1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for C++ declarations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/LiteralSupport.h"
31 #include "clang/Lex/Preprocessor.h"
32 #include "clang/Sema/CXXFieldCollector.h"
33 #include "clang/Sema/DeclSpec.h"
34 #include "clang/Sema/Initialization.h"
35 #include "clang/Sema/Lookup.h"
36 #include "clang/Sema/ParsedTemplate.h"
37 #include "clang/Sema/Scope.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "clang/Sema/Template.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/ADT/SmallString.h"
42 #include <map>
43 #include <set>
44
45 using namespace clang;
46
47 //===----------------------------------------------------------------------===//
48 // CheckDefaultArgumentVisitor
49 //===----------------------------------------------------------------------===//
50
51 namespace {
52 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
53 /// the default argument of a parameter to determine whether it
54 /// contains any ill-formed subexpressions. For example, this will
55 /// diagnose the use of local variables or parameters within the
56 /// default argument expression.
57 class CheckDefaultArgumentVisitor
58 : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
59 Expr *DefaultArg;
60 Sema *S;
61
62 public:
CheckDefaultArgumentVisitor(Expr * defarg,Sema * s)63 CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
64 : DefaultArg(defarg), S(s) {}
65
66 bool VisitExpr(Expr *Node);
67 bool VisitDeclRefExpr(DeclRefExpr *DRE);
68 bool VisitCXXThisExpr(CXXThisExpr *ThisE);
69 bool VisitLambdaExpr(LambdaExpr *Lambda);
70 bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
71 };
72
73 /// VisitExpr - Visit all of the children of this expression.
VisitExpr(Expr * Node)74 bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
75 bool IsInvalid = false;
76 for (Stmt *SubStmt : Node->children())
77 IsInvalid |= Visit(SubStmt);
78 return IsInvalid;
79 }
80
81 /// VisitDeclRefExpr - Visit a reference to a declaration, to
82 /// determine whether this declaration can be used in the default
83 /// argument expression.
VisitDeclRefExpr(DeclRefExpr * DRE)84 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
85 NamedDecl *Decl = DRE->getDecl();
86 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
87 // C++ [dcl.fct.default]p9
88 // Default arguments are evaluated each time the function is
89 // called. The order of evaluation of function arguments is
90 // unspecified. Consequently, parameters of a function shall not
91 // be used in default argument expressions, even if they are not
92 // evaluated. Parameters of a function declared before a default
93 // argument expression are in scope and can hide namespace and
94 // class member names.
95 return S->Diag(DRE->getLocStart(),
96 diag::err_param_default_argument_references_param)
97 << Param->getDeclName() << DefaultArg->getSourceRange();
98 } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
99 // C++ [dcl.fct.default]p7
100 // Local variables shall not be used in default argument
101 // expressions.
102 if (VDecl->isLocalVarDecl())
103 return S->Diag(DRE->getLocStart(),
104 diag::err_param_default_argument_references_local)
105 << VDecl->getDeclName() << DefaultArg->getSourceRange();
106 }
107
108 return false;
109 }
110
111 /// VisitCXXThisExpr - Visit a C++ "this" expression.
VisitCXXThisExpr(CXXThisExpr * ThisE)112 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
113 // C++ [dcl.fct.default]p8:
114 // The keyword this shall not be used in a default argument of a
115 // member function.
116 return S->Diag(ThisE->getLocStart(),
117 diag::err_param_default_argument_references_this)
118 << ThisE->getSourceRange();
119 }
120
VisitPseudoObjectExpr(PseudoObjectExpr * POE)121 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
122 bool Invalid = false;
123 for (PseudoObjectExpr::semantics_iterator
124 i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
125 Expr *E = *i;
126
127 // Look through bindings.
128 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
129 E = OVE->getSourceExpr();
130 assert(E && "pseudo-object binding without source expression?");
131 }
132
133 Invalid |= Visit(E);
134 }
135 return Invalid;
136 }
137
VisitLambdaExpr(LambdaExpr * Lambda)138 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
139 // C++11 [expr.lambda.prim]p13:
140 // A lambda-expression appearing in a default argument shall not
141 // implicitly or explicitly capture any entity.
142 if (Lambda->capture_begin() == Lambda->capture_end())
143 return false;
144
145 return S->Diag(Lambda->getLocStart(),
146 diag::err_lambda_capture_default_arg);
147 }
148 }
149
150 void
CalledDecl(SourceLocation CallLoc,const CXXMethodDecl * Method)151 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
152 const CXXMethodDecl *Method) {
153 // If we have an MSAny spec already, don't bother.
154 if (!Method || ComputedEST == EST_MSAny)
155 return;
156
157 const FunctionProtoType *Proto
158 = Method->getType()->getAs<FunctionProtoType>();
159 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
160 if (!Proto)
161 return;
162
163 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
164
165 // If we have a throw-all spec at this point, ignore the function.
166 if (ComputedEST == EST_None)
167 return;
168
169 switch(EST) {
170 // If this function can throw any exceptions, make a note of that.
171 case EST_MSAny:
172 case EST_None:
173 ClearExceptions();
174 ComputedEST = EST;
175 return;
176 // FIXME: If the call to this decl is using any of its default arguments, we
177 // need to search them for potentially-throwing calls.
178 // If this function has a basic noexcept, it doesn't affect the outcome.
179 case EST_BasicNoexcept:
180 return;
181 // If we're still at noexcept(true) and there's a nothrow() callee,
182 // change to that specification.
183 case EST_DynamicNone:
184 if (ComputedEST == EST_BasicNoexcept)
185 ComputedEST = EST_DynamicNone;
186 return;
187 // Check out noexcept specs.
188 case EST_ComputedNoexcept:
189 {
190 FunctionProtoType::NoexceptResult NR =
191 Proto->getNoexceptSpec(Self->Context);
192 assert(NR != FunctionProtoType::NR_NoNoexcept &&
193 "Must have noexcept result for EST_ComputedNoexcept.");
194 assert(NR != FunctionProtoType::NR_Dependent &&
195 "Should not generate implicit declarations for dependent cases, "
196 "and don't know how to handle them anyway.");
197 // noexcept(false) -> no spec on the new function
198 if (NR == FunctionProtoType::NR_Throw) {
199 ClearExceptions();
200 ComputedEST = EST_None;
201 }
202 // noexcept(true) won't change anything either.
203 return;
204 }
205 default:
206 break;
207 }
208 assert(EST == EST_Dynamic && "EST case not considered earlier.");
209 assert(ComputedEST != EST_None &&
210 "Shouldn't collect exceptions when throw-all is guaranteed.");
211 ComputedEST = EST_Dynamic;
212 // Record the exceptions in this function's exception specification.
213 for (const auto &E : Proto->exceptions())
214 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
215 Exceptions.push_back(E);
216 }
217
CalledExpr(Expr * E)218 void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
219 if (!E || ComputedEST == EST_MSAny)
220 return;
221
222 // FIXME:
223 //
224 // C++0x [except.spec]p14:
225 // [An] implicit exception-specification specifies the type-id T if and
226 // only if T is allowed by the exception-specification of a function directly
227 // invoked by f's implicit definition; f shall allow all exceptions if any
228 // function it directly invokes allows all exceptions, and f shall allow no
229 // exceptions if every function it directly invokes allows no exceptions.
230 //
231 // Note in particular that if an implicit exception-specification is generated
232 // for a function containing a throw-expression, that specification can still
233 // be noexcept(true).
234 //
235 // Note also that 'directly invoked' is not defined in the standard, and there
236 // is no indication that we should only consider potentially-evaluated calls.
237 //
238 // Ultimately we should implement the intent of the standard: the exception
239 // specification should be the set of exceptions which can be thrown by the
240 // implicit definition. For now, we assume that any non-nothrow expression can
241 // throw any exception.
242
243 if (Self->canThrow(E))
244 ComputedEST = EST_None;
245 }
246
247 bool
SetParamDefaultArgument(ParmVarDecl * Param,Expr * Arg,SourceLocation EqualLoc)248 Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
249 SourceLocation EqualLoc) {
250 if (RequireCompleteType(Param->getLocation(), Param->getType(),
251 diag::err_typecheck_decl_incomplete_type)) {
252 Param->setInvalidDecl();
253 return true;
254 }
255
256 // C++ [dcl.fct.default]p5
257 // A default argument expression is implicitly converted (clause
258 // 4) to the parameter type. The default argument expression has
259 // the same semantic constraints as the initializer expression in
260 // a declaration of a variable of the parameter type, using the
261 // copy-initialization semantics (8.5).
262 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
263 Param);
264 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
265 EqualLoc);
266 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
267 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
268 if (Result.isInvalid())
269 return true;
270 Arg = Result.getAs<Expr>();
271
272 CheckCompletedExpr(Arg, EqualLoc);
273 Arg = MaybeCreateExprWithCleanups(Arg);
274
275 // Okay: add the default argument to the parameter
276 Param->setDefaultArg(Arg);
277
278 // We have already instantiated this parameter; provide each of the
279 // instantiations with the uninstantiated default argument.
280 UnparsedDefaultArgInstantiationsMap::iterator InstPos
281 = UnparsedDefaultArgInstantiations.find(Param);
282 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
283 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
284 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
285
286 // We're done tracking this parameter's instantiations.
287 UnparsedDefaultArgInstantiations.erase(InstPos);
288 }
289
290 return false;
291 }
292
293 /// ActOnParamDefaultArgument - Check whether the default argument
294 /// provided for a function parameter is well-formed. If so, attach it
295 /// to the parameter declaration.
296 void
ActOnParamDefaultArgument(Decl * param,SourceLocation EqualLoc,Expr * DefaultArg)297 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
298 Expr *DefaultArg) {
299 if (!param || !DefaultArg)
300 return;
301
302 ParmVarDecl *Param = cast<ParmVarDecl>(param);
303 UnparsedDefaultArgLocs.erase(Param);
304
305 // Default arguments are only permitted in C++
306 if (!getLangOpts().CPlusPlus) {
307 Diag(EqualLoc, diag::err_param_default_argument)
308 << DefaultArg->getSourceRange();
309 Param->setInvalidDecl();
310 return;
311 }
312
313 // Check for unexpanded parameter packs.
314 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
315 Param->setInvalidDecl();
316 return;
317 }
318
319 // C++11 [dcl.fct.default]p3
320 // A default argument expression [...] shall not be specified for a
321 // parameter pack.
322 if (Param->isParameterPack()) {
323 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
324 << DefaultArg->getSourceRange();
325 return;
326 }
327
328 // Check that the default argument is well-formed
329 CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
330 if (DefaultArgChecker.Visit(DefaultArg)) {
331 Param->setInvalidDecl();
332 return;
333 }
334
335 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
336 }
337
338 /// ActOnParamUnparsedDefaultArgument - We've seen a default
339 /// argument for a function parameter, but we can't parse it yet
340 /// because we're inside a class definition. Note that this default
341 /// argument will be parsed later.
ActOnParamUnparsedDefaultArgument(Decl * param,SourceLocation EqualLoc,SourceLocation ArgLoc)342 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
343 SourceLocation EqualLoc,
344 SourceLocation ArgLoc) {
345 if (!param)
346 return;
347
348 ParmVarDecl *Param = cast<ParmVarDecl>(param);
349 Param->setUnparsedDefaultArg();
350 UnparsedDefaultArgLocs[Param] = ArgLoc;
351 }
352
353 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
354 /// the default argument for the parameter param failed.
ActOnParamDefaultArgumentError(Decl * param,SourceLocation EqualLoc)355 void Sema::ActOnParamDefaultArgumentError(Decl *param,
356 SourceLocation EqualLoc) {
357 if (!param)
358 return;
359
360 ParmVarDecl *Param = cast<ParmVarDecl>(param);
361 Param->setInvalidDecl();
362 UnparsedDefaultArgLocs.erase(Param);
363 Param->setDefaultArg(new(Context)
364 OpaqueValueExpr(EqualLoc,
365 Param->getType().getNonReferenceType(),
366 VK_RValue));
367 }
368
369 /// CheckExtraCXXDefaultArguments - Check for any extra default
370 /// arguments in the declarator, which is not a function declaration
371 /// or definition and therefore is not permitted to have default
372 /// arguments. This routine should be invoked for every declarator
373 /// that is not a function declaration or definition.
CheckExtraCXXDefaultArguments(Declarator & D)374 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
375 // C++ [dcl.fct.default]p3
376 // A default argument expression shall be specified only in the
377 // parameter-declaration-clause of a function declaration or in a
378 // template-parameter (14.1). It shall not be specified for a
379 // parameter pack. If it is specified in a
380 // parameter-declaration-clause, it shall not occur within a
381 // declarator or abstract-declarator of a parameter-declaration.
382 bool MightBeFunction = D.isFunctionDeclarationContext();
383 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
384 DeclaratorChunk &chunk = D.getTypeObject(i);
385 if (chunk.Kind == DeclaratorChunk::Function) {
386 if (MightBeFunction) {
387 // This is a function declaration. It can have default arguments, but
388 // keep looking in case its return type is a function type with default
389 // arguments.
390 MightBeFunction = false;
391 continue;
392 }
393 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
394 ++argIdx) {
395 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
396 if (Param->hasUnparsedDefaultArg()) {
397 CachedTokens *Toks = chunk.Fun.Params[argIdx].DefaultArgTokens;
398 SourceRange SR;
399 if (Toks->size() > 1)
400 SR = SourceRange((*Toks)[1].getLocation(),
401 Toks->back().getLocation());
402 else
403 SR = UnparsedDefaultArgLocs[Param];
404 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
405 << SR;
406 delete Toks;
407 chunk.Fun.Params[argIdx].DefaultArgTokens = nullptr;
408 } else if (Param->getDefaultArg()) {
409 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
410 << Param->getDefaultArg()->getSourceRange();
411 Param->setDefaultArg(nullptr);
412 }
413 }
414 } else if (chunk.Kind != DeclaratorChunk::Paren) {
415 MightBeFunction = false;
416 }
417 }
418 }
419
functionDeclHasDefaultArgument(const FunctionDecl * FD)420 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
421 for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
422 const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
423 if (!PVD->hasDefaultArg())
424 return false;
425 if (!PVD->hasInheritedDefaultArg())
426 return true;
427 }
428 return false;
429 }
430
431 /// MergeCXXFunctionDecl - Merge two declarations of the same C++
432 /// function, once we already know that they have the same
433 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an
434 /// error, false otherwise.
MergeCXXFunctionDecl(FunctionDecl * New,FunctionDecl * Old,Scope * S)435 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
436 Scope *S) {
437 bool Invalid = false;
438
439 // The declaration context corresponding to the scope is the semantic
440 // parent, unless this is a local function declaration, in which case
441 // it is that surrounding function.
442 DeclContext *ScopeDC = New->isLocalExternDecl()
443 ? New->getLexicalDeclContext()
444 : New->getDeclContext();
445
446 // Find the previous declaration for the purpose of default arguments.
447 FunctionDecl *PrevForDefaultArgs = Old;
448 for (/**/; PrevForDefaultArgs;
449 // Don't bother looking back past the latest decl if this is a local
450 // extern declaration; nothing else could work.
451 PrevForDefaultArgs = New->isLocalExternDecl()
452 ? nullptr
453 : PrevForDefaultArgs->getPreviousDecl()) {
454 // Ignore hidden declarations.
455 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
456 continue;
457
458 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
459 !New->isCXXClassMember()) {
460 // Ignore default arguments of old decl if they are not in
461 // the same scope and this is not an out-of-line definition of
462 // a member function.
463 continue;
464 }
465
466 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
467 // If only one of these is a local function declaration, then they are
468 // declared in different scopes, even though isDeclInScope may think
469 // they're in the same scope. (If both are local, the scope check is
470 // sufficent, and if neither is local, then they are in the same scope.)
471 continue;
472 }
473
474 // We found our guy.
475 break;
476 }
477
478 // C++ [dcl.fct.default]p4:
479 // For non-template functions, default arguments can be added in
480 // later declarations of a function in the same
481 // scope. Declarations in different scopes have completely
482 // distinct sets of default arguments. That is, declarations in
483 // inner scopes do not acquire default arguments from
484 // declarations in outer scopes, and vice versa. In a given
485 // function declaration, all parameters subsequent to a
486 // parameter with a default argument shall have default
487 // arguments supplied in this or previous declarations. A
488 // default argument shall not be redefined by a later
489 // declaration (not even to the same value).
490 //
491 // C++ [dcl.fct.default]p6:
492 // Except for member functions of class templates, the default arguments
493 // in a member function definition that appears outside of the class
494 // definition are added to the set of default arguments provided by the
495 // member function declaration in the class definition.
496 for (unsigned p = 0, NumParams = PrevForDefaultArgs
497 ? PrevForDefaultArgs->getNumParams()
498 : 0;
499 p < NumParams; ++p) {
500 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
501 ParmVarDecl *NewParam = New->getParamDecl(p);
502
503 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
504 bool NewParamHasDfl = NewParam->hasDefaultArg();
505
506 if (OldParamHasDfl && NewParamHasDfl) {
507 unsigned DiagDefaultParamID =
508 diag::err_param_default_argument_redefinition;
509
510 // MSVC accepts that default parameters be redefined for member functions
511 // of template class. The new default parameter's value is ignored.
512 Invalid = true;
513 if (getLangOpts().MicrosoftExt) {
514 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
515 if (MD && MD->getParent()->getDescribedClassTemplate()) {
516 // Merge the old default argument into the new parameter.
517 NewParam->setHasInheritedDefaultArg();
518 if (OldParam->hasUninstantiatedDefaultArg())
519 NewParam->setUninstantiatedDefaultArg(
520 OldParam->getUninstantiatedDefaultArg());
521 else
522 NewParam->setDefaultArg(OldParam->getInit());
523 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
524 Invalid = false;
525 }
526 }
527
528 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
529 // hint here. Alternatively, we could walk the type-source information
530 // for NewParam to find the last source location in the type... but it
531 // isn't worth the effort right now. This is the kind of test case that
532 // is hard to get right:
533 // int f(int);
534 // void g(int (*fp)(int) = f);
535 // void g(int (*fp)(int) = &f);
536 Diag(NewParam->getLocation(), DiagDefaultParamID)
537 << NewParam->getDefaultArgRange();
538
539 // Look for the function declaration where the default argument was
540 // actually written, which may be a declaration prior to Old.
541 for (auto Older = PrevForDefaultArgs;
542 OldParam->hasInheritedDefaultArg(); /**/) {
543 Older = Older->getPreviousDecl();
544 OldParam = Older->getParamDecl(p);
545 }
546
547 Diag(OldParam->getLocation(), diag::note_previous_definition)
548 << OldParam->getDefaultArgRange();
549 } else if (OldParamHasDfl) {
550 // Merge the old default argument into the new parameter.
551 // It's important to use getInit() here; getDefaultArg()
552 // strips off any top-level ExprWithCleanups.
553 NewParam->setHasInheritedDefaultArg();
554 if (OldParam->hasUnparsedDefaultArg())
555 NewParam->setUnparsedDefaultArg();
556 else if (OldParam->hasUninstantiatedDefaultArg())
557 NewParam->setUninstantiatedDefaultArg(
558 OldParam->getUninstantiatedDefaultArg());
559 else
560 NewParam->setDefaultArg(OldParam->getInit());
561 } else if (NewParamHasDfl) {
562 if (New->getDescribedFunctionTemplate()) {
563 // Paragraph 4, quoted above, only applies to non-template functions.
