722 // Set an implicit return of 'zero' if the function can return some integral,
8723 // enumeration, pointer or nullptr type.
8724 if (FT->getReturnType()->isIntegralOrEnumerationType() ||
8725 FT->getReturnType()->isAnyPointerType() ||
8726 FT->getReturnType()->isNullPtrType())
8727 // DllMain is exempt because a return value of zero means it failed.
8728 if (FD->getName() != "DllMain")
8729 FD->setHasImplicitReturnZero(true);
8730
8731 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
8732 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
8733 FD->setInvalidDecl();
8734 }
8735 }
8736
CheckForConstantInitializer(Expr * Init,QualType DclT)8737 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
8738 // FIXME: Need strict checking. In C89, we need to check for
8739 // any assignment, increment, decrement, function-calls, or
8740 // commas outside of a sizeof. In C99, it's the same list,
8741 // except that the aforementioned are allowed in unevaluated
8742 // expressions. Everything else falls under the
8743 // "may accept other forms of constant expressions" exception.
8744 // (We never end up here for C++, so the constant expression
8745 // rules there don't matter.)
8746 const Expr *Culprit;
8747 if (Init->isConstantInitializer(Context, false, &Culprit))
8748 return false;
8749 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
8750 << Culprit->getSourceRange();
8751 return true;
8752 }
8753
8754 namespace {
8755 // Visits an initialization expression to see if OrigDecl is evaluated in
8756 // its own initialization and throws a warning if it does.
8757 class SelfReferenceChecker
8758 : public EvaluatedExprVisitor<SelfReferenceChecker> {
8759 Sema &S;
8760 Decl *OrigDecl;
8761 bool isRecordType;
8762 bool isPODType;
8763 bool isReferenceType;
8764
8765 bool isInitList;
8766 llvm::SmallVector<unsigned, 4> InitFieldIndex;
8767 public:
8768 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
8769
SelfReferenceChecker(Sema & S,Decl * OrigDecl)8770 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
8771 S(S), OrigDecl(OrigDecl) {
8772 isPODType = false;
8773 isRecordType = false;
8774 isReferenceType = false;
8775 isInitList = false;
8776 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
8777 isPODType = VD->getType().isPODType(S.Context);
8778 isRecordType = VD->getType()->isRecordType();
8779 isReferenceType = VD->getType()->isReferenceType();
8780 }
8781 }
8782
8783 // For most expressions, just call the visitor. For initializer lists,
8784 // track the index of the field being initialized since fields are
8785 // initialized in order allowing use of previously initialized fields.
CheckExpr(Expr * E)8786 void CheckExpr(Expr *E) {
8787 InitListExpr *InitList = dyn_cast<InitListExpr>(E);
8788 if (!InitList) {
8789 Visit(E);
8790 return;
8791 }
8792
8793 // Track and increment the index here.
8794 isInitList = true;
8795 InitFieldIndex.push_back(0);
8796 for (auto Child : InitList->children()) {
8797 CheckExpr(cast<Expr>(Child));
8798 ++InitFieldIndex.back();
8799 }
8800 InitFieldIndex.pop_back();
8801 }
8802
8803 // Returns true if MemberExpr is checked and no futher checking is needed.
8804 // Returns false if additional checking is required.
CheckInitListMemberExpr(MemberExpr * E,bool CheckReference)8805 bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
8806 llvm::SmallVector<FieldDecl*, 4> Fields;
8807 Expr *Base = E;
8808 bool ReferenceField = false;
8809
8810 // Get the field memebers used.
8811 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8812 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
8813 if (!FD)
8814 return false;
8815 Fields.push_back(FD);
8816 if (FD->getType()->isReferenceType())
8817 ReferenceField = true;
8818 Base = ME->getBase()->IgnoreParenImpCasts();
8819 }
8820
8821 // Keep checking only if the base Decl is the same.
8822 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
8823 if (!DRE || DRE->getDecl() != OrigDecl)
8824 return false;
8825
8826 // A reference field can be bound to an unininitialized field.
8827 if (CheckReference && !ReferenceField)
8828 return true;
8829
8830 // Convert FieldDecls to their index number.
8831 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
8832 for (const FieldDecl *I : llvm::reverse(Fields))
8833 UsedFieldIndex.push_back(I->getFieldIndex());
8834
8835 // See if a warning is needed by checking the first difference in index
8836 // numbers. If field being used has index less than the field being
8837 // initialized, then the use is safe.
8838 for (auto UsedIter = UsedFieldIndex.begin(),
8839 UsedEnd = UsedFieldIndex.end(),
8840 OrigIter = InitFieldIndex.begin(),
8841 OrigEnd = InitFieldIndex.end();
8842 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
8843 if (*UsedIter < *OrigIter)
8844 return true;
8845 if (*UsedIter > *OrigIter)
8846 break;
8847 }
8848
8849 // TODO: Add a different warning which will print the field names.
8850 HandleDeclRefExpr(DRE);
8851 return true;
8852 }
8853
8854 // For most expressions, the cast is directly above the DeclRefExpr.
8855 // For conditional operators, the cast can be outside the conditional
8856 // operator if both expressions are DeclRefExpr's.
HandleValue(Expr * E)8857 void HandleValue(Expr *E) {
8858 E = E->IgnoreParens();
8859 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
8860 HandleDeclRefExpr(DRE);
8861 return;
8862 }
8863
8864 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
8865 Visit(CO->getCond());
8866 HandleValue(CO->getTrueExpr());
8867 HandleValue(CO->getFalseExpr());
8868 return;
8869 }
8870
8871 if (BinaryConditionalOperator *BCO =
8872 dyn_cast<BinaryConditionalOperator>(E)) {
8873 Visit(BCO->getCond());
8874 HandleValue(BCO->getFalseExpr());
8875 return;
8876 }
8877
8878 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
8879 HandleValue(OVE->getSourceExpr());
8880 return;
8881 }
8882
8883 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
8884 if (BO->getOpcode() == BO_Comma) {
8885 Visit(BO->getLHS());
8886 HandleValue(BO->getRHS());
8887 return;
8888 }
8889 }
8890
8891 if (isa<MemberExpr>(E)) {
8892 if (isInitList) {
8893 if (CheckInitListMemberExpr(cast<MemberExpr>(E),
8894 false /*CheckReference*/))
8895 return;
8896 }
8897
8898 Expr *Base = E->IgnoreParenImpCasts();
8899 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8900 // Check for static member variables and don't warn on them.
8901 if (!isa<FieldDecl>(ME->getMemberDecl()))
8902 return;
8903 Base = ME->getBase()->IgnoreParenImpCasts();
8904 }
8905 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
8906 HandleDeclRefExpr(DRE);
8907 return;
8908 }
8909
8910 Visit(E);
8911 }
8912
8913 // Reference types not handled in HandleValue are handled here since all
8914 // uses of references are bad, not just r-value uses.
VisitDeclRefExpr(DeclRefExpr * E)8915 void VisitDeclRefExpr(DeclRefExpr *E) {
8916 if (isReferenceType)
8917 HandleDeclRefExpr(E);
8918 }
8919
VisitImplicitCastExpr(ImplicitCastExpr * E)8920 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
8921 if (E->getCastKind() == CK_LValueToRValue) {
8922 HandleValue(E->getSubExpr());
8923 return;
8924 }
8925
8926 Inherited::VisitImplicitCastExpr(E);
8927 }
8928
VisitMemberExpr(MemberExpr * E)8929 void VisitMemberExpr(MemberExpr *E) {
8930 if (isInitList) {
8931 if (CheckInitListMemberExpr(E, true /*CheckReference*/))
8932 return;
8933 }
8934
8935 // Don't warn on arrays since they can be treated as pointers.
8936 if (E->getType()->canDecayToPointerType()) return;
8937
8938 // Warn when a non-static method call is followed by non-static member
8939 // field accesses, which is followed by a DeclRefExpr.
8940 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
8941 bool Warn = (MD && !MD->isStatic());
8942 Expr *Base = E->getBase()->IgnoreParenImpCasts();
8943 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8944 if (!isa<FieldDecl>(ME->getMemberDecl()))
8945 Warn = false;
8946 Base = ME->getBase()->IgnoreParenImpCasts();
8947 }
8948
8949 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
8950 if (Warn)
8951 HandleDeclRefExpr(DRE);
8952 return;
8953 }
8954
8955 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
8956 // Visit that expression.
8957 Visit(Base);
8958 }
8959
VisitCXXOperatorCallExpr(CXXOperatorCallExpr * E)8960 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
8961 Expr *Callee = E->getCallee();
8962
8963 if (isa<UnresolvedLookupExpr>(Callee))
8964 return Inherited::VisitCXXOperatorCallExpr(E);
8965
8966 Visit(Callee);
8967 for (auto Arg: E->arguments())
8968 HandleValue(Arg->IgnoreParenImpCasts());
8969 }
8970
VisitUnaryOperator(UnaryOperator * E)8971 void VisitUnaryOperator(UnaryOperator *E) {
8972 // For POD record types, addresses of its own members are well-defined.
8973 if (E->getOpcode() == UO_AddrOf && isRecordType &&
8974 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
8975 if (!isPODType)
8976 HandleValue(E->getSubExpr());
8977 return;
8978 }
8979
8980 if (E->isIncrementDecrementOp()) {
8981 HandleValue(E->getSubExpr());
8982 return;
8983 }
8984
8985 Inherited::VisitUnaryOperator(E);
8986 }
8987
VisitObjCMessageExpr(ObjCMessageExpr * E)8988 void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
8989
VisitCXXConstructExpr(CXXConstructExpr * E)8990 void VisitCXXConstructExpr(CXXConstructExpr *E) {
8991 if (E->getConstructor()->isCopyConstructor()) {
8992 Expr *ArgExpr = E->getArg(0);
8993 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
8994 if (ILE->getNumInits() == 1)
8995 ArgExpr = ILE->getInit(0);
8996 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
8997 if (ICE->getCastKind() == CK_NoOp)
8998 ArgExpr = ICE->getSubExpr();
8999 HandleValue(ArgExpr);
9000 return;
9001 }
9002 Inherited::VisitCXXConstructExpr(E);
9003 }
9004
VisitCallExpr(CallExpr * E)9005 void VisitCallExpr(CallExpr *E) {
9006 // Treat std::move as a use.
9007 if (E->getNumArgs() == 1) {
9008 if (FunctionDecl *FD = E->getDirectCallee()) {
9009 if (FD->isInStdNamespace() && FD->getIdentifier() &&
9010 FD->getIdentifier()->isStr("move")) {
9011 HandleValue(E->getArg(0));
9012 return;
9013 }
9014 }
9015 }
9016
9017 Inherited::VisitCallExpr(E);
9018 }
9019
VisitBinaryOperator(BinaryOperator * E)9020 void VisitBinaryOperator(BinaryOperator *E) {
9021 if (E->isCompoundAssignmentOp()) {
9022 HandleValue(E->getLHS());
9023 Visit(E->getRHS());
9024 return;
9025 }
9026
9027 Inherited::VisitBinaryOperator(E);
9028 }
9029
9030 // A custom visitor for BinaryConditionalOperator is needed because the
9031 // regular visitor would check the condition and true expression separately
9032 // but both point to the same place giving duplicate diagnostics.
VisitBinaryConditionalOperator(BinaryConditionalOperator * E)9033 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
9034 Visit(E->getCond());
9035 Visit(E->getFalseExpr());
9036 }
9037
HandleDeclRefExpr(DeclRefExpr * DRE)9038 void HandleDeclRefExpr(DeclRefExpr *DRE) {
9039 Decl* ReferenceDecl = DRE->getDecl();
9040 if (OrigDecl != ReferenceDecl) return;
9041 unsigned diag;
9042 if (isReferenceType) {
9043 diag = diag::warn_uninit_self_reference_in_reference_init;
9044 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
9045 diag = diag::warn_static_self_reference_in_init;
9046 } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
9047 isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
9048 DRE->getDecl()->getType()->isRecordType()) {
9049 diag = diag::warn_uninit_self_reference_in_init;
9050 } else {
9051 // Local variables will be handled by the CFG analysis.
9052 return;
9053 }
9054
9055 S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
9056 S.PDiag(diag)
9057 << DRE->getNameInfo().getName()
9058 << OrigDecl->getLocation()
9059 << DRE->getSourceRange());
9060 }
9061 };
9062
9063 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
CheckSelfReference(Sema & S,Decl * OrigDecl,Expr * E,bool DirectInit)9064 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
9065 bool DirectInit) {
9066 // Parameters arguments are occassionially constructed with itself,
9067 // for instance, in recursive functions. Skip them.
9068 if (isa<ParmVarDecl>(OrigDecl))
9069 return;
9070
9071 E = E->IgnoreParens();
9072
9073 // Skip checking T a = a where T is not a record or reference type.
9074 // Doing so is a way to silence uninitialized warnings.
9075 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
9076 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
9077 if (ICE->getCastKind() == CK_LValueToRValue)
9078 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
9079 if (DRE->getDecl() == OrigDecl)
9080 return;
9081
9082 SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
9083 }
9084 }
9085
deduceVarTypeFromInitializer(VarDecl * VDecl,DeclarationName Name,QualType Type,TypeSourceInfo * TSI,SourceRange Range,bool DirectInit,Expr * Init)9086 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
9087 DeclarationName Name, QualType Type,
9088 TypeSourceInfo *TSI,
9089 SourceRange Range, bool DirectInit,
9090 Expr *Init) {
9091 bool IsInitCapture = !VDecl;
9092 assert((!VDecl || !VDecl->isInitCapture()) &&
9093 "init captures are expected to be deduced prior to initialization");
9094
9095 ArrayRef<Expr *> DeduceInits = Init;
9096 if (DirectInit) {
9097 if (auto *PL = dyn_cast<ParenListExpr>(Init))
9098 DeduceInits = PL->exprs();
9099 else if (auto *IL = dyn_cast<InitListExpr>(Init))
9100 DeduceInits = IL->inits();
9101 }
9102
9103 // Deduction only works if we have exactly one source expression.
9104 if (DeduceInits.empty()) {
9105 // It isn't possible to write this directly, but it is possible to
9106 // end up in this situation with "auto x(some_pack...);"
9107 Diag(Init->getLocStart(), IsInitCapture
9108 ? diag::err_init_capture_no_expression
9109 : diag::err_auto_var_init_no_expression)
9110 << Name << Type << Range;
9111 return QualType();
9112 }
9113
9114 if (DeduceInits.size() > 1) {
9115 Diag(DeduceInits[1]->getLocStart(),
9116 IsInitCapture ? diag::err_init_capture_multiple_expressions
9117 : diag::err_auto_var_init_multiple_expressions)
9118 << Name << Type << Range;
9119 return QualType();
9120 }
9121
9122 Expr *DeduceInit = DeduceInits[0];
9123 if (DirectInit && isa<InitListExpr>(DeduceInit)) {
9124 Diag(Init->getLocStart(), IsInitCapture
9125 ? diag::err_init_capture_paren_braces
9126 : diag::err_auto_var_init_paren_braces)
9127 << isa<InitListExpr>(Init) << Name << Type << Range;
9128 return QualType();
9129 }
9130
9131 // Expressions default to 'id' when we're in a debugger.
9132 bool DefaultedAnyToId = false;
9133 if (getLangOpts().DebuggerCastResultToId &&
9134 Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
9135 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
9136 if (Result.isInvalid()) {
9137 return QualType();
9138 }
9139 Init = Result.get();
9140 DefaultedAnyToId = true;
9141 }
9142
9143 QualType DeducedType;
9144 if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
9145 if (!IsInitCapture)
9146 DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
9147 else if (isa<InitListExpr>(Init))
9148 Diag(Range.getBegin(),
9149 diag::err_init_capture_deduction_failure_from_init_list)
9150 << Name
9151 << (DeduceInit->getType().isNull() ? TSI->getType()
9152 : DeduceInit->getType())
9153 << DeduceInit->getSourceRange();
9154 else
9155 Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
9156 << Name << TSI->getType()
9157 << (DeduceInit->getType().isNull() ? TSI->getType()
9158 : DeduceInit->getType())
9159 << DeduceInit->getSourceRange();
9160 }
9161
9162 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
9163 // 'id' instead of a specific object type prevents most of our usual
9164 // checks.
9165 // We only want to warn outside of template instantiations, though:
9166 // inside a template, the 'id' could have come from a parameter.
9167 if (ActiveTemplateInstantiations.empty() && !DefaultedAnyToId &&
9168 !IsInitCapture && !DeducedType.isNull() && DeducedType->isObjCIdType()) {
9169 SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
9170 Diag(Loc, diag::warn_auto_var_is_id) << Name << Range;
9171 }
9172
9173 return DeducedType;
9174 }
9175
9176 /// AddInitializerToDecl - Adds the initializer Init to the
9177 /// declaration dcl. If DirectInit is true, this is C++ direct
9178 /// initialization rather than copy initialization.
AddInitializerToDecl(Decl * RealDecl,Expr * Init,bool DirectInit,bool TypeMayContainAuto)9179 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
9180 bool DirectInit, bool TypeMayContainAuto) {
9181 // If there is no declaration, there was an error parsing it. Just ignore
9182 // the initializer.
9183 if (!RealDecl || RealDecl->isInvalidDecl()) {
9184 CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
9185 return;
9186 }
9187
9188 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
9189 // Pure-specifiers are handled in ActOnPureSpecifier.
9190 Diag(Method->getLocation(), diag::err_member_function_initialization)
9191 << Method->getDeclName() << Init->getSourceRange();
9192 Method->setInvalidDecl();
9193 return;
9194 }
9195
9196 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
9197 if (!VDecl) {
9198 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
9199 Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
9200 RealDecl->setInvalidDecl();
9201 return;
9202 }
9203
9204 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
9205 if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
9206 // Attempt typo correction early so that the type of the init expression can
9207 // be deduced based on the chosen correction if the original init contains a
9208 // TypoExpr.
9209 ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
9210 if (!Res.isUsable()) {
9211 RealDecl->setInvalidDecl();
9212 return;
9213 }
9214 Init = Res.get();
9215
9216 QualType DeducedType = deduceVarTypeFromInitializer(
9217 VDecl, VDecl->getDeclName(), VDecl->getType(),
9218 VDecl->getTypeSourceInfo(), VDecl->getSourceRange(), DirectInit, Init);
9219 if (DeducedType.isNull()) {
9220 RealDecl->setInvalidDecl();
9221 return;
9222 }
9223
9224 VDecl->setType(DeducedType);
9225 assert(VDecl->isLinkageValid());
9226
9227 // In ARC, infer lifetime.
9228 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
9229 VDecl->setInvalidDecl();
9230
9231 // If this is a redeclaration, check that the type we just deduced matches
9232 // the previously declared type.
9233 if (VarDecl *Old = VDecl->getPreviousDecl()) {
9234 // We never need to merge the type, because we cannot form an incomplete
9235 // array of auto, nor deduce such a type.
9236 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
9237 }
9238
9239 // Check the deduced type is valid for a variable declaration.
9240 CheckVariableDeclarationType(VDecl);
9241 if (VDecl->isInvalidDecl())
9242 return;
9243 }
9244
9245 // dllimport cannot be used on variable definitions.
9246 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
9247 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
9248 VDecl->setInvalidDecl();
9249 return;
9250 }
9251
9252 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
9253 // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
9254 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
9255 VDecl->setInvalidDecl();
9256 return;
9257 }
9258
9259 if (!VDecl->getType()->isDependentType()) {
9260 // A definition must end up with a complete type, which means it must be
9261 // complete with the restriction that an array type might be completed by
9262 // the initializer; note that later code assumes this restriction.
9263 QualType BaseDeclType = VDecl->getType();
9264 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
9265 BaseDeclType = Array->getElementType();
9266 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
9267 diag::err_typecheck_decl_incomplete_type)) {
9268 RealDecl->setInvalidDecl();
9269 return;
9270 }
9271
9272 // The variable can not have an abstract class type.
9273 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
9274 diag::err_abstract_type_in_decl,
9275 AbstractVariableType))
9276 VDecl->setInvalidDecl();
9277 }
9278
9279 VarDecl *Def;
9280 if ((Def = VDecl->getDefinition()) && Def != VDecl) {
9281 NamedDecl *Hidden = nullptr;
9282 if (!hasVisibleDefinition(Def, &Hidden) &&
9283 (VDecl->getFormalLinkage() == InternalLinkage ||
9284 VDecl->getDescribedVarTemplate() ||
9285 VDecl->getNumTemplateParameterLists() ||
9286 VDecl->getDeclContext()->isDependentContext())) {
9287 // The previous definition is hidden, and multiple definitions are
9288 // permitted (in separate TUs). Form another definition of it.
9289 } else {
9290 Diag(VDecl->getLocation(), diag::err_redefinition)
9291 << VDecl->getDeclName();
9292 Diag(Def->getLocation(), diag::note_previous_definition);
9293 VDecl->setInvalidDecl();
9294 return;
9295 }
9296 }
9297
9298 if (getLangOpts().CPlusPlus) {
9299 // C++ [class.static.data]p4
9300 // If a static data member is of const integral or const
9301 // enumeration type, its declaration in the class definition can
9302 // specify a constant-initializer which shall be an integral
9303 // constant expression (5.19). In that case, the member can appear
9304 // in integral constant expressions. The member shall still be
9305 // defined in a namespace scope if it is used in the program and the
9306 // namespace scope definition shall not contain an initializer.
9307 //
9308 // We already performed a redefinition check above, but for static
9309 // data members we also need to check whether there was an in-class
9310 // declaration with an initializer.
9311 if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
9312 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
9313 << VDecl->getDeclName();
9314 Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
9315 diag::note_previous_initializer)
9316 << 0;
9317 return;
9318 }
9319
9320 if (VDecl->hasLocalStorage())
9321 getCurFunction()->setHasBranchProtectedScope();
9322
9323 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
9324 VDecl->setInvalidDecl();
9325 return;
9326 }
9327 }
9328
9329 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
9330 // a kernel function cannot be initialized."
9331 if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
9332 Diag(VDecl->getLocation(), diag::err_local_cant_init);
9333 VDecl->setInvalidDecl();
9334 return;
9335 }
9336
9337 // Get the decls type and save a reference for later, since
9338 // CheckInitializerTypes may change it.
9339 QualType DclT = VDecl->getType(), SavT = DclT;
9340
9341 // Expressions default to 'id' when we're in a debugger
9342 // and we are assigning it to a variable of Objective-C pointer type.
9343 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
9344 Init->getType() == Context.UnknownAnyTy) {
9345 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
9346 if (Result.isInvalid()) {
9347 VDecl->setInvalidDecl();
9348 return;
9349 }
9350 Init = Result.get();
9351 }
9352
9353 // Perform the initialization.
9354 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
9355 if (!VDecl->isInvalidDecl()) {
9356 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
9357 InitializationKind Kind =
9358 DirectInit
9359 ? CXXDirectInit
9360 ? InitializationKind::CreateDirect(VDecl->getLocation(),
9361 Init->getLocStart(),
9362 Init->getLocEnd())
9363 : InitializationKind::CreateDirectList(VDecl->getLocation())
9364 : InitializationKind::CreateCopy(VDecl->getLocation(),
9365 Init->getLocStart());
9366
9367 MultiExprArg Args = Init;
9368 if (CXXDirectInit)
9369 Args = MultiExprArg(CXXDirectInit->getExprs(),
9370 CXXDirectInit->getNumExprs());
9371
9372 // Try to correct any TypoExprs in the initialization arguments.
9373 for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
9374 ExprResult Res = CorrectDelayedTyposInExpr(
9375 Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
9376 InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
9377 return Init.Failed() ? ExprError() : E;
9378 });
9379 if (Res.isInvalid()) {
9380 VDecl->setInvalidDecl();
9381 } else if (Res.get() != Args[Idx]) {
9382 Args[Idx] = Res.get();
9383 }
9384 }
9385 if (VDecl->isInvalidDecl())
9386 return;
9387
9388 InitializationSequence InitSeq(*this, Entity, Kind, Args);
9389 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
9390 if (Result.isInvalid()) {
9391 VDecl->setInvalidDecl();
9392 return;
9393 }
9394
9395 Init = Result.getAs<Expr>();
9396 }
9397
9398 // Check for self-references within variable initializers.
9399 // Variables declared within a function/method body (except for references)
9400 // are handled by a dataflow analysis.
9401 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
9402 VDecl->getType()->isReferenceType()) {
9403 CheckSelfReference(*this, RealDecl, Init, DirectInit);
9404 }
9405
9406 // If the type changed, it means we had an incomplete type that was
9407 // completed by the initializer. For example:
9408 // int ary[] = { 1, 3, 5 };
9409 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
9410 if (!VDecl->isInvalidDecl() && (DclT != SavT))
9411 VDecl->setType(DclT);
9412
9413 if (!VDecl->isInvalidDecl()) {
9414 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
9415
9416 if (VDecl->hasAttr<BlocksAttr>())
9417 checkRetainCycles(VDecl, Init);
9418
9419 // It is safe to assign a weak reference into a strong variable.
9420 // Although this code can still have problems:
9421 // id x = self.weakProp;
9422 // id y = self.weakProp;
9423 // we do not warn to warn spuriously when 'x' and 'y' are on separate
9424 // paths through the function. This should be revisited if
9425 // -Wrepeated-use-of-weak is made flow-sensitive.
9426 if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong &&
9427 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
9428 Init->getLocStart()))
9429 getCurFunction()->markSafeWeakUse(Init);
9430 }
9431
9432 // The initialization is usually a full-expression.
9433 //
9434 // FIXME: If this is a braced initialization of an aggregate, it is not
9435 // an expression, and each individual field initializer is a separate
9436 // full-expression. For instance, in:
9437 //
9438 // struct Temp { ~Temp(); };
9439 // struct S { S(Temp); };
9440 // struct T { S a, b; } t = { Temp(), Temp() }
9441 //
9442 // we should destroy the first Temp before constructing the second.
9443 ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
9444 false,
9445 VDecl->isConstexpr());
9446 if (Result.isInvalid()) {
9447 VDecl->setInvalidDecl();
9448 return;
9449 }
9450 Init = Result.get();
9451
9452 // Attach the initializer to the decl.
9453 VDecl->setInit(Init);
9454
9455 if (VDecl->isLocalVarDecl()) {
9456 // C99 6.7.8p4: All the expressions in an initializer for an object that has
9457 // static storage duration shall be constant expressions or string literals.
9458 // C++ does not have this restriction.
9459 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
9460 const Expr *Culprit;
9461 if (VDecl->getStorageClass() == SC_Static)
9462 CheckForConstantInitializer(Init, DclT);
9463 // C89 is stricter than C99 for non-static aggregate types.
9464 // C89 6.5.7p3: All the expressions [...] in an initializer list
9465 // for an object that has aggregate or union type shall be
9466 // constant expressions.
9467 else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
9468 isa<InitListExpr>(Init) &&
9469 !Init->isConstantInitializer(Context, false, &Culprit))
9470 Diag(Culprit->getExprLoc(),
9471 diag::ext_aggregate_init_not_constant)
9472 << Culprit->getSourceRange();
9473 }
9474 } else if (VDecl->isStaticDataMember() &&
9475 VDecl->getLexicalDeclContext()->isRecord()) {
9476 // This is an in-class initialization for a static data member, e.g.,
9477 //
9478 // struct S {
9479 // static const int value = 17;
9480 // };
9481
9482 // C++ [class.mem]p4:
9483 // A member-declarator can contain a constant-initializer only
9484 // if it declares a static member (9.4) of const integral or
9485 // const enumeration type, see 9.4.2.
9486 //
9487 // C++11 [class.static.data]p3:
9488 // If a non-volatile const static data member is of integral or
9489 // enumeration type, its declaration in the class definition can
9490 // specify a brace-or-equal-initializer in which every initalizer-clause
9491 // that is an assignment-expression is a constant expression. A static
9492 // data member of literal type can be declared in the class definition
9493 // with the constexpr specifier; if so, its declaration shall specify a
9494 // brace-or-equal-initializer in which every initializer-clause that is
9495 // an assignment-expression is a constant expression.
9496
9497 // Do nothing on dependent types.
9498 if (DclT->isDependentType()) {
9499
9500 // Allow any 'static constexpr' members, whether or not they are of literal
9501 // type. We separately check that every constexpr variable is of literal
9502 // type.
9503 } else if (VDecl->isConstexpr()) {
9504
9505 // Require constness.
9506 } else if (!DclT.isConstQualified()) {
9507 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
9508 << Init->getSourceRange();
9509 VDecl->setInvalidDecl();
9510
9511 // We allow integer constant expressions in all cases.
9512 } else if (DclT->isIntegralOrEnumerationType()) {
9513 // Check whether the expression is a constant expression.
9514 SourceLocation Loc;
9515 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
9516 // In C++11, a non-constexpr const static data member with an
9517 // in-class initializer cannot be volatile.
9518 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
9519 else if (Init->isValueDependent())
9520 ; // Nothing to check.
9521 else if (Init->isIntegerConstantExpr(Context, &Loc))
9522 ; // Ok, it's an ICE!
9523 else if (Init->isEvaluatable(Context)) {
9524 // If we can constant fold the initializer through heroics, accept it,
9525 // but report this as a use of an extension for -pedantic.
9526 Diag(Loc, diag::ext_in_class_initializer_non_constant)
9527 << Init->getSourceRange();
9528 } else {
9529 // Otherwise, this is some crazy unknown case. Report the issue at the
9530 // location provided by the isIntegerConstantExpr failed check.
9531 Diag(Loc, diag::err_in_class_initializer_non_constant)
9532 << Init->getSourceRange();
9533 VDecl->setInvalidDecl();
9534 }
9535
9536 // We allow foldable floating-point constants as an extension.
9537 } else if (DclT->isFloatingType()) { // also permits complex, which is ok
9538 // In C++98, this is a GNU extension. In C++11, it is not, but we support
9539 // it anyway and provide a fixit to add the 'constexpr'.
9540 if (getLangOpts().CPlusPlus11) {
9541 Diag(VDecl->getLocation(),
9542 diag::ext_in_class_initializer_float_type_cxx11)
9543 << DclT << Init->getSourceRange();
9544 Diag(VDecl->getLocStart(),
9545 diag::note_in_class_initializer_float_type_cxx11)
9546 << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
9547 } else {
9548 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
9549 << DclT << Init->getSourceRange();
9550
9551 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
9552 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
9553 << Init->getSourceRange();
9554 VDecl->setInvalidDecl();
9555 }
9556 }
9557
9558 // Suggest adding 'constexpr' in C++11 for literal types.
9559 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
9560 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
9561 << DclT << Init->getSourceRange()
9562 << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
9563 VDecl->setConstexpr(true);
9564
9565 } else {
9566 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
9567 << DclT << Init->getSourceRange();
9568 VDecl->setInvalidDecl();
9569 }
9570 } else if (VDecl->isFileVarDecl()) {
9571 if (VDecl->getStorageClass() == SC_Extern &&
9572 (!getLangOpts().CPlusPlus ||
9573 !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
9574 VDecl->isExternC())) &&
9575 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
9576 Diag(VDecl->getLocation(), diag::warn_extern_init);
9577
9578 // C99 6.7.8p4. All file scoped initializers need to be constant.
9579 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
9580 CheckForConstantInitializer(Init, DclT);
9581 }
9582
9583 // We will represent direct-initialization similarly to copy-initialization:
9584 // int x(1); -as-> int x = 1;
9585 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9586 //
9587 // Clients that want to distinguish between the two forms, can check for
9588 // direct initializer using VarDecl::getInitStyle().
9589 // A major benefit is that clients that don't particularly care about which
9590 // exactly form was it (like the CodeGen) can handle both cases without
9591 // special case code.
9592
9593 // C++ 8.5p11:
9594 // The form of initialization (using parentheses or '=') is generally
9595 // insignificant, but does matter when the entity being initialized has a
9596 // class type.
9597 if (CXXDirectInit) {
9598 assert(DirectInit && "Call-style initializer must be direct init.");
9599 VDecl->setInitStyle(VarDecl::CallInit);
9600 } else if (DirectInit) {
9601 // This must be list-initialization. No other way is direct-initialization.
9602 VDecl->setInitStyle(VarDecl::ListInit);
9603 }
9604
9605 CheckCompleteVariableDeclaration(VDecl);
9606 }
9607
9608 /// ActOnInitializerError - Given that there was an error parsing an
9609 /// initializer for the given declaration, try to return to some form
9610 /// of sanity.
ActOnInitializerError(Decl * D)9611 void Sema::ActOnInitializerError(Decl *D) {
9612 // Our main concern here is re-establishing invariants like "a
9613 // variable's type is either dependent or complete".
9614 if (!D || D->isInvalidDecl()) return;
9615
9616 VarDecl *VD = dyn_cast<VarDecl>(D);
9617 if (!VD) return;
9618
9619 // Auto types are meaningless if we can't make sense of the initializer.
9620 if (ParsingInitForAutoVars.count(D)) {
9621 D->setInvalidDecl();
9622 return;
9623 }
9624
9625 QualType Ty = VD->getType();
9626 if (Ty->isDependentType()) return;
9627
9628 // Require a complete type.
9629 if (RequireCompleteType(VD->getLocation(),
9630 Context.getBaseElementType(Ty),
9631 diag::err_typecheck_decl_incomplete_type)) {
9632 VD->setInvalidDecl();
9633 return;
9634 }
9635
9636 // Require a non-abstract type.
9637 if (RequireNonAbstractType(VD->getLocation(), Ty,
9638 diag::err_abstract_type_in_decl,
9639 AbstractVariableType)) {
9640 VD->setInvalidDecl();
9641 return;
9642 }
9643
9644 // Don't bother complaining about constructors or destructors,
9645 // though.
9646 }
9647
ActOnUninitializedDecl(Decl * RealDecl,bool TypeMayContainAuto)9648 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
9649 bool TypeMayContainAuto) {
9650 // If there is no declaration, there was an error parsing it. Just ignore it.
9651 if (!RealDecl)
9652 return;
9653
9654 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
9655 QualType Type = Var->getType();
9656
9657 // C++11 [dcl.spec.auto]p3
9658 if (TypeMayContainAuto && Type->getContainedAutoType()) {
9659 Diag(Var->getLocation(), diag::err_auto_var_requires_init)
9660 << Var->getDeclName() << Type;
9661 Var->setInvalidDecl();
9662 return;
9663 }
9664
9665 // C++11 [class.static.data]p3: A static data member can be declared with
9666 // the constexpr specifier; if so, its declaration shall specify
9667 // a brace-or-equal-initializer.
9668 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
9669 // the definition of a variable [...] or the declaration of a static data
9670 // member.
9671 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
9672 if (Var->isStaticDataMember())
9673 Diag(Var->getLocation(),
9674 diag::err_constexpr_static_mem_var_requires_init)
9675 << Var->getDeclName();
9676 else
9677 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
9678 Var->setInvalidDecl();
9679 return;
9680 }
9681
9682 // C++ Concepts TS [dcl.spec.concept]p1: [...] A variable template
9683 // definition having the concept specifier is called a variable concept. A
9684 // concept definition refers to [...] a variable concept and its initializer.
9685 if (Var->isConcept()) {
9686 Diag(Var->getLocation(), diag::err_var_concept_not_initialized);
9687 Var->setInvalidDecl();
9688 return;
9689 }
9690
9691 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
9692 // be initialized.
9693 if (!Var->isInvalidDecl() &&
9694 Var->getType().getAddressSpace() == LangAS::opencl_constant &&
9695 Var->getStorageClass() != SC_Extern && !Var->getInit()) {
9696 Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
9697 Var->setInvalidDecl();
9698 return;
9699 }
9700
9701 switch (Var->isThisDeclarationADefinition()) {
9702 case VarDecl::Definition:
9703 if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
9704 break;
9705
9706 // We have an out-of-line definition of a static data member
9707 // that has an in-class initializer, so we type-check this like
9708 // a declaration.
9709 //
9710 // Fall through
9711
9712 case VarDecl::DeclarationOnly:
9713 // It's only a declaration.
9714
9715 // Block scope. C99 6.7p7: If an identifier for an object is
9716 // declared with no linkage (C99 6.2.2p6), the type for the
9717 // object shall be complete.
9718 if (!Type->isDependentType() && Var->isLocalVarDecl() &&
9719 !Var->hasLinkage() && !Var->isInvalidDecl() &&
9720 RequireCompleteType(Var->getLocation(), Type,
9721 diag::err_typecheck_decl_incomplete_type))
9722 Var->setInvalidDecl();
9723
9724 // Make sure that the type is not abstract.
9725 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
9726 RequireNonAbstractType(Var->getLocation(), Type,
9727 diag::err_abstract_type_in_decl,
9728 AbstractVariableType))
9729 Var->setInvalidDecl();
9730 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
9731 Var->getStorageClass() == SC_PrivateExtern) {
9732 Diag(Var->getLocation(), diag::warn_private_extern);
9733 Diag(Var->getLocation(), diag::note_private_extern);
9734 }
9735
9736 return;
9737
9738 case VarDecl::TentativeDefinition:
9739 // File scope. C99 6.9.2p2: A declaration of an identifier for an
9740 // object that has file scope without an initializer, and without a
9741 // storage-class specifier or with the storage-class specifier "static",
9742 // constitutes a tentative definition. Note: A tentative definition with
9743 // external linkage is valid (C99 6.2.2p5).
9744 if (!Var->isInvalidDecl()) {
9745 if (const IncompleteArrayType *ArrayT
9746 = Context.getAsIncompleteArrayType(Type)) {
9747 if (RequireCompleteType(Var->getLocation(),
9748 ArrayT->getElementType(),
9749 diag::err_illegal_decl_array_incomplete_type))
9750 Var->setInvalidDecl();
9751 } else if (Var->getStorageClass() == SC_Static) {
9752 // C99 6.9.2p3: If the declaration of an identifier for an object is
9753 // a tentative definition and has internal linkage (C99 6.2.2p3), the
9754 // declared type shall not be an incomplete type.
9755 // NOTE: code such as the following
9756 // static struct s;
9757 // struct s { int a; };
9758 // is accepted by gcc. Hence here we issue a warning instead of
9759 // an error and we do not invalidate the static declaration.
9760 // NOTE: to avoid multiple warnings, only check the first declaration.
9761 if (Var->isFirstDecl())
9762 RequireCompleteType(Var->getLocation(), Type,
9763 diag::ext_typecheck_decl_incomplete_type);
9764 }
9765 }
9766
9767 // Record the tentative definition; we're done.
9768 if (!Var->isInvalidDecl())
9769 TentativeDefinitions.push_back(Var);
9770 return;
9771 }
9772
9773 // Provide a specific diagnostic for uninitialized variable
9774 // definitions with incomplete array type.
9775 if (Type->isIncompleteArrayType()) {
9776 Diag(Var->getLocation(),
9777 diag::err_typecheck_incomplete_array_needs_initializer);
9778 Var->setInvalidDecl();
9779 return;
9780 }
9781
9782 // Provide a specific diagnostic for uninitialized variable
9783 // definitions with reference type.
9784 if (Type->isReferenceType()) {
9785 Diag(Var->getLocation(), diag::err_reference_var_requires_init)
9786 << Var->getDeclName()
9787 << SourceRange(Var->getLocation(), Var->getLocation());
9788 Var->setInvalidDecl();
9789 return;
9790 }
9791
9792 // Do not attempt to type-check the default initializer for a
9793 // variable with dependent type.
9794 if (Type->isDependentType())
9795 return;
9796
9797 if (Var->isInvalidDecl())
9798 return;
9799
9800 if (!Var->hasAttr<AliasAttr>()) {
9801 if (RequireCompleteType(Var->getLocation(),
9802 Context.getBaseElementType(Type),
9803 diag::err_typecheck_decl_incomplete_type)) {
9804 Var->setInvalidDecl();
9805 return;
9806 }
9807 } else {
9808 return;
9809 }
9810
9811 // The variable can not have an abstract class type.
9812 if (RequireNonAbstractType(Var->getLocation(), Type,
9813 diag::err_abstract_type_in_decl,
9814 AbstractVariableType)) {
9815 Var->setInvalidDecl();
9816 return;
9817 }
9818
9819 // Check for jumps past the implicit initializer. C++0x
9820 // clarifies that this applies to a "variable with automatic
9821 // storage duration", not a "local variable".
9822 // C++11 [stmt.dcl]p3
9823 // A program that jumps from a point where a variable with automatic
9824 // storage duration is not in scope to a point where it is in scope is
9825 // ill-formed unless the variable has scalar type, class type with a
9826 // trivial default constructor and a trivial destructor, a cv-qualified
9827 // version of one of these types, or an array of one of the preceding
9828 // types and is declared without an initializer.
9829 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
9830 if (const RecordType *Record
9831 = Context.getBaseElementType(Type)->getAs<RecordType>()) {
9832 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
9833 // Mark the function for further checking even if the looser rules of
9834 // C++11 do not require such checks, so that we can diagnose
9835 // incompatibilities with C++98.
9836 if (!CXXRecord->isPOD())
9837 getCurFunction()->setHasBranchProtectedScope();
9838 }
9839 }
9840
9841 // C++03 [dcl.init]p9:
9842 // If no initializer is specified for an object, and the
9843 // object is of (possibly cv-qualified) non-POD class type (or
9844 // array thereof), the object shall be default-initialized; if
9845 // the object is of const-qualified type, the underlying class
9846 // type shall have a user-declared default
9847 // constructor. Otherwise, if no initializer is specified for
9848 // a non- static object, the object and its subobjects, if
9849 // any, have an indeterminate initial value); if the object
9850 // or any of its subobjects are of const-qualified type, the
9851 // program is ill-formed.
9852 // C++0x [dcl.init]p11:
9853 // If no initializer is specified for an object, the object is
9854 // default-initialized; [...].
9855 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
9856 InitializationKind Kind
9857 = InitializationKind::CreateDefault(Var->getLocation());
9858
9859 InitializationSequence InitSeq(*this, Entity, Kind, None);
9860 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
9861 if (Init.isInvalid())
9862 Var->setInvalidDecl();
9863 else if (Init.get()) {
9864 Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
9865 // This is important for template substitution.
9866 Var->setInitStyle(VarDecl::CallInit);
9867 }
9868
9869 CheckCompleteVariableDeclaration(Var);
9870 }
9871 }
9872
ActOnCXXForRangeDecl(Decl * D)9873 void Sema::ActOnCXXForRangeDecl(Decl *D) {
9874 VarDecl *VD = dyn_cast<VarDecl>(D);
9875 if (!VD) {
9876 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
9877 D->setInvalidDecl();
9878 return;
9879 }
9880
9881 VD->setCXXForRangeDecl(true);
9882
9883 // for-range-declaration cannot be given a storage class specifier.
9884 int Error = -1;
9885 switch (VD->getStorageClass()) {
9886 case SC_None:
9887 break;
9888 case SC_Extern:
9889 Error = 0;
9890 break;
9891 case SC_Static:
9892 Error = 1;
9893 break;
9894 case SC_PrivateExtern:
9895 Error = 2;
9896 break;
9897 case SC_Auto:
9898 Error = 3;
9899 break;
9900 case SC_Register:
9901 Error = 4;
9902 break;
9903 }
9904 if (Error != -1) {
9905 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
9906 << VD->getDeclName() << Error;
9907 D->setInvalidDecl();
9908 }
9909 }
9910
9911 StmtResult
ActOnCXXForRangeIdentifier(Scope * S,SourceLocation IdentLoc,IdentifierInfo * Ident,ParsedAttributes & Attrs,SourceLocation AttrEnd)9912 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
9913 IdentifierInfo *Ident,
9914 ParsedAttributes &Attrs,
9915 SourceLocation AttrEnd) {
9916 // C++1y [stmt.iter]p1:
9917 // A range-based for statement of the form
9918 // for ( for-range-identifier : for-range-initializer ) statement
9919 // is equivalent to
9920 // for ( auto&& for-range-identifier : for-range-initializer ) statement
9921 DeclSpec DS(Attrs.getPool().getFactory());
9922
9923 const char *PrevSpec;
9924 unsigned DiagID;
9925 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
9926 getPrintingPolicy());
9927
9928 Declarator D(DS, Declarator::ForContext);
9929 D.SetIdentifier(Ident, IdentLoc);
9930 D.takeAttributes(Attrs, AttrEnd);
9931
9932 ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory());
9933 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/false),
9934 EmptyAttrs, IdentLoc);
9935 Decl *Var = ActOnDeclarator(S, D);
9936 cast<VarDecl>(Var)->setCXXForRangeDecl(true);
9937 FinalizeDeclaration(Var);
9938 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
9939 AttrEnd.isValid() ? AttrEnd : IdentLoc);
9940 }
9941
CheckCompleteVariableDeclaration(VarDecl * var)9942 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
9943 if (var->isInvalidDecl()) return;
9944
9945 // In Objective-C, don't allow jumps past the implicit initialization of a
9946 // local retaining variable.
9947 if (getLangOpts().ObjC1 &&
9948 var->hasLocalStorage()) {
9949 switch (var->getType().getObjCLifetime()) {
9950 case Qualifiers::OCL_None:
9951 case Qualifiers::OCL_ExplicitNone:
9952 case Qualifiers::OCL_Autoreleasing:
9953 break;
9954
9955 case Qualifiers::OCL_Weak:
9956 case Qualifiers::OCL_Strong:
9957 getCurFunction()->setHasBranchProtectedScope();
9958 break;
9959 }
9960 }
9961
9962 // Warn about externally-visible variables being defined without a
9963 // prior declaration. We only want to do this for global
9964 // declarations, but we also specifically need to avoid doing it for
9965 // class members because the linkage of an anonymous class can
9966 // change if it's later given a typedef name.
9967 if (var->isThisDeclarationADefinition() &&
9968 var->getDeclContext()->getRedeclContext()->isFileContext() &&
9969 var->isExternallyVisible() && var->hasLinkage() &&
9970 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
9971 var->getLocation())) {
9972 // Find a previous declaration that's not a definition.
9973 VarDecl *prev = var->getPreviousDecl();
9974 while (prev && prev->isThisDeclarationADefinition())
9975 prev = prev->getPreviousDecl();
9976
9977 if (!prev)
9978 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
9979 }
9980
9981 if (var->getTLSKind() == VarDecl::TLS_Static) {
9982 const Expr *Culprit;
9983 if (var->getType().isDestructedType()) {
9984 // GNU C++98 edits for __thread, [basic.start.term]p3:
9985 // The type of an object with thread storage duration shall not
9986 // have a non-trivial destructor.
9987 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
9988 if (getLangOpts().CPlusPlus11)
9989 Diag(var->getLocation(), diag::note_use_thread_local);
9990 } else if (getLangOpts().CPlusPlus && var->hasInit() &&
9991 !var->getInit()->isConstantInitializer(
9992 Context, var->getType()->isReferenceType(), &Culprit)) {
9993 // GNU C++98 edits for __thread, [basic.start.init]p4:
9994 // An object of thread storage duration shall not require dynamic
9995 // initialization.
9996 // FIXME: Need strict checking here.
9997 Diag(Culprit->getExprLoc(), diag::err_thread_dynamic_init)
9998 << Culprit->getSourceRange();
9999 if (getLangOpts().CPlusPlus11)
10000 Diag(var->getLocation(), diag::note_use_thread_local);
10001 }
10002
10003 }
10004
10005 // Apply section attributes and pragmas to global variables.
10006 bool GlobalStorage = var->hasGlobalStorage();
10007 if (GlobalStorage && var->isThisDeclarationADefinition() &&
10008 ActiveTemplateInstantiations.empty()) {
10009 PragmaStack<StringLiteral *> *Stack = nullptr;
10010 int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
10011 if (var->getType().isConstQualified())
10012 Stack = &ConstSegStack;
10013 else if (!var->getInit()) {
10014 Stack = &BSSSegStack;
10015 SectionFlags |= ASTContext::PSF_Write;
10016 } else {
10017 Stack = &DataSegStack;
10018 SectionFlags |= ASTContext::PSF_Write;
10019 }
10020 if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) {
10021 var->addAttr(SectionAttr::CreateImplicit(
10022 Context, SectionAttr::Declspec_allocate,
10023 Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation));
10024 }
10025 if (const SectionAttr *SA = var->getAttr<SectionAttr>())
10026 if (UnifySection(SA->getName(), SectionFlags, var))
10027 var->dropAttr<SectionAttr>();
10028
10029 // Apply the init_seg attribute if this has an initializer. If the
10030 // initializer turns out to not be dynamic, we'll end up ignoring this
10031 // attribute.
10032 if (CurInitSeg && var->getInit())
10033 var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
10034 CurInitSegLoc));
10035 }
10036
10037 // All the following checks are C++ only.
10038 if (!getLangOpts().CPlusPlus) return;
10039
10040 QualType type = var->getType();
10041 if (type->isDependentType()) return;
10042
10043 // __block variables might require us to capture a copy-initializer.
10044 if (var->hasAttr<BlocksAttr>()) {
10045 // It's currently invalid to ever have a __block variable with an
10046 // array type; should we diagnose that here?
10047
10048 // Regardless, we don't want to ignore array nesting when
10049 // constructing this copy.
10050 if (type->isStructureOrClassType()) {
10051 EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
10052 SourceLocation poi = var->getLocation();
10053 Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
10054 ExprResult result
10055 = PerformMoveOrCopyInitialization(
10056 InitializedEntity::InitializeBlock(poi, type, false),
10057 var, var->getType(), varRef, /*AllowNRVO=*/true);
10058 if (!result.isInvalid()) {
10059 result = MaybeCreateExprWithCleanups(result);
10060 Expr *init = result.getAs<Expr>();
10061 Context.setBlockVarCopyInits(var, init);
10062 }
10063 }
10064 }
10065
10066 Expr *Init = var->getInit();
10067 bool IsGlobal = GlobalStorage && !var->isStaticLocal();
10068 QualType baseType = Context.getBaseElementType(type);
10069
10070 if (!var->getDeclContext()->isDependentContext() &&
10071 Init && !Init->isValueDependent()) {
10072 if (IsGlobal && !var->isConstexpr() &&
10073 !getDiagnostics().isIgnored(diag::warn_global_constructor,
10074 var->getLocation())) {
10075 // Warn about globals which don't have a constant initializer. Don't
10076 // warn about globals with a non-trivial destructor because we already
10077 // warned about them.
10078 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
10079 if (!(RD && !RD->hasTrivialDestructor()) &&
10080 !Init->isConstantInitializer(Context, baseType->isReferenceType()))
10081 Diag(var->getLocation(), diag::warn_global_constructor)
10082 << Init->getSourceRange();
10083 }
10084
10085 if (var->isConstexpr()) {
10086 SmallVector<PartialDiagnosticAt, 8> Notes;
10087 if (!var->evaluateValue(Notes) || !var->isInitICE()) {
10088 SourceLocation DiagLoc = var->getLocation();
10089 // If the note doesn't add any useful information other than a source
10090 // location, fold it into the primary diagnostic.
10091 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
10092 diag::note_invalid_subexpr_in_const_expr) {
10093 DiagLoc = Notes[0].first;
10094 Notes.clear();
10095 }
10096 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
10097 << var << Init->getSourceRange();
10098 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
10099 Diag(Notes[I].first, Notes[I].second);
10100 }
10101 } else if (var->isUsableInConstantExpressions(Context)) {
10102 // Check whether the initializer of a const variable of integral or
10103 // enumeration type is an ICE now, since we can't tell whether it was
10104 // initialized by a constant expression if we check later.
10105 var->checkInitIsICE();
10106 }
10107 }
10108
10109 // Require the destructor.
10110 if (const RecordType *recordType = baseType->getAs<RecordType>())
10111 FinalizeVarWithDestructor(var, recordType);
10112 }
10113
10114 /// \brief Determines if a variable's alignment is dependent.
hasDependentAlignment(VarDecl * VD)10115 static bool hasDependentAlignment(VarDecl *VD) {
10116 if (VD->getType()->isDependentType())
10117 return true;
10118 for (auto *I : VD->specific_attrs<AlignedAttr>())
10119 if (I->isAlignmentDependent())
10120 return true;
10121 return false;
10122 }
10123
10124 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
10125 /// any semantic actions necessary after any initializer has been attached.
10126 void
FinalizeDeclaration(Decl * ThisDecl)10127 Sema::FinalizeDeclaration(Decl *ThisDecl) {
10128 // Note that we are no longer parsing the initializer for this declaration.
10129 ParsingInitForAutoVars.erase(ThisDecl);
10130
10131 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
10132 if (!VD)
10133 return;
10134
10135 checkAttributesAfterMerging(*this, *VD);
10136
10137 // Perform TLS alignment check here after attributes attached to the variable
10138 // which may affect the alignment have been processed. Only perform the check
10139 // if the target has a maximum TLS alignment (zero means no constraints).
10140 if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
10141 // Protect the check so that it's not performed on dependent types and
10142 // dependent alignments (we can't determine the alignment in that case).
10143 if (VD->getTLSKind() && !hasDependentAlignment(VD)) {
10144 CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
10145 if (Context.getDeclAlign(VD) > MaxAlignChars) {
10146 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
10147 << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
10148 << (unsigned)MaxAlignChars.getQuantity();
10149 }
10150 }
10151 }
10152
10153 // Static locals inherit dll attributes from their function.
10154 if (VD->isStaticLocal()) {
10155 if (FunctionDecl *FD =
10156 dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
10157 if (Attr *A = getDLLAttr(FD)) {
10158 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
10159 NewAttr->setInherited(true);
10160 VD->addAttr(NewAttr);
10161 }
10162 }
10163 }
10164
10165 // Grab the dllimport or dllexport attribute off of the VarDecl.
10166 const InheritableAttr *DLLAttr = getDLLAttr(VD);
10167
10168 // Imported static data members cannot be defined out-of-line.
10169 if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
10170 if (VD->isStaticDataMember() && VD->isOutOfLine() &&
10171 VD->isThisDeclarationADefinition()) {
10172 // We allow definitions of dllimport class template static data members
10173 // with a warning.
10174 CXXRecordDecl *Context =
10175 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
10176 bool IsClassTemplateMember =
10177 isa<ClassTemplatePartialSpecializationDecl>(Context) ||
10178 Context->getDescribedClassTemplate();
10179
10180 Diag(VD->getLocation(),
10181 IsClassTemplateMember
10182 ? diag::warn_attribute_dllimport_static_field_definition
10183 : diag::err_attribute_dllimport_static_field_definition);
10184 Diag(IA->getLocation(), diag::note_attribute);
10185 if (!IsClassTemplateMember)
10186 VD->setInvalidDecl();
10187 }
10188 }
10189
10190 // dllimport/dllexport variables cannot be thread local, their TLS index
10191 // isn't exported with the variable.
10192 if (DLLAttr && VD->getTLSKind()) {
10193 auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
10194 if (F && getDLLAttr(F)) {
10195 assert(VD->isStaticLocal());
10196 // But if this is a static local in a dlimport/dllexport function, the
10197 // function will never be inlined, which means the var would never be
10198 // imported, so having it marked import/export is safe.
10199 } else {
10200 Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
10201 << DLLAttr;
10202 VD->setInvalidDecl();
10203 }
10204 }
10205
10206 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
10207 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
10208 Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
10209 VD->dropAttr<UsedAttr>();
10210 }
10211 }
10212
10213 const DeclContext *DC = VD->getDeclContext();
10214 // If there's a #pragma GCC visibility in scope, and this isn't a class
10215 // member, set the visibility of this variable.
10216 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
10217 AddPushedVisibilityAttribute(VD);
10218
10219 // FIXME: Warn on unused templates.
10220 if (VD->isFileVarDecl() && !VD->getDescribedVarTemplate() &&
10221 !isa<VarTemplatePartialSpecializationDecl>(VD))
10222 MarkUnusedFileScopedDecl(VD);
10223
10224 // Now we have parsed the initializer and can update the table of magic
10225 // tag values.