564 Diag(NewParam->getLocation(),
565 diag::err_param_default_argument_template_redecl)
566 << NewParam->getDefaultArgRange();
567 Diag(PrevForDefaultArgs->getLocation(),
568 diag::note_template_prev_declaration)
569 << false;
570 } else if (New->getTemplateSpecializationKind()
571 != TSK_ImplicitInstantiation &&
572 New->getTemplateSpecializationKind() != TSK_Undeclared) {
573 // C++ [temp.expr.spec]p21:
574 // Default function arguments shall not be specified in a declaration
575 // or a definition for one of the following explicit specializations:
576 // - the explicit specialization of a function template;
577 // - the explicit specialization of a member function template;
578 // - the explicit specialization of a member function of a class
579 // template where the class template specialization to which the
580 // member function specialization belongs is implicitly
581 // instantiated.
582 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
583 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
584 << New->getDeclName()
585 << NewParam->getDefaultArgRange();
586 } else if (New->getDeclContext()->isDependentContext()) {
587 // C++ [dcl.fct.default]p6 (DR217):
588 // Default arguments for a member function of a class template shall
589 // be specified on the initial declaration of the member function
590 // within the class template.
591 //
592 // Reading the tea leaves a bit in DR217 and its reference to DR205
593 // leads me to the conclusion that one cannot add default function
594 // arguments for an out-of-line definition of a member function of a
595 // dependent type.
596 int WhichKind = 2;
597 if (CXXRecordDecl *Record
598 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
599 if (Record->getDescribedClassTemplate())
600 WhichKind = 0;
601 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
602 WhichKind = 1;
603 else
604 WhichKind = 2;
605 }
606
607 Diag(NewParam->getLocation(),
608 diag::err_param_default_argument_member_template_redecl)
609 << WhichKind
610 << NewParam->getDefaultArgRange();
611 }
612 }
613 }
614
615 // DR1344: If a default argument is added outside a class definition and that
616 // default argument makes the function a special member function, the program
617 // is ill-formed. This can only happen for constructors.
618 if (isa<CXXConstructorDecl>(New) &&
619 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
620 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
621 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
622 if (NewSM != OldSM) {
623 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
624 assert(NewParam->hasDefaultArg());
625 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
626 << NewParam->getDefaultArgRange() << NewSM;
627 Diag(Old->getLocation(), diag::note_previous_declaration);
628 }
629 }
630
631 const FunctionDecl *Def;
632 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
633 // template has a constexpr specifier then all its declarations shall
634 // contain the constexpr specifier.
635 if (New->isConstexpr() != Old->isConstexpr()) {
636 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
637 << New << New->isConstexpr();
638 Diag(Old->getLocation(), diag::note_previous_declaration);
639 Invalid = true;
640 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
641 Old->isDefined(Def)) {
642 // C++11 [dcl.fcn.spec]p4:
643 // If the definition of a function appears in a translation unit before its
644 // first declaration as inline, the program is ill-formed.
645 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
646 Diag(Def->getLocation(), diag::note_previous_definition);
647 Invalid = true;
648 }
649
650 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
651 // argument expression, that declaration shall be a definition and shall be
652 // the only declaration of the function or function template in the
653 // translation unit.
654 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
655 functionDeclHasDefaultArgument(Old)) {
656 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
657 Diag(Old->getLocation(), diag::note_previous_declaration);
658 Invalid = true;
659 }
660
661 if (CheckEquivalentExceptionSpec(Old, New))
662 Invalid = true;
663
664 return Invalid;
665 }
666
667 /// \brief Merge the exception specifications of two variable declarations.
668 ///
669 /// This is called when there's a redeclaration of a VarDecl. The function
670 /// checks if the redeclaration might have an exception specification and
671 /// validates compatibility and merges the specs if necessary.
MergeVarDeclExceptionSpecs(VarDecl * New,VarDecl * Old)672 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
673 // Shortcut if exceptions are disabled.
674 if (!getLangOpts().CXXExceptions)
675 return;
676
677 assert(Context.hasSameType(New->getType(), Old->getType()) &&
678 "Should only be called if types are otherwise the same.");
679
680 QualType NewType = New->getType();
681 QualType OldType = Old->getType();
682
683 // We're only interested in pointers and references to functions, as well
684 // as pointers to member functions.
685 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
686 NewType = R->getPointeeType();
687 OldType = OldType->getAs<ReferenceType>()->getPointeeType();
688 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
689 NewType = P->getPointeeType();
690 OldType = OldType->getAs<PointerType>()->getPointeeType();
691 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
692 NewType = M->getPointeeType();
693 OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
694 }
695
696 if (!NewType->isFunctionProtoType())
697 return;
698
699 // There's lots of special cases for functions. For function pointers, system
700 // libraries are hopefully not as broken so that we don't need these
701 // workarounds.
702 if (CheckEquivalentExceptionSpec(
703 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
704 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
705 New->setInvalidDecl();
706 }
707 }
708
709 /// CheckCXXDefaultArguments - Verify that the default arguments for a
710 /// function declaration are well-formed according to C++
711 /// [dcl.fct.default].
CheckCXXDefaultArguments(FunctionDecl * FD)712 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
713 unsigned NumParams = FD->getNumParams();
714 unsigned p;
715
716 // Find first parameter with a default argument
717 for (p = 0; p < NumParams; ++p) {
718 ParmVarDecl *Param = FD->getParamDecl(p);
719 if (Param->hasDefaultArg())
720 break;
721 }
722
723 // C++11 [dcl.fct.default]p4:
724 // In a given function declaration, each parameter subsequent to a parameter
725 // with a default argument shall have a default argument supplied in this or
726 // a previous declaration or shall be a function parameter pack. A default
727 // argument shall not be redefined by a later declaration (not even to the
728 // same value).
729 unsigned LastMissingDefaultArg = 0;
730 for (; p < NumParams; ++p) {
731 ParmVarDecl *Param = FD->getParamDecl(p);
732 if (!Param->hasDefaultArg() && !Param->isParameterPack()) {
733 if (Param->isInvalidDecl())
734 /* We already complained about this parameter. */;
735 else if (Param->getIdentifier())
736 Diag(Param->getLocation(),
737 diag::err_param_default_argument_missing_name)
738 << Param->getIdentifier();
739 else
740 Diag(Param->getLocation(),
741 diag::err_param_default_argument_missing);
742
743 LastMissingDefaultArg = p;
744 }
745 }
746
747 if (LastMissingDefaultArg > 0) {
748 // Some default arguments were missing. Clear out all of the
749 // default arguments up to (and including) the last missing
750 // default argument, so that we leave the function parameters
751 // in a semantically valid state.
752 for (p = 0; p <= LastMissingDefaultArg; ++p) {
753 ParmVarDecl *Param = FD->getParamDecl(p);
754 if (Param->hasDefaultArg()) {
755 Param->setDefaultArg(nullptr);
756 }
757 }
758 }
759 }
760
761 // CheckConstexprParameterTypes - Check whether a function's parameter types
762 // are all literal types. If so, return true. If not, produce a suitable
763 // diagnostic and return false.
CheckConstexprParameterTypes(Sema & SemaRef,const FunctionDecl * FD)764 static bool CheckConstexprParameterTypes(Sema &SemaRef,
765 const FunctionDecl *FD) {
766 unsigned ArgIndex = 0;
767 const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
768 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
769 e = FT->param_type_end();
770 i != e; ++i, ++ArgIndex) {
771 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
772 SourceLocation ParamLoc = PD->getLocation();
773 if (!(*i)->isDependentType() &&
774 SemaRef.RequireLiteralType(ParamLoc, *i,
775 diag::err_constexpr_non_literal_param,
776 ArgIndex+1, PD->getSourceRange(),
777 isa<CXXConstructorDecl>(FD)))
778 return false;
779 }
780 return true;
781 }
782
783 /// \brief Get diagnostic %select index for tag kind for
784 /// record diagnostic message.
785 /// WARNING: Indexes apply to particular diagnostics only!
786 ///
787 /// \returns diagnostic %select index.
getRecordDiagFromTagKind(TagTypeKind Tag)788 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
789 switch (Tag) {
790 case TTK_Struct: return 0;
791 case TTK_Interface: return 1;
792 case TTK_Class: return 2;
793 default: llvm_unreachable("Invalid tag kind for record diagnostic!");
794 }
795 }
796
797 // CheckConstexprFunctionDecl - Check whether a function declaration satisfies
798 // the requirements of a constexpr function definition or a constexpr
799 // constructor definition. If so, return true. If not, produce appropriate
800 // diagnostics and return false.
801 //
802 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
CheckConstexprFunctionDecl(const FunctionDecl * NewFD)803 bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
804 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
805 if (MD && MD->isInstance()) {
806 // C++11 [dcl.constexpr]p4:
807 // The definition of a constexpr constructor shall satisfy the following
808 // constraints:
809 // - the class shall not have any virtual base classes;
810 const CXXRecordDecl *RD = MD->getParent();
811 if (RD->getNumVBases()) {
812 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
813 << isa<CXXConstructorDecl>(NewFD)
814 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
815 for (const auto &I : RD->vbases())
816 Diag(I.getLocStart(),
817 diag::note_constexpr_virtual_base_here) << I.getSourceRange();
818 return false;
819 }
820 }
821
822 if (!isa<CXXConstructorDecl>(NewFD)) {
823 // C++11 [dcl.constexpr]p3:
824 // The definition of a constexpr function shall satisfy the following
825 // constraints:
826 // - it shall not be virtual;
827 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
828 if (Method && Method->isVirtual()) {
829 Method = Method->getCanonicalDecl();
830 Diag(Method->getLocation(), diag::err_constexpr_virtual);
831
832 // If it's not obvious why this function is virtual, find an overridden
833 // function which uses the 'virtual' keyword.
834 const CXXMethodDecl *WrittenVirtual = Method;
835 while (!WrittenVirtual->isVirtualAsWritten())
836 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
837 if (WrittenVirtual != Method)
838 Diag(WrittenVirtual->getLocation(),
839 diag::note_overridden_virtual_function);
840 return false;
841 }
842
843 // - its return type shall be a literal type;
844 QualType RT = NewFD->getReturnType();
845 if (!RT->isDependentType() &&
846 RequireLiteralType(NewFD->getLocation(), RT,
847 diag::err_constexpr_non_literal_return))
848 return false;
849 }
850
851 // - each of its parameter types shall be a literal type;
852 if (!CheckConstexprParameterTypes(*this, NewFD))
853 return false;
854
855 return true;
856 }
857
858 /// Check the given declaration statement is legal within a constexpr function
859 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
860 ///
861 /// \return true if the body is OK (maybe only as an extension), false if we
862 /// have diagnosed a problem.
CheckConstexprDeclStmt(Sema & SemaRef,const FunctionDecl * Dcl,DeclStmt * DS,SourceLocation & Cxx1yLoc)863 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
864 DeclStmt *DS, SourceLocation &Cxx1yLoc) {
865 // C++11 [dcl.constexpr]p3 and p4:
866 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
867 // contain only
868 for (const auto *DclIt : DS->decls()) {
869 switch (DclIt->getKind()) {
870 case Decl::StaticAssert:
871 case Decl::Using:
872 case Decl::UsingShadow:
873 case Decl::UsingDirective:
874 case Decl::UnresolvedUsingTypename:
875 case Decl::UnresolvedUsingValue:
876 // - static_assert-declarations
877 // - using-declarations,
878 // - using-directives,
879 continue;
880
881 case Decl::Typedef:
882 case Decl::TypeAlias: {
883 // - typedef declarations and alias-declarations that do not define
884 // classes or enumerations,
885 const auto *TN = cast<TypedefNameDecl>(DclIt);
886 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
887 // Don't allow variably-modified types in constexpr functions.
888 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
889 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
890 << TL.getSourceRange() << TL.getType()
891 << isa<CXXConstructorDecl>(Dcl);
892 return false;
893 }
894 continue;
895 }
896
897 case Decl::Enum:
898 case Decl::CXXRecord:
899 // C++1y allows types to be defined, not just declared.
900 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition())
901 SemaRef.Diag(DS->getLocStart(),
902 SemaRef.getLangOpts().CPlusPlus14
903 ? diag::warn_cxx11_compat_constexpr_type_definition
904 : diag::ext_constexpr_type_definition)
905 << isa<CXXConstructorDecl>(Dcl);
906 continue;
907
908 case Decl::EnumConstant:
909 case Decl::IndirectField:
910 case Decl::ParmVar:
911 // These can only appear with other declarations which are banned in
912 // C++11 and permitted in C++1y, so ignore them.
913 continue;
914
915 case Decl::Var: {
916 // C++1y [dcl.constexpr]p3 allows anything except:
917 // a definition of a variable of non-literal type or of static or
918 // thread storage duration or for which no initialization is performed.
919 const auto *VD = cast<VarDecl>(DclIt);
920 if (VD->isThisDeclarationADefinition()) {
921 if (VD->isStaticLocal()) {
922 SemaRef.Diag(VD->getLocation(),
923 diag::err_constexpr_local_var_static)
924 << isa<CXXConstructorDecl>(Dcl)
925 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
926 return false;
927 }
928 if (!VD->getType()->isDependentType() &&
929 SemaRef.RequireLiteralType(
930 VD->getLocation(), VD->getType(),
931 diag::err_constexpr_local_var_non_literal_type,
932 isa<CXXConstructorDecl>(Dcl)))
933 return false;
934 if (!VD->getType()->isDependentType() &&
935 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
936 SemaRef.Diag(VD->getLocation(),
937 diag::err_constexpr_local_var_no_init)
938 << isa<CXXConstructorDecl>(Dcl);
939 return false;
940 }
941 }
942 SemaRef.Diag(VD->getLocation(),
943 SemaRef.getLangOpts().CPlusPlus14
944 ? diag::warn_cxx11_compat_constexpr_local_var
945 : diag::ext_constexpr_local_var)
946 << isa<CXXConstructorDecl>(Dcl);
947 continue;
948 }
949
950 case Decl::NamespaceAlias:
951 case Decl::Function:
952 // These are disallowed in C++11 and permitted in C++1y. Allow them
953 // everywhere as an extension.
954 if (!Cxx1yLoc.isValid())
955 Cxx1yLoc = DS->getLocStart();
956 continue;
957
958 default:
959 SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
960 << isa<CXXConstructorDecl>(Dcl);
961 return false;
962 }
963 }
964
965 return true;
966 }
967
968 /// Check that the given field is initialized within a constexpr constructor.
969 ///
970 /// \param Dcl The constexpr constructor being checked.
971 /// \param Field The field being checked. This may be a member of an anonymous
972 /// struct or union nested within the class being checked.
973 /// \param Inits All declarations, including anonymous struct/union members and
974 /// indirect members, for which any initialization was provided.
975 /// \param Diagnosed Set to true if an error is produced.
CheckConstexprCtorInitializer(Sema & SemaRef,const FunctionDecl * Dcl,FieldDecl * Field,llvm::SmallSet<Decl *,16> & Inits,bool & Diagnosed)976 static void CheckConstexprCtorInitializer(Sema &SemaRef,
977 const FunctionDecl *Dcl,
978 FieldDecl *Field,
979 llvm::SmallSet<Decl*, 16> &Inits,
980 bool &Diagnosed) {
981 if (Field->isInvalidDecl())
982 return;
983
984 if (Field->isUnnamedBitfield())
985 return;
986
987 // Anonymous unions with no variant members and empty anonymous structs do not
988 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
989 // indirect fields don't need initializing.
990 if (Field->isAnonymousStructOrUnion() &&
991 (Field->getType()->isUnionType()
992 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
993 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
994 return;
995
996 if (!Inits.count(Field)) {
997 if (!Diagnosed) {
998 SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
999 Diagnosed = true;
1000 }
1001 SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
1002 } else if (Field->isAnonymousStructOrUnion()) {
1003 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
1004 for (auto *I : RD->fields())
1005 // If an anonymous union contains an anonymous struct of which any member
1006 // is initialized, all members must be initialized.
1007 if (!RD->isUnion() || Inits.count(I))
1008 CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed);
1009 }
1010 }
1011
1012 /// Check the provided statement is allowed in a constexpr function
1013 /// definition.
1014 static bool
CheckConstexprFunctionStmt(Sema & SemaRef,const FunctionDecl * Dcl,Stmt * S,SmallVectorImpl<SourceLocation> & ReturnStmts,SourceLocation & Cxx1yLoc)1015 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
1016 SmallVectorImpl<SourceLocation> &ReturnStmts,
1017 SourceLocation &Cxx1yLoc) {
1018 // - its function-body shall be [...] a compound-statement that contains only
1019 switch (S->getStmtClass()) {
1020 case Stmt::NullStmtClass:
1021 // - null statements,
1022 return true;
1023
1024 case Stmt::DeclStmtClass:
1025 // - static_assert-declarations
1026 // - using-declarations,
1027 // - using-directives,
1028 // - typedef declarations and alias-declarations that do not define
1029 // classes or enumerations,
1030 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
1031 return false;
1032 return true;
1033
1034 case Stmt::ReturnStmtClass:
1035 // - and exactly one return statement;
1036 if (isa<CXXConstructorDecl>(Dcl)) {
1037 // C++1y allows return statements in constexpr constructors.
1038 if (!Cxx1yLoc.isValid())
1039 Cxx1yLoc = S->getLocStart();
1040 return true;
1041 }
1042
1043 ReturnStmts.push_back(S->getLocStart());
1044 return true;
1045
1046 case Stmt::CompoundStmtClass: {
1047 // C++1y allows compound-statements.
1048 if (!Cxx1yLoc.isValid())
1049 Cxx1yLoc = S->getLocStart();
1050
1051 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
1052 for (auto *BodyIt : CompStmt->body()) {
1053 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
1054 Cxx1yLoc))
1055 return false;
1056 }
1057 return true;
1058 }
1059
1060 case Stmt::AttributedStmtClass:
1061 if (!Cxx1yLoc.isValid())
1062 Cxx1yLoc = S->getLocStart();
1063 return true;
1064
1065 case Stmt::IfStmtClass: {
1066 // C++1y allows if-statements.
1067 if (!Cxx1yLoc.isValid())
1068 Cxx1yLoc = S->getLocStart();
1069
1070 IfStmt *If = cast<IfStmt>(S);
1071 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1072 Cxx1yLoc))
1073 return false;
1074 if (If->getElse() &&
1075 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1076 Cxx1yLoc))
1077 return false;
1078 return true;
1079 }
1080
1081 case Stmt::WhileStmtClass:
1082 case Stmt::DoStmtClass:
1083 case Stmt::ForStmtClass:
1084 case Stmt::CXXForRangeStmtClass:
1085 case Stmt::ContinueStmtClass:
1086 // C++1y allows all of these. We don't allow them as extensions in C++11,
1087 // because they don't make sense without variable mutation.
1088 if (!SemaRef.getLangOpts().CPlusPlus14)
1089 break;
1090 if (!Cxx1yLoc.isValid())
1091 Cxx1yLoc = S->getLocStart();
1092 for (Stmt *SubStmt : S->children())
1093 if (SubStmt &&
1094 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
1095 Cxx1yLoc))
1096 return false;
1097 return true;
1098
1099 case Stmt::SwitchStmtClass:
1100 case Stmt::CaseStmtClass:
1101 case Stmt::DefaultStmtClass:
1102 case Stmt::BreakStmtClass:
1103 // C++1y allows switch-statements, and since they don't need variable
1104 // mutation, we can reasonably allow them in C++11 as an extension.
1105 if (!Cxx1yLoc.isValid())
1106 Cxx1yLoc = S->getLocStart();
1107 for (Stmt *SubStmt : S->children())
1108 if (SubStmt &&
1109 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
1110 Cxx1yLoc))
1111 return false;
1112 return true;
1113
1114 default:
1115 if (!isa<Expr>(S))
1116 break;
1117
1118 // C++1y allows expression-statements.
1119 if (!Cxx1yLoc.isValid())
1120 Cxx1yLoc = S->getLocStart();
1121 return true;
1122 }
1123
1124 SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1125 << isa<CXXConstructorDecl>(Dcl);
1126 return false;
1127 }
1128
1129 /// Check the body for the given constexpr function declaration only contains
1130 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1131 ///
1132 /// \return true if the body is OK, false if we have diagnosed a problem.
CheckConstexprFunctionBody(const FunctionDecl * Dcl,Stmt * Body)1133 bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1134 if (isa<CXXTryStmt>(Body)) {
1135 // C++11 [dcl.constexpr]p3:
1136 // The definition of a constexpr function shall satisfy the following
1137 // constraints: [...]
1138 // - its function-body shall be = delete, = default, or a
1139 // compound-statement
1140 //
1141 // C++11 [dcl.constexpr]p4:
1142 // In the definition of a constexpr constructor, [...]
1143 // - its function-body shall not be a function-try-block;
1144 Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1145 << isa<CXXConstructorDecl>(Dcl);
1146 return false;
1147 }
1148
1149 SmallVector<SourceLocation, 4> ReturnStmts;
1150
1151 // - its function-body shall be [...] a compound-statement that contains only
1152 // [... list of cases ...]
1153 CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1154 SourceLocation Cxx1yLoc;
1155 for (auto *BodyIt : CompBody->body()) {
1156 if (!CheckConstexprFunctionStmt(*this, Dcl, BodyIt, ReturnStmts, Cxx1yLoc))
1157 return false;
1158 }
1159
1160 if (Cxx1yLoc.isValid())
1161 Diag(Cxx1yLoc,
1162 getLangOpts().CPlusPlus14
1163 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1164 : diag::ext_constexpr_body_invalid_stmt)
1165 << isa<CXXConstructorDecl>(Dcl);
1166
1167 if (const CXXConstructorDecl *Constructor
1168 = dyn_cast<CXXConstructorDecl>(Dcl)) {
1169 const CXXRecordDecl *RD = Constructor->getParent();
1170 // DR1359:
1171 // - every non-variant non-static data member and base class sub-object
1172 // shall be initialized;
1173 // DR1460:
1174 // - if the class is a union having variant members, exactly one of them
1175 // shall be initialized;
1176 if (RD->isUnion()) {
1177 if (Constructor->getNumCtorInitializers() == 0 &&
1178 RD->hasVariantMembers()) {
1179 Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1180 return false;
1181 }
1182 } else if (!Constructor->isDependentContext() &&
1183 !Constructor->isDelegatingConstructor()) {
1184 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
1185
1186 // Skip detailed checking if we have enough initializers, and we would
1187 // allow at most one initializer per member.
1188 bool AnyAnonStructUnionMembers = false;
1189 unsigned Fields = 0;
1190 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1191 E = RD->field_end(); I != E; ++I, ++Fields) {
1192 if (I->isAnonymousStructOrUnion()) {
1193 AnyAnonStructUnionMembers = true;
1194 break;
1195 }
1196 }
1197 // DR1460:
1198 // - if the class is a union-like class, but is not a union, for each of
1199 // its anonymous union members having variant members, exactly one of
1200 // them shall be initialized;
1201 if (AnyAnonStructUnionMembers ||
1202 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1203 // Check initialization of non-static data members. Base classes are
1204 // always initialized so do not need to be checked. Dependent bases
1205 // might not have initializers in the member initializer list.
1206 llvm::SmallSet<Decl*, 16> Inits;
1207 for (const auto *I: Constructor->inits()) {
1208 if (FieldDecl *FD = I->getMember())
1209 Inits.insert(FD);
1210 else if (IndirectFieldDecl *ID = I->getIndirectMember())
1211 Inits.insert(ID->chain_begin(), ID->chain_end());
1212 }
1213
1214 bool Diagnosed = false;
1215 for (auto *I : RD->fields())
1216 CheckConstexprCtorInitializer(*this, Dcl, I, Inits, Diagnosed);
1217 if (Diagnosed)
1218 return false;
1219 }
1220 }
1221 } else {
1222 if (ReturnStmts.empty()) {
1223 // C++1y doesn't require constexpr functions to contain a 'return'
1224 // statement. We still do, unless the return type might be void, because
1225 // otherwise if there's no return statement, the function cannot
1226 // be used in a core constant expression.
1227 bool OK = getLangOpts().CPlusPlus14 &&
1228 (Dcl->getReturnType()->isVoidType() ||
1229 Dcl->getReturnType()->isDependentType());
1230 Diag(Dcl->getLocation(),
1231 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
1232 : diag::err_constexpr_body_no_return);
1233 if (!OK)
1234 return false;
1235 } else if (ReturnStmts.size() > 1) {
1236 Diag(ReturnStmts.back(),
1237 getLangOpts().CPlusPlus14
1238 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
1239 : diag::ext_constexpr_body_multiple_return);
1240 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1241 Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1242 }
1243 }
1244
1245 // C++11 [dcl.constexpr]p5:
1246 // if no function argument values exist such that the function invocation
1247 // substitution would produce a constant expression, the program is
1248 // ill-formed; no diagnostic required.
1249 // C++11 [dcl.constexpr]p3:
1250 // - every constructor call and implicit conversion used in initializing the
1251 // return value shall be one of those allowed in a constant expression.
1252 // C++11 [dcl.constexpr]p4:
1253 // - every constructor involved in initializing non-static data members and
1254 // base class sub-objects shall be a constexpr constructor.
1255 SmallVector<PartialDiagnosticAt, 8> Diags;
1256 if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1257 Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1258 << isa<CXXConstructorDecl>(Dcl);
1259 for (size_t I = 0, N = Diags.size(); I != N; ++I)
1260 Diag(Diags[I].first, Diags[I].second);
1261 // Don't return false here: we allow this for compatibility in
1262 // system headers.
1263 }
1264
1265 return true;
1266 }
1267
1268 /// isCurrentClassName - Determine whether the identifier II is the
1269 /// name of the class type currently being defined. In the case of
1270 /// nested classes, this will only return true if II is the name of
1271 /// the innermost class.
isCurrentClassName(const IdentifierInfo & II,Scope *,const CXXScopeSpec * SS)1272 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1273 const CXXScopeSpec *SS) {
1274 assert(getLangOpts().CPlusPlus && "No class names in C!");
1275
1276 CXXRecordDecl *CurDecl;
1277 if (SS && SS->isSet() && !SS->isInvalid()) {
1278 DeclContext *DC = computeDeclContext(*SS, true);
1279 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1280 } else
1281 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1282
1283 if (CurDecl && CurDecl->getIdentifier())
1284 return &II == CurDecl->getIdentifier();
1285 return false;
1286 }
1287
1288 /// \brief Determine whether the identifier II is a typo for the name of
1289 /// the class type currently being defined. If so, update it to the identifier
1290 /// that should have been used.
isCurrentClassNameTypo(IdentifierInfo * & II,const CXXScopeSpec * SS)1291 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
1292 assert(getLangOpts().CPlusPlus && "No class names in C!");
1293
1294 if (!getLangOpts().SpellChecking)
1295 return false;
1296
1297 CXXRecordDecl *CurDecl;
1298 if (SS && SS->isSet() && !SS->isInvalid()) {
1299 DeclContext *DC = computeDeclContext(*SS, true);
1300 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1301 } else
1302 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1303
1304 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
1305 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
1306 < II->getLength()) {
1307 II = CurDecl->getIdentifier();
1308 return true;
1309 }
1310
1311 return false;
1312 }
1313
1314 /// \brief Determine whether the given class is a base class of the given
1315 /// class, including looking at dependent bases.
findCircularInheritance(const CXXRecordDecl * Class,const CXXRecordDecl * Current)1316 static bool findCircularInheritance(const CXXRecordDecl *Class,
1317 const CXXRecordDecl *Current) {
1318 SmallVector<const CXXRecordDecl*, 8> Queue;
1319
1320 Class = Class->getCanonicalDecl();
1321 while (true) {
1322 for (const auto &I : Current->bases()) {
1323 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
1324 if (!Base)
1325 continue;
1326
1327 Base = Base->getDefinition();
1328 if (!Base)
1329 continue;
1330
1331 if (Base->getCanonicalDecl() == Class)
1332 return true;
1333
1334 Queue.push_back(Base);
1335 }
1336
1337 if (Queue.empty())
1338 return false;
1339
1340 Current = Queue.pop_back_val();
1341 }
1342
1343 return false;
1344 }
1345
1346 /// \brief Check the validity of a C++ base class specifier.
1347 ///
1348 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1349 /// and returns NULL otherwise.
1350 CXXBaseSpecifier *
CheckBaseSpecifier(CXXRecordDecl * Class,SourceRange SpecifierRange,bool Virtual,AccessSpecifier Access,TypeSourceInfo * TInfo,SourceLocation EllipsisLoc)1351 Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1352 SourceRange SpecifierRange,
1353 bool Virtual, AccessSpecifier Access,
1354 TypeSourceInfo *TInfo,
1355 SourceLocation EllipsisLoc) {
1356 QualType BaseType = TInfo->getType();
1357
1358 // C++ [class.union]p1:
1359 // A union shall not have base classes.
1360 if (Class->isUnion()) {
1361 Diag(Class->getLocation(), diag::err_base_clause_on_union)
1362 << SpecifierRange;
1363 return nullptr;
1364 }
1365
1366 if (EllipsisLoc.isValid() &&
1367 !TInfo->getType()->containsUnexpandedParameterPack()) {
1368 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1369 << TInfo->getTypeLoc().getSourceRange();
1370 EllipsisLoc = SourceLocation();
1371 }
1372
1373 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1374
1375 if (BaseType->isDependentType()) {
1376 // Make sure that we don't have circular inheritance among our dependent
1377 // bases. For non-dependent bases, the check for completeness below handles
1378 // this.
1379 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1380 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1381 ((BaseDecl = BaseDecl->getDefinition()) &&
1382 findCircularInheritance(Class, BaseDecl))) {
1383 Diag(BaseLoc, diag::err_circular_inheritance)
1384 << BaseType << Context.getTypeDeclType(Class);
1385
1386 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1387 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1388 << BaseType;
1389
1390 return nullptr;
1391 }
1392 }
1393
1394 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1395 Class->getTagKind() == TTK_Class,
1396 Access, TInfo, EllipsisLoc);
1397 }
1398
1399 // Base specifiers must be record types.
1400 if (!BaseType->isRecordType()) {
1401 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1402 return nullptr;
1403 }
1404
1405 // C++ [class.union]p1:
1406 // A union shall not be used as a base class.
1407 if (BaseType->isUnionType()) {
1408 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1409 return nullptr;
1410 }
1411
1412 // For the MS ABI, propagate DLL attributes to base class templates.
1413 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1414 if (Attr *ClassAttr = getDLLAttr(Class)) {
1415 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
1416 BaseType->getAsCXXRecordDecl())) {
1417 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
1418 BaseLoc);
1419 }
1420 }
1421 }
1422
1423 // C++ [class.derived]p2:
1424 // The class-name in a base-specifier shall not be an incompletely
1425 // defined class.
1426 if (RequireCompleteType(BaseLoc, BaseType,
1427 diag::err_incomplete_base_class, SpecifierRange)) {
1428 Class->setInvalidDecl();
1429 return nullptr;
1430 }
1431
1432 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1433 RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1434 assert(BaseDecl && "Record type has no declaration");
1435 BaseDecl = BaseDecl->getDefinition();
1436 assert(BaseDecl && "Base type is not incomplete, but has no definition");
1437 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1438 assert(CXXBaseDecl && "Base type is not a C++ type");
1439
1440 // A class which contains a flexible array member is not suitable for use as a
1441 // base class:
1442 // - If the layout determines that a base comes before another base,
1443 // the flexible array member would index into the subsequent base.
1444 // - If the layout determines that base comes before the derived class,
1445 // the flexible array member would index into the derived class.
1446 if (CXXBaseDecl->hasFlexibleArrayMember()) {
1447 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
1448 << CXXBaseDecl->getDeclName();
1449 return nullptr;
1450 }
1451
1452 // C++ [class]p3:
1453 // If a class is marked final and it appears as a base-type-specifier in
1454 // base-clause, the program is ill-formed.
1455 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
1456 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1457 << CXXBaseDecl->getDeclName()
1458 << FA->isSpelledAsSealed();
1459 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
1460 << CXXBaseDecl->getDeclName() << FA->getRange();
1461 return nullptr;
1462 }
1463
1464 if (BaseDecl->isInvalidDecl())
1465 Class->setInvalidDecl();
1466
1467 // Create the base specifier.
1468 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1469 Class->getTagKind() == TTK_Class,
1470 Access, TInfo, EllipsisLoc);
1471 }
1472
1473 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1474 /// one entry in the base class list of a class specifier, for
1475 /// example:
1476 /// class foo : public bar, virtual private baz {
1477 /// 'public bar' and 'virtual private baz' are each base-specifiers.
1478 BaseResult
ActOnBaseSpecifier(Decl * classdecl,SourceRange SpecifierRange,ParsedAttributes & Attributes,bool Virtual,AccessSpecifier Access,ParsedType basetype,SourceLocation BaseLoc,SourceLocation EllipsisLoc)1479 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1480 ParsedAttributes &Attributes,
1481 bool Virtual, AccessSpecifier Access,
1482 ParsedType basetype, SourceLocation BaseLoc,
1483 SourceLocation EllipsisLoc) {
1484 if (!classdecl)
1485 return true;
1486
1487 AdjustDeclIfTemplate(classdecl);
1488 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1489 if (!Class)
1490 return true;
1491
1492 // We haven't yet attached the base specifiers.
1493 Class->setIsParsingBaseSpecifiers();
1494
1495 // We do not support any C++11 attributes on base-specifiers yet.
1496 // Diagnose any attributes we see.
1497 if (!Attributes.empty()) {
1498 for (AttributeList *Attr = Attributes.getList(); Attr;
1499 Attr = Attr->getNext()) {
1500 if (Attr->isInvalid() ||
1501 Attr->getKind() == AttributeList::IgnoredAttribute)
1502 continue;
1503 Diag(Attr->getLoc(),
1504 Attr->getKind() == AttributeList::UnknownAttribute
1505 ? diag::warn_unknown_attribute_ignored
1506 : diag::err_base_specifier_attribute)
1507 << Attr->getName();
1508 }
1509 }
1510
1511 TypeSourceInfo *TInfo = nullptr;
1512 GetTypeFromParser(basetype, &TInfo);
1513
1514 if (EllipsisLoc.isInvalid() &&
1515 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1516 UPPC_BaseType))
1517 return true;
1518
1519 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1520 Virtual, Access, TInfo,
1521 EllipsisLoc))
1522 return BaseSpec;
1523 else
1524 Class->setInvalidDecl();
1525
1526 return true;
1527 }
1528
1529 /// Use small set to collect indirect bases. As this is only used
1530 /// locally, there's no need to abstract the small size parameter.
1531 typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
1532
1533 /// \brief Recursively add the bases of Type. Don't add Type itself.
1534 static void
NoteIndirectBases(ASTContext & Context,IndirectBaseSet & Set,const QualType & Type)1535 NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
1536 const QualType &Type)
1537 {
1538 // Even though the incoming type is a base, it might not be
1539 // a class -- it could be a template parm, for instance.
1540 if (auto Rec = Type->getAs<RecordType>()) {
1541 auto Decl = Rec->getAsCXXRecordDecl();
1542
1543 // Iterate over its bases.
1544 for (const auto &BaseSpec : Decl->bases()) {
1545 QualType Base = Context.getCanonicalType(BaseSpec.getType())
1546 .getUnqualifiedType();
1547 if (Set.insert(Base).second)
1548 // If we've not already seen it, recurse.
1549 NoteIndirectBases(Context, Set, Base);
1550 }
1551 }
1552 }
1553
1554 /// \brief Performs the actual work of attaching the given base class
1555 /// specifiers to a C++ class.
AttachBaseSpecifiers(CXXRecordDecl * Class,CXXBaseSpecifier ** Bases,unsigned NumBases)1556 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1557 unsigned NumBases) {
1558 if (NumBases == 0)
1559 return false;
1560
1561 // Used to keep track of which base types we have already seen, so
1562 // that we can properly diagnose redundant direct base types. Note
1563 // that the key is always the unqualified canonical type of the base
1564 // class.
1565 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1566
1567 // Used to track indirect bases so we can see if a direct base is
1568 // ambiguous.
1569 IndirectBaseSet IndirectBaseTypes;
1570
1571 // Copy non-redundant base specifiers into permanent storage.
1572 unsigned NumGoodBases = 0;
1573 bool Invalid = false;
1574 for (unsigned idx = 0; idx < NumBases; ++idx) {
1575 QualType NewBaseType
1576 = Context.getCanonicalType(Bases[idx]->getType());
1577 NewBaseType = NewBaseType.getLocalUnqualifiedType();
1578
1579 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1580 if (KnownBase) {
1581 // C++ [class.mi]p3:
1582 // A class shall not be specified as a direct base class of a
1583 // derived class more than once.
1584 Diag(Bases[idx]->getLocStart(),
1585 diag::err_duplicate_base_class)
1586 << KnownBase->getType()
1587 << Bases[idx]->getSourceRange();
1588
1589 // Delete the duplicate base class specifier; we're going to
1590 // overwrite its pointer later.
1591 Context.Deallocate(Bases[idx]);
1592
1593 Invalid = true;
1594 } else {
1595 // Okay, add this new base class.
1596 KnownBase = Bases[idx];
1597 Bases[NumGoodBases++] = Bases[idx];
1598
1599 // Note this base's direct & indirect bases, if there could be ambiguity.
1600 if (NumBases > 1)
1601 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
1602
1603 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1604 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1605 if (Class->isInterface() &&
1606 (!RD->isInterface() ||
1607 KnownBase->getAccessSpecifier() != AS_public)) {
1608 // The Microsoft extension __interface does not permit bases that
1609 // are not themselves public interfaces.
1610 Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1611 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1612 << RD->getSourceRange();
1613 Invalid = true;
1614 }
1615 if (RD->hasAttr<WeakAttr>())
1616 Class->addAttr(WeakAttr::CreateImplicit(Context));
1617 }
1618 }
1619 }
1620
1621 // Attach the remaining base class specifiers to the derived class.
1622 Class->setBases(Bases, NumGoodBases);
1623
1624 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
1625 // Check whether this direct base is inaccessible due to ambiguity.