10226 if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
10227 !VD->getType()->isIntegralOrEnumerationType())
10228 return;
10229
10230 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
10231 const Expr *MagicValueExpr = VD->getInit();
10232 if (!MagicValueExpr) {
10233 continue;
10234 }
10235 llvm::APSInt MagicValueInt;
10236 if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
10237 Diag(I->getRange().getBegin(),
10238 diag::err_type_tag_for_datatype_not_ice)
10239 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
10240 continue;
10241 }
10242 if (MagicValueInt.getActiveBits() > 64) {
10243 Diag(I->getRange().getBegin(),
10244 diag::err_type_tag_for_datatype_too_large)
10245 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
10246 continue;
10247 }
10248 uint64_t MagicValue = MagicValueInt.getZExtValue();
10249 RegisterTypeTagForDatatype(I->getArgumentKind(),
10250 MagicValue,
10251 I->getMatchingCType(),
10252 I->getLayoutCompatible(),
10253 I->getMustBeNull());
10254 }
10255 }
10256
FinalizeDeclaratorGroup(Scope * S,const DeclSpec & DS,ArrayRef<Decl * > Group)10257 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
10258 ArrayRef<Decl *> Group) {
10259 SmallVector<Decl*, 8> Decls;
10260
10261 if (DS.isTypeSpecOwned())
10262 Decls.push_back(DS.getRepAsDecl());
10263
10264 DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
10265 for (unsigned i = 0, e = Group.size(); i != e; ++i)
10266 if (Decl *D = Group[i]) {
10267 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D))
10268 if (!FirstDeclaratorInGroup)
10269 FirstDeclaratorInGroup = DD;
10270 Decls.push_back(D);
10271 }
10272
10273 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
10274 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
10275 handleTagNumbering(Tag, S);
10276 if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
10277 getLangOpts().CPlusPlus)
10278 Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
10279 }
10280 }
10281
10282 return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
10283 }
10284
10285 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
10286 /// group, performing any necessary semantic checking.
10287 Sema::DeclGroupPtrTy
BuildDeclaratorGroup(MutableArrayRef<Decl * > Group,bool TypeMayContainAuto)10288 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group,
10289 bool TypeMayContainAuto) {
10290 // C++0x [dcl.spec.auto]p7:
10291 // If the type deduced for the template parameter U is not the same in each
10292 // deduction, the program is ill-formed.
10293 // FIXME: When initializer-list support is added, a distinction is needed
10294 // between the deduced type U and the deduced type which 'auto' stands for.
10295 // auto a = 0, b = { 1, 2, 3 };
10296 // is legal because the deduced type U is 'int' in both cases.
10297 if (TypeMayContainAuto && Group.size() > 1) {
10298 QualType Deduced;
10299 CanQualType DeducedCanon;
10300 VarDecl *DeducedDecl = nullptr;
10301 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
10302 if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
10303 AutoType *AT = D->getType()->getContainedAutoType();
10304 // Don't reissue diagnostics when instantiating a template.
10305 if (AT && D->isInvalidDecl())
10306 break;
10307 QualType U = AT ? AT->getDeducedType() : QualType();
10308 if (!U.isNull()) {
10309 CanQualType UCanon = Context.getCanonicalType(U);
10310 if (Deduced.isNull()) {
10311 Deduced = U;
10312 DeducedCanon = UCanon;
10313 DeducedDecl = D;
10314 } else if (DeducedCanon != UCanon) {
10315 Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
10316 diag::err_auto_different_deductions)
10317 << (unsigned)AT->getKeyword()
10318 << Deduced << DeducedDecl->getDeclName()
10319 << U << D->getDeclName()
10320 << DeducedDecl->getInit()->getSourceRange()
10321 << D->getInit()->getSourceRange();
10322 D->setInvalidDecl();
10323 break;
10324 }
10325 }
10326 }
10327 }
10328 }
10329
10330 ActOnDocumentableDecls(Group);
10331
10332 return DeclGroupPtrTy::make(
10333 DeclGroupRef::Create(Context, Group.data(), Group.size()));
10334 }
10335
ActOnDocumentableDecl(Decl * D)10336 void Sema::ActOnDocumentableDecl(Decl *D) {
10337 ActOnDocumentableDecls(D);
10338 }
10339
ActOnDocumentableDecls(ArrayRef<Decl * > Group)10340 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
10341 // Don't parse the comment if Doxygen diagnostics are ignored.
10342 if (Group.empty() || !Group[0])
10343 return;
10344
10345 if (Diags.isIgnored(diag::warn_doc_param_not_found,
10346 Group[0]->getLocation()) &&
10347 Diags.isIgnored(diag::warn_unknown_comment_command_name,
10348 Group[0]->getLocation()))
10349 return;
10350
10351 if (Group.size() >= 2) {
10352 // This is a decl group. Normally it will contain only declarations
10353 // produced from declarator list. But in case we have any definitions or
10354 // additional declaration references:
10355 // 'typedef struct S {} S;'
10356 // 'typedef struct S *S;'
10357 // 'struct S *pS;'
10358 // FinalizeDeclaratorGroup adds these as separate declarations.
10359 Decl *MaybeTagDecl = Group[0];
10360 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
10361 Group = Group.slice(1);
10362 }
10363 }
10364
10365 // See if there are any new comments that are not attached to a decl.
10366 ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
10367 if (!Comments.empty() &&
10368 !Comments.back()->isAttached()) {
10369 // There is at least one comment that not attached to a decl.
10370 // Maybe it should be attached to one of these decls?
10371 //
10372 // Note that this way we pick up not only comments that precede the
10373 // declaration, but also comments that *follow* the declaration -- thanks to
10374 // the lookahead in the lexer: we've consumed the semicolon and looked
10375 // ahead through comments.
10376 for (unsigned i = 0, e = Group.size(); i != e; ++i)
10377 Context.getCommentForDecl(Group[i], &PP);
10378 }
10379 }
10380
10381 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
10382 /// to introduce parameters into function prototype scope.
ActOnParamDeclarator(Scope * S,Declarator & D)10383 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
10384 const DeclSpec &DS = D.getDeclSpec();
10385
10386 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
10387
10388 // C++03 [dcl.stc]p2 also permits 'auto'.
10389 StorageClass SC = SC_None;
10390 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
10391 SC = SC_Register;
10392 } else if (getLangOpts().CPlusPlus &&
10393 DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
10394 SC = SC_Auto;
10395 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
10396 Diag(DS.getStorageClassSpecLoc(),
10397 diag::err_invalid_storage_class_in_func_decl);
10398 D.getMutableDeclSpec().ClearStorageClassSpecs();
10399 }
10400
10401 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
10402 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
10403 << DeclSpec::getSpecifierName(TSCS);
10404 if (DS.isConstexprSpecified())
10405 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
10406 << 0;
10407 if (DS.isConceptSpecified())
10408 Diag(DS.getConceptSpecLoc(), diag::err_concept_wrong_decl_kind);
10409
10410 DiagnoseFunctionSpecifiers(DS);
10411
10412 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10413 QualType parmDeclType = TInfo->getType();
10414
10415 if (getLangOpts().CPlusPlus) {
10416 // Check that there are no default arguments inside the type of this
10417 // parameter.
10418 CheckExtraCXXDefaultArguments(D);
10419
10420 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
10421 if (D.getCXXScopeSpec().isSet()) {
10422 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
10423 << D.getCXXScopeSpec().getRange();
10424 D.getCXXScopeSpec().clear();
10425 }
10426 }
10427
10428 // Ensure we have a valid name
10429 IdentifierInfo *II = nullptr;
10430 if (D.hasName()) {
10431 II = D.getIdentifier();
10432 if (!II) {
10433 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
10434 << GetNameForDeclarator(D).getName();
10435 D.setInvalidType(true);
10436 }
10437 }
10438
10439 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
10440 if (II) {
10441 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
10442 ForRedeclaration);
10443 LookupName(R, S);
10444 if (R.isSingleResult()) {
10445 NamedDecl *PrevDecl = R.getFoundDecl();
10446 if (PrevDecl->isTemplateParameter()) {
10447 // Maybe we will complain about the shadowed template parameter.
10448 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10449 // Just pretend that we didn't see the previous declaration.
10450 PrevDecl = nullptr;
10451 } else if (S->isDeclScope(PrevDecl)) {
10452 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
10453 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10454
10455 // Recover by removing the name
10456 II = nullptr;
10457 D.SetIdentifier(nullptr, D.getIdentifierLoc());
10458 D.setInvalidType(true);
10459 }
10460 }
10461 }
10462
10463 // Temporarily put parameter variables in the translation unit, not
10464 // the enclosing context. This prevents them from accidentally
10465 // looking like class members in C++.
10466 ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
10467 D.getLocStart(),
10468 D.getIdentifierLoc(), II,
10469 parmDeclType, TInfo,
10470 SC);
10471
10472 if (D.isInvalidType())
10473 New->setInvalidDecl();
10474
10475 assert(S->isFunctionPrototypeScope());
10476 assert(S->getFunctionPrototypeDepth() >= 1);
10477 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
10478 S->getNextFunctionPrototypeIndex());
10479
10480 // Add the parameter declaration into this scope.
10481 S->AddDecl(New);
10482 if (II)
10483 IdResolver.AddDecl(New);
10484
10485 ProcessDeclAttributes(S, New, D);
10486
10487 if (D.getDeclSpec().isModulePrivateSpecified())
10488 Diag(New->getLocation(), diag::err_module_private_local)
10489 << 1 << New->getDeclName()
10490 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
10491 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
10492
10493 if (New->hasAttr<BlocksAttr>()) {
10494 Diag(New->getLocation(), diag::err_block_on_nonlocal);
10495 }
10496 return New;
10497 }
10498
10499 /// \brief Synthesizes a variable for a parameter arising from a
10500 /// typedef.
BuildParmVarDeclForTypedef(DeclContext * DC,SourceLocation Loc,QualType T)10501 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
10502 SourceLocation Loc,
10503 QualType T) {
10504 /* FIXME: setting StartLoc == Loc.
10505 Would it be worth to modify callers so as to provide proper source
10506 location for the unnamed parameters, embedding the parameter's type? */
10507 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
10508 T, Context.getTrivialTypeSourceInfo(T, Loc),
10509 SC_None, nullptr);
10510 Param->setImplicit();
10511 return Param;
10512 }
10513
DiagnoseUnusedParameters(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd)10514 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
10515 ParmVarDecl * const *ParamEnd) {
10516 // Don't diagnose unused-parameter errors in template instantiations; we
10517 // will already have done so in the template itself.
10518 if (!ActiveTemplateInstantiations.empty())
10519 return;
10520
10521 for (; Param != ParamEnd; ++Param) {
10522 if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
10523 !(*Param)->hasAttr<UnusedAttr>()) {
10524 Diag((*Param)->getLocation(), diag::warn_unused_parameter)
10525 << (*Param)->getDeclName();
10526 }
10527 }
10528 }
10529
DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd,QualType ReturnTy,NamedDecl * D)10530 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
10531 ParmVarDecl * const *ParamEnd,
10532 QualType ReturnTy,
10533 NamedDecl *D) {
10534 if (LangOpts.NumLargeByValueCopy == 0) // No check.
10535 return;
10536
10537 // Warn if the return value is pass-by-value and larger than the specified
10538 // threshold.
10539 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
10540 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
10541 if (Size > LangOpts.NumLargeByValueCopy)
10542 Diag(D->getLocation(), diag::warn_return_value_size)
10543 << D->getDeclName() << Size;
10544 }
10545
10546 // Warn if any parameter is pass-by-value and larger than the specified
10547 // threshold.
10548 for (; Param != ParamEnd; ++Param) {
10549 QualType T = (*Param)->getType();
10550 if (T->isDependentType() || !T.isPODType(Context))
10551 continue;
10552 unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
10553 if (Size > LangOpts.NumLargeByValueCopy)
10554 Diag((*Param)->getLocation(), diag::warn_parameter_size)
10555 << (*Param)->getDeclName() << Size;
10556 }
10557 }
10558
CheckParameter(DeclContext * DC,SourceLocation StartLoc,SourceLocation NameLoc,IdentifierInfo * Name,QualType T,TypeSourceInfo * TSInfo,StorageClass SC)10559 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
10560 SourceLocation NameLoc, IdentifierInfo *Name,
10561 QualType T, TypeSourceInfo *TSInfo,
10562 StorageClass SC) {
10563 // In ARC, infer a lifetime qualifier for appropriate parameter types.
10564 if (getLangOpts().ObjCAutoRefCount &&
10565 T.getObjCLifetime() == Qualifiers::OCL_None &&
10566 T->isObjCLifetimeType()) {
10567
10568 Qualifiers::ObjCLifetime lifetime;
10569
10570 // Special cases for arrays:
10571 // - if it's const, use __unsafe_unretained
10572 // - otherwise, it's an error
10573 if (T->isArrayType()) {
10574 if (!T.isConstQualified()) {
10575 DelayedDiagnostics.add(
10576 sema::DelayedDiagnostic::makeForbiddenType(
10577 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
10578 }
10579 lifetime = Qualifiers::OCL_ExplicitNone;
10580 } else {
10581 lifetime = T->getObjCARCImplicitLifetime();
10582 }
10583 T = Context.getLifetimeQualifiedType(T, lifetime);
10584 }
10585
10586 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
10587 Context.getAdjustedParameterType(T),
10588 TSInfo, SC, nullptr);
10589
10590 // Parameters can not be abstract class types.
10591 // For record types, this is done by the AbstractClassUsageDiagnoser once
10592 // the class has been completely parsed.
10593 if (!CurContext->isRecord() &&
10594 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
10595 AbstractParamType))
10596 New->setInvalidDecl();
10597
10598 // Parameter declarators cannot be interface types. All ObjC objects are
10599 // passed by reference.
10600 if (T->isObjCObjectType()) {
10601 SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
10602 Diag(NameLoc,
10603 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
10604 << FixItHint::CreateInsertion(TypeEndLoc, "*");
10605 T = Context.getObjCObjectPointerType(T);
10606 New->setType(T);
10607 }
10608
10609 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
10610 // duration shall not be qualified by an address-space qualifier."
10611 // Since all parameters have automatic store duration, they can not have
10612 // an address space.
10613 if (T.getAddressSpace() != 0) {
10614 // OpenCL allows function arguments declared to be an array of a type
10615 // to be qualified with an address space.
10616 if (!(getLangOpts().OpenCL && T->isArrayType())) {
10617 Diag(NameLoc, diag::err_arg_with_address_space);
10618 New->setInvalidDecl();
10619 }
10620 }
10621
10622 return New;
10623 }
10624
ActOnFinishKNRParamDeclarations(Scope * S,Declarator & D,SourceLocation LocAfterDecls)10625 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
10626 SourceLocation LocAfterDecls) {
10627 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10628
10629 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
10630 // for a K&R function.
10631 if (!FTI.hasPrototype) {
10632 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
10633 --i;
10634 if (FTI.Params[i].Param == nullptr) {
10635 SmallString<256> Code;
10636 llvm::raw_svector_ostream(Code)
10637 << " int " << FTI.Params[i].Ident->getName() << ";\n";
10638 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
10639 << FTI.Params[i].Ident
10640 << FixItHint::CreateInsertion(LocAfterDecls, Code);
10641
10642 // Implicitly declare the argument as type 'int' for lack of a better
10643 // type.
10644 AttributeFactory attrs;
10645 DeclSpec DS(attrs);
10646 const char* PrevSpec; // unused
10647 unsigned DiagID; // unused
10648 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
10649 DiagID, Context.getPrintingPolicy());
10650 // Use the identifier location for the type source range.
10651 DS.SetRangeStart(FTI.Params[i].IdentLoc);
10652 DS.SetRangeEnd(FTI.Params[i].IdentLoc);
10653 Declarator ParamD(DS, Declarator::KNRTypeListContext);
10654 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
10655 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
10656 }
10657 }
10658 }
10659 }
10660
10661 Decl *
ActOnStartOfFunctionDef(Scope * FnBodyScope,Declarator & D,MultiTemplateParamsArg TemplateParameterLists,SkipBodyInfo * SkipBody)10662 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
10663 MultiTemplateParamsArg TemplateParameterLists,
10664 SkipBodyInfo *SkipBody) {
10665 assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
10666 assert(D.isFunctionDeclarator() && "Not a function declarator!");
10667 Scope *ParentScope = FnBodyScope->getParent();
10668
10669 D.setFunctionDefinitionKind(FDK_Definition);
10670 Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
10671 return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
10672 }
10673
ActOnFinishInlineMethodDef(CXXMethodDecl * D)10674 void Sema::ActOnFinishInlineMethodDef(CXXMethodDecl *D) {
10675 Consumer.HandleInlineMethodDefinition(D);
10676 }
10677
ShouldWarnAboutMissingPrototype(const FunctionDecl * FD,const FunctionDecl * & PossibleZeroParamPrototype)10678 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
10679 const FunctionDecl*& PossibleZeroParamPrototype) {
10680 // Don't warn about invalid declarations.
10681 if (FD->isInvalidDecl())
10682 return false;
10683
10684 // Or declarations that aren't global.
10685 if (!FD->isGlobal())
10686 return false;
10687
10688 // Don't warn about C++ member functions.
10689 if (isa<CXXMethodDecl>(FD))
10690 return false;
10691
10692 // Don't warn about 'main'.
10693 if (FD->isMain())
10694 return false;
10695
10696 // Don't warn about inline functions.
10697 if (FD->isInlined())
10698 return false;
10699
10700 // Don't warn about function templates.
10701 if (FD->getDescribedFunctionTemplate())
10702 return false;
10703
10704 // Don't warn about function template specializations.
10705 if (FD->isFunctionTemplateSpecialization())
10706 return false;
10707
10708 // Don't warn for OpenCL kernels.
10709 if (FD->hasAttr<OpenCLKernelAttr>())
10710 return false;
10711
10712 // Don't warn on explicitly deleted functions.
10713 if (FD->isDeleted())
10714 return false;
10715
10716 bool MissingPrototype = true;
10717 for (const FunctionDecl *Prev = FD->getPreviousDecl();
10718 Prev; Prev = Prev->getPreviousDecl()) {
10719 // Ignore any declarations that occur in function or method
10720 // scope, because they aren't visible from the header.
10721 if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
10722 continue;
10723
10724 MissingPrototype = !Prev->getType()->isFunctionProtoType();
10725 if (FD->getNumParams() == 0)
10726 PossibleZeroParamPrototype = Prev;
10727 break;
10728 }
10729
10730 return MissingPrototype;
10731 }
10732
10733 void
CheckForFunctionRedefinition(FunctionDecl * FD,const FunctionDecl * EffectiveDefinition,SkipBodyInfo * SkipBody)10734 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
10735 const FunctionDecl *EffectiveDefinition,
10736 SkipBodyInfo *SkipBody) {
10737 // Don't complain if we're in GNU89 mode and the previous definition
10738 // was an extern inline function.
10739 const FunctionDecl *Definition = EffectiveDefinition;
10740 if (!Definition)
10741 if (!FD->isDefined(Definition))
10742 return;
10743
10744 if (canRedefineFunction(Definition, getLangOpts()))
10745 return;
10746
10747 // If we don't have a visible definition of the function, and it's inline or
10748 // a template, skip the new definition.
10749 if (SkipBody && !hasVisibleDefinition(Definition) &&
10750 (Definition->getFormalLinkage() == InternalLinkage ||
10751 Definition->isInlined() ||
10752 Definition->getDescribedFunctionTemplate() ||
10753 Definition->getNumTemplateParameterLists())) {
10754 SkipBody->ShouldSkip = true;
10755 if (auto *TD = Definition->getDescribedFunctionTemplate())
10756 makeMergedDefinitionVisible(TD, FD->getLocation());
10757 else
10758 makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition),
10759 FD->getLocation());
10760 return;
10761 }
10762
10763 if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
10764 Definition->getStorageClass() == SC_Extern)
10765 Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
10766 << FD->getDeclName() << getLangOpts().CPlusPlus;
10767 else
10768 Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
10769
10770 Diag(Definition->getLocation(), diag::note_previous_definition);
10771 FD->setInvalidDecl();
10772 }
10773
10774
RebuildLambdaScopeInfo(CXXMethodDecl * CallOperator,Sema & S)10775 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
10776 Sema &S) {
10777 CXXRecordDecl *const LambdaClass = CallOperator->getParent();
10778
10779 LambdaScopeInfo *LSI = S.PushLambdaScope();
10780 LSI->CallOperator = CallOperator;
10781 LSI->Lambda = LambdaClass;
10782 LSI->ReturnType = CallOperator->getReturnType();
10783 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
10784
10785 if (LCD == LCD_None)
10786 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
10787 else if (LCD == LCD_ByCopy)
10788 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
10789 else if (LCD == LCD_ByRef)
10790 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
10791 DeclarationNameInfo DNI = CallOperator->getNameInfo();
10792
10793 LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
10794 LSI->Mutable = !CallOperator->isConst();
10795
10796 // Add the captures to the LSI so they can be noted as already
10797 // captured within tryCaptureVar.
10798 auto I = LambdaClass->field_begin();
10799 for (const auto &C : LambdaClass->captures()) {
10800 if (C.capturesVariable()) {
10801 VarDecl *VD = C.getCapturedVar();
10802 if (VD->isInitCapture())
10803 S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
10804 QualType CaptureType = VD->getType();
10805 const bool ByRef = C.getCaptureKind() == LCK_ByRef;
10806 LSI->addCapture(VD, /*IsBlock*/false, ByRef,
10807 /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
10808 /*EllipsisLoc*/C.isPackExpansion()
10809 ? C.getEllipsisLoc() : SourceLocation(),
10810 CaptureType, /*Expr*/ nullptr);
10811
10812 } else if (C.capturesThis()) {
10813 LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
10814 S.getCurrentThisType(), /*Expr*/ nullptr);
10815 } else {
10816 LSI->addVLATypeCapture(C.getLocation(), I->getType());
10817 }
10818 ++I;
10819 }
10820 }
10821
ActOnStartOfFunctionDef(Scope * FnBodyScope,Decl * D,SkipBodyInfo * SkipBody)10822 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
10823 SkipBodyInfo *SkipBody) {
10824 // Clear the last template instantiation error context.
10825 LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
10826
10827 if (!D)
10828 return D;
10829 FunctionDecl *FD = nullptr;
10830
10831 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
10832 FD = FunTmpl->getTemplatedDecl();
10833 else
10834 FD = cast<FunctionDecl>(D);
10835
10836 // See if this is a redefinition.
10837 if (!FD->isLateTemplateParsed()) {
10838 CheckForFunctionRedefinition(FD, nullptr, SkipBody);
10839
10840 // If we're skipping the body, we're done. Don't enter the scope.
10841 if (SkipBody && SkipBody->ShouldSkip)
10842 return D;
10843 }
10844
10845 // If we are instantiating a generic lambda call operator, push
10846 // a LambdaScopeInfo onto the function stack. But use the information
10847 // that's already been calculated (ActOnLambdaExpr) to prime the current
10848 // LambdaScopeInfo.
10849 // When the template operator is being specialized, the LambdaScopeInfo,
10850 // has to be properly restored so that tryCaptureVariable doesn't try
10851 // and capture any new variables. In addition when calculating potential
10852 // captures during transformation of nested lambdas, it is necessary to
10853 // have the LSI properly restored.
10854 if (isGenericLambdaCallOperatorSpecialization(FD)) {
10855 assert(ActiveTemplateInstantiations.size() &&
10856 "There should be an active template instantiation on the stack "
10857 "when instantiating a generic lambda!");
10858 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
10859 }
10860 else
10861 // Enter a new function scope
10862 PushFunctionScope();
10863
10864 // Builtin functions cannot be defined.
10865 if (unsigned BuiltinID = FD->getBuiltinID()) {
10866 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
10867 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
10868 Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
10869 FD->setInvalidDecl();
10870 }
10871 }
10872
10873 // The return type of a function definition must be complete
10874 // (C99 6.9.1p3, C++ [dcl.fct]p6).
10875 QualType ResultType = FD->getReturnType();
10876 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
10877 !FD->isInvalidDecl() &&
10878 RequireCompleteType(FD->getLocation(), ResultType,
10879 diag::err_func_def_incomplete_result))
10880 FD->setInvalidDecl();
10881
10882 if (FnBodyScope)
10883 PushDeclContext(FnBodyScope, FD);
10884
10885 // Check the validity of our function parameters
10886 CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
10887 /*CheckParameterNames=*/true);
10888
10889 // Introduce our parameters into the function scope
10890 for (auto Param : FD->params()) {
10891 Param->setOwningFunction(FD);
10892
10893 // If this has an identifier, add it to the scope stack.
10894 if (Param->getIdentifier() && FnBodyScope) {
10895 CheckShadow(FnBodyScope, Param);
10896
10897 PushOnScopeChains(Param, FnBodyScope);
10898 }
10899 }
10900
10901 // If we had any tags defined in the function prototype,
10902 // introduce them into the function scope.
10903 if (FnBodyScope) {
10904 for (ArrayRef<NamedDecl *>::iterator
10905 I = FD->getDeclsInPrototypeScope().begin(),
10906 E = FD->getDeclsInPrototypeScope().end();
10907 I != E; ++I) {
10908 NamedDecl *D = *I;
10909
10910 // Some of these decls (like enums) may have been pinned to the
10911 // translation unit for lack of a real context earlier. If so, remove
10912 // from the translation unit and reattach to the current context.
10913 if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
10914 // Is the decl actually in the context?
10915 for (const auto *DI : Context.getTranslationUnitDecl()->decls()) {
10916 if (DI == D) {
10917 Context.getTranslationUnitDecl()->removeDecl(D);
10918 break;
10919 }
10920 }
10921 // Either way, reassign the lexical decl context to our FunctionDecl.
10922 D->setLexicalDeclContext(CurContext);
10923 }
10924
10925 // If the decl has a non-null name, make accessible in the current scope.
10926 if (!D->getName().empty())
10927 PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
10928
10929 // Similarly, dive into enums and fish their constants out, making them
10930 // accessible in this scope.
10931 if (auto *ED = dyn_cast<EnumDecl>(D)) {
10932 for (auto *EI : ED->enumerators())
10933 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
10934 }
10935 }
10936 }
10937
10938 // Ensure that the function's exception specification is instantiated.
10939 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
10940 ResolveExceptionSpec(D->getLocation(), FPT);
10941
10942 // dllimport cannot be applied to non-inline function definitions.
10943 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
10944 !FD->isTemplateInstantiation()) {
10945 assert(!FD->hasAttr<DLLExportAttr>());
10946 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
10947 FD->setInvalidDecl();
10948 return D;
10949 }
10950 // We want to attach documentation to original Decl (which might be
10951 // a function template).
10952 ActOnDocumentableDecl(D);
10953 if (getCurLexicalContext()->isObjCContainer() &&
10954 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
10955 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
10956 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
10957
10958 return D;
10959 }
10960
10961 /// \brief Given the set of return statements within a function body,
10962 /// compute the variables that are subject to the named return value
10963 /// optimization.
10964 ///
10965 /// Each of the variables that is subject to the named return value
10966 /// optimization will be marked as NRVO variables in the AST, and any
10967 /// return statement that has a marked NRVO variable as its NRVO candidate can
10968 /// use the named return value optimization.
10969 ///
10970 /// This function applies a very simplistic algorithm for NRVO: if every return
10971 /// statement in the scope of a variable has the same NRVO candidate, that
10972 /// candidate is an NRVO variable.
computeNRVO(Stmt * Body,FunctionScopeInfo * Scope)10973 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
10974 ReturnStmt **Returns = Scope->Returns.data();
10975
10976 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
10977 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
10978 if (!NRVOCandidate->isNRVOVariable())
10979 Returns[I]->setNRVOCandidate(nullptr);
10980 }
10981 }
10982 }
10983
canDelayFunctionBody(const Declarator & D)10984 bool Sema::canDelayFunctionBody(const Declarator &D) {
10985 // We can't delay parsing the body of a constexpr function template (yet).
10986 if (D.getDeclSpec().isConstexprSpecified())
10987 return false;
10988
10989 // We can't delay parsing the body of a function template with a deduced
10990 // return type (yet).
10991 if (D.getDeclSpec().containsPlaceholderType()) {
10992 // If the placeholder introduces a non-deduced trailing return type,
10993 // we can still delay parsing it.
10994 if (D.getNumTypeObjects()) {
10995 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
10996 if (Outer.Kind == DeclaratorChunk::Function &&
10997 Outer.Fun.hasTrailingReturnType()) {
10998 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
10999 return Ty.isNull() || !Ty->isUndeducedType();
11000 }
11001 }
11002 return false;
11003 }
11004
11005 return true;
11006 }
11007
canSkipFunctionBody(Decl * D)11008 bool Sema::canSkipFunctionBody(Decl *D) {
11009 // We cannot skip the body of a function (or function template) which is
11010 // constexpr, since we may need to evaluate its body in order to parse the
11011 // rest of the file.