1626 QualType BaseType = Bases[idx]->getType();
1627 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
1628 .getUnqualifiedType();
1629
1630 if (IndirectBaseTypes.count(CanonicalBase)) {
1631 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1632 /*DetectVirtual=*/true);
1633 bool found
1634 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
1635 assert(found);
1636 (void)found;
1637
1638 if (Paths.isAmbiguous(CanonicalBase))
1639 Diag(Bases[idx]->getLocStart (), diag::warn_inaccessible_base_class)
1640 << BaseType << getAmbiguousPathsDisplayString(Paths)
1641 << Bases[idx]->getSourceRange();
1642 else
1643 assert(Bases[idx]->isVirtual());
1644 }
1645
1646 // Delete the base class specifier, since its data has been copied
1647 // into the CXXRecordDecl.
1648 Context.Deallocate(Bases[idx]);
1649 }
1650
1651 return Invalid;
1652 }
1653
1654 /// ActOnBaseSpecifiers - Attach the given base specifiers to the
1655 /// class, after checking whether there are any duplicate base
1656 /// classes.
ActOnBaseSpecifiers(Decl * ClassDecl,CXXBaseSpecifier ** Bases,unsigned NumBases)1657 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1658 unsigned NumBases) {
1659 if (!ClassDecl || !Bases || !NumBases)
1660 return;
1661
1662 AdjustDeclIfTemplate(ClassDecl);
1663 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases, NumBases);
1664 }
1665
1666 /// \brief Determine whether the type \p Derived is a C++ class that is
1667 /// derived from the type \p Base.
IsDerivedFrom(SourceLocation Loc,QualType Derived,QualType Base)1668 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
1669 if (!getLangOpts().CPlusPlus)
1670 return false;
1671
1672 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1673 if (!DerivedRD)
1674 return false;
1675
1676 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1677 if (!BaseRD)
1678 return false;
1679
1680 // If either the base or the derived type is invalid, don't try to
1681 // check whether one is derived from the other.
1682 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1683 return false;
1684
1685 // FIXME: In a modules build, do we need the entire path to be visible for us
1686 // to be able to use the inheritance relationship?
1687 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
1688 return false;
1689
1690 return DerivedRD->isDerivedFrom(BaseRD);
1691 }
1692
1693 /// \brief Determine whether the type \p Derived is a C++ class that is
1694 /// derived from the type \p Base.
IsDerivedFrom(SourceLocation Loc,QualType Derived,QualType Base,CXXBasePaths & Paths)1695 bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
1696 CXXBasePaths &Paths) {
1697 if (!getLangOpts().CPlusPlus)
1698 return false;
1699
1700 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1701 if (!DerivedRD)
1702 return false;
1703
1704 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1705 if (!BaseRD)
1706 return false;
1707
1708 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
1709 return false;
1710
1711 return DerivedRD->isDerivedFrom(BaseRD, Paths);
1712 }
1713
BuildBasePathArray(const CXXBasePaths & Paths,CXXCastPath & BasePathArray)1714 void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1715 CXXCastPath &BasePathArray) {
1716 assert(BasePathArray.empty() && "Base path array must be empty!");
1717 assert(Paths.isRecordingPaths() && "Must record paths!");
1718
1719 const CXXBasePath &Path = Paths.front();
1720
1721 // We first go backward and check if we have a virtual base.
1722 // FIXME: It would be better if CXXBasePath had the base specifier for
1723 // the nearest virtual base.
1724 unsigned Start = 0;
1725 for (unsigned I = Path.size(); I != 0; --I) {
1726 if (Path[I - 1].Base->isVirtual()) {
1727 Start = I - 1;
1728 break;
1729 }
1730 }
1731
1732 // Now add all bases.
1733 for (unsigned I = Start, E = Path.size(); I != E; ++I)
1734 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1735 }
1736
1737 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1738 /// conversion (where Derived and Base are class types) is
1739 /// well-formed, meaning that the conversion is unambiguous (and
1740 /// that all of the base classes are accessible). Returns true
1741 /// and emits a diagnostic if the code is ill-formed, returns false
1742 /// otherwise. Loc is the location where this routine should point to
1743 /// if there is an error, and Range is the source range to highlight
1744 /// if there is an error.
1745 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,unsigned InaccessibleBaseID,unsigned AmbigiousBaseConvID,SourceLocation Loc,SourceRange Range,DeclarationName Name,CXXCastPath * BasePath)1746 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1747 unsigned InaccessibleBaseID,
1748 unsigned AmbigiousBaseConvID,
1749 SourceLocation Loc, SourceRange Range,
1750 DeclarationName Name,
1751 CXXCastPath *BasePath) {
1752 // First, determine whether the path from Derived to Base is
1753 // ambiguous. This is slightly more expensive than checking whether
1754 // the Derived to Base conversion exists, because here we need to
1755 // explore multiple paths to determine if there is an ambiguity.
1756 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1757 /*DetectVirtual=*/false);
1758 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
1759 assert(DerivationOkay &&
1760 "Can only be used with a derived-to-base conversion");
1761 (void)DerivationOkay;
1762
1763 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1764 if (InaccessibleBaseID) {
1765 // Check that the base class can be accessed.
1766 switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1767 InaccessibleBaseID)) {
1768 case AR_inaccessible:
1769 return true;
1770 case AR_accessible:
1771 case AR_dependent:
1772 case AR_delayed:
1773 break;
1774 }
1775 }
1776
1777 // Build a base path if necessary.
1778 if (BasePath)
1779 BuildBasePathArray(Paths, *BasePath);
1780 return false;
1781 }
1782
1783 if (AmbigiousBaseConvID) {
1784 // We know that the derived-to-base conversion is ambiguous, and
1785 // we're going to produce a diagnostic. Perform the derived-to-base
1786 // search just one more time to compute all of the possible paths so
1787 // that we can print them out. This is more expensive than any of
1788 // the previous derived-to-base checks we've done, but at this point
1789 // performance isn't as much of an issue.
1790 Paths.clear();
1791 Paths.setRecordingPaths(true);
1792 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
1793 assert(StillOkay && "Can only be used with a derived-to-base conversion");
1794 (void)StillOkay;
1795
1796 // Build up a textual representation of the ambiguous paths, e.g.,
1797 // D -> B -> A, that will be used to illustrate the ambiguous
1798 // conversions in the diagnostic. We only print one of the paths
1799 // to each base class subobject.
1800 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1801
1802 Diag(Loc, AmbigiousBaseConvID)
1803 << Derived << Base << PathDisplayStr << Range << Name;
1804 }
1805 return true;
1806 }
1807
1808 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,SourceLocation Loc,SourceRange Range,CXXCastPath * BasePath,bool IgnoreAccess)1809 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1810 SourceLocation Loc, SourceRange Range,
1811 CXXCastPath *BasePath,
1812 bool IgnoreAccess) {
1813 return CheckDerivedToBaseConversion(Derived, Base,
1814 IgnoreAccess ? 0
1815 : diag::err_upcast_to_inaccessible_base,
1816 diag::err_ambiguous_derived_to_base_conv,
1817 Loc, Range, DeclarationName(),
1818 BasePath);
1819 }
1820
1821
1822 /// @brief Builds a string representing ambiguous paths from a
1823 /// specific derived class to different subobjects of the same base
1824 /// class.
1825 ///
1826 /// This function builds a string that can be used in error messages
1827 /// to show the different paths that one can take through the
1828 /// inheritance hierarchy to go from the derived class to different
1829 /// subobjects of a base class. The result looks something like this:
1830 /// @code
1831 /// struct D -> struct B -> struct A
1832 /// struct D -> struct C -> struct A
1833 /// @endcode
getAmbiguousPathsDisplayString(CXXBasePaths & Paths)1834 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1835 std::string PathDisplayStr;
1836 std::set<unsigned> DisplayedPaths;
1837 for (CXXBasePaths::paths_iterator Path = Paths.begin();
1838 Path != Paths.end(); ++Path) {
1839 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1840 // We haven't displayed a path to this particular base
1841 // class subobject yet.
1842 PathDisplayStr += "\n ";
1843 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1844 for (CXXBasePath::const_iterator Element = Path->begin();
1845 Element != Path->end(); ++Element)
1846 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1847 }
1848 }
1849
1850 return PathDisplayStr;
1851 }
1852
1853 //===----------------------------------------------------------------------===//
1854 // C++ class member Handling
1855 //===----------------------------------------------------------------------===//
1856
1857 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
ActOnAccessSpecifier(AccessSpecifier Access,SourceLocation ASLoc,SourceLocation ColonLoc,AttributeList * Attrs)1858 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1859 SourceLocation ASLoc,
1860 SourceLocation ColonLoc,
1861 AttributeList *Attrs) {
1862 assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1863 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1864 ASLoc, ColonLoc);
1865 CurContext->addHiddenDecl(ASDecl);
1866 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1867 }
1868
1869 /// CheckOverrideControl - Check C++11 override control semantics.
CheckOverrideControl(NamedDecl * D)1870 void Sema::CheckOverrideControl(NamedDecl *D) {
1871 if (D->isInvalidDecl())
1872 return;
1873
1874 // We only care about "override" and "final" declarations.
1875 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
1876 return;
1877
1878 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1879
1880 // We can't check dependent instance methods.
1881 if (MD && MD->isInstance() &&
1882 (MD->getParent()->hasAnyDependentBases() ||
1883 MD->getType()->isDependentType()))
1884 return;
1885
1886 if (MD && !MD->isVirtual()) {
1887 // If we have a non-virtual method, check if if hides a virtual method.
1888 // (In that case, it's most likely the method has the wrong type.)
1889 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
1890 FindHiddenVirtualMethods(MD, OverloadedMethods);
1891
1892 if (!OverloadedMethods.empty()) {
1893 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1894 Diag(OA->getLocation(),
1895 diag::override_keyword_hides_virtual_member_function)
1896 << "override" << (OverloadedMethods.size() > 1);
1897 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1898 Diag(FA->getLocation(),
1899 diag::override_keyword_hides_virtual_member_function)
1900 << (FA->isSpelledAsSealed() ? "sealed" : "final")
1901 << (OverloadedMethods.size() > 1);
1902 }
1903 NoteHiddenVirtualMethods(MD, OverloadedMethods);
1904 MD->setInvalidDecl();
1905 return;
1906 }
1907 // Fall through into the general case diagnostic.
1908 // FIXME: We might want to attempt typo correction here.
1909 }
1910
1911 if (!MD || !MD->isVirtual()) {
1912 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1913 Diag(OA->getLocation(),
1914 diag::override_keyword_only_allowed_on_virtual_member_functions)
1915 << "override" << FixItHint::CreateRemoval(OA->getLocation());
1916 D->dropAttr<OverrideAttr>();
1917 }
1918 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1919 Diag(FA->getLocation(),
1920 diag::override_keyword_only_allowed_on_virtual_member_functions)
1921 << (FA->isSpelledAsSealed() ? "sealed" : "final")
1922 << FixItHint::CreateRemoval(FA->getLocation());
1923 D->dropAttr<FinalAttr>();
1924 }
1925 return;
1926 }
1927
1928 // C++11 [class.virtual]p5:
1929 // If a function is marked with the virt-specifier override and
1930 // does not override a member function of a base class, the program is
1931 // ill-formed.
1932 bool HasOverriddenMethods =
1933 MD->begin_overridden_methods() != MD->end_overridden_methods();
1934 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1935 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1936 << MD->getDeclName();
1937 }
1938
DiagnoseAbsenceOfOverrideControl(NamedDecl * D)1939 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) {
1940 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
1941 return;
1942 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1943 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>() ||
1944 isa<CXXDestructorDecl>(MD))
1945 return;
1946
1947 SourceLocation Loc = MD->getLocation();
1948 SourceLocation SpellingLoc = Loc;
1949 if (getSourceManager().isMacroArgExpansion(Loc))
1950 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).first;
1951 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
1952 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
1953 return;
1954
1955 if (MD->size_overridden_methods() > 0) {
1956 Diag(MD->getLocation(), diag::warn_function_marked_not_override_overriding)
1957 << MD->getDeclName();
1958 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
1959 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
1960 }
1961 }
1962
1963 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1964 /// function overrides a virtual member function marked 'final', according to
1965 /// C++11 [class.virtual]p4.
CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl * New,const CXXMethodDecl * Old)1966 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1967 const CXXMethodDecl *Old) {
1968 FinalAttr *FA = Old->getAttr<FinalAttr>();
1969 if (!FA)
1970 return false;
1971
1972 Diag(New->getLocation(), diag::err_final_function_overridden)
1973 << New->getDeclName()
1974 << FA->isSpelledAsSealed();
1975 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1976 return true;
1977 }
1978
InitializationHasSideEffects(const FieldDecl & FD)1979 static bool InitializationHasSideEffects(const FieldDecl &FD) {
1980 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1981 // FIXME: Destruction of ObjC lifetime types has side-effects.
1982 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1983 return !RD->isCompleteDefinition() ||
1984 !RD->hasTrivialDefaultConstructor() ||
1985 !RD->hasTrivialDestructor();
1986 return false;
1987 }
1988
getMSPropertyAttr(AttributeList * list)1989 static AttributeList *getMSPropertyAttr(AttributeList *list) {
1990 for (AttributeList *it = list; it != nullptr; it = it->getNext())
1991 if (it->isDeclspecPropertyAttribute())
1992 return it;
1993 return nullptr;
1994 }
1995
1996 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1997 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1998 /// bitfield width if there is one, 'InitExpr' specifies the initializer if
1999 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is
2000 /// present (but parsing it has been deferred).
2001 NamedDecl *
ActOnCXXMemberDeclarator(Scope * S,AccessSpecifier AS,Declarator & D,MultiTemplateParamsArg TemplateParameterLists,Expr * BW,const VirtSpecifiers & VS,InClassInitStyle InitStyle)2002 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
2003 MultiTemplateParamsArg TemplateParameterLists,
2004 Expr *BW, const VirtSpecifiers &VS,
2005 InClassInitStyle InitStyle) {
2006 const DeclSpec &DS = D.getDeclSpec();
2007 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2008 DeclarationName Name = NameInfo.getName();
2009 SourceLocation Loc = NameInfo.getLoc();
2010
2011 // For anonymous bitfields, the location should point to the type.
2012 if (Loc.isInvalid())
2013 Loc = D.getLocStart();
2014
2015 Expr *BitWidth = static_cast<Expr*>(BW);
2016
2017 assert(isa<CXXRecordDecl>(CurContext));
2018 assert(!DS.isFriendSpecified());
2019
2020 bool isFunc = D.isDeclarationOfFunction();
2021
2022 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
2023 // The Microsoft extension __interface only permits public member functions
2024 // and prohibits constructors, destructors, operators, non-public member
2025 // functions, static methods and data members.
2026 unsigned InvalidDecl;
2027 bool ShowDeclName = true;
2028 if (!isFunc)
2029 InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
2030 else if (AS != AS_public)
2031 InvalidDecl = 2;
2032 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
2033 InvalidDecl = 3;
2034 else switch (Name.getNameKind()) {
2035 case DeclarationName::CXXConstructorName:
2036 InvalidDecl = 4;
2037 ShowDeclName = false;
2038 break;
2039
2040 case DeclarationName::CXXDestructorName:
2041 InvalidDecl = 5;
2042 ShowDeclName = false;
2043 break;
2044
2045 case DeclarationName::CXXOperatorName:
2046 case DeclarationName::CXXConversionFunctionName:
2047 InvalidDecl = 6;
2048 break;
2049
2050 default:
2051 InvalidDecl = 0;
2052 break;
2053 }
2054
2055 if (InvalidDecl) {
2056 if (ShowDeclName)
2057 Diag(Loc, diag::err_invalid_member_in_interface)
2058 << (InvalidDecl-1) << Name;
2059 else
2060 Diag(Loc, diag::err_invalid_member_in_interface)
2061 << (InvalidDecl-1) << "";
2062 return nullptr;
2063 }
2064 }
2065
2066 // C++ 9.2p6: A member shall not be declared to have automatic storage
2067 // duration (auto, register) or with the extern storage-class-specifier.
2068 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
2069 // data members and cannot be applied to names declared const or static,
2070 // and cannot be applied to reference members.
2071 switch (DS.getStorageClassSpec()) {
2072 case DeclSpec::SCS_unspecified:
2073 case DeclSpec::SCS_typedef:
2074 case DeclSpec::SCS_static:
2075 break;
2076 case DeclSpec::SCS_mutable:
2077 if (isFunc) {
2078 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
2079
2080 // FIXME: It would be nicer if the keyword was ignored only for this
2081 // declarator. Otherwise we could get follow-up errors.
2082 D.getMutableDeclSpec().ClearStorageClassSpecs();
2083 }
2084 break;
2085 default:
2086 Diag(DS.getStorageClassSpecLoc(),
2087 diag::err_storageclass_invalid_for_member);
2088 D.getMutableDeclSpec().ClearStorageClassSpecs();
2089 break;
2090 }
2091
2092 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
2093 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
2094 !isFunc);
2095
2096 if (DS.isConstexprSpecified() && isInstField) {
2097 SemaDiagnosticBuilder B =
2098 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
2099 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
2100 if (InitStyle == ICIS_NoInit) {
2101 B << 0 << 0;
2102 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
2103 B << FixItHint::CreateRemoval(ConstexprLoc);
2104 else {
2105 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
2106 D.getMutableDeclSpec().ClearConstexprSpec();
2107 const char *PrevSpec;
2108 unsigned DiagID;
2109 bool Failed = D.getMutableDeclSpec().SetTypeQual(
2110 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
2111 (void)Failed;
2112 assert(!Failed && "Making a constexpr member const shouldn't fail");
2113 }
2114 } else {
2115 B << 1;
2116 const char *PrevSpec;
2117 unsigned DiagID;
2118 if (D.getMutableDeclSpec().SetStorageClassSpec(
2119 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
2120 Context.getPrintingPolicy())) {
2121 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
2122 "This is the only DeclSpec that should fail to be applied");
2123 B << 1;
2124 } else {
2125 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
2126 isInstField = false;
2127 }
2128 }
2129 }
2130
2131 NamedDecl *Member;
2132 if (isInstField) {
2133 CXXScopeSpec &SS = D.getCXXScopeSpec();
2134
2135 // Data members must have identifiers for names.
2136 if (!Name.isIdentifier()) {
2137 Diag(Loc, diag::err_bad_variable_name)
2138 << Name;
2139 return nullptr;
2140 }
2141
2142 IdentifierInfo *II = Name.getAsIdentifierInfo();
2143
2144 // Member field could not be with "template" keyword.
2145 // So TemplateParameterLists should be empty in this case.
2146 if (TemplateParameterLists.size()) {
2147 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
2148 if (TemplateParams->size()) {
2149 // There is no such thing as a member field template.
2150 Diag(D.getIdentifierLoc(), diag::err_template_member)
2151 << II
2152 << SourceRange(TemplateParams->getTemplateLoc(),
2153 TemplateParams->getRAngleLoc());
2154 } else {
2155 // There is an extraneous 'template<>' for this member.
2156 Diag(TemplateParams->getTemplateLoc(),
2157 diag::err_template_member_noparams)
2158 << II
2159 << SourceRange(TemplateParams->getTemplateLoc(),
2160 TemplateParams->getRAngleLoc());
2161 }
2162 return nullptr;
2163 }
2164
2165 if (SS.isSet() && !SS.isInvalid()) {
2166 // The user provided a superfluous scope specifier inside a class
2167 // definition:
2168 //
2169 // class X {
2170 // int X::member;
2171 // };
2172 if (DeclContext *DC = computeDeclContext(SS, false))
2173 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
2174 else
2175 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2176 << Name << SS.getRange();
2177
2178 SS.clear();
2179 }
2180
2181 AttributeList *MSPropertyAttr =
2182 getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
2183 if (MSPropertyAttr) {
2184 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
2185 BitWidth, InitStyle, AS, MSPropertyAttr);
2186 if (!Member)
2187 return nullptr;
2188 isInstField = false;
2189 } else {
2190 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
2191 BitWidth, InitStyle, AS);
2192 assert(Member && "HandleField never returns null");
2193 }
2194 } else {
2195 Member = HandleDeclarator(S, D, TemplateParameterLists);
2196 if (!Member)
2197 return nullptr;
2198
2199 // Non-instance-fields can't have a bitfield.
2200 if (BitWidth) {
2201 if (Member->isInvalidDecl()) {
2202 // don't emit another diagnostic.
2203 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
2204 // C++ 9.6p3: A bit-field shall not be a static member.
2205 // "static member 'A' cannot be a bit-field"
2206 Diag(Loc, diag::err_static_not_bitfield)
2207 << Name << BitWidth->getSourceRange();
2208 } else if (isa<TypedefDecl>(Member)) {
2209 // "typedef member 'x' cannot be a bit-field"
2210 Diag(Loc, diag::err_typedef_not_bitfield)
2211 << Name << BitWidth->getSourceRange();
2212 } else {
2213 // A function typedef ("typedef int f(); f a;").
2214 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
2215 Diag(Loc, diag::err_not_integral_type_bitfield)
2216 << Name << cast<ValueDecl>(Member)->getType()
2217 << BitWidth->getSourceRange();
2218 }
2219
2220 BitWidth = nullptr;
2221 Member->setInvalidDecl();
2222 }
2223
2224 Member->setAccess(AS);
2225
2226 // If we have declared a member function template or static data member
2227 // template, set the access of the templated declaration as well.
2228 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
2229 FunTmpl->getTemplatedDecl()->setAccess(AS);
2230 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
2231 VarTmpl->getTemplatedDecl()->setAccess(AS);
2232 }
2233
2234 if (VS.isOverrideSpecified())
2235 Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context, 0));
2236 if (VS.isFinalSpecified())
2237 Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context,
2238 VS.isFinalSpelledSealed()));
2239
2240 if (VS.getLastLocation().isValid()) {
2241 // Update the end location of a method that has a virt-specifiers.
2242 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
2243 MD->setRangeEnd(VS.getLastLocation());
2244 }
2245
2246 CheckOverrideControl(Member);
2247
2248 assert((Name || isInstField) && "No identifier for non-field ?");
2249
2250 if (isInstField) {
2251 FieldDecl *FD = cast<FieldDecl>(Member);
2252 FieldCollector->Add(FD);
2253
2254 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
2255 // Remember all explicit private FieldDecls that have a name, no side
2256 // effects and are not part of a dependent type declaration.
2257 if (!FD->isImplicit() && FD->getDeclName() &&
2258 FD->getAccess() == AS_private &&
2259 !FD->hasAttr<UnusedAttr>() &&
2260 !FD->getParent()->isDependentContext() &&
2261 !InitializationHasSideEffects(*FD))
2262 UnusedPrivateFields.insert(FD);
2263 }
2264 }
2265
2266 return Member;
2267 }
2268
2269 namespace {
2270 class UninitializedFieldVisitor
2271 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2272 Sema &S;
2273 // List of Decls to generate a warning on. Also remove Decls that become
2274 // initialized.
2275 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
2276 // List of base classes of the record. Classes are removed after their
2277 // initializers.
2278 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
2279 // Vector of decls to be removed from the Decl set prior to visiting the
2280 // nodes. These Decls may have been initialized in the prior initializer.
2281 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
2282 // If non-null, add a note to the warning pointing back to the constructor.
2283 const CXXConstructorDecl *Constructor;
2284 // Variables to hold state when processing an initializer list. When
2285 // InitList is true, special case initialization of FieldDecls matching
2286 // InitListFieldDecl.
2287 bool InitList;
2288 FieldDecl *InitListFieldDecl;
2289 llvm::SmallVector<unsigned, 4> InitFieldIndex;
2290
2291 public:
2292 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
UninitializedFieldVisitor(Sema & S,llvm::SmallPtrSetImpl<ValueDecl * > & Decls,llvm::SmallPtrSetImpl<QualType> & BaseClasses)2293 UninitializedFieldVisitor(Sema &S,
2294 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
2295 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
2296 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
2297 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
2298
2299 // Returns true if the use of ME is not an uninitialized use.
IsInitListMemberExprInitialized(MemberExpr * ME,bool CheckReferenceOnly)2300 bool IsInitListMemberExprInitialized(MemberExpr *ME,
2301 bool CheckReferenceOnly) {
2302 llvm::SmallVector<FieldDecl*, 4> Fields;
2303 bool ReferenceField = false;
2304 while (ME) {
2305 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
2306 if (!FD)
2307 return false;
2308 Fields.push_back(FD);
2309 if (FD->getType()->isReferenceType())
2310 ReferenceField = true;
2311 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
2312 }
2313
2314 // Binding a reference to an unintialized field is not an
2315 // uninitialized use.
2316 if (CheckReferenceOnly && !ReferenceField)
2317 return true;
2318
2319 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
2320 // Discard the first field since it is the field decl that is being
2321 // initialized.
2322 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
2323 UsedFieldIndex.push_back((*I)->getFieldIndex());
2324 }
2325
2326 for (auto UsedIter = UsedFieldIndex.begin(),
2327 UsedEnd = UsedFieldIndex.end(),
2328 OrigIter = InitFieldIndex.begin(),
2329 OrigEnd = InitFieldIndex.end();
2330 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
2331 if (*UsedIter < *OrigIter)
2332 return true;
2333 if (*UsedIter > *OrigIter)
2334 break;
2335 }
2336
2337 return false;
2338 }
2339
HandleMemberExpr(MemberExpr * ME,bool CheckReferenceOnly,bool AddressOf)2340 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
2341 bool AddressOf) {
2342 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2343 return;
2344
2345 // FieldME is the inner-most MemberExpr that is not an anonymous struct
2346 // or union.
2347 MemberExpr *FieldME = ME;
2348
2349 bool AllPODFields = FieldME->getType().isPODType(S.Context);
2350
2351 Expr *Base = ME;
2352 while (MemberExpr *SubME =
2353 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
2354
2355 if (isa<VarDecl>(SubME->getMemberDecl()))
2356 return;
2357
2358 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
2359 if (!FD->isAnonymousStructOrUnion())
2360 FieldME = SubME;
2361
2362 if (!FieldME->getType().isPODType(S.Context))
2363 AllPODFields = false;
2364
2365 Base = SubME->getBase();
2366 }
2367
2368 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts()))
2369 return;
2370
2371 if (AddressOf && AllPODFields)
2372 return;
2373
2374 ValueDecl* FoundVD = FieldME->getMemberDecl();
2375
2376 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
2377 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
2378 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
2379 }
2380
2381 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
2382 QualType T = BaseCast->getType();
2383 if (T->isPointerType() &&
2384 BaseClasses.count(T->getPointeeType())) {
2385 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
2386 << T->getPointeeType() << FoundVD;
2387 }
2388 }
2389 }
2390
2391 if (!Decls.count(FoundVD))
2392 return;
2393
2394 const bool IsReference = FoundVD->getType()->isReferenceType();
2395
2396 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
2397 // Special checking for initializer lists.
2398 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
2399 return;
2400 }
2401 } else {
2402 // Prevent double warnings on use of unbounded references.
2403 if (CheckReferenceOnly && !IsReference)
2404 return;
2405 }
2406
2407 unsigned diag = IsReference
2408 ? diag::warn_reference_field_is_uninit
2409 : diag::warn_field_is_uninit;
2410 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
2411 if (Constructor)
2412 S.Diag(Constructor->getLocation(),
2413 diag::note_uninit_in_this_constructor)
2414 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
2415
2416 }
2417
HandleValue(Expr * E,bool AddressOf)2418 void HandleValue(Expr *E, bool AddressOf) {
2419 E = E->IgnoreParens();
2420
2421 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2422 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
2423 AddressOf /*AddressOf*/);
2424 return;
2425 }
2426
2427 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2428 Visit(CO->getCond());
2429 HandleValue(CO->getTrueExpr(), AddressOf);
2430 HandleValue(CO->getFalseExpr(), AddressOf);
2431 return;
2432 }
2433
2434 if (BinaryConditionalOperator *BCO =
2435 dyn_cast<BinaryConditionalOperator>(E)) {
2436 Visit(BCO->getCond());
2437 HandleValue(BCO->getFalseExpr(), AddressOf);
2438 return;
2439 }
2440
2441 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
2442 HandleValue(OVE->getSourceExpr(), AddressOf);
2443 return;
2444 }
2445
2446 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2447 switch (BO->getOpcode()) {
2448 default:
2449 break;
2450 case(BO_PtrMemD):
2451 case(BO_PtrMemI):
2452 HandleValue(BO->getLHS(), AddressOf);
2453 Visit(BO->getRHS());
2454 return;
2455 case(BO_Comma):
2456 Visit(BO->getLHS());
2457 HandleValue(BO->getRHS(), AddressOf);
2458 return;
2459 }
2460 }
2461
2462 Visit(E);
2463 }
2464
CheckInitListExpr(InitListExpr * ILE)2465 void CheckInitListExpr(InitListExpr *ILE) {
2466 InitFieldIndex.push_back(0);
2467 for (auto Child : ILE->children()) {
2468 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
2469 CheckInitListExpr(SubList);
2470 } else {
2471 Visit(Child);
2472 }
2473 ++InitFieldIndex.back();
2474 }
2475 InitFieldIndex.pop_back();
2476 }
2477
CheckInitializer(Expr * E,const CXXConstructorDecl * FieldConstructor,FieldDecl * Field,const Type * BaseClass)2478 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
2479 FieldDecl *Field, const Type *BaseClass) {
2480 // Remove Decls that may have been initialized in the previous
2481 // initializer.
2482 for (ValueDecl* VD : DeclsToRemove)
2483 Decls.erase(VD);
2484 DeclsToRemove.clear();
2485
2486 Constructor = FieldConstructor;
2487 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
2488
2489 if (ILE && Field) {
2490 InitList = true;
2491 InitListFieldDecl = Field;
2492 InitFieldIndex.clear();
2493 CheckInitListExpr(ILE);
2494 } else {
2495 InitList = false;
2496 Visit(E);
2497 }
2498
2499 if (Field)
2500 Decls.erase(Field);
2501 if (BaseClass)
2502 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
2503 }
2504
VisitMemberExpr(MemberExpr * ME)2505 void VisitMemberExpr(MemberExpr *ME) {
2506 // All uses of unbounded reference fields will warn.
2507 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
2508 }
2509
VisitImplicitCastExpr(ImplicitCastExpr * E)2510 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2511 if (E->getCastKind() == CK_LValueToRValue) {
2512 HandleValue(E->getSubExpr(), false /*AddressOf*/);
2513 return;
2514 }
2515
2516 Inherited::VisitImplicitCastExpr(E);
2517 }
2518
VisitCXXConstructExpr(CXXConstructExpr * E)2519 void VisitCXXConstructExpr(CXXConstructExpr *E) {
2520 if (E->getConstructor()->isCopyConstructor()) {
2521 Expr *ArgExpr = E->getArg(0);
2522 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
2523 if (ILE->getNumInits() == 1)
2524 ArgExpr = ILE->getInit(0);
2525 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
2526 if (ICE->getCastKind() == CK_NoOp)
2527 ArgExpr = ICE->getSubExpr();
2528 HandleValue(ArgExpr, false /*AddressOf*/);
2529 return;
2530 }
2531 Inherited::VisitCXXConstructExpr(E);
2532 }
2533
VisitCXXMemberCallExpr(CXXMemberCallExpr * E)2534 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2535 Expr *Callee = E->getCallee();
2536 if (isa<MemberExpr>(Callee)) {
2537 HandleValue(Callee, false /*AddressOf*/);
2538 for (auto Arg : E->arguments())
2539 Visit(Arg);
2540 return;
2541 }
2542
2543 Inherited::VisitCXXMemberCallExpr(E);
2544 }
2545
VisitCallExpr(CallExpr * E)2546 void VisitCallExpr(CallExpr *E) {
2547 // Treat std::move as a use.
2548 if (E->getNumArgs() == 1) {
2549 if (FunctionDecl *FD = E->getDirectCallee()) {
2550 if (FD->isInStdNamespace() && FD->getIdentifier() &&
2551 FD->getIdentifier()->isStr("move")) {
2552 HandleValue(E->getArg(0), false /*AddressOf*/);
2553 return;
2554 }
2555 }
2556 }
2557
2558 Inherited::VisitCallExpr(E);
2559 }
2560
VisitCXXOperatorCallExpr(CXXOperatorCallExpr * E)2561 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
2562 Expr *Callee = E->getCallee();
2563
2564 if (isa<UnresolvedLookupExpr>(Callee))
2565 return Inherited::VisitCXXOperatorCallExpr(E);
2566
2567 Visit(Callee);
2568 for (auto Arg : E->arguments())
2569 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
2570 }
2571
VisitBinaryOperator(BinaryOperator * E)2572 void VisitBinaryOperator(BinaryOperator *E) {
2573 // If a field assignment is detected, remove the field from the
2574 // uninitiailized field set.
2575 if (E->getOpcode() == BO_Assign)
2576 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
2577 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2578 if (!FD->getType()->isReferenceType())
2579 DeclsToRemove.push_back(FD);
2580
2581 if (E->isCompoundAssignmentOp()) {
2582 HandleValue(E->getLHS(), false /*AddressOf*/);
2583 Visit(E->getRHS());
2584 return;
2585 }
2586
2587 Inherited::VisitBinaryOperator(E);
2588 }
2589
VisitUnaryOperator(UnaryOperator * E)2590 void VisitUnaryOperator(UnaryOperator *E) {
2591 if (E->isIncrementDecrementOp()) {
2592 HandleValue(E->getSubExpr(), false /*AddressOf*/);
2593 return;
2594 }
2595 if (E->getOpcode() == UO_AddrOf) {
2596 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
2597 HandleValue(ME->getBase(), true /*AddressOf*/);
2598 return;
2599 }
2600 }
2601
2602 Inherited::VisitUnaryOperator(E);
2603 }
2604 };
2605
2606 // Diagnose value-uses of fields to initialize themselves, e.g.
2607 // foo(foo)
2608 // where foo is not also a parameter to the constructor.
2609 // Also diagnose across field uninitialized use such as
2610 // x(y), y(x)
2611 // TODO: implement -Wuninitialized and fold this into that framework.
DiagnoseUninitializedFields(Sema & SemaRef,const CXXConstructorDecl * Constructor)2612 static void DiagnoseUninitializedFields(
2613 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
2614
2615 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
2616 Constructor->getLocation())) {
2617 return;
2618 }
2619
2620 if (Constructor->isInvalidDecl())
2621 return;
2622
2623 const CXXRecordDecl *RD = Constructor->getParent();
2624
2625 if (RD->getDescribedClassTemplate())
2626 return;
2627
2628 // Holds fields that are uninitialized.
2629 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
2630
2631 // At the beginning, all fields are uninitialized.
2632 for (auto *I : RD->decls()) {
2633 if (auto *FD = dyn_cast<FieldDecl>(I)) {
2634 UninitializedFields.insert(FD);
2635 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
2636 UninitializedFields.insert(IFD->getAnonField());
2637 }
2638 }
2639
2640 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
2641 for (auto I : RD->bases())
2642 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
2643
2644 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
2645 return;
2646
2647 UninitializedFieldVisitor UninitializedChecker(SemaRef,
2648 UninitializedFields,
2649 UninitializedBaseClasses);
2650
2651 for (const auto *FieldInit : Constructor->inits()) {
2652 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
2653 break;
2654
2655 Expr *InitExpr = FieldInit->getInit();
2656 if (!InitExpr)
2657 continue;
2658
2659 if (CXXDefaultInitExpr *Default =
2660 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
2661 InitExpr = Default->getExpr();
2662 if (!InitExpr)
2663 continue;
2664 // In class initializers will point to the constructor.
2665 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
2666 FieldInit->getAnyMember(),
2667 FieldInit->getBaseClass());
2668 } else {
2669 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
2670 FieldInit->getAnyMember(),
2671 FieldInit->getBaseClass());
2672 }
2673 }
2674 }
2675 } // namespace
2676
2677 /// \brief Enter a new C++ default initializer scope. After calling this, the
2678 /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
2679 /// parsing or instantiating the initializer failed.
ActOnStartCXXInClassMemberInitializer()2680 void Sema::ActOnStartCXXInClassMemberInitializer() {
2681 // Create a synthetic function scope to represent the call to the constructor
2682 // that notionally surrounds a use of this initializer.
2683 PushFunctionScope();
2684 }
2685
2686 /// \brief This is invoked after parsing an in-class initializer for a
2687 /// non-static C++ class member, and after instantiating an in-class initializer
2688 /// in a class template. Such actions are deferred until the class is complete.
ActOnFinishCXXInClassMemberInitializer(Decl * D,SourceLocation InitLoc,Expr * InitExpr)2689 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
2690 SourceLocation InitLoc,
2691 Expr *InitExpr) {
2692 // Pop the notional constructor scope we created earlier.
2693 PopFunctionScopeInfo(nullptr, D);
2694
2695 FieldDecl *FD = dyn_cast<FieldDecl>(D);
2696 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&
2697 "must set init style when field is created");
2698
2699 if (!InitExpr) {
2700 D->setInvalidDecl();
2701 if (FD)
2702 FD->removeInClassInitializer();
2703 return;
2704 }
2705
2706 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
2707 FD->setInvalidDecl();
2708 FD->removeInClassInitializer();
2709 return;
2710 }
2711
2712 ExprResult Init = InitExpr;
2713 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2714 InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2715 InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2716 ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2717 : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2718 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2719 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
2720 if (Init.isInvalid()) {
2721 FD->setInvalidDecl();
2722 return;
2723 }
2724 }
2725
2726 // C++11 [class.base.init]p7:
2727 // The initialization of each base and member constitutes a
2728 // full-expression.
2729 Init = ActOnFinishFullExpr(Init.get(), InitLoc);
2730 if (Init.isInvalid()) {
2731 FD->setInvalidDecl();
2732 return;
2733 }
2734
2735 InitExpr = Init.get();
2736
2737 FD->setInClassInitializer(InitExpr);
2738 }
2739
2740 /// \brief Find the direct and/or virtual base specifiers that
2741 /// correspond to the given base type, for use in base initialization
2742 /// within a constructor.