11012 // We cannot skip the body of a function with an undeduced return type,
11013 // because any callers of that function need to know the type.
11014 if (const FunctionDecl *FD = D->getAsFunction())
11015 if (FD->isConstexpr() || FD->getReturnType()->isUndeducedType())
11016 return false;
11017 return Consumer.shouldSkipFunctionBody(D);
11018 }
11019
ActOnSkippedFunctionBody(Decl * Decl)11020 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
11021 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
11022 FD->setHasSkippedBody();
11023 else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
11024 MD->setHasSkippedBody();
11025 return ActOnFinishFunctionBody(Decl, nullptr);
11026 }
11027
ActOnFinishFunctionBody(Decl * D,Stmt * BodyArg)11028 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
11029 return ActOnFinishFunctionBody(D, BodyArg, false);
11030 }
11031
ActOnFinishFunctionBody(Decl * dcl,Stmt * Body,bool IsInstantiation)11032 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
11033 bool IsInstantiation) {
11034 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
11035
11036 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
11037 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
11038
11039 if (getLangOpts().Coroutines && !getCurFunction()->CoroutineStmts.empty())
11040 CheckCompletedCoroutineBody(FD, Body);
11041
11042 if (FD) {
11043 FD->setBody(Body);
11044
11045 if (getLangOpts().CPlusPlus14 && !FD->isInvalidDecl() && Body &&
11046 !FD->isDependentContext() && FD->getReturnType()->isUndeducedType()) {
11047 // If the function has a deduced result type but contains no 'return'
11048 // statements, the result type as written must be exactly 'auto', and
11049 // the deduced result type is 'void'.
11050 if (!FD->getReturnType()->getAs<AutoType>()) {
11051 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
11052 << FD->getReturnType();
11053 FD->setInvalidDecl();
11054 } else {
11055 // Substitute 'void' for the 'auto' in the type.
11056 TypeLoc ResultType = getReturnTypeLoc(FD);
11057 Context.adjustDeducedFunctionResultType(
11058 FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
11059 }
11060 } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
11061 auto *LSI = getCurLambda();
11062 if (LSI->HasImplicitReturnType) {
11063 deduceClosureReturnType(*LSI);
11064
11065 // C++11 [expr.prim.lambda]p4:
11066 // [...] if there are no return statements in the compound-statement
11067 // [the deduced type is] the type void
11068 QualType RetType =
11069 LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
11070
11071 // Update the return type to the deduced type.
11072 const FunctionProtoType *Proto =
11073 FD->getType()->getAs<FunctionProtoType>();
11074 FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
11075 Proto->getExtProtoInfo()));
11076 }
11077 }
11078
11079 // The only way to be included in UndefinedButUsed is if there is an
11080 // ODR use before the definition. Avoid the expensive map lookup if this
11081 // is the first declaration.
11082 if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) {
11083 if (!FD->isExternallyVisible())
11084 UndefinedButUsed.erase(FD);
11085 else if (FD->isInlined() &&
11086 !LangOpts.GNUInline &&
11087 (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
11088 UndefinedButUsed.erase(FD);
11089 }
11090
11091 // If the function implicitly returns zero (like 'main') or is naked,
11092 // don't complain about missing return statements.
11093 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
11094 WP.disableCheckFallThrough();
11095
11096 // MSVC permits the use of pure specifier (=0) on function definition,
11097 // defined at class scope, warn about this non-standard construct.
11098 if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
11099 Diag(FD->getLocation(), diag::ext_pure_function_definition);
11100
11101 if (!FD->isInvalidDecl()) {
11102 // Don't diagnose unused parameters of defaulted or deleted functions.
11103 if (!FD->isDeleted() && !FD->isDefaulted())
11104 DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
11105 DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
11106 FD->getReturnType(), FD);
11107
11108 // If this is a structor, we need a vtable.
11109 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
11110 MarkVTableUsed(FD->getLocation(), Constructor->getParent());
11111 else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
11112 MarkVTableUsed(FD->getLocation(), Destructor->getParent());
11113
11114 // Try to apply the named return value optimization. We have to check
11115 // if we can do this here because lambdas keep return statements around
11116 // to deduce an implicit return type.
11117 if (getLangOpts().CPlusPlus && FD->getReturnType()->isRecordType() &&
11118 !FD->isDependentContext())
11119 computeNRVO(Body, getCurFunction());
11120 }
11121
11122 // GNU warning -Wmissing-prototypes:
11123 // Warn if a global function is defined without a previous
11124 // prototype declaration. This warning is issued even if the
11125 // definition itself provides a prototype. The aim is to detect
11126 // global functions that fail to be declared in header files.
11127 const FunctionDecl *PossibleZeroParamPrototype = nullptr;
11128 if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
11129 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
11130
11131 if (PossibleZeroParamPrototype) {
11132 // We found a declaration that is not a prototype,
11133 // but that could be a zero-parameter prototype
11134 if (TypeSourceInfo *TI =
11135 PossibleZeroParamPrototype->getTypeSourceInfo()) {
11136 TypeLoc TL = TI->getTypeLoc();
11137 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
11138 Diag(PossibleZeroParamPrototype->getLocation(),
11139 diag::note_declaration_not_a_prototype)
11140 << PossibleZeroParamPrototype
11141 << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
11142 }
11143 }
11144 }
11145
11146 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
11147 const CXXMethodDecl *KeyFunction;
11148 if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
11149 MD->isVirtual() &&
11150 (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
11151 MD == KeyFunction->getCanonicalDecl()) {
11152 // Update the key-function state if necessary for this ABI.
11153 if (FD->isInlined() &&
11154 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
11155 Context.setNonKeyFunction(MD);
11156
11157 // If the newly-chosen key function is already defined, then we
11158 // need to mark the vtable as used retroactively.
11159 KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
11160 const FunctionDecl *Definition;
11161 if (KeyFunction && KeyFunction->isDefined(Definition))
11162 MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
11163 } else {
11164 // We just defined they key function; mark the vtable as used.
11165 MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
11166 }
11167 }
11168 }
11169
11170 assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
11171 "Function parsing confused");
11172 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
11173 assert(MD == getCurMethodDecl() && "Method parsing confused");
11174 MD->setBody(Body);
11175 if (!MD->isInvalidDecl()) {
11176 DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
11177 DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
11178 MD->getReturnType(), MD);
11179
11180 if (Body)
11181 computeNRVO(Body, getCurFunction());
11182 }
11183 if (getCurFunction()->ObjCShouldCallSuper) {
11184 Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
11185 << MD->getSelector().getAsString();
11186 getCurFunction()->ObjCShouldCallSuper = false;
11187 }
11188 if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
11189 const ObjCMethodDecl *InitMethod = nullptr;
11190 bool isDesignated =
11191 MD->isDesignatedInitializerForTheInterface(&InitMethod);
11192 assert(isDesignated && InitMethod);
11193 (void)isDesignated;
11194
11195 auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
11196 auto IFace = MD->getClassInterface();
11197 if (!IFace)
11198 return false;
11199 auto SuperD = IFace->getSuperClass();
11200 if (!SuperD)
11201 return false;
11202 return SuperD->getIdentifier() ==
11203 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
11204 };
11205 // Don't issue this warning for unavailable inits or direct subclasses
11206 // of NSObject.
11207 if (!MD->isUnavailable() && !superIsNSObject(MD)) {
11208 Diag(MD->getLocation(),
11209 diag::warn_objc_designated_init_missing_super_call);
11210 Diag(InitMethod->getLocation(),
11211 diag::note_objc_designated_init_marked_here);
11212 }
11213 getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
11214 }
11215 if (getCurFunction()->ObjCWarnForNoInitDelegation) {
11216 // Don't issue this warning for unavaialable inits.
11217 if (!MD->isUnavailable())
11218 Diag(MD->getLocation(),
11219 diag::warn_objc_secondary_init_missing_init_call);
11220 getCurFunction()->ObjCWarnForNoInitDelegation = false;
11221 }
11222 } else {
11223 return nullptr;
11224 }
11225
11226 assert(!getCurFunction()->ObjCShouldCallSuper &&
11227 "This should only be set for ObjC methods, which should have been "
11228 "handled in the block above.");
11229
11230 // Verify and clean out per-function state.
11231 if (Body && (!FD || !FD->isDefaulted())) {
11232 // C++ constructors that have function-try-blocks can't have return
11233 // statements in the handlers of that block. (C++ [except.handle]p14)
11234 // Verify this.
11235 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
11236 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
11237
11238 // Verify that gotos and switch cases don't jump into scopes illegally.
11239 if (getCurFunction()->NeedsScopeChecking() &&
11240 !PP.isCodeCompletionEnabled())
11241 DiagnoseInvalidJumps(Body);
11242
11243 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
11244 if (!Destructor->getParent()->isDependentType())
11245 CheckDestructor(Destructor);
11246
11247 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
11248 Destructor->getParent());
11249 }
11250
11251 // If any errors have occurred, clear out any temporaries that may have
11252 // been leftover. This ensures that these temporaries won't be picked up for
11253 // deletion in some later function.
11254 if (getDiagnostics().hasErrorOccurred() ||
11255 getDiagnostics().getSuppressAllDiagnostics()) {
11256 DiscardCleanupsInEvaluationContext();
11257 }
11258 if (!getDiagnostics().hasUncompilableErrorOccurred() &&
11259 !isa<FunctionTemplateDecl>(dcl)) {
11260 // Since the body is valid, issue any analysis-based warnings that are
11261 // enabled.
11262 ActivePolicy = &WP;
11263 }
11264
11265 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
11266 (!CheckConstexprFunctionDecl(FD) ||
11267 !CheckConstexprFunctionBody(FD, Body)))
11268 FD->setInvalidDecl();
11269
11270 if (FD && FD->hasAttr<NakedAttr>()) {
11271 for (const Stmt *S : Body->children()) {
11272 if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
11273 Diag(S->getLocStart(), diag::err_non_asm_stmt_in_naked_function);
11274 Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
11275 FD->setInvalidDecl();
11276 break;
11277 }
11278 }
11279 }
11280
11281 assert(ExprCleanupObjects.size() ==
11282 ExprEvalContexts.back().NumCleanupObjects &&
11283 "Leftover temporaries in function");
11284 assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
11285 assert(MaybeODRUseExprs.empty() &&
11286 "Leftover expressions for odr-use checking");
11287 }
11288
11289 if (!IsInstantiation)
11290 PopDeclContext();
11291
11292 PopFunctionScopeInfo(ActivePolicy, dcl);
11293 // If any errors have occurred, clear out any temporaries that may have
11294 // been leftover. This ensures that these temporaries won't be picked up for
11295 // deletion in some later function.
11296 if (getDiagnostics().hasErrorOccurred()) {
11297 DiscardCleanupsInEvaluationContext();
11298 }
11299
11300 return dcl;
11301 }
11302
11303
11304 /// When we finish delayed parsing of an attribute, we must attach it to the
11305 /// relevant Decl.
ActOnFinishDelayedAttribute(Scope * S,Decl * D,ParsedAttributes & Attrs)11306 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
11307 ParsedAttributes &Attrs) {
11308 // Always attach attributes to the underlying decl.
11309 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
11310 D = TD->getTemplatedDecl();
11311 ProcessDeclAttributeList(S, D, Attrs.getList());
11312
11313 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
11314 if (Method->isStatic())
11315 checkThisInStaticMemberFunctionAttributes(Method);
11316 }
11317
11318
11319 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
11320 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
ImplicitlyDefineFunction(SourceLocation Loc,IdentifierInfo & II,Scope * S)11321 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
11322 IdentifierInfo &II, Scope *S) {
11323 // Before we produce a declaration for an implicitly defined
11324 // function, see whether there was a locally-scoped declaration of
11325 // this name as a function or variable. If so, use that
11326 // (non-visible) declaration, and complain about it.
11327 if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
11328 Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
11329 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
11330 return ExternCPrev;
11331 }
11332
11333 // Extension in C99. Legal in C90, but warn about it.
11334 unsigned diag_id;
11335 if (II.getName().startswith("__builtin_"))
11336 diag_id = diag::warn_builtin_unknown;
11337 else if (getLangOpts().C99)
11338 diag_id = diag::ext_implicit_function_decl;
11339 else
11340 diag_id = diag::warn_implicit_function_decl;
11341 Diag(Loc, diag_id) << &II;
11342
11343 // Because typo correction is expensive, only do it if the implicit
11344 // function declaration is going to be treated as an error.
11345 if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
11346 TypoCorrection Corrected;
11347 if (S &&
11348 (Corrected = CorrectTypo(
11349 DeclarationNameInfo(&II, Loc), LookupOrdinaryName, S, nullptr,
11350 llvm::make_unique<DeclFilterCCC<FunctionDecl>>(), CTK_NonError)))
11351 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
11352 /*ErrorRecovery*/false);
11353 }
11354
11355 // Set a Declarator for the implicit definition: int foo();
11356 const char *Dummy;
11357 AttributeFactory attrFactory;
11358 DeclSpec DS(attrFactory);
11359 unsigned DiagID;
11360 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
11361 Context.getPrintingPolicy());
11362 (void)Error; // Silence warning.
11363 assert(!Error && "Error setting up implicit decl!");
11364 SourceLocation NoLoc;
11365 Declarator D(DS, Declarator::BlockContext);
11366 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
11367 /*IsAmbiguous=*/false,
11368 /*LParenLoc=*/NoLoc,
11369 /*Params=*/nullptr,
11370 /*NumParams=*/0,
11371 /*EllipsisLoc=*/NoLoc,
11372 /*RParenLoc=*/NoLoc,
11373 /*TypeQuals=*/0,
11374 /*RefQualifierIsLvalueRef=*/true,
11375 /*RefQualifierLoc=*/NoLoc,
11376 /*ConstQualifierLoc=*/NoLoc,
11377 /*VolatileQualifierLoc=*/NoLoc,
11378 /*RestrictQualifierLoc=*/NoLoc,
11379 /*MutableLoc=*/NoLoc,
11380 EST_None,
11381 /*ESpecRange=*/SourceRange(),
11382 /*Exceptions=*/nullptr,
11383 /*ExceptionRanges=*/nullptr,
11384 /*NumExceptions=*/0,
11385 /*NoexceptExpr=*/nullptr,
11386 /*ExceptionSpecTokens=*/nullptr,
11387 Loc, Loc, D),
11388 DS.getAttributes(),
11389 SourceLocation());
11390 D.SetIdentifier(&II, Loc);
11391
11392 // Insert this function into translation-unit scope.
11393
11394 DeclContext *PrevDC = CurContext;
11395 CurContext = Context.getTranslationUnitDecl();
11396
11397 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
11398 FD->setImplicit();
11399
11400 CurContext = PrevDC;
11401
11402 AddKnownFunctionAttributes(FD);
11403
11404 return FD;
11405 }
11406
11407 /// \brief Adds any function attributes that we know a priori based on
11408 /// the declaration of this function.
11409 ///
11410 /// These attributes can apply both to implicitly-declared builtins
11411 /// (like __builtin___printf_chk) or to library-declared functions
11412 /// like NSLog or printf.
11413 ///
11414 /// We need to check for duplicate attributes both here and where user-written
11415 /// attributes are applied to declarations.
AddKnownFunctionAttributes(FunctionDecl * FD)11416 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
11417 if (FD->isInvalidDecl())
11418 return;
11419
11420 // If this is a built-in function, map its builtin attributes to
11421 // actual attributes.
11422 if (unsigned BuiltinID = FD->getBuiltinID()) {
11423 // Handle printf-formatting attributes.
11424 unsigned FormatIdx;
11425 bool HasVAListArg;
11426 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
11427 if (!FD->hasAttr<FormatAttr>()) {
11428 const char *fmt = "printf";
11429 unsigned int NumParams = FD->getNumParams();
11430 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
11431 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
11432 fmt = "NSString";
11433 FD->addAttr(FormatAttr::CreateImplicit(Context,
11434 &Context.Idents.get(fmt),
11435 FormatIdx+1,
11436 HasVAListArg ? 0 : FormatIdx+2,
11437 FD->getLocation()));
11438 }
11439 }
11440 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
11441 HasVAListArg)) {
11442 if (!FD->hasAttr<FormatAttr>())
11443 FD->addAttr(FormatAttr::CreateImplicit(Context,
11444 &Context.Idents.get("scanf"),
11445 FormatIdx+1,
11446 HasVAListArg ? 0 : FormatIdx+2,
11447 FD->getLocation()));
11448 }
11449
11450 // Mark const if we don't care about errno and that is the only
11451 // thing preventing the function from being const. This allows
11452 // IRgen to use LLVM intrinsics for such functions.
11453 if (!getLangOpts().MathErrno &&
11454 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
11455 if (!FD->hasAttr<ConstAttr>())
11456 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
11457 }
11458
11459 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
11460 !FD->hasAttr<ReturnsTwiceAttr>())
11461 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
11462 FD->getLocation()));
11463 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
11464 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
11465 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
11466 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
11467 if (getLangOpts().CUDA && getLangOpts().CUDATargetOverloads &&
11468 Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
11469 !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
11470 // Assign appropriate attribute depending on CUDA compilation
11471 // mode and the target builtin belongs to. E.g. during host
11472 // compilation, aux builtins are __device__, the rest are __host__.
11473 if (getLangOpts().CUDAIsDevice !=
11474 Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
11475 FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
11476 else
11477 FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
11478 }
11479 }
11480
11481 IdentifierInfo *Name = FD->getIdentifier();
11482 if (!Name)
11483 return;
11484 if ((!getLangOpts().CPlusPlus &&
11485 FD->getDeclContext()->isTranslationUnit()) ||
11486 (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
11487 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
11488 LinkageSpecDecl::lang_c)) {
11489 // Okay: this could be a libc/libm/Objective-C function we know
11490 // about.
11491 } else
11492 return;
11493
11494 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
11495 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
11496 // target-specific builtins, perhaps?
11497 if (!FD->hasAttr<FormatAttr>())
11498 FD->addAttr(FormatAttr::CreateImplicit(Context,
11499 &Context.Idents.get("printf"), 2,
11500 Name->isStr("vasprintf") ? 0 : 3,
11501 FD->getLocation()));
11502 }
11503
11504 if (Name->isStr("__CFStringMakeConstantString")) {
11505 // We already have a __builtin___CFStringMakeConstantString,
11506 // but builds that use -fno-constant-cfstrings don't go through that.
11507 if (!FD->hasAttr<FormatArgAttr>())
11508 FD->addAttr(FormatArgAttr::CreateImplicit(Context, 1,
11509 FD->getLocation()));
11510 }
11511 }
11512
ParseTypedefDecl(Scope * S,Declarator & D,QualType T,TypeSourceInfo * TInfo)11513 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
11514 TypeSourceInfo *TInfo) {
11515 assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
11516 assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
11517
11518 if (!TInfo) {
11519 assert(D.isInvalidType() && "no declarator info for valid type");
11520 TInfo = Context.getTrivialTypeSourceInfo(T);
11521 }
11522
11523 // Scope manipulation handled by caller.
11524 TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
11525 D.getLocStart(),
11526 D.getIdentifierLoc(),
11527 D.getIdentifier(),
11528 TInfo);
11529
11530 // Bail out immediately if we have an invalid declaration.
11531 if (D.isInvalidType()) {
11532 NewTD->setInvalidDecl();
11533 return NewTD;
11534 }
11535
11536 if (D.getDeclSpec().isModulePrivateSpecified()) {
11537 if (CurContext->isFunctionOrMethod())
11538 Diag(NewTD->getLocation(), diag::err_module_private_local)
11539 << 2 << NewTD->getDeclName()
11540 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
11541 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
11542 else
11543 NewTD->setModulePrivate();
11544 }
11545
11546 // C++ [dcl.typedef]p8:
11547 // If the typedef declaration defines an unnamed class (or
11548 // enum), the first typedef-name declared by the declaration
11549 // to be that class type (or enum type) is used to denote the
11550 // class type (or enum type) for linkage purposes only.
11551 // We need to check whether the type was declared in the declaration.
11552 switch (D.getDeclSpec().getTypeSpecType()) {
11553 case TST_enum:
11554 case TST_struct:
11555 case TST_interface:
11556 case TST_union:
11557 case TST_class: {
11558 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
11559 setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
11560 break;
11561 }
11562
11563 default:
11564 break;
11565 }
11566
11567 return NewTD;
11568 }
11569
11570
11571 /// \brief Check that this is a valid underlying type for an enum declaration.
CheckEnumUnderlyingType(TypeSourceInfo * TI)11572 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
11573 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
11574 QualType T = TI->getType();
11575
11576 if (T->isDependentType())
11577 return false;
11578
11579 if (const BuiltinType *BT = T->getAs<BuiltinType>())
11580 if (BT->isInteger())
11581 return false;
11582
11583 Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
11584 return true;
11585 }
11586
11587 /// Check whether this is a valid redeclaration of a previous enumeration.
11588 /// \return true if the redeclaration was invalid.
CheckEnumRedeclaration(SourceLocation EnumLoc,bool IsScoped,QualType EnumUnderlyingTy,bool EnumUnderlyingIsImplicit,const EnumDecl * Prev)11589 bool Sema::CheckEnumRedeclaration(
11590 SourceLocation EnumLoc, bool IsScoped, QualType EnumUnderlyingTy,
11591 bool EnumUnderlyingIsImplicit, const EnumDecl *Prev) {
11592 bool IsFixed = !EnumUnderlyingTy.isNull();
11593
11594 if (IsScoped != Prev->isScoped()) {
11595 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
11596 << Prev->isScoped();
11597 Diag(Prev->getLocation(), diag::note_previous_declaration);
11598 return true;
11599 }
11600
11601 if (IsFixed && Prev->isFixed()) {
11602 if (!EnumUnderlyingTy->isDependentType() &&
11603 !Prev->getIntegerType()->isDependentType() &&
11604 !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
11605 Prev->getIntegerType())) {
11606 // TODO: Highlight the underlying type of the redeclaration.
11607 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
11608 << EnumUnderlyingTy << Prev->getIntegerType();
11609 Diag(Prev->getLocation(), diag::note_previous_declaration)
11610 << Prev->getIntegerTypeRange();
11611 return true;
11612 }
11613 } else if (IsFixed && !Prev->isFixed() && EnumUnderlyingIsImplicit) {
11614 ;
11615 } else if (!IsFixed && Prev->isFixed() && !Prev->getIntegerTypeSourceInfo()) {
11616 ;
11617 } else if (IsFixed != Prev->isFixed()) {
11618 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
11619 << Prev->isFixed();
11620 Diag(Prev->getLocation(), diag::note_previous_declaration);
11621 return true;
11622 }
11623
11624 return false;
11625 }
11626
11627 /// \brief Get diagnostic %select index for tag kind for
11628 /// redeclaration diagnostic message.
11629 /// WARNING: Indexes apply to particular diagnostics only!
11630 ///
11631 /// \returns diagnostic %select index.
getRedeclDiagFromTagKind(TagTypeKind Tag)11632 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
11633 switch (Tag) {
11634 case TTK_Struct: return 0;
11635 case TTK_Interface: return 1;
11636 case TTK_Class: return 2;
11637 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
11638 }
11639 }
11640
11641 /// \brief Determine if tag kind is a class-key compatible with
11642 /// class for redeclaration (class, struct, or __interface).
11643 ///
11644 /// \returns true iff the tag kind is compatible.
isClassCompatTagKind(TagTypeKind Tag)11645 static bool isClassCompatTagKind(TagTypeKind Tag)
11646 {
11647 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
11648 }
11649
11650 /// \brief Determine whether a tag with a given kind is acceptable
11651 /// as a redeclaration of the given tag declaration.
11652 ///
11653 /// \returns true if the new tag kind is acceptable, false otherwise.
isAcceptableTagRedeclaration(const TagDecl * Previous,TagTypeKind NewTag,bool isDefinition,SourceLocation NewTagLoc,const IdentifierInfo * Name)11654 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
11655 TagTypeKind NewTag, bool isDefinition,
11656 SourceLocation NewTagLoc,
11657 const IdentifierInfo *Name) {
11658 // C++ [dcl.type.elab]p3:
11659 // The class-key or enum keyword present in the
11660 // elaborated-type-specifier shall agree in kind with the
11661 // declaration to which the name in the elaborated-type-specifier
11662 // refers. This rule also applies to the form of
11663 // elaborated-type-specifier that declares a class-name or
11664 // friend class since it can be construed as referring to the
11665 // definition of the class. Thus, in any
11666 // elaborated-type-specifier, the enum keyword shall be used to
11667 // refer to an enumeration (7.2), the union class-key shall be
11668 // used to refer to a union (clause 9), and either the class or
11669 // struct class-key shall be used to refer to a class (clause 9)
11670 // declared using the class or struct class-key.
11671 TagTypeKind OldTag = Previous->getTagKind();
11672 if (!isDefinition || !isClassCompatTagKind(NewTag))
11673 if (OldTag == NewTag)
11674 return true;
11675
11676 if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
11677 // Warn about the struct/class tag mismatch.
11678 bool isTemplate = false;
11679 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
11680 isTemplate = Record->getDescribedClassTemplate();
11681
11682 if (!ActiveTemplateInstantiations.empty()) {
11683 // In a template instantiation, do not offer fix-its for tag mismatches
11684 // since they usually mess up the template instead of fixing the problem.
11685 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
11686 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
11687 << getRedeclDiagFromTagKind(OldTag);
11688 return true;
11689 }
11690
11691 if (isDefinition) {
11692 // On definitions, check previous tags and issue a fix-it for each
11693 // one that doesn't match the current tag.
11694 if (Previous->getDefinition()) {
11695 // Don't suggest fix-its for redefinitions.
11696 return true;
11697 }
11698
11699 bool previousMismatch = false;
11700 for (auto I : Previous->redecls()) {
11701 if (I->getTagKind() != NewTag) {
11702 if (!previousMismatch) {
11703 previousMismatch = true;
11704 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
11705 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
11706 << getRedeclDiagFromTagKind(I->getTagKind());
11707 }
11708 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
11709 << getRedeclDiagFromTagKind(NewTag)
11710 << FixItHint::CreateReplacement(I->getInnerLocStart(),
11711 TypeWithKeyword::getTagTypeKindName(NewTag));
11712 }
11713 }
11714 return true;
11715 }
11716
11717 // Check for a previous definition. If current tag and definition
11718 // are same type, do nothing. If no definition, but disagree with
11719 // with previous tag type, give a warning, but no fix-it.
11720 const TagDecl *Redecl = Previous->getDefinition() ?
11721 Previous->getDefinition() : Previous;
11722 if (Redecl->getTagKind() == NewTag) {
11723 return true;
11724 }
11725
11726 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
11727 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
11728 << getRedeclDiagFromTagKind(OldTag);
11729 Diag(Redecl->getLocation(), diag::note_previous_use);
11730
11731 // If there is a previous definition, suggest a fix-it.
11732 if (Previous->getDefinition()) {
11733 Diag(NewTagLoc, diag::note_struct_class_suggestion)
11734 << getRedeclDiagFromTagKind(Redecl->getTagKind())
11735 << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
11736 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
11737 }
11738
11739 return true;
11740 }
11741 return false;
11742 }
11743
11744 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
11745 /// from an outer enclosing namespace or file scope inside a friend declaration.
11746 /// This should provide the commented out code in the following snippet:
11747 /// namespace N {
11748 /// struct X;
11749 /// namespace M {
11750 /// struct Y { friend struct /*N::*/ X; };
11751 /// }
11752 /// }
createFriendTagNNSFixIt(Sema & SemaRef,NamedDecl * ND,Scope * S,SourceLocation NameLoc)11753 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
11754 SourceLocation NameLoc) {
11755 // While the decl is in a namespace, do repeated lookup of that name and see
11756 // if we get the same namespace back. If we do not, continue until
11757 // translation unit scope, at which point we have a fully qualified NNS.
11758 SmallVector<IdentifierInfo *, 4> Namespaces;
11759 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
11760 for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
11761 // This tag should be declared in a namespace, which can only be enclosed by
11762 // other namespaces. Bail if there's an anonymous namespace in the chain.