FindBaseInitializer(Sema & SemaRef,CXXRecordDecl * ClassDecl,QualType BaseType,const CXXBaseSpecifier * & DirectBaseSpec,const CXXBaseSpecifier * & VirtualBaseSpec)2743 static bool FindBaseInitializer(Sema &SemaRef,
2744 CXXRecordDecl *ClassDecl,
2745 QualType BaseType,
2746 const CXXBaseSpecifier *&DirectBaseSpec,
2747 const CXXBaseSpecifier *&VirtualBaseSpec) {
2748 // First, check for a direct base class.
2749 DirectBaseSpec = nullptr;
2750 for (const auto &Base : ClassDecl->bases()) {
2751 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
2752 // We found a direct base of this type. That's what we're
2753 // initializing.
2754 DirectBaseSpec = &Base;
2755 break;
2756 }
2757 }
2758
2759 // Check for a virtual base class.
2760 // FIXME: We might be able to short-circuit this if we know in advance that
2761 // there are no virtual bases.
2762 VirtualBaseSpec = nullptr;
2763 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2764 // We haven't found a base yet; search the class hierarchy for a
2765 // virtual base class.
2766 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2767 /*DetectVirtual=*/false);
2768 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
2769 SemaRef.Context.getTypeDeclType(ClassDecl),
2770 BaseType, Paths)) {
2771 for (CXXBasePaths::paths_iterator Path = Paths.begin();
2772 Path != Paths.end(); ++Path) {
2773 if (Path->back().Base->isVirtual()) {
2774 VirtualBaseSpec = Path->back().Base;
2775 break;
2776 }
2777 }
2778 }
2779 }
2780
2781 return DirectBaseSpec || VirtualBaseSpec;
2782 }
2783
2784 /// \brief Handle a C++ member initializer using braced-init-list syntax.
2785 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * InitList,SourceLocation EllipsisLoc)2786 Sema::ActOnMemInitializer(Decl *ConstructorD,
2787 Scope *S,
2788 CXXScopeSpec &SS,
2789 IdentifierInfo *MemberOrBase,
2790 ParsedType TemplateTypeTy,
2791 const DeclSpec &DS,
2792 SourceLocation IdLoc,
2793 Expr *InitList,
2794 SourceLocation EllipsisLoc) {
2795 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2796 DS, IdLoc, InitList,
2797 EllipsisLoc);
2798 }
2799
2800 /// \brief Handle a C++ member initializer using parentheses syntax.
2801 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,SourceLocation LParenLoc,ArrayRef<Expr * > Args,SourceLocation RParenLoc,SourceLocation EllipsisLoc)2802 Sema::ActOnMemInitializer(Decl *ConstructorD,
2803 Scope *S,
2804 CXXScopeSpec &SS,
2805 IdentifierInfo *MemberOrBase,
2806 ParsedType TemplateTypeTy,
2807 const DeclSpec &DS,
2808 SourceLocation IdLoc,
2809 SourceLocation LParenLoc,
2810 ArrayRef<Expr *> Args,
2811 SourceLocation RParenLoc,
2812 SourceLocation EllipsisLoc) {
2813 Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2814 Args, RParenLoc);
2815 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2816 DS, IdLoc, List, EllipsisLoc);
2817 }
2818
2819 namespace {
2820
2821 // Callback to only accept typo corrections that can be a valid C++ member
2822 // intializer: either a non-static field member or a base class.
2823 class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2824 public:
MemInitializerValidatorCCC(CXXRecordDecl * ClassDecl)2825 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2826 : ClassDecl(ClassDecl) {}
2827
ValidateCandidate(const TypoCorrection & candidate)2828 bool ValidateCandidate(const TypoCorrection &candidate) override {
2829 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2830 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2831 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2832 return isa<TypeDecl>(ND);
2833 }
2834 return false;
2835 }
2836
2837 private:
2838 CXXRecordDecl *ClassDecl;
2839 };
2840
2841 }
2842
2843 /// \brief Handle a C++ member initializer.
2844 MemInitResult
BuildMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * Init,SourceLocation EllipsisLoc)2845 Sema::BuildMemInitializer(Decl *ConstructorD,
2846 Scope *S,
2847 CXXScopeSpec &SS,
2848 IdentifierInfo *MemberOrBase,
2849 ParsedType TemplateTypeTy,
2850 const DeclSpec &DS,
2851 SourceLocation IdLoc,
2852 Expr *Init,
2853 SourceLocation EllipsisLoc) {
2854 ExprResult Res = CorrectDelayedTyposInExpr(Init);
2855 if (!Res.isUsable())
2856 return true;
2857 Init = Res.get();
2858
2859 if (!ConstructorD)
2860 return true;
2861
2862 AdjustDeclIfTemplate(ConstructorD);
2863
2864 CXXConstructorDecl *Constructor
2865 = dyn_cast<CXXConstructorDecl>(ConstructorD);
2866 if (!Constructor) {
2867 // The user wrote a constructor initializer on a function that is
2868 // not a C++ constructor. Ignore the error for now, because we may
2869 // have more member initializers coming; we'll diagnose it just
2870 // once in ActOnMemInitializers.
2871 return true;
2872 }
2873
2874 CXXRecordDecl *ClassDecl = Constructor->getParent();
2875
2876 // C++ [class.base.init]p2:
2877 // Names in a mem-initializer-id are looked up in the scope of the
2878 // constructor's class and, if not found in that scope, are looked
2879 // up in the scope containing the constructor's definition.
2880 // [Note: if the constructor's class contains a member with the
2881 // same name as a direct or virtual base class of the class, a
2882 // mem-initializer-id naming the member or base class and composed
2883 // of a single identifier refers to the class member. A
2884 // mem-initializer-id for the hidden base class may be specified
2885 // using a qualified name. ]
2886 if (!SS.getScopeRep() && !TemplateTypeTy) {
2887 // Look for a member, first.
2888 DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
2889 if (!Result.empty()) {
2890 ValueDecl *Member;
2891 if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2892 (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2893 if (EllipsisLoc.isValid())
2894 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2895 << MemberOrBase
2896 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2897
2898 return BuildMemberInitializer(Member, Init, IdLoc);
2899 }
2900 }
2901 }
2902 // It didn't name a member, so see if it names a class.
2903 QualType BaseType;
2904 TypeSourceInfo *TInfo = nullptr;
2905
2906 if (TemplateTypeTy) {
2907 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2908 } else if (DS.getTypeSpecType() == TST_decltype) {
2909 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2910 } else {
2911 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2912 LookupParsedName(R, S, &SS);
2913
2914 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2915 if (!TyD) {
2916 if (R.isAmbiguous()) return true;
2917
2918 // We don't want access-control diagnostics here.
2919 R.suppressDiagnostics();
2920
2921 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2922 bool NotUnknownSpecialization = false;
2923 DeclContext *DC = computeDeclContext(SS, false);
2924 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2925 NotUnknownSpecialization = !Record->hasAnyDependentBases();
2926
2927 if (!NotUnknownSpecialization) {
2928 // When the scope specifier can refer to a member of an unknown
2929 // specialization, we take it as a type name.
2930 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2931 SS.getWithLocInContext(Context),
2932 *MemberOrBase, IdLoc);
2933 if (BaseType.isNull())
2934 return true;
2935
2936 R.clear();
2937 R.setLookupName(MemberOrBase);
2938 }
2939 }
2940
2941 // If no results were found, try to correct typos.
2942 TypoCorrection Corr;
2943 if (R.empty() && BaseType.isNull() &&
2944 (Corr = CorrectTypo(
2945 R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2946 llvm::make_unique<MemInitializerValidatorCCC>(ClassDecl),
2947 CTK_ErrorRecovery, ClassDecl))) {
2948 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2949 // We have found a non-static data member with a similar
2950 // name to what was typed; complain and initialize that
2951 // member.
2952 diagnoseTypo(Corr,
2953 PDiag(diag::err_mem_init_not_member_or_class_suggest)
2954 << MemberOrBase << true);
2955 return BuildMemberInitializer(Member, Init, IdLoc);
2956 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2957 const CXXBaseSpecifier *DirectBaseSpec;
2958 const CXXBaseSpecifier *VirtualBaseSpec;
2959 if (FindBaseInitializer(*this, ClassDecl,
2960 Context.getTypeDeclType(Type),
2961 DirectBaseSpec, VirtualBaseSpec)) {
2962 // We have found a direct or virtual base class with a
2963 // similar name to what was typed; complain and initialize
2964 // that base class.
2965 diagnoseTypo(Corr,
2966 PDiag(diag::err_mem_init_not_member_or_class_suggest)
2967 << MemberOrBase << false,
2968 PDiag() /*Suppress note, we provide our own.*/);
2969
2970 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
2971 : VirtualBaseSpec;
2972 Diag(BaseSpec->getLocStart(),
2973 diag::note_base_class_specified_here)
2974 << BaseSpec->getType()
2975 << BaseSpec->getSourceRange();
2976
2977 TyD = Type;
2978 }
2979 }
2980 }
2981
2982 if (!TyD && BaseType.isNull()) {
2983 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2984 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2985 return true;
2986 }
2987 }
2988
2989 if (BaseType.isNull()) {
2990 BaseType = Context.getTypeDeclType(TyD);
2991 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
2992 if (SS.isSet()) {
2993 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
2994 BaseType);
2995 TInfo = Context.CreateTypeSourceInfo(BaseType);
2996 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
2997 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
2998 TL.setElaboratedKeywordLoc(SourceLocation());
2999 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3000 }
3001 }
3002 }
3003
3004 if (!TInfo)
3005 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
3006
3007 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
3008 }
3009
3010 /// Checks a member initializer expression for cases where reference (or
3011 /// pointer) members are bound to by-value parameters (or their addresses).
CheckForDanglingReferenceOrPointer(Sema & S,ValueDecl * Member,Expr * Init,SourceLocation IdLoc)3012 static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
3013 Expr *Init,
3014 SourceLocation IdLoc) {
3015 QualType MemberTy = Member->getType();
3016
3017 // We only handle pointers and references currently.
3018 // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
3019 if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
3020 return;
3021
3022 const bool IsPointer = MemberTy->isPointerType();
3023 if (IsPointer) {
3024 if (const UnaryOperator *Op
3025 = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
3026 // The only case we're worried about with pointers requires taking the
3027 // address.
3028 if (Op->getOpcode() != UO_AddrOf)
3029 return;
3030
3031 Init = Op->getSubExpr();
3032 } else {
3033 // We only handle address-of expression initializers for pointers.
3034 return;
3035 }
3036 }
3037
3038 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
3039 // We only warn when referring to a non-reference parameter declaration.
3040 const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
3041 if (!Parameter || Parameter->getType()->isReferenceType())
3042 return;
3043
3044 S.Diag(Init->getExprLoc(),
3045 IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
3046 : diag::warn_bind_ref_member_to_parameter)
3047 << Member << Parameter << Init->getSourceRange();
3048 } else {
3049 // Other initializers are fine.
3050 return;
3051 }
3052
3053 S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
3054 << (unsigned)IsPointer;
3055 }
3056
3057 MemInitResult
BuildMemberInitializer(ValueDecl * Member,Expr * Init,SourceLocation IdLoc)3058 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
3059 SourceLocation IdLoc) {
3060 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
3061 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
3062 assert((DirectMember || IndirectMember) &&
3063 "Member must be a FieldDecl or IndirectFieldDecl");
3064
3065 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
3066 return true;
3067
3068 if (Member->isInvalidDecl())
3069 return true;
3070
3071 MultiExprArg Args;
3072 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3073 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3074 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
3075 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
3076 } else {
3077 // Template instantiation doesn't reconstruct ParenListExprs for us.
3078 Args = Init;
3079 }
3080
3081 SourceRange InitRange = Init->getSourceRange();
3082
3083 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
3084 // Can't check initialization for a member of dependent type or when
3085 // any of the arguments are type-dependent expressions.
3086 DiscardCleanupsInEvaluationContext();
3087 } else {
3088 bool InitList = false;
3089 if (isa<InitListExpr>(Init)) {
3090 InitList = true;
3091 Args = Init;
3092 }
3093
3094 // Initialize the member.
3095 InitializedEntity MemberEntity =
3096 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
3097 : InitializedEntity::InitializeMember(IndirectMember,
3098 nullptr);
3099 InitializationKind Kind =
3100 InitList ? InitializationKind::CreateDirectList(IdLoc)
3101 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
3102 InitRange.getEnd());
3103
3104 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
3105 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
3106 nullptr);
3107 if (MemberInit.isInvalid())
3108 return true;
3109
3110 CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
3111
3112 // C++11 [class.base.init]p7:
3113 // The initialization of each base and member constitutes a
3114 // full-expression.
3115 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
3116 if (MemberInit.isInvalid())
3117 return true;
3118
3119 Init = MemberInit.get();
3120 }
3121
3122 if (DirectMember) {
3123 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
3124 InitRange.getBegin(), Init,
3125 InitRange.getEnd());
3126 } else {
3127 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
3128 InitRange.getBegin(), Init,
3129 InitRange.getEnd());
3130 }
3131 }
3132
3133 MemInitResult
BuildDelegatingInitializer(TypeSourceInfo * TInfo,Expr * Init,CXXRecordDecl * ClassDecl)3134 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
3135 CXXRecordDecl *ClassDecl) {
3136 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
3137 if (!LangOpts.CPlusPlus11)
3138 return Diag(NameLoc, diag::err_delegating_ctor)
3139 << TInfo->getTypeLoc().getLocalSourceRange();
3140 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
3141
3142 bool InitList = true;
3143 MultiExprArg Args = Init;
3144 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3145 InitList = false;
3146 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3147 }
3148
3149 SourceRange InitRange = Init->getSourceRange();
3150 // Initialize the object.
3151 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
3152 QualType(ClassDecl->getTypeForDecl(), 0));
3153 InitializationKind Kind =
3154 InitList ? InitializationKind::CreateDirectList(NameLoc)
3155 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
3156 InitRange.getEnd());
3157 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
3158 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
3159 Args, nullptr);
3160 if (DelegationInit.isInvalid())
3161 return true;
3162
3163 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
3164 "Delegating constructor with no target?");
3165
3166 // C++11 [class.base.init]p7:
3167 // The initialization of each base and member constitutes a
3168 // full-expression.
3169 DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
3170 InitRange.getBegin());
3171 if (DelegationInit.isInvalid())
3172 return true;
3173
3174 // If we are in a dependent context, template instantiation will
3175 // perform this type-checking again. Just save the arguments that we
3176 // received in a ParenListExpr.
3177 // FIXME: This isn't quite ideal, since our ASTs don't capture all
3178 // of the information that we have about the base
3179 // initializer. However, deconstructing the ASTs is a dicey process,
3180 // and this approach is far more likely to get the corner cases right.
3181 if (CurContext->isDependentContext())
3182 DelegationInit = Init;
3183
3184 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
3185 DelegationInit.getAs<Expr>(),
3186 InitRange.getEnd());
3187 }
3188
3189 MemInitResult
BuildBaseInitializer(QualType BaseType,TypeSourceInfo * BaseTInfo,Expr * Init,CXXRecordDecl * ClassDecl,SourceLocation EllipsisLoc)3190 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
3191 Expr *Init, CXXRecordDecl *ClassDecl,
3192 SourceLocation EllipsisLoc) {
3193 SourceLocation BaseLoc
3194 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
3195
3196 if (!BaseType->isDependentType() && !BaseType->isRecordType())
3197 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
3198 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
3199
3200 // C++ [class.base.init]p2:
3201 // [...] Unless the mem-initializer-id names a nonstatic data
3202 // member of the constructor's class or a direct or virtual base
3203 // of that class, the mem-initializer is ill-formed. A
3204 // mem-initializer-list can initialize a base class using any
3205 // name that denotes that base class type.
3206 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
3207
3208 SourceRange InitRange = Init->getSourceRange();
3209 if (EllipsisLoc.isValid()) {
3210 // This is a pack expansion.
3211 if (!BaseType->containsUnexpandedParameterPack()) {
3212 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
3213 << SourceRange(BaseLoc, InitRange.getEnd());
3214
3215 EllipsisLoc = SourceLocation();
3216 }
3217 } else {
3218 // Check for any unexpanded parameter packs.
3219 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
3220 return true;
3221
3222 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
3223 return true;
3224 }
3225
3226 // Check for direct and virtual base classes.
3227 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
3228 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
3229 if (!Dependent) {
3230 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
3231 BaseType))
3232 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
3233
3234 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
3235 VirtualBaseSpec);
3236
3237 // C++ [base.class.init]p2:
3238 // Unless the mem-initializer-id names a nonstatic data member of the
3239 // constructor's class or a direct or virtual base of that class, the
3240 // mem-initializer is ill-formed.
3241 if (!DirectBaseSpec && !VirtualBaseSpec) {
3242 // If the class has any dependent bases, then it's possible that
3243 // one of those types will resolve to the same type as
3244 // BaseType. Therefore, just treat this as a dependent base
3245 // class initialization. FIXME: Should we try to check the
3246 // initialization anyway? It seems odd.
3247 if (ClassDecl->hasAnyDependentBases())
3248 Dependent = true;
3249 else
3250 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
3251 << BaseType << Context.getTypeDeclType(ClassDecl)
3252 << BaseTInfo->getTypeLoc().getLocalSourceRange();
3253 }
3254 }
3255
3256 if (Dependent) {
3257 DiscardCleanupsInEvaluationContext();
3258
3259 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
3260 /*IsVirtual=*/false,
3261 InitRange.getBegin(), Init,
3262 InitRange.getEnd(), EllipsisLoc);
3263 }
3264
3265 // C++ [base.class.init]p2:
3266 // If a mem-initializer-id is ambiguous because it designates both
3267 // a direct non-virtual base class and an inherited virtual base
3268 // class, the mem-initializer is ill-formed.
3269 if (DirectBaseSpec && VirtualBaseSpec)
3270 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
3271 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
3272
3273 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
3274 if (!BaseSpec)
3275 BaseSpec = VirtualBaseSpec;
3276
3277 // Initialize the base.
3278 bool InitList = true;
3279 MultiExprArg Args = Init;
3280 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3281 InitList = false;
3282 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3283 }
3284
3285 InitializedEntity BaseEntity =
3286 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
3287 InitializationKind Kind =
3288 InitList ? InitializationKind::CreateDirectList(BaseLoc)
3289 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
3290 InitRange.getEnd());
3291 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
3292 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
3293 if (BaseInit.isInvalid())
3294 return true;
3295
3296 // C++11 [class.base.init]p7:
3297 // The initialization of each base and member constitutes a
3298 // full-expression.
3299 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
3300 if (BaseInit.isInvalid())
3301 return true;
3302
3303 // If we are in a dependent context, template instantiation will
3304 // perform this type-checking again. Just save the arguments that we
3305 // received in a ParenListExpr.
3306 // FIXME: This isn't quite ideal, since our ASTs don't capture all
3307 // of the information that we have about the base
3308 // initializer. However, deconstructing the ASTs is a dicey process,
3309 // and this approach is far more likely to get the corner cases right.
3310 if (CurContext->isDependentContext())
3311 BaseInit = Init;
3312
3313 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
3314 BaseSpec->isVirtual(),
3315 InitRange.getBegin(),
3316 BaseInit.getAs<Expr>(),
3317 InitRange.getEnd(), EllipsisLoc);
3318 }
3319
3320 // Create a static_cast\<T&&>(expr).