11763 NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
11764 if (!Namespace || Namespace->isAnonymousNamespace())
11765 return FixItHint();
11766 IdentifierInfo *II = Namespace->getIdentifier();
11767 Namespaces.push_back(II);
11768 NamedDecl *Lookup = SemaRef.LookupSingleName(
11769 S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
11770 if (Lookup == Namespace)
11771 break;
11772 }
11773
11774 // Once we have all the namespaces, reverse them to go outermost first, and
11775 // build an NNS.
11776 SmallString<64> Insertion;
11777 llvm::raw_svector_ostream OS(Insertion);
11778 if (DC->isTranslationUnit())
11779 OS << "::";
11780 std::reverse(Namespaces.begin(), Namespaces.end());
11781 for (auto *II : Namespaces)
11782 OS << II->getName() << "::";
11783 return FixItHint::CreateInsertion(NameLoc, Insertion);
11784 }
11785
11786 /// \brief Determine whether a tag originally declared in context \p OldDC can
11787 /// be redeclared with an unqualfied name in \p NewDC (assuming name lookup
11788 /// found a declaration in \p OldDC as a previous decl, perhaps through a
11789 /// using-declaration).
isAcceptableTagRedeclContext(Sema & S,DeclContext * OldDC,DeclContext * NewDC)11790 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
11791 DeclContext *NewDC) {
11792 OldDC = OldDC->getRedeclContext();
11793 NewDC = NewDC->getRedeclContext();
11794
11795 if (OldDC->Equals(NewDC))
11796 return true;
11797
11798 // In MSVC mode, we allow a redeclaration if the contexts are related (either
11799 // encloses the other).
11800 if (S.getLangOpts().MSVCCompat &&
11801 (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
11802 return true;
11803
11804 return false;
11805 }
11806
11807 /// \brief This is invoked when we see 'struct foo' or 'struct {'. In the
11808 /// former case, Name will be non-null. In the later case, Name will be null.
11809 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
11810 /// reference/declaration/definition of a tag.
11811 ///
11812 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
11813 /// trailing-type-specifier) other than one in an alias-declaration.
11814 ///
11815 /// \param SkipBody If non-null, will be set to indicate if the caller should
11816 /// skip the definition of this tag and treat it as if it were a declaration.
ActOnTag(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,AccessSpecifier AS,SourceLocation ModulePrivateLoc,MultiTemplateParamsArg TemplateParameterLists,bool & OwnedDecl,bool & IsDependent,SourceLocation ScopedEnumKWLoc,bool ScopedEnumUsesClassTag,TypeResult UnderlyingType,bool IsTypeSpecifier,SkipBodyInfo * SkipBody)11817 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
11818 SourceLocation KWLoc, CXXScopeSpec &SS,
11819 IdentifierInfo *Name, SourceLocation NameLoc,
11820 AttributeList *Attr, AccessSpecifier AS,
11821 SourceLocation ModulePrivateLoc,
11822 MultiTemplateParamsArg TemplateParameterLists,
11823 bool &OwnedDecl, bool &IsDependent,
11824 SourceLocation ScopedEnumKWLoc,
11825 bool ScopedEnumUsesClassTag,
11826 TypeResult UnderlyingType,
11827 bool IsTypeSpecifier, SkipBodyInfo *SkipBody) {
11828 // If this is not a definition, it must have a name.
11829 IdentifierInfo *OrigName = Name;
11830 assert((Name != nullptr || TUK == TUK_Definition) &&
11831 "Nameless record must be a definition!");
11832 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
11833
11834 OwnedDecl = false;
11835 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
11836 bool ScopedEnum = ScopedEnumKWLoc.isValid();
11837
11838 // FIXME: Check explicit specializations more carefully.
11839 bool isExplicitSpecialization = false;
11840 bool Invalid = false;
11841
11842 // We only need to do this matching if we have template parameters
11843 // or a scope specifier, which also conveniently avoids this work
11844 // for non-C++ cases.
11845 if (TemplateParameterLists.size() > 0 ||
11846 (SS.isNotEmpty() && TUK != TUK_Reference)) {
11847 if (TemplateParameterList *TemplateParams =
11848 MatchTemplateParametersToScopeSpecifier(
11849 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
11850 TUK == TUK_Friend, isExplicitSpecialization, Invalid)) {
11851 if (Kind == TTK_Enum) {
11852 Diag(KWLoc, diag::err_enum_template);
11853 return nullptr;
11854 }
11855
11856 if (TemplateParams->size() > 0) {
11857 // This is a declaration or definition of a class template (which may
11858 // be a member of another template).
11859
11860 if (Invalid)
11861 return nullptr;
11862
11863 OwnedDecl = false;
11864 DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
11865 SS, Name, NameLoc, Attr,
11866 TemplateParams, AS,
11867 ModulePrivateLoc,
11868 /*FriendLoc*/SourceLocation(),
11869 TemplateParameterLists.size()-1,
11870 TemplateParameterLists.data(),
11871 SkipBody);
11872 return Result.get();
11873 } else {
11874 // The "template<>" header is extraneous.
11875 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
11876 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
11877 isExplicitSpecialization = true;
11878 }
11879 }
11880 }
11881
11882 // Figure out the underlying type if this a enum declaration. We need to do
11883 // this early, because it's needed to detect if this is an incompatible
11884 // redeclaration.
11885 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
11886 bool EnumUnderlyingIsImplicit = false;
11887
11888 if (Kind == TTK_Enum) {
11889 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
11890 // No underlying type explicitly specified, or we failed to parse the
11891 // type, default to int.
11892 EnumUnderlying = Context.IntTy.getTypePtr();
11893 else if (UnderlyingType.get()) {
11894 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
11895 // integral type; any cv-qualification is ignored.
11896 TypeSourceInfo *TI = nullptr;
11897 GetTypeFromParser(UnderlyingType.get(), &TI);
11898 EnumUnderlying = TI;
11899
11900 if (CheckEnumUnderlyingType(TI))
11901 // Recover by falling back to int.
11902 EnumUnderlying = Context.IntTy.getTypePtr();
11903
11904 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
11905 UPPC_FixedUnderlyingType))
11906 EnumUnderlying = Context.IntTy.getTypePtr();
11907
11908 } else if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
11909 if (getLangOpts().MSVCCompat || TUK == TUK_Definition) {
11910 // Microsoft enums are always of int type.
11911 EnumUnderlying = Context.IntTy.getTypePtr();
11912 EnumUnderlyingIsImplicit = true;
11913 }
11914 }
11915 }
11916
11917 DeclContext *SearchDC = CurContext;
11918 DeclContext *DC = CurContext;
11919 bool isStdBadAlloc = false;
11920
11921 RedeclarationKind Redecl = ForRedeclaration;
11922 if (TUK == TUK_Friend || TUK == TUK_Reference)
11923 Redecl = NotForRedeclaration;
11924
11925 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
11926 if (Name && SS.isNotEmpty()) {
11927 // We have a nested-name tag ('struct foo::bar').
11928
11929 // Check for invalid 'foo::'.
11930 if (SS.isInvalid()) {
11931 Name = nullptr;
11932 goto CreateNewDecl;
11933 }
11934
11935 // If this is a friend or a reference to a class in a dependent
11936 // context, don't try to make a decl for it.
11937 if (TUK == TUK_Friend || TUK == TUK_Reference) {
11938 DC = computeDeclContext(SS, false);
11939 if (!DC) {
11940 IsDependent = true;
11941 return nullptr;
11942 }
11943 } else {
11944 DC = computeDeclContext(SS, true);
11945 if (!DC) {
11946 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
11947 << SS.getRange();
11948 return nullptr;
11949 }
11950 }
11951
11952 if (RequireCompleteDeclContext(SS, DC))
11953 return nullptr;
11954
11955 SearchDC = DC;
11956 // Look-up name inside 'foo::'.
11957 LookupQualifiedName(Previous, DC);
11958
11959 if (Previous.isAmbiguous())
11960 return nullptr;
11961
11962 if (Previous.empty()) {
11963 // Name lookup did not find anything. However, if the
11964 // nested-name-specifier refers to the current instantiation,
11965 // and that current instantiation has any dependent base
11966 // classes, we might find something at instantiation time: treat
11967 // this as a dependent elaborated-type-specifier.
11968 // But this only makes any sense for reference-like lookups.
11969 if (Previous.wasNotFoundInCurrentInstantiation() &&
11970 (TUK == TUK_Reference || TUK == TUK_Friend)) {
11971 IsDependent = true;
11972 return nullptr;
11973 }
11974
11975 // A tag 'foo::bar' must already exist.
11976 Diag(NameLoc, diag::err_not_tag_in_scope)
11977 << Kind << Name << DC << SS.getRange();
11978 Name = nullptr;
11979 Invalid = true;
11980 goto CreateNewDecl;
11981 }
11982 } else if (Name) {
11983 // C++14 [class.mem]p14:
11984 // If T is the name of a class, then each of the following shall have a
11985 // name different from T:
11986 // -- every member of class T that is itself a type
11987 if (TUK != TUK_Reference && TUK != TUK_Friend &&
11988 DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
11989 return nullptr;
11990
11991 // If this is a named struct, check to see if there was a previous forward
11992 // declaration or definition.
11993 // FIXME: We're looking into outer scopes here, even when we
11994 // shouldn't be. Doing so can result in ambiguities that we
11995 // shouldn't be diagnosing.
11996 LookupName(Previous, S);
11997
11998 // When declaring or defining a tag, ignore ambiguities introduced
11999 // by types using'ed into this scope.
12000 if (Previous.isAmbiguous() &&
12001 (TUK == TUK_Definition || TUK == TUK_Declaration)) {
12002 LookupResult::Filter F = Previous.makeFilter();
12003 while (F.hasNext()) {
12004 NamedDecl *ND = F.next();
12005 if (ND->getDeclContext()->getRedeclContext() != SearchDC)
12006 F.erase();
12007 }
12008 F.done();
12009 }
12010
12011 // C++11 [namespace.memdef]p3:
12012 // If the name in a friend declaration is neither qualified nor
12013 // a template-id and the declaration is a function or an
12014 // elaborated-type-specifier, the lookup to determine whether
12015 // the entity has been previously declared shall not consider
12016 // any scopes outside the innermost enclosing namespace.
12017 //
12018 // MSVC doesn't implement the above rule for types, so a friend tag
12019 // declaration may be a redeclaration of a type declared in an enclosing
12020 // scope. They do implement this rule for friend functions.
12021 //
12022 // Does it matter that this should be by scope instead of by
12023 // semantic context?
12024 if (!Previous.empty() && TUK == TUK_Friend) {
12025 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
12026 LookupResult::Filter F = Previous.makeFilter();
12027 bool FriendSawTagOutsideEnclosingNamespace = false;
12028 while (F.hasNext()) {
12029 NamedDecl *ND = F.next();
12030 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
12031 if (DC->isFileContext() &&
12032 !EnclosingNS->Encloses(ND->getDeclContext())) {
12033 if (getLangOpts().MSVCCompat)
12034 FriendSawTagOutsideEnclosingNamespace = true;
12035 else
12036 F.erase();
12037 }
12038 }
12039 F.done();
12040
12041 // Diagnose this MSVC extension in the easy case where lookup would have
12042 // unambiguously found something outside the enclosing namespace.
12043 if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
12044 NamedDecl *ND = Previous.getFoundDecl();
12045 Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
12046 << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
12047 }
12048 }
12049
12050 // Note: there used to be some attempt at recovery here.
12051 if (Previous.isAmbiguous())
12052 return nullptr;
12053
12054 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
12055 // FIXME: This makes sure that we ignore the contexts associated
12056 // with C structs, unions, and enums when looking for a matching
12057 // tag declaration or definition. See the similar lookup tweak
12058 // in Sema::LookupName; is there a better way to deal with this?
12059 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
12060 SearchDC = SearchDC->getParent();
12061 }
12062 }
12063
12064 if (Previous.isSingleResult() &&
12065 Previous.getFoundDecl()->isTemplateParameter()) {
12066 // Maybe we will complain about the shadowed template parameter.
12067 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
12068 // Just pretend that we didn't see the previous declaration.
12069 Previous.clear();
12070 }
12071
12072 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
12073 DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
12074 // This is a declaration of or a reference to "std::bad_alloc".
12075 isStdBadAlloc = true;
12076
12077 if (Previous.empty() && StdBadAlloc) {
12078 // std::bad_alloc has been implicitly declared (but made invisible to
12079 // name lookup). Fill in this implicit declaration as the previous
12080 // declaration, so that the declarations get chained appropriately.
12081 Previous.addDecl(getStdBadAlloc());
12082 }
12083 }
12084
12085 // If we didn't find a previous declaration, and this is a reference
12086 // (or friend reference), move to the correct scope. In C++, we
12087 // also need to do a redeclaration lookup there, just in case
12088 // there's a shadow friend decl.
12089 if (Name && Previous.empty() &&
12090 (TUK == TUK_Reference || TUK == TUK_Friend)) {
12091 if (Invalid) goto CreateNewDecl;
12092 assert(SS.isEmpty());
12093
12094 if (TUK == TUK_Reference) {
12095 // C++ [basic.scope.pdecl]p5:
12096 // -- for an elaborated-type-specifier of the form
12097 //
12098 // class-key identifier
12099 //
12100 // if the elaborated-type-specifier is used in the
12101 // decl-specifier-seq or parameter-declaration-clause of a
12102 // function defined in namespace scope, the identifier is
12103 // declared as a class-name in the namespace that contains
12104 // the declaration; otherwise, except as a friend
12105 // declaration, the identifier is declared in the smallest
12106 // non-class, non-function-prototype scope that contains the
12107 // declaration.
12108 //
12109 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
12110 // C structs and unions.
12111 //
12112 // It is an error in C++ to declare (rather than define) an enum
12113 // type, including via an elaborated type specifier. We'll
12114 // diagnose that later; for now, declare the enum in the same
12115 // scope as we would have picked for any other tag type.
12116 //
12117 // GNU C also supports this behavior as part of its incomplete
12118 // enum types extension, while GNU C++ does not.
12119 //
12120 // Find the context where we'll be declaring the tag.
12121 // FIXME: We would like to maintain the current DeclContext as the
12122 // lexical context,
12123 while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
12124 SearchDC = SearchDC->getParent();
12125
12126 // Find the scope where we'll be declaring the tag.
12127 while (S->isClassScope() ||
12128 (getLangOpts().CPlusPlus &&
12129 S->isFunctionPrototypeScope()) ||
12130 ((S->getFlags() & Scope::DeclScope) == 0) ||
12131 (S->getEntity() && S->getEntity()->isTransparentContext()))
12132 S = S->getParent();
12133 } else {
12134 assert(TUK == TUK_Friend);
12135 // C++ [namespace.memdef]p3:
12136 // If a friend declaration in a non-local class first declares a
12137 // class or function, the friend class or function is a member of
12138 // the innermost enclosing namespace.
12139 SearchDC = SearchDC->getEnclosingNamespaceContext();
12140 }
12141
12142 // In C++, we need to do a redeclaration lookup to properly
12143 // diagnose some problems.
12144 // FIXME: redeclaration lookup is also used (with and without C++) to find a
12145 // hidden declaration so that we don't get ambiguity errors when using a
12146 // type declared by an elaborated-type-specifier. In C that is not correct
12147 // and we should instead merge compatible types found by lookup.
12148 if (getLangOpts().CPlusPlus) {
12149 Previous.setRedeclarationKind(ForRedeclaration);
12150 LookupQualifiedName(Previous, SearchDC);
12151 } else {
12152 Previous.setRedeclarationKind(ForRedeclaration);
12153 LookupName(Previous, S);
12154 }
12155 }
12156
12157 // If we have a known previous declaration to use, then use it.
12158 if (Previous.empty() && SkipBody && SkipBody->Previous)
12159 Previous.addDecl(SkipBody->Previous);
12160
12161 if (!Previous.empty()) {
12162 NamedDecl *PrevDecl = Previous.getFoundDecl();
12163 NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
12164
12165 // It's okay to have a tag decl in the same scope as a typedef
12166 // which hides a tag decl in the same scope. Finding this
12167 // insanity with a redeclaration lookup can only actually happen
12168 // in C++.
12169 //
12170 // This is also okay for elaborated-type-specifiers, which is
12171 // technically forbidden by the current standard but which is
12172 // okay according to the likely resolution of an open issue;
12173 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
12174 if (getLangOpts().CPlusPlus) {
12175 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
12176 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
12177 TagDecl *Tag = TT->getDecl();
12178 if (Tag->getDeclName() == Name &&
12179 Tag->getDeclContext()->getRedeclContext()
12180 ->Equals(TD->getDeclContext()->getRedeclContext())) {
12181 PrevDecl = Tag;
12182 Previous.clear();
12183 Previous.addDecl(Tag);
12184 Previous.resolveKind();
12185 }
12186 }
12187 }
12188 }
12189
12190 // If this is a redeclaration of a using shadow declaration, it must
12191 // declare a tag in the same context. In MSVC mode, we allow a
12192 // redefinition if either context is within the other.
12193 if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
12194 auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
12195 if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
12196 isDeclInScope(Shadow, SearchDC, S, isExplicitSpecialization) &&
12197 !(OldTag && isAcceptableTagRedeclContext(
12198 *this, OldTag->getDeclContext(), SearchDC))) {
12199 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
12200 Diag(Shadow->getTargetDecl()->getLocation(),
12201 diag::note_using_decl_target);
12202 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
12203 << 0;
12204 // Recover by ignoring the old declaration.
12205 Previous.clear();
12206 goto CreateNewDecl;
12207 }
12208 }
12209
12210 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
12211 // If this is a use of a previous tag, or if the tag is already declared
12212 // in the same scope (so that the definition/declaration completes or
12213 // rementions the tag), reuse the decl.
12214 if (TUK == TUK_Reference || TUK == TUK_Friend ||
12215 isDeclInScope(DirectPrevDecl, SearchDC, S,
12216 SS.isNotEmpty() || isExplicitSpecialization)) {
12217 // Make sure that this wasn't declared as an enum and now used as a
12218 // struct or something similar.
12219 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
12220 TUK == TUK_Definition, KWLoc,
12221 Name)) {
12222 bool SafeToContinue
12223 = (PrevTagDecl->getTagKind() != TTK_Enum &&
12224 Kind != TTK_Enum);
12225 if (SafeToContinue)
12226 Diag(KWLoc, diag::err_use_with_wrong_tag)
12227 << Name
12228 << FixItHint::CreateReplacement(SourceRange(KWLoc),
12229 PrevTagDecl->getKindName());
12230 else
12231 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
12232 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
12233
12234 if (SafeToContinue)
12235 Kind = PrevTagDecl->getTagKind();
12236 else {
12237 // Recover by making this an anonymous redefinition.
12238 Name = nullptr;
12239 Previous.clear();
12240 Invalid = true;
12241 }
12242 }
12243
12244 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
12245 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
12246
12247 // If this is an elaborated-type-specifier for a scoped enumeration,
12248 // the 'class' keyword is not necessary and not permitted.
12249 if (TUK == TUK_Reference || TUK == TUK_Friend) {
12250 if (ScopedEnum)
12251 Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
12252 << PrevEnum->isScoped()
12253 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
12254 return PrevTagDecl;
12255 }
12256
12257 QualType EnumUnderlyingTy;
12258 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
12259 EnumUnderlyingTy = TI->getType().getUnqualifiedType();
12260 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
12261 EnumUnderlyingTy = QualType(T, 0);
12262
12263 // All conflicts with previous declarations are recovered by
12264 // returning the previous declaration, unless this is a definition,
12265 // in which case we want the caller to bail out.
12266 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
12267 ScopedEnum, EnumUnderlyingTy,
12268 EnumUnderlyingIsImplicit, PrevEnum))
12269 return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
12270 }
12271
12272 // C++11 [class.mem]p1:
12273 // A member shall not be declared twice in the member-specification,
12274 // except that a nested class or member class template can be declared
12275 // and then later defined.
12276 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
12277 S->isDeclScope(PrevDecl)) {
12278 Diag(NameLoc, diag::ext_member_redeclared);
12279 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
12280 }
12281
12282 if (!Invalid) {
12283 // If this is a use, just return the declaration we found, unless
12284 // we have attributes.
12285
12286 // FIXME: In the future, return a variant or some other clue
12287 // for the consumer of this Decl to know it doesn't own it.
12288 // For our current ASTs this shouldn't be a problem, but will
12289 // need to be changed with DeclGroups.
12290 if (!Attr &&
12291 ((TUK == TUK_Reference &&
12292 (!PrevTagDecl->getFriendObjectKind() || getLangOpts().MicrosoftExt))
12293 || TUK == TUK_Friend))
12294 return PrevTagDecl;
12295
12296 // Diagnose attempts to redefine a tag.
12297 if (TUK == TUK_Definition) {
12298 if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
12299 // If we're defining a specialization and the previous definition
12300 // is from an implicit instantiation, don't emit an error
12301 // here; we'll catch this in the general case below.
12302 bool IsExplicitSpecializationAfterInstantiation = false;
12303 if (isExplicitSpecialization) {
12304 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
12305 IsExplicitSpecializationAfterInstantiation =
12306 RD->getTemplateSpecializationKind() !=
12307 TSK_ExplicitSpecialization;
12308 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
12309 IsExplicitSpecializationAfterInstantiation =
12310 ED->getTemplateSpecializationKind() !=
12311 TSK_ExplicitSpecialization;
12312 }
12313
12314 NamedDecl *Hidden = nullptr;
12315 if (SkipBody && getLangOpts().CPlusPlus &&
12316 !hasVisibleDefinition(Def, &Hidden)) {
12317 // There is a definition of this tag, but it is not visible. We
12318 // explicitly make use of C++'s one definition rule here, and
12319 // assume that this definition is identical to the hidden one
12320 // we already have. Make the existing definition visible and
12321 // use it in place of this one.
12322 SkipBody->ShouldSkip = true;
12323 makeMergedDefinitionVisible(Hidden, KWLoc);
12324 return Def;
12325 } else if (!IsExplicitSpecializationAfterInstantiation) {
12326 // A redeclaration in function prototype scope in C isn't
12327 // visible elsewhere, so merely issue a warning.
12328 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
12329 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
12330 else
12331 Diag(NameLoc, diag::err_redefinition) << Name;
12332 Diag(Def->getLocation(), diag::note_previous_definition);
12333 // If this is a redefinition, recover by making this
12334 // struct be anonymous, which will make any later
12335 // references get the previous definition.
12336 Name = nullptr;
12337 Previous.clear();
12338 Invalid = true;
12339 }
12340 } else {
12341 // If the type is currently being defined, complain
12342 // about a nested redefinition.
12343 auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
12344 if (TD->isBeingDefined()) {
12345 Diag(NameLoc, diag::err_nested_redefinition) << Name;
12346 Diag(PrevTagDecl->getLocation(),
12347 diag::note_previous_definition);
12348 Name = nullptr;
12349 Previous.clear();
12350 Invalid = true;
12351 }
12352 }
12353
12354 // Okay, this is definition of a previously declared or referenced
12355 // tag. We're going to create a new Decl for it.
12356 }
12357
12358 // Okay, we're going to make a redeclaration. If this is some kind
12359 // of reference, make sure we build the redeclaration in the same DC
12360 // as the original, and ignore the current access specifier.
12361 if (TUK == TUK_Friend || TUK == TUK_Reference) {
12362 SearchDC = PrevTagDecl->getDeclContext();
12363 AS = AS_none;
12364 }
12365 }
12366 // If we get here we have (another) forward declaration or we
12367 // have a definition. Just create a new decl.
12368
12369 } else {
12370 // If we get here, this is a definition of a new tag type in a nested
12371 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
12372 // new decl/type. We set PrevDecl to NULL so that the entities
12373 // have distinct types.
12374 Previous.clear();
12375 }
12376 // If we get here, we're going to create a new Decl. If PrevDecl
12377 // is non-NULL, it's a definition of the tag declared by
12378 // PrevDecl. If it's NULL, we have a new definition.
12379
12380
12381 // Otherwise, PrevDecl is not a tag, but was found with tag
12382 // lookup. This is only actually possible in C++, where a few
12383 // things like templates still live in the tag namespace.
12384 } else {
12385 // Use a better diagnostic if an elaborated-type-specifier
12386 // found the wrong kind of type on the first
12387 // (non-redeclaration) lookup.
12388 if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
12389 !Previous.isForRedeclaration()) {
12390 unsigned Kind = 0;
12391 if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
12392 else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
12393 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
12394 Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
12395 Diag(PrevDecl->getLocation(), diag::note_declared_at);
12396 Invalid = true;
12397
12398 // Otherwise, only diagnose if the declaration is in scope.
12399 } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
12400 SS.isNotEmpty() || isExplicitSpecialization)) {
12401 // do nothing
12402
12403 // Diagnose implicit declarations introduced by elaborated types.
12404 } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
12405 unsigned Kind = 0;
12406 if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
12407 else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
12408 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
12409 Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
12410 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
12411 Invalid = true;
12412
12413 // Otherwise it's a declaration. Call out a particularly common
12414 // case here.
12415 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
12416 unsigned Kind = 0;
12417 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
12418 Diag(NameLoc, diag::err_tag_definition_of_typedef)
12419 << Name << Kind << TND->getUnderlyingType();
12420 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
12421 Invalid = true;
12422
12423 // Otherwise, diagnose.
12424 } else {
12425 // The tag name clashes with something else in the target scope,
12426 // issue an error and recover by making this tag be anonymous.
12427 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
12428 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12429 Name = nullptr;
12430 Invalid = true;
12431 }
12432
12433 // The existing declaration isn't relevant to us; we're in a
12434 // new scope, so clear out the previous declaration.
12435 Previous.clear();
12436 }
12437 }
12438
12439 CreateNewDecl:
12440
12441 TagDecl *PrevDecl = nullptr;
12442 if (Previous.isSingleResult())
12443 PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
12444
12445 // If there is an identifier, use the location of the identifier as the
12446 // location of the decl, otherwise use the location of the struct/union
12447 // keyword.
12448 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
12449
12450 // Otherwise, create a new declaration. If there is a previous
12451 // declaration of the same entity, the two will be linked via
12452 // PrevDecl.
12453 TagDecl *New;
12454
12455 bool IsForwardReference = false;
12456 if (Kind == TTK_Enum) {
12457 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
12458 // enum X { A, B, C } D; D should chain to X.
12459 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
12460 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
12461 ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
12462 // If this is an undefined enum, warn.
12463 if (TUK != TUK_Definition && !Invalid) {
12464 TagDecl *Def;
12465 if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
12466 cast<EnumDecl>(New)->isFixed()) {
12467 // C++0x: 7.2p2: opaque-enum-declaration.
12468 // Conflicts are diagnosed above. Do nothing.
12469 }
12470 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
12471 Diag(Loc, diag::ext_forward_ref_enum_def)
12472 << New;
12473 Diag(Def->getLocation(), diag::note_previous_definition);
12474 } else {
12475 unsigned DiagID = diag::ext_forward_ref_enum;
12476 if (getLangOpts().MSVCCompat)
12477 DiagID = diag::ext_ms_forward_ref_enum;
12478 else if (getLangOpts().CPlusPlus)
12479 DiagID = diag::err_forward_ref_enum;
12480 Diag(Loc, DiagID);
12481
12482 // If this is a forward-declared reference to an enumeration, make a
12483 // note of it; we won't actually be introducing the declaration into
12484 // the declaration context.
12485 if (TUK == TUK_Reference)
12486 IsForwardReference = true;
12487 }
12488 }
12489
12490 if (EnumUnderlying) {
12491 EnumDecl *ED = cast<EnumDecl>(New);
12492 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
12493 ED->setIntegerTypeSourceInfo(TI);
12494 else
12495 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
12496 ED->setPromotionType(ED->getIntegerType());
12497 }
12498
12499 } else {
12500 // struct/union/class
12501
12502 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
12503 // struct X { int A; } D; D should chain to X.
12504 if (getLangOpts().CPlusPlus) {
12505 // FIXME: Look for a way to use RecordDecl for simple structs.
12506 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
12507 cast_or_null<CXXRecordDecl>(PrevDecl));
12508
12509 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
12510 StdBadAlloc = cast<CXXRecordDecl>(New);
12511 } else
12512 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
12513 cast_or_null<RecordDecl>(PrevDecl));
12514 }
12515
12516 // C++11 [dcl.type]p3:
12517 // A type-specifier-seq shall not define a class or enumeration [...].
12518 if (getLangOpts().CPlusPlus && IsTypeSpecifier && TUK == TUK_Definition) {
12519 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
12520 << Context.getTagDeclType(New);
12521 Invalid = true;
12522 }
12523
12524 // Maybe add qualifier info.
12525 if (SS.isNotEmpty()) {
12526 if (SS.isSet()) {
12527 // If this is either a declaration or a definition, check the
12528 // nested-name-specifier against the current context. We don't do this
12529 // for explicit specializations, because they have similar checking
12530 // (with more specific diagnostics) in the call to
12531 // CheckMemberSpecialization, below.
12532 if (!isExplicitSpecialization &&
12533 (TUK == TUK_Definition || TUK == TUK_Declaration) &&
12534 diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc))
12535 Invalid = true;
12536
12537 New->setQualifierInfo(SS.getWithLocInContext(Context));
12538 if (TemplateParameterLists.size() > 0) {
12539 New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
12540 }
12541 }
12542 else
12543 Invalid = true;
12544 }
12545
12546 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
12547 // Add alignment attributes if necessary; these attributes are checked when
12548 // the ASTContext lays out the structure.
12549 //
12550 // It is important for implementing the correct semantics that this
12551 // happen here (in act on tag decl). The #pragma pack stack is
12552 // maintained as a result of parser callbacks which can occur at
12553 // many points during the parsing of a struct declaration (because
12554 // the #pragma tokens are effectively skipped over during the
12555 // parsing of the struct).
12556 if (TUK == TUK_Definition) {
12557 AddAlignmentAttributesForRecord(RD);
12558 AddMsStructLayoutForRecord(RD);
12559 }
12560 }
12561
12562 if (ModulePrivateLoc.isValid()) {
12563 if (isExplicitSpecialization)
12564 Diag(New->getLocation(), diag::err_module_private_specialization)
12565 << 2
12566 << FixItHint::CreateRemoval(ModulePrivateLoc);
12567 // __module_private__ does not apply to local classes. However, we only
12568 // diagnose this as an error when the declaration specifiers are
12569 // freestanding. Here, we just ignore the __module_private__.
12570 else if (!SearchDC->isFunctionOrMethod())
12571 New->setModulePrivate();
12572 }
12573
12574 // If this is a specialization of a member class (of a class template),
12575 // check the specialization.
12576 if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
12577 Invalid = true;
12578
12579 // If we're declaring or defining a tag in function prototype scope in C,
12580 // note that this type can only be used within the function and add it to
12581 // the list of decls to inject into the function definition scope.
12582 if ((Name || Kind == TTK_Enum) &&
12583 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
12584 if (getLangOpts().CPlusPlus) {
12585 // C++ [dcl.fct]p6:
12586 // Types shall not be defined in return or parameter types.
12587 if (TUK == TUK_Definition && !IsTypeSpecifier) {
12588 Diag(Loc, diag::err_type_defined_in_param_type)
12589 << Name;
12590 Invalid = true;
12591 }
12592 } else {
12593 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
12594 }
12595 DeclsInPrototypeScope.push_back(New);
12596 }
12597
12598 if (Invalid)
12599 New->setInvalidDecl();
12600
12601 if (Attr)
12602 ProcessDeclAttributeList(S, New, Attr);
12603
12604 // Set the lexical context. If the tag has a C++ scope specifier, the
12605 // lexical context will be different from the semantic context.
12606 New->setLexicalDeclContext(CurContext);
12607
12608 // Mark this as a friend decl if applicable.
12609 // In Microsoft mode, a friend declaration also acts as a forward
12610 // declaration so we always pass true to setObjectOfFriendDecl to make
12611 // the tag name visible.
12612 if (TUK == TUK_Friend)
12613 New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
12614
12615 // Set the access specifier.
12616 if (!Invalid && SearchDC->isRecord())
12617 SetMemberAccessSpecifier(New, PrevDecl, AS);
12618
12619 if (TUK == TUK_Definition)
12620 New->startDefinition();
12621
12622 // If this has an identifier, add it to the scope stack.
12623 if (TUK == TUK_Friend) {
12624 // We might be replacing an existing declaration in the lookup tables;
12625 // if so, borrow its access specifier.
12626 if (PrevDecl)
12627 New->setAccess(PrevDecl->getAccess());
12628
12629 DeclContext *DC = New->getDeclContext()->getRedeclContext();
12630 DC->makeDeclVisibleInContext(New);
12631 if (Name) // can be null along some error paths
12632 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
12633 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
12634 } else if (Name) {
12635 S = getNonFieldDeclScope(S);
12636 PushOnScopeChains(New, S, !IsForwardReference);
12637 if (IsForwardReference)
12638 SearchDC->makeDeclVisibleInContext(New);
12639
12640 } else {
12641 CurContext->addDecl(New);
12642 }
12643
12644 // If this is the C FILE type, notify the AST context.
12645 if (IdentifierInfo *II = New->getIdentifier())
12646 if (!New->isInvalidDecl() &&
12647 New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
12648 II->isStr("FILE"))
12649 Context.setFILEDecl(New);
12650
12651 if (PrevDecl)
12652 mergeDeclAttributes(New, PrevDecl);
12653
12654 // If there's a #pragma GCC visibility in scope, set the visibility of this
12655 // record.
12656 AddPushedVisibilityAttribute(New);
12657
12658 OwnedDecl = true;
12659 // In C++, don't return an invalid declaration. We can't recover well from
12660 // the cases where we make the type anonymous.
12661 return (Invalid && getLangOpts().CPlusPlus) ? nullptr : New;
12662 }
12663
ActOnTagStartDefinition(Scope * S,Decl * TagD)12664 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
12665 AdjustDeclIfTemplate(TagD);
12666 TagDecl *Tag = cast<TagDecl>(TagD);
12667
12668 // Enter the tag context.
12669 PushDeclContext(S, Tag);
12670
12671 ActOnDocumentableDecl(TagD);
12672
12673 // If there's a #pragma GCC visibility in scope, set the visibility of this
12674 // record.
12675 AddPushedVisibilityAttribute(Tag);
12676 }
12677
ActOnObjCContainerStartDefinition(Decl * IDecl)12678 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
12679 assert(isa<ObjCContainerDecl>(IDecl) &&
12680 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
12681 DeclContext *OCD = cast<DeclContext>(IDecl);
12682 assert(getContainingDC(OCD) == CurContext &&
12683 "The next DeclContext should be lexically contained in the current one.");
12684 CurContext = OCD;
12685 return IDecl;
12686 }
12687
ActOnStartCXXMemberDeclarations(Scope * S,Decl * TagD,SourceLocation FinalLoc,bool IsFinalSpelledSealed,SourceLocation LBraceLoc)12688 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
12689 SourceLocation FinalLoc,
12690 bool IsFinalSpelledSealed,
12691 SourceLocation LBraceLoc) {
12692 AdjustDeclIfTemplate(TagD);
12693 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
12694
12695 FieldCollector->StartClass();
12696
12697 if (!Record->getIdentifier())
12698 return;
12699
12700 if (FinalLoc.isValid())
12701 Record->addAttr(new (Context)
12702 FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
12703
12704 // C++ [class]p2:
12705 // [...] The class-name is also inserted into the scope of the
12706 // class itself; this is known as the injected-class-name. For
12707 // purposes of access checking, the injected-class-name is treated
12708 // as if it were a public member name.
12709 CXXRecordDecl *InjectedClassName
12710 = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
12711 Record->getLocStart(), Record->getLocation(),
12712 Record->getIdentifier(),
12713 /*PrevDecl=*/nullptr,
12714 /*DelayTypeCreation=*/true);
12715 Context.getTypeDeclType(InjectedClassName, Record);
12716 InjectedClassName->setImplicit();
12717 InjectedClassName->setAccess(AS_public);
12718 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
12719 InjectedClassName->setDescribedClassTemplate(Template);
12720 PushOnScopeChains(InjectedClassName, S);
12721 assert(InjectedClassName->isInjectedClassName() &&
12722 "Broken injected-class-name");
12723 }
12724
ActOnTagFinishDefinition(Scope * S,Decl * TagD,SourceLocation RBraceLoc)12725 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
12726 SourceLocation RBraceLoc) {
12727 AdjustDeclIfTemplate(TagD);
12728 TagDecl *Tag = cast<TagDecl>(TagD);
12729 Tag->setRBraceLoc(RBraceLoc);
12730
12731 // Make sure we "complete" the definition even it is invalid.
12732 if (Tag->isBeingDefined()) {
12733 assert(Tag->isInvalidDecl() && "We should already have completed it");
12734 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
12735 RD->completeDefinition();
12736 }
12737
12738 if (isa<CXXRecordDecl>(Tag))
12739 FieldCollector->FinishClass();
12740
12741 // Exit this scope of this tag's definition.
12742 PopDeclContext();
12743
12744 if (getCurLexicalContext()->isObjCContainer() &&
12745 Tag->getDeclContext()->isFileContext())
12746 Tag->setTopLevelDeclInObjCContainer();
12747
12748 // Notify the consumer that we've defined a tag.
12749 if (!Tag->isInvalidDecl())
12750 Consumer.HandleTagDeclDefinition(Tag);
12751 }
12752
ActOnObjCContainerFinishDefinition()12753 void Sema::ActOnObjCContainerFinishDefinition() {
12754 // Exit this scope of this interface definition.
12755 PopDeclContext();
12756 }
12757
ActOnObjCTemporaryExitContainerContext(DeclContext * DC)12758 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
12759 assert(DC == CurContext && "Mismatch of container contexts");
12760 OriginalLexicalContext = DC;
12761 ActOnObjCContainerFinishDefinition();
12762 }
12763
ActOnObjCReenterContainerContext(DeclContext * DC)12764 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
12765 ActOnObjCContainerStartDefinition(cast<Decl>(DC));
12766 OriginalLexicalContext = nullptr;
12767 }
12768
ActOnTagDefinitionError(Scope * S,Decl * TagD)12769 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
12770 AdjustDeclIfTemplate(TagD);
12771 TagDecl *Tag = cast<TagDecl>(TagD);
12772 Tag->setInvalidDecl();
12773
12774 // Make sure we "complete" the definition even it is invalid.
12775 if (Tag->isBeingDefined()) {
12776 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
12777 RD->completeDefinition();
12778 }
12779
12780 // We're undoing ActOnTagStartDefinition here, not
12781 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
12782 // the FieldCollector.
12783
12784 PopDeclContext();
12785 }
12786
12787 // Note that FieldName may be null for anonymous bitfields.
VerifyBitField(SourceLocation FieldLoc,IdentifierInfo * FieldName,QualType FieldTy,bool IsMsStruct,Expr * BitWidth,bool * ZeroWidth)12788 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
12789 IdentifierInfo *FieldName,
12790 QualType FieldTy, bool IsMsStruct,
12791 Expr *BitWidth, bool *ZeroWidth) {
12792 // Default to true; that shouldn't confuse checks for emptiness
12793 if (ZeroWidth)
12794 *ZeroWidth = true;
12795
12796 // C99 6.7.2.1p4 - verify the field type.
12797 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
12798 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
12799 // Handle incomplete types with specific error.
12800 if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
12801 return ExprError();
12802 if (FieldName)
12803 return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
12804 << FieldName << FieldTy << BitWidth->getSourceRange();
12805 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
12806 << FieldTy << BitWidth->getSourceRange();
12807 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
12808 UPPC_BitFieldWidth))
12809 return ExprError();
12810
12811 // If the bit-width is type- or value-dependent, don't try to check
12812 // it now.
12813 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
12814 return BitWidth;
12815
12816 llvm::APSInt Value;
12817 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
12818 if (ICE.isInvalid())
12819 return ICE;
12820 BitWidth = ICE.get();
12821
12822 if (Value != 0 && ZeroWidth)
12823 *ZeroWidth = false;
12824
12825 // Zero-width bitfield is ok for anonymous field.
12826 if (Value == 0 && FieldName)
12827 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
12828
12829 if (Value.isSigned() && Value.isNegative()) {
12830 if (FieldName)
12831 return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
12832 << FieldName << Value.toString(10);
12833 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
12834 << Value.toString(10);
12835 }
12836
12837 if (!FieldTy->isDependentType()) {
12838 uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
12839 uint64_t TypeWidth = Context.getIntWidth(FieldTy);
12840 bool BitfieldIsOverwide = Value.ugt(TypeWidth);
12841
12842 // Over-wide bitfields are an error in C or when using the MSVC bitfield
12843 // ABI.
12844 bool CStdConstraintViolation =
12845 BitfieldIsOverwide && !getLangOpts().CPlusPlus;
12846 bool MSBitfieldViolation =
12847 Value.ugt(TypeStorageSize) &&
12848 (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
12849 if (CStdConstraintViolation || MSBitfieldViolation) {
12850 unsigned DiagWidth =
12851 CStdConstraintViolation ? TypeWidth : TypeStorageSize;
12852 if (FieldName)
12853 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
12854 << FieldName << (unsigned)Value.getZExtValue()
12855 << !CStdConstraintViolation << DiagWidth;
12856
12857 return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
12858 << (unsigned)Value.getZExtValue() << !CStdConstraintViolation
12859 << DiagWidth;
12860 }
12861
12862 // Warn on types where the user might conceivably expect to get all
12863 // specified bits as value bits: that's all integral types other than
12864 // 'bool'.
12865 if (BitfieldIsOverwide && !FieldTy->isBooleanType()) {
12866 if (FieldName)
12867 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
12868 << FieldName << (unsigned)Value.getZExtValue()
12869 << (unsigned)TypeWidth;
12870 else
12871 Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width)
12872 << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth;
12873 }
12874 }
12875
12876 return BitWidth;
12877 }
12878
12879 /// ActOnField - Each field of a C struct/union is passed into this in order
12880 /// to create a FieldDecl object for it.
ActOnField(Scope * S,Decl * TagD,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth)12881 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
12882 Declarator &D, Expr *BitfieldWidth) {
12883 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
12884 DeclStart, D, static_cast<Expr*>(BitfieldWidth),
12885 /*InitStyle=*/ICIS_NoInit, AS_public);
12886 return Res;
12887 }
12888
12889 /// HandleField - Analyze a field of a C struct or a C++ data member.
12890 ///
HandleField(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS)12891 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
12892 SourceLocation DeclStart,
12893 Declarator &D, Expr *BitWidth,
12894 InClassInitStyle InitStyle,
12895 AccessSpecifier AS) {
12896 IdentifierInfo *II = D.getIdentifier();
12897 SourceLocation Loc = DeclStart;
12898 if (II) Loc = D.getIdentifierLoc();
12899
12900 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12901 QualType T = TInfo->getType();
12902 if (getLangOpts().CPlusPlus) {
12903 CheckExtraCXXDefaultArguments(D);
12904
12905 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12906 UPPC_DataMemberType)) {
12907 D.setInvalidType();
12908 T = Context.IntTy;
12909 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12910 }
12911 }
12912
12913 // TR 18037 does not allow fields to be declared with address spaces.
12914 if (T.getQualifiers().hasAddressSpace()) {
12915 Diag(Loc, diag::err_field_with_address_space);
12916 D.setInvalidType();
12917 }
12918
12919 // OpenCL 1.2 spec, s6.9 r:
12920 // The event type cannot be used to declare a structure or union field.
12921 if (LangOpts.OpenCL && T->isEventT()) {
12922 Diag(Loc, diag::err_event_t_struct_field);
12923 D.setInvalidType();
12924 }
12925
12926 DiagnoseFunctionSpecifiers(D.getDeclSpec());
12927
12928 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12929 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12930 diag::err_invalid_thread)
12931 << DeclSpec::getSpecifierName(TSCS);
12932
12933 // Check to see if this name was declared as a member previously
12934 NamedDecl *PrevDecl = nullptr;
12935 LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12936 LookupName(Previous, S);
12937 switch (Previous.getResultKind()) {
12938 case LookupResult::Found:
12939 case LookupResult::FoundUnresolvedValue:
12940 PrevDecl = Previous.getAsSingle<NamedDecl>();
12941 break;
12942
12943 case LookupResult::FoundOverloaded:
12944 PrevDecl = Previous.getRepresentativeDecl();
12945 break;
12946
12947 case LookupResult::NotFound:
12948 case LookupResult::NotFoundInCurrentInstantiation:
12949 case LookupResult::Ambiguous:
12950 break;
12951 }
12952 Previous.suppressDiagnostics();
12953
12954 if (PrevDecl && PrevDecl->isTemplateParameter()) {
12955 // Maybe we will complain about the shadowed template parameter.
12956 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12957 // Just pretend that we didn't see the previous declaration.
12958 PrevDecl = nullptr;
12959 }
12960
12961 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12962 PrevDecl = nullptr;
12963
12964 bool Mutable
12965 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
12966 SourceLocation TSSL = D.getLocStart();
12967 FieldDecl *NewFD
12968 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
12969 TSSL, AS, PrevDecl, &D);
12970
12971 if (NewFD->isInvalidDecl())
12972 Record->setInvalidDecl();
12973
12974 if (D.getDeclSpec().isModulePrivateSpecified())
12975 NewFD->setModulePrivate();
12976
12977 if (NewFD->isInvalidDecl() && PrevDecl) {
12978 // Don't introduce NewFD into scope; there's already something
12979 // with the same name in the same scope.
12980 } else if (II) {
12981 PushOnScopeChains(NewFD, S);
12982 } else
12983 Record->addDecl(NewFD);
12984
12985 return NewFD;
12986 }
12987
12988 /// \brief Build a new FieldDecl and check its well-formedness.
12989 ///
12990 /// This routine builds a new FieldDecl given the fields name, type,
12991 /// record, etc. \p PrevDecl should refer to any previous declaration
12992 /// with the same name and in the same scope as the field to be
12993 /// created.
12994 ///
12995 /// \returns a new FieldDecl.
12996 ///
12997 /// \todo The Declarator argument is a hack. It will be removed once
CheckFieldDecl(DeclarationName Name,QualType T,TypeSourceInfo * TInfo,RecordDecl * Record,SourceLocation Loc,bool Mutable,Expr * BitWidth,InClassInitStyle InitStyle,SourceLocation TSSL,AccessSpecifier AS,NamedDecl * PrevDecl,Declarator * D)12998 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
12999 TypeSourceInfo *TInfo,
13000 RecordDecl *Record, SourceLocation Loc,
13001 bool Mutable, Expr *BitWidth,
13002 InClassInitStyle InitStyle,
13003 SourceLocation TSSL,
13004 AccessSpecifier AS, NamedDecl *PrevDecl,
13005 Declarator *D) {
13006 IdentifierInfo *II = Name.getAsIdentifierInfo();
13007 bool InvalidDecl = false;
13008 if (D) InvalidDecl = D->isInvalidType();
13009
13010 // If we receive a broken type, recover by assuming 'int' and
13011 // marking this declaration as invalid.
13012 if (T.isNull()) {
13013 InvalidDecl = true;
13014 T = Context.IntTy;
13015 }
13016
13017 QualType EltTy = Context.getBaseElementType(T);
13018 if (!EltTy->isDependentType()) {
13019 if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
13020 // Fields of incomplete type force their record to be invalid.
13021 Record->setInvalidDecl();
13022 InvalidDecl = true;
13023 } else {
13024 NamedDecl *Def;
13025 EltTy->isIncompleteType(&Def);
13026 if (Def && Def->isInvalidDecl()) {
13027 Record->setInvalidDecl();
13028 InvalidDecl = true;
13029 }
13030 }
13031 }
13032
13033 // OpenCL v1.2 s6.9.c: bitfields are not supported.
13034 if (BitWidth && getLangOpts().OpenCL) {
13035 Diag(Loc, diag::err_opencl_bitfields);
13036 InvalidDecl = true;
13037 }
13038
13039 // C99 6.7.2.1p8: A member of a structure or union may have any type other
13040 // than a variably modified type.
13041 if (!InvalidDecl && T->isVariablyModifiedType()) {
13042 bool SizeIsNegative;
13043 llvm::APSInt Oversized;
13044
13045 TypeSourceInfo *FixedTInfo =
13046 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
13047 SizeIsNegative,
13048 Oversized);
13049 if (FixedTInfo) {
13050 Diag(Loc, diag::warn_illegal_constant_array_size);
13051 TInfo = FixedTInfo;
13052 T = FixedTInfo->getType();
13053 } else {
13054 if (SizeIsNegative)
13055 Diag(Loc, diag::err_typecheck_negative_array_size);
13056 else if (Oversized.getBoolValue())
13057 Diag(Loc, diag::err_array_too_large)
13058 << Oversized.toString(10);
13059 else
13060 Diag(Loc, diag::err_typecheck_field_variable_size);
13061 InvalidDecl = true;
13062 }
13063 }
13064
13065 // Fields can not have abstract class types
13066 if (!InvalidDecl && RequireNonAbstractType(Loc, T,
13067 diag::err_abstract_type_in_decl,
13068 AbstractFieldType))
13069 InvalidDecl = true;
13070
13071 bool ZeroWidth = false;
13072 if (InvalidDecl)
13073 BitWidth = nullptr;
13074 // If this is declared as a bit-field, check the bit-field.
13075 if (BitWidth) {
13076 BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
13077 &ZeroWidth).get();
13078 if (!BitWidth) {
13079 InvalidDecl = true;
13080 BitWidth = nullptr;
13081 ZeroWidth = false;
13082 }
13083 }
13084
13085 // Check that 'mutable' is consistent with the type of the declaration.
13086 if (!InvalidDecl && Mutable) {
13087 unsigned DiagID = 0;
13088 if (T->isReferenceType())
13089 DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
13090 : diag::err_mutable_reference;
13091 else if (T.isConstQualified())
13092 DiagID = diag::err_mutable_const;
13093
13094 if (DiagID) {
13095 SourceLocation ErrLoc = Loc;
13096 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
13097 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
13098 Diag(ErrLoc, DiagID);
13099 if (DiagID != diag::ext_mutable_reference) {
13100 Mutable = false;
13101 InvalidDecl = true;
13102 }
13103 }
13104 }
13105
13106 // C++11 [class.union]p8 (DR1460):
13107 // At most one variant member of a union may have a
13108 // brace-or-equal-initializer.
13109 if (InitStyle != ICIS_NoInit)
13110 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
13111
13112 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
13113 BitWidth, Mutable, InitStyle);
13114 if (InvalidDecl)
13115 NewFD->setInvalidDecl();
13116
13117 if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
13118 Diag(Loc, diag::err_duplicate_member) << II;
13119 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
13120 NewFD->setInvalidDecl();
13121 }
13122
13123 if (!InvalidDecl && getLangOpts().CPlusPlus) {
13124 if (Record->isUnion()) {
13125 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
13126 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
13127 if (RDecl->getDefinition()) {
13128 // C++ [class.union]p1: An object of a class with a non-trivial
13129 // constructor, a non-trivial copy constructor, a non-trivial
13130 // destructor, or a non-trivial copy assignment operator
13131 // cannot be a member of a union, nor can an array of such
13132 // objects.
13133 if (CheckNontrivialField(NewFD))
13134 NewFD->setInvalidDecl();
13135 }
13136 }
13137
13138 // C++ [class.union]p1: If a union contains a member of reference type,
13139 // the program is ill-formed, except when compiling with MSVC extensions
13140 // enabled.
13141 if (EltTy->isReferenceType()) {
13142 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
13143 diag::ext_union_member_of_reference_type :
13144 diag::err_union_member_of_reference_type)
13145 << NewFD->getDeclName() << EltTy;
13146 if (!getLangOpts().MicrosoftExt)
13147 NewFD->setInvalidDecl();
13148 }
13149 }
13150 }
13151
13152 // FIXME: We need to pass in the attributes given an AST
13153 // representation, not a parser representation.
13154 if (D) {
13155 // FIXME: The current scope is almost... but not entirely... correct here.
13156 ProcessDeclAttributes(getCurScope(), NewFD, *D);
13157
13158 if (NewFD->hasAttrs())
13159 CheckAlignasUnderalignment(NewFD);
13160 }
13161
13162 // In auto-retain/release, infer strong retension for fields of
13163 // retainable type.
13164 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
13165 NewFD->setInvalidDecl();
13166
13167 if (T.isObjCGCWeak())
13168 Diag(Loc, diag::warn_attribute_weak_on_field);
13169
13170 NewFD->setAccess(AS);
13171 return NewFD;
13172 }
13173
CheckNontrivialField(FieldDecl * FD)13174 bool Sema::CheckNontrivialField(FieldDecl *FD) {
13175 assert(FD);
13176 assert(getLangOpts().CPlusPlus && "valid check only for C++");
13177
13178 if (FD->isInvalidDecl() || FD->getType()->isDependentType())
13179 return false;
13180
13181 QualType EltTy = Context.getBaseElementType(FD->getType());
13182 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
13183 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
13184 if (RDecl->getDefinition()) {
13185 // We check for copy constructors before constructors
13186 // because otherwise we'll never get complaints about
13187 // copy constructors.
13188
13189 CXXSpecialMember member = CXXInvalid;
13190 // We're required to check for any non-trivial constructors. Since the
13191 // implicit default constructor is suppressed if there are any
13192 // user-declared constructors, we just need to check that there is a
13193 // trivial default constructor and a trivial copy constructor. (We don't
13194 // worry about move constructors here, since this is a C++98 check.)
13195 if (RDecl->hasNonTrivialCopyConstructor())
13196 member = CXXCopyConstructor;
13197 else if (!RDecl->hasTrivialDefaultConstructor())
13198 member = CXXDefaultConstructor;
13199 else if (RDecl->hasNonTrivialCopyAssignment())
13200 member = CXXCopyAssignment;
13201 else if (RDecl->hasNonTrivialDestructor())
13202 member = CXXDestructor;
13203
13204 if (member != CXXInvalid) {
13205 if (!getLangOpts().CPlusPlus11 &&
13206 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
13207 // Objective-C++ ARC: it is an error to have a non-trivial field of
13208 // a union. However, system headers in Objective-C programs
13209 // occasionally have Objective-C lifetime objects within unions,
13210 // and rather than cause the program to fail, we make those
13211 // members unavailable.
13212 SourceLocation Loc = FD->getLocation();
13213 if (getSourceManager().isInSystemHeader(Loc)) {
13214 if (!FD->hasAttr<UnavailableAttr>())
13215 FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
13216 UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
13217 return false;
13218 }
13219 }
13220
13221 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
13222 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
13223 diag::err_illegal_union_or_anon_struct_member)
13224 << FD->getParent()->isUnion() << FD->getDeclName() << member;
13225 DiagnoseNontrivial(RDecl, member);
13226 return !getLangOpts().CPlusPlus11;
13227 }
13228 }
13229 }
13230
13231 return false;
13232 }
13233
13234 /// TranslateIvarVisibility - Translate visibility from a token ID to an
13235 /// AST enum value.
13236 static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility)13237 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
13238 switch (ivarVisibility) {
13239 default: llvm_unreachable("Unknown visitibility kind");
13240 case tok::objc_private: return ObjCIvarDecl::Private;
13241 case tok::objc_public: return ObjCIvarDecl::Public;
13242 case tok::objc_protected: return ObjCIvarDecl::Protected;
13243 case tok::objc_package: return ObjCIvarDecl::Package;
13244 }
13245 }
13246
13247 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
13248 /// in order to create an IvarDecl object for it.
ActOnIvar(Scope * S,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth,tok::ObjCKeywordKind Visibility)13249 Decl *Sema::ActOnIvar(Scope *S,
13250 SourceLocation DeclStart,
13251 Declarator &D, Expr *BitfieldWidth,
13252 tok::ObjCKeywordKind Visibility) {
13253
13254 IdentifierInfo *II = D.getIdentifier();
13255 Expr *BitWidth = (Expr*)BitfieldWidth;
13256 SourceLocation Loc = DeclStart;
13257 if (II) Loc = D.getIdentifierLoc();
13258
13259 // FIXME: Unnamed fields can be handled in various different ways, for
13260 // example, unnamed unions inject all members into the struct namespace!
13261
13262 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
13263 QualType T = TInfo->getType();
13264
13265 if (BitWidth) {
13266 // 6.7.2.1p3, 6.7.2.1p4
13267 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
13268 if (!BitWidth)
13269 D.setInvalidType();
13270 } else {
13271 // Not a bitfield.