CastForMoving(Sema & SemaRef,Expr * E,QualType T=QualType ())3321 static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
3322 if (T.isNull()) T = E->getType();
3323 QualType TargetType = SemaRef.BuildReferenceType(
3324 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
3325 SourceLocation ExprLoc = E->getLocStart();
3326 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
3327 TargetType, ExprLoc);
3328
3329 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
3330 SourceRange(ExprLoc, ExprLoc),
3331 E->getSourceRange()).get();
3332 }
3333
3334 /// ImplicitInitializerKind - How an implicit base or member initializer should
3335 /// initialize its base or member.
3336 enum ImplicitInitializerKind {
3337 IIK_Default,
3338 IIK_Copy,
3339 IIK_Move,
3340 IIK_Inherit
3341 };
3342
3343 static bool
BuildImplicitBaseInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,CXXBaseSpecifier * BaseSpec,bool IsInheritedVirtualBase,CXXCtorInitializer * & CXXBaseInit)3344 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
3345 ImplicitInitializerKind ImplicitInitKind,
3346 CXXBaseSpecifier *BaseSpec,
3347 bool IsInheritedVirtualBase,
3348 CXXCtorInitializer *&CXXBaseInit) {
3349 InitializedEntity InitEntity
3350 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
3351 IsInheritedVirtualBase);
3352
3353 ExprResult BaseInit;
3354
3355 switch (ImplicitInitKind) {
3356 case IIK_Inherit: {
3357 const CXXRecordDecl *Inherited =
3358 Constructor->getInheritedConstructor()->getParent();
3359 const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
3360 if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
3361 // C++11 [class.inhctor]p8:
3362 // Each expression in the expression-list is of the form
3363 // static_cast<T&&>(p), where p is the name of the corresponding
3364 // constructor parameter and T is the declared type of p.
3365 SmallVector<Expr*, 16> Args;
3366 for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
3367 ParmVarDecl *PD = Constructor->getParamDecl(I);
3368 ExprResult ArgExpr =
3369 SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
3370 VK_LValue, SourceLocation());
3371 if (ArgExpr.isInvalid())
3372 return true;
3373 Args.push_back(CastForMoving(SemaRef, ArgExpr.get(), PD->getType()));
3374 }
3375
3376 InitializationKind InitKind = InitializationKind::CreateDirect(
3377 Constructor->getLocation(), SourceLocation(), SourceLocation());
3378 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
3379 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
3380 break;
3381 }
3382 }
3383 // Fall through.
3384 case IIK_Default: {
3385 InitializationKind InitKind
3386 = InitializationKind::CreateDefault(Constructor->getLocation());
3387 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3388 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3389 break;
3390 }
3391
3392 case IIK_Move:
3393 case IIK_Copy: {
3394 bool Moving = ImplicitInitKind == IIK_Move;
3395 ParmVarDecl *Param = Constructor->getParamDecl(0);
3396 QualType ParamType = Param->getType().getNonReferenceType();
3397
3398 Expr *CopyCtorArg =
3399 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
3400 SourceLocation(), Param, false,
3401 Constructor->getLocation(), ParamType,
3402 VK_LValue, nullptr);
3403
3404 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
3405
3406 // Cast to the base class to avoid ambiguities.
3407 QualType ArgTy =
3408 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
3409 ParamType.getQualifiers());
3410
3411 if (Moving) {
3412 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
3413 }
3414
3415 CXXCastPath BasePath;
3416 BasePath.push_back(BaseSpec);
3417 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
3418 CK_UncheckedDerivedToBase,
3419 Moving ? VK_XValue : VK_LValue,
3420 &BasePath).get();
3421
3422 InitializationKind InitKind
3423 = InitializationKind::CreateDirect(Constructor->getLocation(),
3424 SourceLocation(), SourceLocation());
3425 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
3426 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
3427 break;
3428 }
3429 }
3430
3431 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
3432 if (BaseInit.isInvalid())
3433 return true;
3434
3435 CXXBaseInit =
3436 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3437 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
3438 SourceLocation()),
3439 BaseSpec->isVirtual(),
3440 SourceLocation(),
3441 BaseInit.getAs<Expr>(),
3442 SourceLocation(),
3443 SourceLocation());
3444
3445 return false;
3446 }
3447
RefersToRValueRef(Expr * MemRef)3448 static bool RefersToRValueRef(Expr *MemRef) {
3449 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
3450 return Referenced->getType()->isRValueReferenceType();
3451 }
3452
3453 static bool
BuildImplicitMemberInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,FieldDecl * Field,IndirectFieldDecl * Indirect,CXXCtorInitializer * & CXXMemberInit)3454 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
3455 ImplicitInitializerKind ImplicitInitKind,
3456 FieldDecl *Field, IndirectFieldDecl *Indirect,
3457 CXXCtorInitializer *&CXXMemberInit) {
3458 if (Field->isInvalidDecl())
3459 return true;
3460
3461 SourceLocation Loc = Constructor->getLocation();
3462
3463 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
3464 bool Moving = ImplicitInitKind == IIK_Move;
3465 ParmVarDecl *Param = Constructor->getParamDecl(0);
3466 QualType ParamType = Param->getType().getNonReferenceType();
3467
3468 // Suppress copying zero-width bitfields.
3469 if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
3470 return false;
3471
3472 Expr *MemberExprBase =
3473 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
3474 SourceLocation(), Param, false,
3475 Loc, ParamType, VK_LValue, nullptr);
3476
3477 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
3478
3479 if (Moving) {
3480 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
3481 }
3482
3483 // Build a reference to this field within the parameter.
3484 CXXScopeSpec SS;
3485 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
3486 Sema::LookupMemberName);
3487 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
3488 : cast<ValueDecl>(Field), AS_public);
3489 MemberLookup.resolveKind();
3490 ExprResult CtorArg
3491 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
3492 ParamType, Loc,
3493 /*IsArrow=*/false,
3494 SS,
3495 /*TemplateKWLoc=*/SourceLocation(),
3496 /*FirstQualifierInScope=*/nullptr,
3497 MemberLookup,
3498 /*TemplateArgs=*/nullptr,
3499 /*S*/nullptr);
3500 if (CtorArg.isInvalid())
3501 return true;
3502
3503 // C++11 [class.copy]p15:
3504 // - if a member m has rvalue reference type T&&, it is direct-initialized
3505 // with static_cast<T&&>(x.m);
3506 if (RefersToRValueRef(CtorArg.get())) {
3507 CtorArg = CastForMoving(SemaRef, CtorArg.get());
3508 }
3509
3510 // When the field we are copying is an array, create index variables for
3511 // each dimension of the array. We use these index variables to subscript
3512 // the source array, and other clients (e.g., CodeGen) will perform the
3513 // necessary iteration with these index variables.
3514 SmallVector<VarDecl *, 4> IndexVariables;
3515 QualType BaseType = Field->getType();
3516 QualType SizeType = SemaRef.Context.getSizeType();
3517 bool InitializingArray = false;
3518 while (const ConstantArrayType *Array
3519 = SemaRef.Context.getAsConstantArrayType(BaseType)) {
3520 InitializingArray = true;
3521 // Create the iteration variable for this array index.
3522 IdentifierInfo *IterationVarName = nullptr;
3523 {
3524 SmallString<8> Str;
3525 llvm::raw_svector_ostream OS(Str);
3526 OS << "__i" << IndexVariables.size();
3527 IterationVarName = &SemaRef.Context.Idents.get(OS.str());
3528 }
3529 VarDecl *IterationVar
3530 = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
3531 IterationVarName, SizeType,
3532 SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
3533 SC_None);
3534 IndexVariables.push_back(IterationVar);
3535
3536 // Create a reference to the iteration variable.
3537 ExprResult IterationVarRef
3538 = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
3539 assert(!IterationVarRef.isInvalid() &&
3540 "Reference to invented variable cannot fail!");
3541 IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.get());
3542 assert(!IterationVarRef.isInvalid() &&
3543 "Conversion of invented variable cannot fail!");
3544
3545 // Subscript the array with this iteration variable.
3546 CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.get(), Loc,
3547 IterationVarRef.get(),
3548 Loc);
3549 if (CtorArg.isInvalid())
3550 return true;
3551
3552 BaseType = Array->getElementType();
3553 }
3554
3555 // The array subscript expression is an lvalue, which is wrong for moving.
3556 if (Moving && InitializingArray)
3557 CtorArg = CastForMoving(SemaRef, CtorArg.get());
3558
3559 // Construct the entity that we will be initializing. For an array, this
3560 // will be first element in the array, which may require several levels
3561 // of array-subscript entities.
3562 SmallVector<InitializedEntity, 4> Entities;
3563 Entities.reserve(1 + IndexVariables.size());
3564 if (Indirect)
3565 Entities.push_back(InitializedEntity::InitializeMember(Indirect));
3566 else
3567 Entities.push_back(InitializedEntity::InitializeMember(Field));
3568 for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
3569 Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
3570 0,
3571 Entities.back()));
3572
3573 // Direct-initialize to use the copy constructor.
3574 InitializationKind InitKind =
3575 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
3576
3577 Expr *CtorArgE = CtorArg.getAs<Expr>();
3578 InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
3579 CtorArgE);
3580
3581 ExprResult MemberInit
3582 = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
3583 MultiExprArg(&CtorArgE, 1));
3584 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3585 if (MemberInit.isInvalid())
3586 return true;
3587
3588 if (Indirect) {
3589 assert(IndexVariables.size() == 0 &&
3590 "Indirect field improperly initialized");
3591 CXXMemberInit
3592 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3593 Loc, Loc,
3594 MemberInit.getAs<Expr>(),
3595 Loc);
3596 } else
3597 CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
3598 Loc, MemberInit.getAs<Expr>(),
3599 Loc,
3600 IndexVariables.data(),
3601 IndexVariables.size());
3602 return false;
3603 }
3604
3605 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
3606 "Unhandled implicit init kind!");
3607
3608 QualType FieldBaseElementType =
3609 SemaRef.Context.getBaseElementType(Field->getType());
3610
3611 if (FieldBaseElementType->isRecordType()) {
3612 InitializedEntity InitEntity
3613 = Indirect? InitializedEntity::InitializeMember(Indirect)
3614 : InitializedEntity::InitializeMember(Field);
3615 InitializationKind InitKind =
3616 InitializationKind::CreateDefault(Loc);
3617
3618 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3619 ExprResult MemberInit =
3620 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3621
3622 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3623 if (MemberInit.isInvalid())
3624 return true;
3625
3626 if (Indirect)
3627 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3628 Indirect, Loc,
3629 Loc,
3630 MemberInit.get(),
3631 Loc);
3632 else
3633 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3634 Field, Loc, Loc,
3635 MemberInit.get(),
3636 Loc);
3637 return false;
3638 }
3639
3640 if (!Field->getParent()->isUnion()) {
3641 if (FieldBaseElementType->isReferenceType()) {
3642 SemaRef.Diag(Constructor->getLocation(),
3643 diag::err_uninitialized_member_in_ctor)
3644 << (int)Constructor->isImplicit()
3645 << SemaRef.Context.getTagDeclType(Constructor->getParent())
3646 << 0 << Field->getDeclName();
3647 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3648 return true;
3649 }
3650
3651 if (FieldBaseElementType.isConstQualified()) {
3652 SemaRef.Diag(Constructor->getLocation(),
3653 diag::err_uninitialized_member_in_ctor)
3654 << (int)Constructor->isImplicit()
3655 << SemaRef.Context.getTagDeclType(Constructor->getParent())
3656 << 1 << Field->getDeclName();
3657 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3658 return true;
3659 }
3660 }
3661
3662 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3663 FieldBaseElementType->isObjCRetainableType() &&
3664 FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3665 FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3666 // ARC:
3667 // Default-initialize Objective-C pointers to NULL.
3668 CXXMemberInit
3669 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3670 Loc, Loc,
3671 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3672 Loc);
3673 return false;
3674 }
3675
3676 // Nothing to initialize.
3677 CXXMemberInit = nullptr;
3678 return false;
3679 }
3680
3681 namespace {
3682 struct BaseAndFieldInfo {
3683 Sema &S;
3684 CXXConstructorDecl *Ctor;
3685 bool AnyErrorsInInits;
3686 ImplicitInitializerKind IIK;
3687 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3688 SmallVector<CXXCtorInitializer*, 8> AllToInit;
3689 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
3690
BaseAndFieldInfo__anonb9d573a20411::BaseAndFieldInfo3691 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3692 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3693 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3694 if (Generated && Ctor->isCopyConstructor())
3695 IIK = IIK_Copy;
3696 else if (Generated && Ctor->isMoveConstructor())
3697 IIK = IIK_Move;
3698 else if (Ctor->getInheritedConstructor())
3699 IIK = IIK_Inherit;
3700 else
3701 IIK = IIK_Default;
3702 }
3703
isImplicitCopyOrMove__anonb9d573a20411::BaseAndFieldInfo3704 bool isImplicitCopyOrMove() const {
3705 switch (IIK) {
3706 case IIK_Copy:
3707 case IIK_Move:
3708 return true;
3709
3710 case IIK_Default:
3711 case IIK_Inherit:
3712 return false;
3713 }
3714
3715 llvm_unreachable("Invalid ImplicitInitializerKind!");
3716 }
3717
addFieldInitializer__anonb9d573a20411::BaseAndFieldInfo3718 bool addFieldInitializer(CXXCtorInitializer *Init) {
3719 AllToInit.push_back(Init);
3720
3721 // Check whether this initializer makes the field "used".
3722 if (Init->getInit()->HasSideEffects(S.Context))
3723 S.UnusedPrivateFields.remove(Init->getAnyMember());
3724
3725 return false;
3726 }
3727
isInactiveUnionMember__anonb9d573a20411::BaseAndFieldInfo3728 bool isInactiveUnionMember(FieldDecl *Field) {
3729 RecordDecl *Record = Field->getParent();
3730 if (!Record->isUnion())
3731 return false;
3732
3733 if (FieldDecl *Active =
3734 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
3735 return Active != Field->getCanonicalDecl();
3736
3737 // In an implicit copy or move constructor, ignore any in-class initializer.
3738 if (isImplicitCopyOrMove())
3739 return true;
3740
3741 // If there's no explicit initialization, the field is active only if it
3742 // has an in-class initializer...
3743 if (Field->hasInClassInitializer())
3744 return false;
3745 // ... or it's an anonymous struct or union whose class has an in-class
3746 // initializer.
3747 if (!Field->isAnonymousStructOrUnion())
3748 return true;
3749 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
3750 return !FieldRD->hasInClassInitializer();
3751 }
3752
3753 /// \brief Determine whether the given field is, or is within, a union member
3754 /// that is inactive (because there was an initializer given for a different
3755 /// member of the union, or because the union was not initialized at all).
isWithinInactiveUnionMember__anonb9d573a20411::BaseAndFieldInfo3756 bool isWithinInactiveUnionMember(FieldDecl *Field,
3757 IndirectFieldDecl *Indirect) {
3758 if (!Indirect)
3759 return isInactiveUnionMember(Field);
3760
3761 for (auto *C : Indirect->chain()) {
3762 FieldDecl *Field = dyn_cast<FieldDecl>(C);
3763 if (Field && isInactiveUnionMember(Field))
3764 return true;
3765 }
3766 return false;
3767 }
3768 };
3769 }
3770
3771 /// \brief Determine whether the given type is an incomplete or zero-lenfgth
3772 /// array type.
isIncompleteOrZeroLengthArrayType(ASTContext & Context,QualType T)3773 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3774 if (T->isIncompleteArrayType())
3775 return true;
3776
3777 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3778 if (!ArrayT->getSize())
3779 return true;
3780
3781 T = ArrayT->getElementType();
3782 }
3783
3784 return false;
3785 }
3786
CollectFieldInitializer(Sema & SemaRef,BaseAndFieldInfo & Info,FieldDecl * Field,IndirectFieldDecl * Indirect=nullptr)3787 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3788 FieldDecl *Field,
3789 IndirectFieldDecl *Indirect = nullptr) {
3790 if (Field->isInvalidDecl())
3791 return false;
3792
3793 // Overwhelmingly common case: we have a direct initializer for this field.
3794 if (CXXCtorInitializer *Init =
3795 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
3796 return Info.addFieldInitializer(Init);
3797
3798 // C++11 [class.base.init]p8:
3799 // if the entity is a non-static data member that has a
3800 // brace-or-equal-initializer and either
3801 // -- the constructor's class is a union and no other variant member of that
3802 // union is designated by a mem-initializer-id or
3803 // -- the constructor's class is not a union, and, if the entity is a member
3804 // of an anonymous union, no other member of that union is designated by
3805 // a mem-initializer-id,
3806 // the entity is initialized as specified in [dcl.init].
3807 //
3808 // We also apply the same rules to handle anonymous structs within anonymous
3809 // unions.
3810 if (Info.isWithinInactiveUnionMember(Field, Indirect))
3811 return false;
3812
3813 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3814 ExprResult DIE =
3815 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
3816 if (DIE.isInvalid())
3817 return true;
3818 CXXCtorInitializer *Init;
3819 if (Indirect)
3820 Init = new (SemaRef.Context)
3821 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
3822 SourceLocation(), DIE.get(), SourceLocation());
3823 else
3824 Init = new (SemaRef.Context)
3825 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
3826 SourceLocation(), DIE.get(), SourceLocation());
3827 return Info.addFieldInitializer(Init);
3828 }
3829
3830 // Don't initialize incomplete or zero-length arrays.
3831 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3832 return false;
3833
3834 // Don't try to build an implicit initializer if there were semantic
3835 // errors in any of the initializers (and therefore we might be
3836 // missing some that the user actually wrote).
3837 if (Info.AnyErrorsInInits)
3838 return false;
3839
3840 CXXCtorInitializer *Init = nullptr;
3841 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3842 Indirect, Init))
3843 return true;
3844
3845 if (!Init)
3846 return false;
3847
3848 return Info.addFieldInitializer(Init);
3849 }
3850
3851 bool
SetDelegatingInitializer(CXXConstructorDecl * Constructor,CXXCtorInitializer * Initializer)3852 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3853 CXXCtorInitializer *Initializer) {
3854 assert(Initializer->isDelegatingInitializer());
3855 Constructor->setNumCtorInitializers(1);
3856 CXXCtorInitializer **initializer =
3857 new (Context) CXXCtorInitializer*[1];
3858 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3859 Constructor->setCtorInitializers(initializer);
3860
3861 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3862 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3863 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3864 }
3865
3866 DelegatingCtorDecls.push_back(Constructor);
3867
3868 DiagnoseUninitializedFields(*this, Constructor);
3869
3870 return false;
3871 }
3872
SetCtorInitializers(CXXConstructorDecl * Constructor,bool AnyErrors,ArrayRef<CXXCtorInitializer * > Initializers)3873 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3874 ArrayRef<CXXCtorInitializer *> Initializers) {
3875 if (Constructor->isDependentContext()) {
3876 // Just store the initializers as written, they will be checked during
3877 // instantiation.