13272
13273 // validate II.
13274
13275 }
13276 if (T->isReferenceType()) {
13277 Diag(Loc, diag::err_ivar_reference_type);
13278 D.setInvalidType();
13279 }
13280 // C99 6.7.2.1p8: A member of a structure or union may have any type other
13281 // than a variably modified type.
13282 else if (T->isVariablyModifiedType()) {
13283 Diag(Loc, diag::err_typecheck_ivar_variable_size);
13284 D.setInvalidType();
13285 }
13286
13287 // Get the visibility (access control) for this ivar.
13288 ObjCIvarDecl::AccessControl ac =
13289 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
13290 : ObjCIvarDecl::None;
13291 // Must set ivar's DeclContext to its enclosing interface.
13292 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
13293 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
13294 return nullptr;
13295 ObjCContainerDecl *EnclosingContext;
13296 if (ObjCImplementationDecl *IMPDecl =
13297 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
13298 if (LangOpts.ObjCRuntime.isFragile()) {
13299 // Case of ivar declared in an implementation. Context is that of its class.
13300 EnclosingContext = IMPDecl->getClassInterface();
13301 assert(EnclosingContext && "Implementation has no class interface!");
13302 }
13303 else
13304 EnclosingContext = EnclosingDecl;
13305 } else {
13306 if (ObjCCategoryDecl *CDecl =
13307 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
13308 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
13309 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
13310 return nullptr;
13311 }
13312 }
13313 EnclosingContext = EnclosingDecl;
13314 }
13315
13316 // Construct the decl.
13317 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
13318 DeclStart, Loc, II, T,
13319 TInfo, ac, (Expr *)BitfieldWidth);
13320
13321 if (II) {
13322 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
13323 ForRedeclaration);
13324 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
13325 && !isa<TagDecl>(PrevDecl)) {
13326 Diag(Loc, diag::err_duplicate_member) << II;
13327 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
13328 NewID->setInvalidDecl();
13329 }
13330 }
13331
13332 // Process attributes attached to the ivar.
13333 ProcessDeclAttributes(S, NewID, D);
13334
13335 if (D.isInvalidType())
13336 NewID->setInvalidDecl();
13337
13338 // In ARC, infer 'retaining' for ivars of retainable type.
13339 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
13340 NewID->setInvalidDecl();
13341
13342 if (D.getDeclSpec().isModulePrivateSpecified())
13343 NewID->setModulePrivate();
13344
13345 if (II) {
13346 // FIXME: When interfaces are DeclContexts, we'll need to add
13347 // these to the interface.
13348 S->AddDecl(NewID);
13349 IdResolver.AddDecl(NewID);
13350 }
13351
13352 if (LangOpts.ObjCRuntime.isNonFragile() &&
13353 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
13354 Diag(Loc, diag::warn_ivars_in_interface);
13355
13356 return NewID;
13357 }
13358
13359 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
13360 /// class and class extensions. For every class \@interface and class
13361 /// extension \@interface, if the last ivar is a bitfield of any type,
13362 /// then add an implicit `char :0` ivar to the end of that interface.
ActOnLastBitfield(SourceLocation DeclLoc,SmallVectorImpl<Decl * > & AllIvarDecls)13363 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
13364 SmallVectorImpl<Decl *> &AllIvarDecls) {
13365 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
13366 return;
13367
13368 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
13369 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
13370
13371 if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
13372 return;
13373 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
13374 if (!ID) {
13375 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
13376 if (!CD->IsClassExtension())
13377 return;
13378 }
13379 // No need to add this to end of @implementation.
13380 else
13381 return;
13382 }
13383 // All conditions are met. Add a new bitfield to the tail end of ivars.
13384 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
13385 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
13386
13387 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
13388 DeclLoc, DeclLoc, nullptr,
13389 Context.CharTy,
13390 Context.getTrivialTypeSourceInfo(Context.CharTy,
13391 DeclLoc),
13392 ObjCIvarDecl::Private, BW,
13393 true);
13394 AllIvarDecls.push_back(Ivar);
13395 }
13396
ActOnFields(Scope * S,SourceLocation RecLoc,Decl * EnclosingDecl,ArrayRef<Decl * > Fields,SourceLocation LBrac,SourceLocation RBrac,AttributeList * Attr)13397 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
13398 ArrayRef<Decl *> Fields, SourceLocation LBrac,
13399 SourceLocation RBrac, AttributeList *Attr) {
13400 assert(EnclosingDecl && "missing record or interface decl");
13401
13402 // If this is an Objective-C @implementation or category and we have
13403 // new fields here we should reset the layout of the interface since
13404 // it will now change.
13405 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
13406 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
13407 switch (DC->getKind()) {
13408 default: break;
13409 case Decl::ObjCCategory:
13410 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
13411 break;
13412 case Decl::ObjCImplementation:
13413 Context.
13414 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
13415 break;
13416 }
13417 }
13418
13419 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
13420
13421 // Start counting up the number of named members; make sure to include
13422 // members of anonymous structs and unions in the total.
13423 unsigned NumNamedMembers = 0;
13424 if (Record) {
13425 for (const auto *I : Record->decls()) {
13426 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
13427 if (IFD->getDeclName())
13428 ++NumNamedMembers;
13429 }
13430 }
13431
13432 // Verify that all the fields are okay.
13433 SmallVector<FieldDecl*, 32> RecFields;
13434
13435 bool ARCErrReported = false;
13436 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
13437 i != end; ++i) {
13438 FieldDecl *FD = cast<FieldDecl>(*i);
13439
13440 // Get the type for the field.
13441 const Type *FDTy = FD->getType().getTypePtr();
13442
13443 if (!FD->isAnonymousStructOrUnion()) {
13444 // Remember all fields written by the user.
13445 RecFields.push_back(FD);
13446 }
13447
13448 // If the field is already invalid for some reason, don't emit more
13449 // diagnostics about it.
13450 if (FD->isInvalidDecl()) {
13451 EnclosingDecl->setInvalidDecl();
13452 continue;
13453 }
13454
13455 // C99 6.7.2.1p2:
13456 // A structure or union shall not contain a member with
13457 // incomplete or function type (hence, a structure shall not
13458 // contain an instance of itself, but may contain a pointer to
13459 // an instance of itself), except that the last member of a
13460 // structure with more than one named member may have incomplete
13461 // array type; such a structure (and any union containing,
13462 // possibly recursively, a member that is such a structure)
13463 // shall not be a member of a structure or an element of an
13464 // array.
13465 if (FDTy->isFunctionType()) {
13466 // Field declared as a function.
13467 Diag(FD->getLocation(), diag::err_field_declared_as_function)
13468 << FD->getDeclName();
13469 FD->setInvalidDecl();
13470 EnclosingDecl->setInvalidDecl();
13471 continue;
13472 } else if (FDTy->isIncompleteArrayType() && Record &&
13473 ((i + 1 == Fields.end() && !Record->isUnion()) ||
13474 ((getLangOpts().MicrosoftExt ||
13475 getLangOpts().CPlusPlus) &&
13476 (i + 1 == Fields.end() || Record->isUnion())))) {
13477 // Flexible array member.
13478 // Microsoft and g++ is more permissive regarding flexible array.
13479 // It will accept flexible array in union and also
13480 // as the sole element of a struct/class.
13481 unsigned DiagID = 0;
13482 if (Record->isUnion())
13483 DiagID = getLangOpts().MicrosoftExt
13484 ? diag::ext_flexible_array_union_ms
13485 : getLangOpts().CPlusPlus
13486 ? diag::ext_flexible_array_union_gnu
13487 : diag::err_flexible_array_union;
13488 else if (Fields.size() == 1)
13489 DiagID = getLangOpts().MicrosoftExt
13490 ? diag::ext_flexible_array_empty_aggregate_ms
13491 : getLangOpts().CPlusPlus
13492 ? diag::ext_flexible_array_empty_aggregate_gnu
13493 : NumNamedMembers < 1
13494 ? diag::err_flexible_array_empty_aggregate
13495 : 0;
13496
13497 if (DiagID)
13498 Diag(FD->getLocation(), DiagID) << FD->getDeclName()
13499 << Record->getTagKind();
13500 // While the layout of types that contain virtual bases is not specified
13501 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
13502 // virtual bases after the derived members. This would make a flexible
13503 // array member declared at the end of an object not adjacent to the end
13504 // of the type.
13505 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record))
13506 if (RD->getNumVBases() != 0)
13507 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
13508 << FD->getDeclName() << Record->getTagKind();
13509 if (!getLangOpts().C99)
13510 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
13511 << FD->getDeclName() << Record->getTagKind();
13512
13513 // If the element type has a non-trivial destructor, we would not
13514 // implicitly destroy the elements, so disallow it for now.
13515 //
13516 // FIXME: GCC allows this. We should probably either implicitly delete
13517 // the destructor of the containing class, or just allow this.
13518 QualType BaseElem = Context.getBaseElementType(FD->getType());
13519 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
13520 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
13521 << FD->getDeclName() << FD->getType();
13522 FD->setInvalidDecl();
13523 EnclosingDecl->setInvalidDecl();
13524 continue;
13525 }
13526 // Okay, we have a legal flexible array member at the end of the struct.
13527 Record->setHasFlexibleArrayMember(true);
13528 } else if (!FDTy->isDependentType() &&
13529 RequireCompleteType(FD->getLocation(), FD->getType(),
13530 diag::err_field_incomplete)) {
13531 // Incomplete type
13532 FD->setInvalidDecl();
13533 EnclosingDecl->setInvalidDecl();
13534 continue;
13535 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
13536 if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
13537 // A type which contains a flexible array member is considered to be a
13538 // flexible array member.
13539 Record->setHasFlexibleArrayMember(true);
13540 if (!Record->isUnion()) {
13541 // If this is a struct/class and this is not the last element, reject
13542 // it. Note that GCC supports variable sized arrays in the middle of
13543 // structures.
13544 if (i + 1 != Fields.end())
13545 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
13546 << FD->getDeclName() << FD->getType();
13547 else {
13548 // We support flexible arrays at the end of structs in
13549 // other structs as an extension.
13550 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
13551 << FD->getDeclName();
13552 }
13553 }
13554 }
13555 if (isa<ObjCContainerDecl>(EnclosingDecl) &&
13556 RequireNonAbstractType(FD->getLocation(), FD->getType(),
13557 diag::err_abstract_type_in_decl,
13558 AbstractIvarType)) {
13559 // Ivars can not have abstract class types
13560 FD->setInvalidDecl();
13561 }
13562 if (Record && FDTTy->getDecl()->hasObjectMember())
13563 Record->setHasObjectMember(true);
13564 if (Record && FDTTy->getDecl()->hasVolatileMember())
13565 Record->setHasVolatileMember(true);
13566 } else if (FDTy->isObjCObjectType()) {
13567 /// A field cannot be an Objective-c object
13568 Diag(FD->getLocation(), diag::err_statically_allocated_object)
13569 << FixItHint::CreateInsertion(FD->getLocation(), "*");
13570 QualType T = Context.getObjCObjectPointerType(FD->getType());
13571 FD->setType(T);
13572 } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
13573 (!getLangOpts().CPlusPlus || Record->isUnion())) {
13574 // It's an error in ARC if a field has lifetime.
13575 // We don't want to report this in a system header, though,
13576 // so we just make the field unavailable.
13577 // FIXME: that's really not sufficient; we need to make the type
13578 // itself invalid to, say, initialize or copy.
13579 QualType T = FD->getType();
13580 Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
13581 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
13582 SourceLocation loc = FD->getLocation();
13583 if (getSourceManager().isInSystemHeader(loc)) {
13584 if (!FD->hasAttr<UnavailableAttr>()) {
13585 FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
13586 UnavailableAttr::IR_ARCFieldWithOwnership, loc));
13587 }
13588 } else {
13589 Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
13590 << T->isBlockPointerType() << Record->getTagKind();
13591 }
13592 ARCErrReported = true;
13593 }
13594 } else if (getLangOpts().ObjC1 &&
13595 getLangOpts().getGC() != LangOptions::NonGC &&
13596 Record && !Record->hasObjectMember()) {
13597 if (FD->getType()->isObjCObjectPointerType() ||
13598 FD->getType().isObjCGCStrong())
13599 Record->setHasObjectMember(true);
13600 else if (Context.getAsArrayType(FD->getType())) {
13601 QualType BaseType = Context.getBaseElementType(FD->getType());
13602 if (BaseType->isRecordType() &&
13603 BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
13604 Record->setHasObjectMember(true);
13605 else if (BaseType->isObjCObjectPointerType() ||
13606 BaseType.isObjCGCStrong())
13607 Record->setHasObjectMember(true);
13608 }
13609 }
13610 if (Record && FD->getType().isVolatileQualified())
13611 Record->setHasVolatileMember(true);
13612 // Keep track of the number of named members.
13613 if (FD->getIdentifier())
13614 ++NumNamedMembers;
13615 }
13616
13617 // Okay, we successfully defined 'Record'.
13618 if (Record) {
13619 bool Completed = false;
13620 if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
13621 if (!CXXRecord->isInvalidDecl()) {
13622 // Set access bits correctly on the directly-declared conversions.
13623 for (CXXRecordDecl::conversion_iterator
13624 I = CXXRecord->conversion_begin(),
13625 E = CXXRecord->conversion_end(); I != E; ++I)
13626 I.setAccess((*I)->getAccess());
13627
13628 if (!CXXRecord->isDependentType()) {
13629 if (CXXRecord->hasUserDeclaredDestructor()) {
13630 // Adjust user-defined destructor exception spec.
13631 if (getLangOpts().CPlusPlus11)
13632 AdjustDestructorExceptionSpec(CXXRecord,
13633 CXXRecord->getDestructor());
13634 }
13635
13636 // Add any implicitly-declared members to this class.
13637 AddImplicitlyDeclaredMembersToClass(CXXRecord);
13638
13639 // If we have virtual base classes, we may end up finding multiple
13640 // final overriders for a given virtual function. Check for this
13641 // problem now.
13642 if (CXXRecord->getNumVBases()) {
13643 CXXFinalOverriderMap FinalOverriders;
13644 CXXRecord->getFinalOverriders(FinalOverriders);
13645
13646 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
13647 MEnd = FinalOverriders.end();
13648 M != MEnd; ++M) {
13649 for (OverridingMethods::iterator SO = M->second.begin(),
13650 SOEnd = M->second.end();
13651 SO != SOEnd; ++SO) {
13652 assert(SO->second.size() > 0 &&
13653 "Virtual function without overridding functions?");
13654 if (SO->second.size() == 1)
13655 continue;
13656
13657 // C++ [class.virtual]p2:
13658 // In a derived class, if a virtual member function of a base
13659 // class subobject has more than one final overrider the
13660 // program is ill-formed.
13661 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
13662 << (const NamedDecl *)M->first << Record;
13663 Diag(M->first->getLocation(),
13664 diag::note_overridden_virtual_function);
13665 for (OverridingMethods::overriding_iterator
13666 OM = SO->second.begin(),
13667 OMEnd = SO->second.end();
13668 OM != OMEnd; ++OM)
13669 Diag(OM->Method->getLocation(), diag::note_final_overrider)
13670 << (const NamedDecl *)M->first << OM->Method->getParent();
13671
13672 Record->setInvalidDecl();
13673 }
13674 }
13675 CXXRecord->completeDefinition(&FinalOverriders);
13676 Completed = true;
13677 }
13678 }
13679 }
13680 }
13681
13682 if (!Completed)
13683 Record->completeDefinition();
13684
13685 if (Record->hasAttrs()) {
13686 CheckAlignasUnderalignment(Record);
13687
13688 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
13689 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
13690 IA->getRange(), IA->getBestCase(),
13691 IA->getSemanticSpelling());
13692 }
13693
13694 // Check if the structure/union declaration is a type that can have zero
13695 // size in C. For C this is a language extension, for C++ it may cause
13696 // compatibility problems.
13697 bool CheckForZeroSize;
13698 if (!getLangOpts().CPlusPlus) {
13699 CheckForZeroSize = true;
13700 } else {
13701 // For C++ filter out types that cannot be referenced in C code.
13702 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
13703 CheckForZeroSize =
13704 CXXRecord->getLexicalDeclContext()->isExternCContext() &&
13705 !CXXRecord->isDependentType() &&
13706 CXXRecord->isCLike();
13707 }
13708 if (CheckForZeroSize) {
13709 bool ZeroSize = true;
13710 bool IsEmpty = true;
13711 unsigned NonBitFields = 0;
13712 for (RecordDecl::field_iterator I = Record->field_begin(),
13713 E = Record->field_end();
13714 (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
13715 IsEmpty = false;
13716 if (I->isUnnamedBitfield()) {
13717 if (I->getBitWidthValue(Context) > 0)
13718 ZeroSize = false;
13719 } else {
13720 ++NonBitFields;
13721 QualType FieldType = I->getType();
13722 if (FieldType->isIncompleteType() ||
13723 !Context.getTypeSizeInChars(FieldType).isZero())
13724 ZeroSize = false;
13725 }
13726 }
13727
13728 // Empty structs are an extension in C (C99 6.7.2.1p7). They are
13729 // allowed in C++, but warn if its declaration is inside
13730 // extern "C" block.
13731 if (ZeroSize) {
13732 Diag(RecLoc, getLangOpts().CPlusPlus ?
13733 diag::warn_zero_size_struct_union_in_extern_c :
13734 diag::warn_zero_size_struct_union_compat)
13735 << IsEmpty << Record->isUnion() << (NonBitFields > 1);
13736 }
13737
13738 // Structs without named members are extension in C (C99 6.7.2.1p7),
13739 // but are accepted by GCC.
13740 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
13741 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
13742 diag::ext_no_named_members_in_struct_union)
13743 << Record->isUnion();
13744 }
13745 }
13746 } else {
13747 ObjCIvarDecl **ClsFields =
13748 reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
13749 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
13750 ID->setEndOfDefinitionLoc(RBrac);
13751 // Add ivar's to class's DeclContext.
13752 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
13753 ClsFields[i]->setLexicalDeclContext(ID);
13754 ID->addDecl(ClsFields[i]);
13755 }
13756 // Must enforce the rule that ivars in the base classes may not be
13757 // duplicates.
13758 if (ID->getSuperClass())
13759 DiagnoseDuplicateIvars(ID, ID->getSuperClass());
13760 } else if (ObjCImplementationDecl *IMPDecl =
13761 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
13762 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
13763 for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
13764 // Ivar declared in @implementation never belongs to the implementation.
13765 // Only it is in implementation's lexical context.
13766 ClsFields[I]->setLexicalDeclContext(IMPDecl);
13767 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
13768 IMPDecl->setIvarLBraceLoc(LBrac);
13769 IMPDecl->setIvarRBraceLoc(RBrac);
13770 } else if (ObjCCategoryDecl *CDecl =
13771 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
13772 // case of ivars in class extension; all other cases have been
13773 // reported as errors elsewhere.
13774 // FIXME. Class extension does not have a LocEnd field.
13775 // CDecl->setLocEnd(RBrac);
13776 // Add ivar's to class extension's DeclContext.
13777 // Diagnose redeclaration of private ivars.
13778 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
13779 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
13780 if (IDecl) {
13781 if (const ObjCIvarDecl *ClsIvar =
13782 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
13783 Diag(ClsFields[i]->getLocation(),
13784 diag::err_duplicate_ivar_declaration);
13785 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
13786 continue;
13787 }
13788 for (const auto *Ext : IDecl->known_extensions()) {
13789 if (const ObjCIvarDecl *ClsExtIvar
13790 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
13791 Diag(ClsFields[i]->getLocation(),
13792 diag::err_duplicate_ivar_declaration);
13793 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
13794 continue;
13795 }
13796 }
13797 }
13798 ClsFields[i]->setLexicalDeclContext(CDecl);
13799 CDecl->addDecl(ClsFields[i]);
13800 }
13801 CDecl->setIvarLBraceLoc(LBrac);
13802 CDecl->setIvarRBraceLoc(RBrac);
13803 }
13804 }
13805
13806 if (Attr)
13807 ProcessDeclAttributeList(S, Record, Attr);
13808 }
13809
13810 /// \brief Determine whether the given integral value is representable within
13811 /// the given type T.
isRepresentableIntegerValue(ASTContext & Context,llvm::APSInt & Value,QualType T)13812 static bool isRepresentableIntegerValue(ASTContext &Context,
13813 llvm::APSInt &Value,
13814 QualType T) {
13815 assert(T->isIntegralType(Context) && "Integral type required!");
13816 unsigned BitWidth = Context.getIntWidth(T);
13817
13818 if (Value.isUnsigned() || Value.isNonNegative()) {
13819 if (T->isSignedIntegerOrEnumerationType())
13820 --BitWidth;
13821 return Value.getActiveBits() <= BitWidth;
13822 }
13823 return Value.getMinSignedBits() <= BitWidth;
13824 }
13825
13826 // \brief Given an integral type, return the next larger integral type
13827 // (or a NULL type of no such type exists).
getNextLargerIntegralType(ASTContext & Context,QualType T)13828 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
13829 // FIXME: Int128/UInt128 support, which also needs to be introduced into
13830 // enum checking below.
13831 assert(T->isIntegralType(Context) && "Integral type required!");
13832 const unsigned NumTypes = 4;
13833 QualType SignedIntegralTypes[NumTypes] = {
13834 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
13835 };
13836 QualType UnsignedIntegralTypes[NumTypes] = {
13837 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
13838 Context.UnsignedLongLongTy
13839 };
13840
13841 unsigned BitWidth = Context.getTypeSize(T);
13842 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
13843 : UnsignedIntegralTypes;
13844 for (unsigned I = 0; I != NumTypes; ++I)
13845 if (Context.getTypeSize(Types[I]) > BitWidth)
13846 return Types[I];
13847
13848 return QualType();
13849 }
13850
CheckEnumConstant(EnumDecl * Enum,EnumConstantDecl * LastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,Expr * Val)13851 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
13852 EnumConstantDecl *LastEnumConst,
13853 SourceLocation IdLoc,
13854 IdentifierInfo *Id,
13855 Expr *Val) {
13856 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
13857 llvm::APSInt EnumVal(IntWidth);
13858 QualType EltTy;
13859
13860 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
13861 Val = nullptr;
13862
13863 if (Val)
13864 Val = DefaultLvalueConversion(Val).get();
13865
13866 if (Val) {
13867 if (Enum->isDependentType() || Val->isTypeDependent())
13868 EltTy = Context.DependentTy;
13869 else {
13870 SourceLocation ExpLoc;
13871 if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
13872 !getLangOpts().MSVCCompat) {
13873 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
13874 // constant-expression in the enumerator-definition shall be a converted
13875 // constant expression of the underlying type.
13876 EltTy = Enum->getIntegerType();
13877 ExprResult Converted =
13878 CheckConvertedConstantExpression(Val, EltTy, EnumVal,
13879 CCEK_Enumerator);
13880 if (Converted.isInvalid())
13881 Val = nullptr;
13882 else
13883 Val = Converted.get();
13884 } else if (!Val->isValueDependent() &&
13885 !(Val = VerifyIntegerConstantExpression(Val,
13886 &EnumVal).get())) {
13887 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
13888 } else {
13889 if (Enum->isFixed()) {
13890 EltTy = Enum->getIntegerType();
13891
13892 // In Obj-C and Microsoft mode, require the enumeration value to be
13893 // representable in the underlying type of the enumeration. In C++11,
13894 // we perform a non-narrowing conversion as part of converted constant
13895 // expression checking.
13896 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
13897 if (getLangOpts().MSVCCompat) {
13898 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
13899 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
13900 } else
13901 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
13902 } else
13903 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
13904 } else if (getLangOpts().CPlusPlus) {
13905 // C++11 [dcl.enum]p5:
13906 // If the underlying type is not fixed, the type of each enumerator
13907 // is the type of its initializing value:
13908 // - If an initializer is specified for an enumerator, the
13909 // initializing value has the same type as the expression.
13910 EltTy = Val->getType();
13911 } else {
13912 // C99 6.7.2.2p2:
13913 // The expression that defines the value of an enumeration constant
13914 // shall be an integer constant expression that has a value
13915 // representable as an int.
13916
13917 // Complain if the value is not representable in an int.
13918 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
13919 Diag(IdLoc, diag::ext_enum_value_not_int)
13920 << EnumVal.toString(10) << Val->getSourceRange()
13921 << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
13922 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
13923 // Force the type of the expression to 'int'.
13924 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
13925 }
13926 EltTy = Val->getType();
13927 }
13928 }
13929 }
13930 }
13931
13932 if (!Val) {
13933 if (Enum->isDependentType())
13934 EltTy = Context.DependentTy;
13935 else if (!LastEnumConst) {
13936 // C++0x [dcl.enum]p5:
13937 // If the underlying type is not fixed, the type of each enumerator
13938 // is the type of its initializing value:
13939 // - If no initializer is specified for the first enumerator, the
13940 // initializing value has an unspecified integral type.
13941 //
13942 // GCC uses 'int' for its unspecified integral type, as does
13943 // C99 6.7.2.2p3.
13944 if (Enum->isFixed()) {
13945 EltTy = Enum->getIntegerType();
13946 }
13947 else {
13948 EltTy = Context.IntTy;
13949 }
13950 } else {
13951 // Assign the last value + 1.
13952 EnumVal = LastEnumConst->getInitVal();
13953 ++EnumVal;
13954 EltTy = LastEnumConst->getType();
13955
13956 // Check for overflow on increment.
13957 if (EnumVal < LastEnumConst->getInitVal()) {
13958 // C++0x [dcl.enum]p5:
13959 // If the underlying type is not fixed, the type of each enumerator
13960 // is the type of its initializing value:
13961 //
13962 // - Otherwise the type of the initializing value is the same as
13963 // the type of the initializing value of the preceding enumerator
13964 // unless the incremented value is not representable in that type,
13965 // in which case the type is an unspecified integral type
13966 // sufficient to contain the incremented value. If no such type
13967 // exists, the program is ill-formed.
13968 QualType T = getNextLargerIntegralType(Context, EltTy);
13969 if (T.isNull() || Enum->isFixed()) {
13970 // There is no integral type larger enough to represent this
13971 // value. Complain, then allow the value to wrap around.
13972 EnumVal = LastEnumConst->getInitVal();
13973 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
13974 ++EnumVal;
13975 if (Enum->isFixed())
13976 // When the underlying type is fixed, this is ill-formed.
13977 Diag(IdLoc, diag::err_enumerator_wrapped)
13978 << EnumVal.toString(10)
13979 << EltTy;
13980 else
13981 Diag(IdLoc, diag::ext_enumerator_increment_too_large)
13982 << EnumVal.toString(10);
13983 } else {
13984 EltTy = T;
13985 }
13986
13987 // Retrieve the last enumerator's value, extent that type to the
13988 // type that is supposed to be large enough to represent the incremented
13989 // value, then increment.
13990 EnumVal = LastEnumConst->getInitVal();
13991 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
13992 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
13993 ++EnumVal;
13994
13995 // If we're not in C++, diagnose the overflow of enumerator values,
13996 // which in C99 means that the enumerator value is not representable in
13997 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
13998 // permits enumerator values that are representable in some larger
13999 // integral type.
14000 if (!getLangOpts().CPlusPlus && !T.isNull())
14001 Diag(IdLoc, diag::warn_enum_value_overflow);
14002 } else if (!getLangOpts().CPlusPlus &&
14003 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
14004 // Enforce C99 6.7.2.2p2 even when we compute the next value.
14005 Diag(IdLoc, diag::ext_enum_value_not_int)
14006 << EnumVal.toString(10) << 1;
14007 }
14008 }
14009 }
14010
14011 if (!EltTy->isDependentType()) {
14012 // Make the enumerator value match the signedness and size of the
14013 // enumerator's type.
14014 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
14015 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
14016 }
14017
14018 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
14019 Val, EnumVal);
14020 }
14021
shouldSkipAnonEnumBody(Scope * S,IdentifierInfo * II,SourceLocation IILoc)14022 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
14023 SourceLocation IILoc) {
14024 if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
14025 !getLangOpts().CPlusPlus)
14026 return SkipBodyInfo();
14027
14028 // We have an anonymous enum definition. Look up the first enumerator to
14029 // determine if we should merge the definition with an existing one and
14030 // skip the body.
14031 NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
14032 ForRedeclaration);
14033 auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
14034 if (!PrevECD)
14035 return SkipBodyInfo();
14036
14037 EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
14038 NamedDecl *Hidden;
14039 if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
14040 SkipBodyInfo Skip;
14041 Skip.Previous = Hidden;
14042 return Skip;
14043 }
14044
14045 return SkipBodyInfo();
14046 }
14047
ActOnEnumConstant(Scope * S,Decl * theEnumDecl,Decl * lastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,AttributeList * Attr,SourceLocation EqualLoc,Expr * Val)14048 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
14049 SourceLocation IdLoc, IdentifierInfo *Id,
14050 AttributeList *Attr,
14051 SourceLocation EqualLoc, Expr *Val) {
14052 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
14053 EnumConstantDecl *LastEnumConst =
14054 cast_or_null<EnumConstantDecl>(lastEnumConst);
14055
14056 // The scope passed in may not be a decl scope. Zip up the scope tree until
14057 // we find one that is.
14058 S = getNonFieldDeclScope(S);
14059
14060 // Verify that there isn't already something declared with this name in this
14061 // scope.
14062 NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
14063 ForRedeclaration);
14064 if (PrevDecl && PrevDecl->isTemplateParameter()) {
14065 // Maybe we will complain about the shadowed template parameter.
14066 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
14067 // Just pretend that we didn't see the previous declaration.
14068 PrevDecl = nullptr;
14069 }
14070
14071 // C++ [class.mem]p15:
14072 // If T is the name of a class, then each of the following shall have a name
14073 // different from T:
14074 // - every enumerator of every member of class T that is an unscoped
14075 // enumerated type
14076 if (!TheEnumDecl->isScoped())
14077 DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
14078 DeclarationNameInfo(Id, IdLoc));
14079
14080 EnumConstantDecl *New =
14081 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
14082 if (!New)
14083 return nullptr;
14084
14085 if (PrevDecl) {
14086 // When in C++, we may get a TagDecl with the same name; in this case the
14087 // enum constant will 'hide' the tag.
14088 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
14089 "Received TagDecl when not in C++!");
14090 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S) &&
14091 shouldLinkPossiblyHiddenDecl(PrevDecl, New)) {
14092 if (isa<EnumConstantDecl>(PrevDecl))
14093 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
14094 else
14095 Diag(IdLoc, diag::err_redefinition) << Id;
14096 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
14097 return nullptr;
14098 }
14099 }
14100
14101 // Process attributes.
14102 if (Attr) ProcessDeclAttributeList(S, New, Attr);
14103
14104 // Register this decl in the current scope stack.
14105 New->setAccess(TheEnumDecl->getAccess());
14106 PushOnScopeChains(New, S);
14107
14108 ActOnDocumentableDecl(New);
14109
14110 return New;
14111 }
14112
14113 // Returns true when the enum initial expression does not trigger the
14114 // duplicate enum warning. A few common cases are exempted as follows:
14115 // Element2 = Element1
14116 // Element2 = Element1 + 1
14117 // Element2 = Element1 - 1
14118 // Where Element2 and Element1 are from the same enum.
ValidDuplicateEnum(EnumConstantDecl * ECD,EnumDecl * Enum)14119 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
14120 Expr *InitExpr = ECD->getInitExpr();
14121 if (!InitExpr)
14122 return true;
14123 InitExpr = InitExpr->IgnoreImpCasts();
14124
14125 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
14126 if (!BO->isAdditiveOp())
14127 return true;
14128 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
14129 if (!IL)
14130 return true;
14131 if (IL->getValue() != 1)
14132 return true;
14133
14134 InitExpr = BO->getLHS();
14135 }
14136
14137 // This checks if the elements are from the same enum.
14138 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
14139 if (!DRE)
14140 return true;
14141
14142 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
14143 if (!EnumConstant)
14144 return true;
14145
14146 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
14147 Enum)
14148 return true;
14149
14150 return false;
14151 }
14152
14153 namespace {
14154 struct DupKey {
14155 int64_t val;
14156 bool isTombstoneOrEmptyKey;
DupKey__anonb54c7a2f0b11::DupKey14157 DupKey(int64_t val, bool isTombstoneOrEmptyKey)
14158 : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
14159 };
14160
GetDupKey(const llvm::APSInt & Val)14161 static DupKey GetDupKey(const llvm::APSInt& Val) {
14162 return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
14163 false);
14164 }
14165
14166 struct DenseMapInfoDupKey {
getEmptyKey__anonb54c7a2f0b11::DenseMapInfoDupKey14167 static DupKey getEmptyKey() { return DupKey(0, true); }
getTombstoneKey__anonb54c7a2f0b11::DenseMapInfoDupKey14168 static DupKey getTombstoneKey() { return DupKey(1, true); }
getHashValue__anonb54c7a2f0b11::DenseMapInfoDupKey14169 static unsigned getHashValue(const DupKey Key) {
14170 return (unsigned)(Key.val * 37);
14171 }
isEqual__anonb54c7a2f0b11::DenseMapInfoDupKey14172 static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
14173 return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
14174 LHS.val == RHS.val;
14175 }
14176 };
14177 } // end anonymous namespace
14178
14179 // Emits a warning when an element is implicitly set a value that
14180 // a previous element has already been set to.
CheckForDuplicateEnumValues(Sema & S,ArrayRef<Decl * > Elements,EnumDecl * Enum,QualType EnumType)14181 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
14182 EnumDecl *Enum,
14183 QualType EnumType) {
14184 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
14185 return;
14186 // Avoid anonymous enums
14187 if (!Enum->getIdentifier())
14188 return;
14189
14190 // Only check for small enums.
14191 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
14192 return;
14193
14194 typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
14195 typedef SmallVector<ECDVector *, 3> DuplicatesVector;
14196
14197 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
14198 typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
14199 ValueToVectorMap;
14200
14201 DuplicatesVector DupVector;
14202 ValueToVectorMap EnumMap;
14203
14204 // Populate the EnumMap with all values represented by enum constants without
14205 // an initialier.
14206 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
14207 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
14208
14209 // Null EnumConstantDecl means a previous diagnostic has been emitted for
14210 // this constant. Skip this enum since it may be ill-formed.
14211 if (!ECD) {
14212 return;
14213 }
14214
14215 if (ECD->getInitExpr())
14216 continue;
14217
14218 DupKey Key = GetDupKey(ECD->getInitVal());
14219 DeclOrVector &Entry = EnumMap[Key];
14220
14221 // First time encountering this value.
14222 if (Entry.isNull())
14223 Entry = ECD;
14224 }
14225
14226 // Create vectors for any values that has duplicates.
14227 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
14228 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
14229 if (!ValidDuplicateEnum(ECD, Enum))
14230 continue;
14231
14232 DupKey Key = GetDupKey(ECD->getInitVal());
14233
14234 DeclOrVector& Entry = EnumMap[Key];
14235 if (Entry.isNull())
14236 continue;
14237
14238 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
14239 // Ensure constants are different.
14240 if (D == ECD)
14241 continue;
14242
14243 // Create new vector and push values onto it.
14244 ECDVector *Vec = new ECDVector();
14245 Vec->push_back(D);
14246 Vec->push_back(ECD);
14247
14248 // Update entry to point to the duplicates vector.
14249 Entry = Vec;
14250
14251 // Store the vector somewhere we can consult later for quick emission of
14252 // diagnostics.
14253 DupVector.push_back(Vec);
14254 continue;
14255 }
14256
14257 ECDVector *Vec = Entry.get<ECDVector*>();
14258 // Make sure constants are not added more than once.
14259 if (*Vec->begin() == ECD)
14260 continue;
14261
14262 Vec->push_back(ECD);
14263 }
14264
14265 // Emit diagnostics.
14266 for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
14267 DupVectorEnd = DupVector.end();
14268 DupVectorIter != DupVectorEnd; ++DupVectorIter) {
14269 ECDVector *Vec = *DupVectorIter;
14270 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
14271
14272 // Emit warning for one enum constant.
14273 ECDVector::iterator I = Vec->begin();
14274 S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
14275 << (*I)->getName() << (*I)->getInitVal().toString(10)
14276 << (*I)->getSourceRange();
14277 ++I;
14278
14279 // Emit one note for each of the remaining enum constants with
14280 // the same value.
14281 for (ECDVector::iterator E = Vec->end(); I != E; ++I)
14282 S.Diag((*I)->getLocation(), diag::note_duplicate_element)
14283 << (*I)->getName() << (*I)->getInitVal().toString(10)
14284 << (*I)->getSourceRange();
14285 delete Vec;
14286 }
14287 }
14288
IsValueInFlagEnum(const EnumDecl * ED,const llvm::APInt & Val,bool AllowMask) const14289 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
14290 bool AllowMask) const {
14291 assert(ED->hasAttr<FlagEnumAttr>() && "looking for value in non-flag enum");
14292 assert(ED->isCompleteDefinition() && "expected enum definition");
14293
14294 auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
14295 llvm::APInt &FlagBits = R.first->second;
14296
14297 if (R.second) {
14298 for (auto *E : ED->enumerators()) {
14299 const auto &EVal = E->getInitVal();
14300 // Only single-bit enumerators introduce new flag values.
14301 if (EVal.isPowerOf2())
14302 FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
14303 }
14304 }
14305
14306 // A value is in a flag enum if either its bits are a subset of the enum's
14307 // flag bits (the first condition) or we are allowing masks and the same is
14308 // true of its complement (the second condition). When masks are allowed, we
14309 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
14310 //
14311 // While it's true that any value could be used as a mask, the assumption is
14312 // that a mask will have all of the insignificant bits set. Anything else is
14313 // likely a logic error.
14314 llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
14315 return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
14316 }
14317
ActOnEnumBody(SourceLocation EnumLoc,SourceLocation LBraceLoc,SourceLocation RBraceLoc,Decl * EnumDeclX,ArrayRef<Decl * > Elements,Scope * S,AttributeList * Attr)14318 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
14319 SourceLocation RBraceLoc, Decl *EnumDeclX,
14320 ArrayRef<Decl *> Elements,
14321 Scope *S, AttributeList *Attr) {
14322 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
14323 QualType EnumType = Context.getTypeDeclType(Enum);
14324
14325 if (Attr)
14326 ProcessDeclAttributeList(S, Enum, Attr);
14327
14328 if (Enum->isDependentType()) {
14329 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
14330 EnumConstantDecl *ECD =
14331 cast_or_null<EnumConstantDecl>(Elements[i]);
14332 if (!ECD) continue;
14333
14334 ECD->setType(EnumType);
14335 }
14336
14337 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
14338 return;
14339 }
14340
14341 // TODO: If the result value doesn't fit in an int, it must be a long or long
14342 // long value. ISO C does not support this, but GCC does as an extension,
14343 // emit a warning.
14344 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
14345 unsigned CharWidth = Context.getTargetInfo().getCharWidth();
14346 unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
14347
14348 // Verify that all the values are okay, compute the size of the values, and
14349 // reverse the list.
14350 unsigned NumNegativeBits = 0;
14351 unsigned NumPositiveBits = 0;
14352
14353 // Keep track of whether all elements have type int.
14354 bool AllElementsInt = true;
14355
14356 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
14357 EnumConstantDecl *ECD =
14358 cast_or_null<EnumConstantDecl>(Elements[i]);
14359 if (!ECD) continue; // Already issued a diagnostic.
14360
14361 const llvm::APSInt &InitVal = ECD->getInitVal();
14362
14363 // Keep track of the size of positive and negative values.
14364 if (InitVal.isUnsigned() || InitVal.isNonNegative())
14365 NumPositiveBits = std::max(NumPositiveBits,
14366 (unsigned)InitVal.getActiveBits());
14367 else
14368 NumNegativeBits = std::max(NumNegativeBits,
14369 (unsigned)InitVal.getMinSignedBits());
14370
14371 // Keep track of whether every enum element has type int (very commmon).
14372 if (AllElementsInt)
14373 AllElementsInt = ECD->getType() == Context.IntTy;
14374 }
14375
14376 // Figure out the type that should be used for this enum.
14377 QualType BestType;
14378 unsigned BestWidth;
14379
14380 // C++0x N3000 [conv.prom]p3:
14381 // An rvalue of an unscoped enumeration type whose underlying
14382 // type is not fixed can be converted to an rvalue of the first
14383 // of the following types that can represent all the values of
14384 // the enumeration: int, unsigned int, long int, unsigned long
14385 // int, long long int, or unsigned long long int.
14386 // C99 6.4.4.3p2:
14387 // An identifier declared as an enumeration constant has type int.
14388 // The C99 rule is modified by a gcc extension
14389 QualType BestPromotionType;
14390
14391 bool Packed = Enum->hasAttr<PackedAttr>();
14392 // -fshort-enums is the equivalent to specifying the packed attribute on all
14393 // enum definitions.
14394 if (LangOpts.ShortEnums)
14395 Packed = true;
14396
14397 if (Enum->isFixed()) {
14398 BestType = Enum->getIntegerType();
14399 if (BestType->isPromotableIntegerType())
14400 BestPromotionType = Context.getPromotedIntegerType(BestType);
14401 else
14402 BestPromotionType = BestType;
14403
14404 BestWidth = Context.getIntWidth(BestType);
14405 }
14406 else if (NumNegativeBits) {
14407 // If there is a negative value, figure out the smallest integer type (of
14408 // int/long/longlong) that fits.
14409 // If it's packed, check also if it fits a char or a short.
14410 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
14411 BestType = Context.SignedCharTy;
14412 BestWidth = CharWidth;
14413 } else if (Packed && NumNegativeBits <= ShortWidth &&
14414 NumPositiveBits < ShortWidth) {
14415 BestType = Context.ShortTy;
14416 BestWidth = ShortWidth;
14417 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
14418 BestType = Context.IntTy;
14419 BestWidth = IntWidth;
14420 } else {
14421 BestWidth = Context.getTargetInfo().getLongWidth();
14422
14423 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
14424 BestType = Context.LongTy;
14425 } else {
14426 BestWidth = Context.getTargetInfo().getLongLongWidth();
14427
14428 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
14429 Diag(Enum->getLocation(), diag::ext_enum_too_large);
14430 BestType = Context.LongLongTy;
14431 }
14432 }
14433 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
14434 } else {
14435 // If there is no negative value, figure out the smallest type that fits
14436 // all of the enumerator values.
14437 // If it's packed, check also if it fits a char or a short.
14438 if (Packed && NumPositiveBits <= CharWidth) {
14439 BestType = Context.UnsignedCharTy;
14440 BestPromotionType = Context.IntTy;
14441 BestWidth = CharWidth;
14442 } else if (Packed && NumPositiveBits <= ShortWidth) {
14443 BestType = Context.UnsignedShortTy;
14444 BestPromotionType = Context.IntTy;
14445 BestWidth = ShortWidth;
14446 } else if (NumPositiveBits <= IntWidth) {
14447 BestType = Context.UnsignedIntTy;
14448 BestWidth = IntWidth;
14449 BestPromotionType
14450 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
14451 ? Context.UnsignedIntTy : Context.IntTy;
14452 } else if (NumPositiveBits <=
14453 (BestWidth = Context.getTargetInfo().getLongWidth())) {
14454 BestType = Context.UnsignedLongTy;
14455 BestPromotionType
14456 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
14457 ? Context.UnsignedLongTy : Context.LongTy;
14458 } else {
14459 BestWidth = Context.getTargetInfo().getLongLongWidth();
14460 assert(NumPositiveBits <= BestWidth &&
14461 "How could an initializer get larger than ULL?");
14462 BestType = Context.UnsignedLongLongTy;
14463 BestPromotionType
14464 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
14465 ? Context.UnsignedLongLongTy : Context.LongLongTy;
14466 }
14467 }
14468
14469 // Loop over all of the enumerator constants, changing their types to match
14470 // the type of the enum if needed.
14471 for (auto *D : Elements) {
14472 auto *ECD = cast_or_null<EnumConstantDecl>(D);
14473 if (!ECD) continue; // Already issued a diagnostic.
14474
14475 // Standard C says the enumerators have int type, but we allow, as an
14476 // extension, the enumerators to be larger than int size. If each
14477 // enumerator value fits in an int, type it as an int, otherwise type it the
14478 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
14479 // that X has type 'int', not 'unsigned'.
14480
14481 // Determine whether the value fits into an int.
14482 llvm::APSInt InitVal = ECD->getInitVal();
14483
14484 // If it fits into an integer type, force it. Otherwise force it to match
14485 // the enum decl type.
14486 QualType NewTy;
14487 unsigned NewWidth;
14488 bool NewSign;
14489 if (!getLangOpts().CPlusPlus &&
14490 !Enum->isFixed() &&
14491 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
14492 NewTy = Context.IntTy;
14493 NewWidth = IntWidth;
14494 NewSign = true;
14495 } else if (ECD->getType() == BestType) {
14496 // Already the right type!
14497 if (getLangOpts().CPlusPlus)
14498 // C++ [dcl.enum]p4: Following the closing brace of an
14499 // enum-specifier, each enumerator has the type of its
14500 // enumeration.
14501 ECD->setType(EnumType);
14502 continue;
14503 } else {
14504 NewTy = BestType;
14505 NewWidth = BestWidth;
14506 NewSign = BestType->isSignedIntegerOrEnumerationType();
14507 }
14508
14509 // Adjust the APSInt value.
14510 InitVal = InitVal.extOrTrunc(NewWidth);
14511 InitVal.setIsSigned(NewSign);
14512 ECD->setInitVal(InitVal);
14513
14514 // Adjust the Expr initializer and type.
14515 if (ECD->getInitExpr() &&
14516 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
14517 ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
14518 CK_IntegralCast,
14519 ECD->getInitExpr(),
14520 /*base paths*/ nullptr,
14521 VK_RValue));
14522 if (getLangOpts().CPlusPlus)
14523 // C++ [dcl.enum]p4: Following the closing brace of an
14524 // enum-specifier, each enumerator has the type of its
14525 // enumeration.
14526 ECD->setType(EnumType);
14527 else
14528 ECD->setType(NewTy);
14529 }
14530
14531 Enum->completeDefinition(BestType, BestPromotionType,
14532 NumPositiveBits, NumNegativeBits);
14533
14534 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
14535
14536 if (Enum->hasAttr<FlagEnumAttr>()) {
14537 for (Decl *D : Elements) {
14538 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
14539 if (!ECD) continue; // Already issued a diagnostic.
14540
14541 llvm::APSInt InitVal = ECD->getInitVal();
14542 if (InitVal != 0 && !InitVal.isPowerOf2() &&
14543 !IsValueInFlagEnum(Enum, InitVal, true))
14544 Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
14545 << ECD << Enum;
14546 }
14547 }
14548
14549 // Now that the enum type is defined, ensure it's not been underaligned.
14550 if (Enum->hasAttrs())
14551 CheckAlignasUnderalignment(Enum);
14552 }
14553
ActOnFileScopeAsmDecl(Expr * expr,SourceLocation StartLoc,SourceLocation EndLoc)14554 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
14555 SourceLocation StartLoc,
14556 SourceLocation EndLoc) {
14557 StringLiteral *AsmString = cast<StringLiteral>(expr);
14558
14559 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
14560 AsmString, StartLoc,
14561 EndLoc);
14562 CurContext->addDecl(New);
14563 return New;
14564 }
14565
checkModuleImportContext(Sema & S,Module * M,SourceLocation ImportLoc,DeclContext * DC,bool FromInclude=false)14566 static void checkModuleImportContext(Sema &S, Module *M,
14567 SourceLocation ImportLoc, DeclContext *DC,
14568 bool FromInclude = false) {
14569 SourceLocation ExternCLoc;
14570
14571 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
14572 switch (LSD->getLanguage()) {
14573 case LinkageSpecDecl::lang_c:
14574 if (ExternCLoc.isInvalid())
14575 ExternCLoc = LSD->getLocStart();
14576 break;
14577 case LinkageSpecDecl::lang_cxx:
14578 break;
14579 }
14580 DC = LSD->getParent();
14581 }
14582
14583 while (isa<LinkageSpecDecl>(DC))
14584 DC = DC->getParent();
14585
14586 if (!isa<TranslationUnitDecl>(DC)) {
14587 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M))
14588 ? diag::ext_module_import_not_at_top_level_noop
14589 : diag::err_module_import_not_at_top_level_fatal)
14590 << M->getFullModuleName() << DC;
14591 S.Diag(cast<Decl>(DC)->getLocStart(),
14592 diag::note_module_import_not_at_top_level) << DC;
14593 } else if (!M->IsExternC && ExternCLoc.isValid()) {
14594 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c)
14595 << M->getFullModuleName();
14596 S.Diag(ExternCLoc, diag::note_module_import_in_extern_c);
14597 }
14598 }
14599
diagnoseMisplacedModuleImport(Module * M,SourceLocation ImportLoc)14600 void Sema::diagnoseMisplacedModuleImport(Module *M, SourceLocation ImportLoc) {
14601 return checkModuleImportContext(*this, M, ImportLoc, CurContext);
14602 }
14603
ActOnModuleImport(SourceLocation AtLoc,SourceLocation ImportLoc,ModuleIdPath Path)14604 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
14605 SourceLocation ImportLoc,
14606 ModuleIdPath Path) {
14607 Module *Mod =
14608 getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible,
14609 /*IsIncludeDirective=*/false);
14610 if (!Mod)
14611 return true;
14612
14613 VisibleModules.setVisible(Mod, ImportLoc);
14614
14615 checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
14616
14617 // FIXME: we should support importing a submodule within a different submodule
14618 // of the same top-level module. Until we do, make it an error rather than
14619 // silently ignoring the import.
14620 if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule)
14621 Diag(ImportLoc, diag::err_module_self_import)
14622 << Mod->getFullModuleName() << getLangOpts().CurrentModule;
14623 else if (Mod->getTopLevelModuleName() == getLangOpts().ImplementationOfModule)
14624 Diag(ImportLoc, diag::err_module_import_in_implementation)
14625 << Mod->getFullModuleName() << getLangOpts().ImplementationOfModule;
14626
14627 SmallVector<SourceLocation, 2> IdentifierLocs;
14628 Module *ModCheck = Mod;
14629 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
14630 // If we've run out of module parents, just drop the remaining identifiers.
14631 // We need the length to be consistent.
14632 if (!ModCheck)
14633 break;
14634 ModCheck = ModCheck->Parent;
14635
14636 IdentifierLocs.push_back(Path[I].second);
14637 }
14638
14639 ImportDecl *Import = ImportDecl::Create(Context,
14640 Context.getTranslationUnitDecl(),
14641 AtLoc.isValid()? AtLoc : ImportLoc,
14642 Mod, IdentifierLocs);
14643 Context.getTranslationUnitDecl()->addDecl(Import);
14644 return Import;
14645 }
14646
ActOnModuleInclude(SourceLocation DirectiveLoc,Module * Mod)14647 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
14648 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
14649
14650 // Determine whether we're in the #include buffer for a module. The #includes
14651 // in that buffer do not qualify as module imports; they're just an
14652 // implementation detail of us building the module.
14653 //
14654 // FIXME: Should we even get ActOnModuleInclude calls for those?
14655 bool IsInModuleIncludes =
14656 TUKind == TU_Module &&
14657 getSourceManager().isWrittenInMainFile(DirectiveLoc);
14658
14659 // If this module import was due to an inclusion directive, create an
14660 // implicit import declaration to capture it in the AST.
14661 if (!IsInModuleIncludes) {
14662 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
14663 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
14664 DirectiveLoc, Mod,
14665 DirectiveLoc);
14666 TU->addDecl(ImportD);
14667 Consumer.HandleImplicitImportDecl(ImportD);
14668 }
14669
14670 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc);
14671 VisibleModules.setVisible(Mod, DirectiveLoc);
14672 }
14673
ActOnModuleBegin(SourceLocation DirectiveLoc,Module * Mod)14674 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) {
14675 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
14676
14677 if (getLangOpts().ModulesLocalVisibility)
14678 VisibleModulesStack.push_back(std::move(VisibleModules));
14679 VisibleModules.setVisible(Mod, DirectiveLoc);
14680 }
14681
ActOnModuleEnd(SourceLocation DirectiveLoc,Module * Mod)14682 void Sema::ActOnModuleEnd(SourceLocation DirectiveLoc, Module *Mod) {
14683 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
14684
14685 if (getLangOpts().ModulesLocalVisibility) {
14686 VisibleModules = std::move(VisibleModulesStack.back());
14687 VisibleModulesStack.pop_back();
14688 VisibleModules.setVisible(Mod, DirectiveLoc);
14689 }
14690 }
14691
createImplicitModuleImportForErrorRecovery(SourceLocation Loc,Module * Mod)14692 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
14693 Module *Mod) {
14694 // Bail if we're not allowed to implicitly import a module here.
14695 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery)
14696 return;
14697
14698 // Create the implicit import declaration.
14699 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
14700 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
14701 Loc, Mod, Loc);
14702 TU->addDecl(ImportD);
14703 Consumer.HandleImplicitImportDecl(ImportD);
14704
14705 // Make the module visible.
14706 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
14707 VisibleModules.setVisible(Mod, Loc);
14708 }
14709
ActOnPragmaRedefineExtname(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)14710 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
14711 IdentifierInfo* AliasName,
14712 SourceLocation PragmaLoc,
14713 SourceLocation NameLoc,
14714 SourceLocation AliasNameLoc) {
14715 NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
14716 LookupOrdinaryName);
14717 AsmLabelAttr *Attr =
14718 AsmLabelAttr::CreateImplicit(Context, AliasName->getName(), AliasNameLoc);
14719
14720 // If a declaration that:
14721 // 1) declares a function or a variable
14722 // 2) has external linkage
14723 // already exists, add a label attribute to it.
14724 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
14725 if (isDeclExternC(PrevDecl))
14726 PrevDecl->addAttr(Attr);
14727 else
14728 Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
14729 << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
14730 // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
14731 } else
14732 (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
14733 }
14734
ActOnPragmaWeakID(IdentifierInfo * Name,SourceLocation PragmaLoc,SourceLocation NameLoc)14735 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
14736 SourceLocation PragmaLoc,
14737 SourceLocation NameLoc) {
14738 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
14739
14740 if (PrevDecl) {
14741 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
14742 } else {
14743 (void)WeakUndeclaredIdentifiers.insert(
14744 std::pair<IdentifierInfo*,WeakInfo>
14745 (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
14746 }
14747 }
14748
ActOnPragmaWeakAlias(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)14749 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
14750 IdentifierInfo* AliasName,
14751 SourceLocation PragmaLoc,
14752 SourceLocation NameLoc,
14753 SourceLocation AliasNameLoc) {
14754 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
14755 LookupOrdinaryName);
14756 WeakInfo W = WeakInfo(Name, NameLoc);
14757
14758 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
14759 if (!PrevDecl->hasAttr<AliasAttr>())
14760 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
14761 DeclApplyPragmaWeak(TUScope, ND, W);
14762 } else {
14763 (void)WeakUndeclaredIdentifiers.insert(
14764 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
14765 }
14766 }
14767
getObjCDeclContext() const14768 Decl *Sema::getObjCDeclContext() const {
14769 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
14770 }
14771
getCurContextAvailability() const14772 AvailabilityResult Sema::getCurContextAvailability() const {
14773 const Decl *D = cast_or_null<Decl>(getCurObjCLexicalContext());
14774 if (!D)
14775 return AR_Available;
14776
14777 // If we are within an Objective-C method, we should consult
14778 // both the availability of the method as well as the
14779 // enclosing class. If the class is (say) deprecated,
14780 // the entire method is considered deprecated from the
14781 // purpose of checking if the current context is deprecated.
14782 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
14783 AvailabilityResult R = MD->getAvailability();
14784 if (R != AR_Available)
14785 return R;
14786 D = MD->getClassInterface();
14787 }
14788 // If we are within an Objective-c @implementation, it
14789 // gets the same availability context as the @interface.
14790 else if (const ObjCImplementationDecl *ID =
14791 dyn_cast<ObjCImplementationDecl>(D)) {
14792 D = ID->getClassInterface();
14793 }
14794 // Recover from user error.
14795 return D ? D->getAvailability() : AR_Available;
14796 }
14797