3878 if (!Initializers.empty()) {
3879 Constructor->setNumCtorInitializers(Initializers.size());
3880 CXXCtorInitializer **baseOrMemberInitializers =
3881 new (Context) CXXCtorInitializer*[Initializers.size()];
3882 memcpy(baseOrMemberInitializers, Initializers.data(),
3883 Initializers.size() * sizeof(CXXCtorInitializer*));
3884 Constructor->setCtorInitializers(baseOrMemberInitializers);
3885 }
3886
3887 // Let template instantiation know whether we had errors.
3888 if (AnyErrors)
3889 Constructor->setInvalidDecl();
3890
3891 return false;
3892 }
3893
3894 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3895
3896 // We need to build the initializer AST according to order of construction
3897 // and not what user specified in the Initializers list.
3898 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3899 if (!ClassDecl)
3900 return true;
3901
3902 bool HadError = false;
3903
3904 for (unsigned i = 0; i < Initializers.size(); i++) {
3905 CXXCtorInitializer *Member = Initializers[i];
3906
3907 if (Member->isBaseInitializer())
3908 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3909 else {
3910 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
3911
3912 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
3913 for (auto *C : F->chain()) {
3914 FieldDecl *FD = dyn_cast<FieldDecl>(C);
3915 if (FD && FD->getParent()->isUnion())
3916 Info.ActiveUnionMember.insert(std::make_pair(
3917 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
3918 }
3919 } else if (FieldDecl *FD = Member->getMember()) {
3920 if (FD->getParent()->isUnion())
3921 Info.ActiveUnionMember.insert(std::make_pair(
3922 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
3923 }
3924 }
3925 }
3926
3927 // Keep track of the direct virtual bases.
3928 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3929 for (auto &I : ClassDecl->bases()) {
3930 if (I.isVirtual())
3931 DirectVBases.insert(&I);
3932 }
3933
3934 // Push virtual bases before others.
3935 for (auto &VBase : ClassDecl->vbases()) {
3936 if (CXXCtorInitializer *Value
3937 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
3938 // [class.base.init]p7, per DR257:
3939 // A mem-initializer where the mem-initializer-id names a virtual base
3940 // class is ignored during execution of a constructor of any class that
3941 // is not the most derived class.
3942 if (ClassDecl->isAbstract()) {
3943 // FIXME: Provide a fixit to remove the base specifier. This requires
3944 // tracking the location of the associated comma for a base specifier.
3945 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
3946 << VBase.getType() << ClassDecl;
3947 DiagnoseAbstractType(ClassDecl);
3948 }
3949
3950 Info.AllToInit.push_back(Value);
3951 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
3952 // [class.base.init]p8, per DR257:
3953 // If a given [...] base class is not named by a mem-initializer-id
3954 // [...] and the entity is not a virtual base class of an abstract
3955 // class, then [...] the entity is default-initialized.
3956 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
3957 CXXCtorInitializer *CXXBaseInit;
3958 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3959 &VBase, IsInheritedVirtualBase,
3960 CXXBaseInit)) {
3961 HadError = true;
3962 continue;
3963 }
3964
3965 Info.AllToInit.push_back(CXXBaseInit);
3966 }
3967 }
3968
3969 // Non-virtual bases.
3970 for (auto &Base : ClassDecl->bases()) {
3971 // Virtuals are in the virtual base list and already constructed.
3972 if (Base.isVirtual())
3973 continue;
3974
3975 if (CXXCtorInitializer *Value
3976 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
3977 Info.AllToInit.push_back(Value);
3978 } else if (!AnyErrors) {
3979 CXXCtorInitializer *CXXBaseInit;
3980 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3981 &Base, /*IsInheritedVirtualBase=*/false,
3982 CXXBaseInit)) {
3983 HadError = true;
3984 continue;
3985 }
3986
3987 Info.AllToInit.push_back(CXXBaseInit);
3988 }
3989 }
3990
3991 // Fields.
3992 for (auto *Mem : ClassDecl->decls()) {
3993 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
3994 // C++ [class.bit]p2:
3995 // A declaration for a bit-field that omits the identifier declares an
3996 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
3997 // initialized.
3998 if (F->isUnnamedBitfield())
3999 continue;
4000
4001 // If we're not generating the implicit copy/move constructor, then we'll
4002 // handle anonymous struct/union fields based on their individual
4003 // indirect fields.
4004 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
4005 continue;
4006
4007 if (CollectFieldInitializer(*this, Info, F))
4008 HadError = true;
4009 continue;
4010 }
4011
4012 // Beyond this point, we only consider default initialization.
4013 if (Info.isImplicitCopyOrMove())
4014 continue;
4015
4016 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
4017 if (F->getType()->isIncompleteArrayType()) {
4018 assert(ClassDecl->hasFlexibleArrayMember() &&
4019 "Incomplete array type is not valid");
4020 continue;
4021 }
4022
4023 // Initialize each field of an anonymous struct individually.
4024 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
4025 HadError = true;
4026
4027 continue;
4028 }
4029 }
4030
4031 unsigned NumInitializers = Info.AllToInit.size();
4032 if (NumInitializers > 0) {
4033 Constructor->setNumCtorInitializers(NumInitializers);
4034 CXXCtorInitializer **baseOrMemberInitializers =
4035 new (Context) CXXCtorInitializer*[NumInitializers];
4036 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
4037 NumInitializers * sizeof(CXXCtorInitializer*));
4038 Constructor->setCtorInitializers(baseOrMemberInitializers);
4039
4040 // Constructors implicitly reference the base and member
4041 // destructors.
4042 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
4043 Constructor->getParent());
4044 }
4045
4046 return HadError;
4047 }
4048
PopulateKeysForFields(FieldDecl * Field,SmallVectorImpl<const void * > & IdealInits)4049 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
4050 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
4051 const RecordDecl *RD = RT->getDecl();
4052 if (RD->isAnonymousStructOrUnion()) {
4053 for (auto *Field : RD->fields())
4054 PopulateKeysForFields(Field, IdealInits);
4055 return;
4056 }
4057 }
4058 IdealInits.push_back(Field->getCanonicalDecl());
4059 }
4060
GetKeyForBase(ASTContext & Context,QualType BaseType)4061 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
4062 return Context.getCanonicalType(BaseType).getTypePtr();
4063 }
4064
GetKeyForMember(ASTContext & Context,CXXCtorInitializer * Member)4065 static const void *GetKeyForMember(ASTContext &Context,
4066 CXXCtorInitializer *Member) {
4067 if (!Member->isAnyMemberInitializer())
4068 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
4069
4070 return Member->getAnyMember()->getCanonicalDecl();
4071 }
4072
DiagnoseBaseOrMemInitializerOrder(Sema & SemaRef,const CXXConstructorDecl * Constructor,ArrayRef<CXXCtorInitializer * > Inits)4073 static void DiagnoseBaseOrMemInitializerOrder(
4074 Sema &SemaRef, const CXXConstructorDecl *Constructor,
4075 ArrayRef<CXXCtorInitializer *> Inits) {
4076 if (Constructor->getDeclContext()->isDependentContext())
4077 return;
4078
4079 // Don't check initializers order unless the warning is enabled at the
4080 // location of at least one initializer.
4081 bool ShouldCheckOrder = false;
4082 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4083 CXXCtorInitializer *Init = Inits[InitIndex];
4084 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
4085 Init->getSourceLocation())) {
4086 ShouldCheckOrder = true;
4087 break;
4088 }
4089 }
4090 if (!ShouldCheckOrder)
4091 return;
4092
4093 // Build the list of bases and members in the order that they'll
4094 // actually be initialized. The explicit initializers should be in
4095 // this same order but may be missing things.
4096 SmallVector<const void*, 32> IdealInitKeys;
4097
4098 const CXXRecordDecl *ClassDecl = Constructor->getParent();
4099
4100 // 1. Virtual bases.
4101 for (const auto &VBase : ClassDecl->vbases())
4102 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
4103
4104 // 2. Non-virtual bases.
4105 for (const auto &Base : ClassDecl->bases()) {
4106 if (Base.isVirtual())
4107 continue;
4108 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
4109 }
4110
4111 // 3. Direct fields.
4112 for (auto *Field : ClassDecl->fields()) {
4113 if (Field->isUnnamedBitfield())
4114 continue;
4115
4116 PopulateKeysForFields(Field, IdealInitKeys);
4117 }
4118
4119 unsigned NumIdealInits = IdealInitKeys.size();
4120 unsigned IdealIndex = 0;
4121
4122 CXXCtorInitializer *PrevInit = nullptr;
4123 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4124 CXXCtorInitializer *Init = Inits[InitIndex];
4125 const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
4126
4127 // Scan forward to try to find this initializer in the idealized
4128 // initializers list.
4129 for (; IdealIndex != NumIdealInits; ++IdealIndex)
4130 if (InitKey == IdealInitKeys[IdealIndex])
4131 break;
4132
4133 // If we didn't find this initializer, it must be because we
4134 // scanned past it on a previous iteration. That can only
4135 // happen if we're out of order; emit a warning.
4136 if (IdealIndex == NumIdealInits && PrevInit) {
4137 Sema::SemaDiagnosticBuilder D =
4138 SemaRef.Diag(PrevInit->getSourceLocation(),
4139 diag::warn_initializer_out_of_order);
4140
4141 if (PrevInit->isAnyMemberInitializer())
4142 D << 0 << PrevInit->getAnyMember()->getDeclName();
4143 else
4144 D << 1 << PrevInit->getTypeSourceInfo()->getType();
4145
4146 if (Init->isAnyMemberInitializer())
4147 D << 0 << Init->getAnyMember()->getDeclName();
4148 else
4149 D << 1 << Init->getTypeSourceInfo()->getType();
4150
4151 // Move back to the initializer's location in the ideal list.
4152 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
4153 if (InitKey == IdealInitKeys[IdealIndex])
4154 break;
4155
4156 assert(IdealIndex < NumIdealInits &&
4157 "initializer not found in initializer list");
4158 }
4159
4160 PrevInit = Init;
4161 }
4162 }
4163
4164 namespace {
CheckRedundantInit(Sema & S,CXXCtorInitializer * Init,CXXCtorInitializer * & PrevInit)4165 bool CheckRedundantInit(Sema &S,
4166 CXXCtorInitializer *Init,
4167 CXXCtorInitializer *&PrevInit) {
4168 if (!PrevInit) {
4169 PrevInit = Init;
4170 return false;
4171 }
4172
4173 if (FieldDecl *Field = Init->getAnyMember())
4174 S.Diag(Init->getSourceLocation(),
4175 diag::err_multiple_mem_initialization)
4176 << Field->getDeclName()
4177 << Init->getSourceRange();
4178 else {
4179 const Type *BaseClass = Init->getBaseClass();
4180 assert(BaseClass && "neither field nor base");
4181 S.Diag(Init->getSourceLocation(),
4182 diag::err_multiple_base_initialization)
4183 << QualType(BaseClass, 0)
4184 << Init->getSourceRange();
4185 }
4186 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
4187 << 0 << PrevInit->getSourceRange();
4188
4189 return true;
4190 }
4191
4192 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
4193 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
4194
CheckRedundantUnionInit(Sema & S,CXXCtorInitializer * Init,RedundantUnionMap & Unions)4195 bool CheckRedundantUnionInit(Sema &S,
4196 CXXCtorInitializer *Init,
4197 RedundantUnionMap &Unions) {
4198 FieldDecl *Field = Init->getAnyMember();
4199 RecordDecl *Parent = Field->getParent();
4200 NamedDecl *Child = Field;
4201
4202 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
4203 if (Parent->isUnion()) {
4204 UnionEntry &En = Unions[Parent];
4205 if (En.first && En.first != Child) {
4206 S.Diag(Init->getSourceLocation(),
4207 diag::err_multiple_mem_union_initialization)
4208 << Field->getDeclName()
4209 << Init->getSourceRange();
4210 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
4211 << 0 << En.second->getSourceRange();
4212 return true;
4213 }
4214 if (!En.first) {
4215 En.first = Child;
4216 En.second = Init;
4217 }
4218 if (!Parent->isAnonymousStructOrUnion())
4219 return false;
4220 }
4221
4222 Child = Parent;
4223 Parent = cast<RecordDecl>(Parent->getDeclContext());
4224 }
4225
4226 return false;
4227 }
4228 }
4229
4230 /// ActOnMemInitializers - Handle the member initializers for a constructor.
ActOnMemInitializers(Decl * ConstructorDecl,SourceLocation ColonLoc,ArrayRef<CXXCtorInitializer * > MemInits,bool AnyErrors)4231 void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
4232 SourceLocation ColonLoc,
4233 ArrayRef<CXXCtorInitializer*> MemInits,
4234 bool AnyErrors) {
4235 if (!ConstructorDecl)
4236 return;
4237
4238 AdjustDeclIfTemplate(ConstructorDecl);
4239
4240 CXXConstructorDecl *Constructor
4241 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
4242
4243 if (!Constructor) {
4244 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
4245 return;
4246 }
4247
4248 // Mapping for the duplicate initializers check.
4249 // For member initializers, this is keyed with a FieldDecl*.
4250 // For base initializers, this is keyed with a Type*.
4251 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
4252
4253 // Mapping for the inconsistent anonymous-union initializers check.
4254 RedundantUnionMap MemberUnions;
4255
4256 bool HadError = false;
4257 for (unsigned i = 0; i < MemInits.size(); i++) {
4258 CXXCtorInitializer *Init = MemInits[i];
4259
4260 // Set the source order index.
4261 Init->setSourceOrder(i);
4262
4263 if (Init->isAnyMemberInitializer()) {
4264 const void *Key = GetKeyForMember(Context, Init);
4265 if (CheckRedundantInit(*this, Init, Members[Key]) ||
4266 CheckRedundantUnionInit(*this, Init, MemberUnions))
4267 HadError = true;
4268 } else if (Init->isBaseInitializer()) {
4269 const void *Key = GetKeyForMember(Context, Init);
4270 if (CheckRedundantInit(*this, Init, Members[Key]))
4271 HadError = true;
4272 } else {
4273 assert(Init->isDelegatingInitializer());
4274 // This must be the only initializer
4275 if (MemInits.size() != 1) {
4276 Diag(Init->getSourceLocation(),
4277 diag::err_delegating_initializer_alone)
4278 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
4279 // We will treat this as being the only initializer.
4280 }
4281 SetDelegatingInitializer(Constructor, MemInits[i]);
4282 // Return immediately as the initializer is set.
4283 return;
4284 }
4285 }
4286
4287 if (HadError)
4288 return;
4289
4290 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
4291
4292 SetCtorInitializers(Constructor, AnyErrors, MemInits);
4293
4294 DiagnoseUninitializedFields(*this, Constructor);
4295 }
4296
4297 void
MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,CXXRecordDecl * ClassDecl)4298 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
4299 CXXRecordDecl *ClassDecl) {
4300 // Ignore dependent contexts. Also ignore unions, since their members never
4301 // have destructors implicitly called.
4302 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
4303 return;
4304
4305 // FIXME: all the access-control diagnostics are positioned on the
4306 // field/base declaration. That's probably good; that said, the
4307 // user might reasonably want to know why the destructor is being
4308 // emitted, and we currently don't say.
4309
4310 // Non-static data members.
4311 for (auto *Field : ClassDecl->fields()) {
4312 if (Field->isInvalidDecl())
4313 continue;
4314
4315 // Don't destroy incomplete or zero-length arrays.
4316 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
4317 continue;
4318
4319 QualType FieldType = Context.getBaseElementType(Field->getType());
4320
4321 const RecordType* RT = FieldType->getAs<RecordType>();
4322 if (!RT)
4323 continue;
4324
4325 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
4326 if (FieldClassDecl->isInvalidDecl())
4327 continue;
4328 if (FieldClassDecl->hasIrrelevantDestructor())
4329 continue;
4330 // The destructor for an implicit anonymous union member is never invoked.
4331 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
4332 continue;
4333
4334 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
4335 assert(Dtor && "No dtor found for FieldClassDecl!");
4336 CheckDestructorAccess(Field->getLocation(), Dtor,
4337 PDiag(diag::err_access_dtor_field)
4338 << Field->getDeclName()
4339 << FieldType);
4340
4341 MarkFunctionReferenced(Location, Dtor);
4342 DiagnoseUseOfDecl(Dtor, Location);
4343 }
4344
4345 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
4346
4347 // Bases.
4348 for (const auto &Base : ClassDecl->bases()) {
4349 // Bases are always records in a well-formed non-dependent class.
4350 const RecordType *RT = Base.getType()->getAs<RecordType>();
4351
4352 // Remember direct virtual bases.
4353 if (Base.isVirtual())
4354 DirectVirtualBases.insert(RT);
4355
4356 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
4357 // If our base class is invalid, we probably can't get its dtor anyway.
4358 if (BaseClassDecl->isInvalidDecl())
4359 continue;
4360 if (BaseClassDecl->hasIrrelevantDestructor())
4361 continue;
4362
4363 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
4364 assert(Dtor && "No dtor found for BaseClassDecl!");
4365
4366 // FIXME: caret should be on the start of the class name
4367 CheckDestructorAccess(Base.getLocStart(), Dtor,
4368 PDiag(diag::err_access_dtor_base)
4369 << Base.getType()
4370 << Base.getSourceRange(),
4371 Context.getTypeDeclType(ClassDecl));
4372
4373 MarkFunctionReferenced(Location, Dtor);
4374 DiagnoseUseOfDecl(Dtor, Location);
4375 }
4376
4377 // Virtual bases.
4378 for (const auto &VBase : ClassDecl->vbases()) {
4379 // Bases are always records in a well-formed non-dependent class.
4380 const RecordType *RT = VBase.getType()->castAs<RecordType>();
4381
4382 // Ignore direct virtual bases.
4383 if (DirectVirtualBases.count(RT))
4384 continue;
4385
4386 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
4387 // If our base class is invalid, we probably can't get its dtor anyway.
4388 if (BaseClassDecl->isInvalidDecl())
4389 continue;
4390 if (BaseClassDecl->hasIrrelevantDestructor())
4391 continue;
4392
4393 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
4394 assert(Dtor && "No dtor found for BaseClassDecl!");
4395 if (CheckDestructorAccess(
4396 ClassDecl->getLocation(), Dtor,
4397 PDiag(diag::err_access_dtor_vbase)
4398 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
4399 Context.getTypeDeclType(ClassDecl)) ==
4400 AR_accessible) {
4401 CheckDerivedToBaseConversion(
4402 Context.getTypeDeclType(ClassDecl), VBase.getType(),
4403 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
4404 SourceRange(), DeclarationName(), nullptr);
4405 }
4406
4407 MarkFunctionReferenced(Location, Dtor);
4408 DiagnoseUseOfDecl(Dtor, Location);
4409 }
4410 }
4411
ActOnDefaultCtorInitializers(Decl * CDtorDecl)4412 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
4413 if (!CDtorDecl)
4414 return;
4415
4416 if (CXXConstructorDecl *Constructor
4417 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
4418 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
4419 DiagnoseUninitializedFields(*this, Constructor);
4420 }
4421 }
4422
isAbstractType(SourceLocation Loc,QualType T)4423 bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
4424 if (!getLangOpts().CPlusPlus)
4425 return false;
4426
4427 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
4428 if (!RD)
4429 return false;
4430
4431 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
4432 // class template specialization here, but doing so breaks a lot of code.
4433
4434 // We can't answer whether something is abstract until it has a
4435 // definition. If it's currently being defined, we'll walk back
4436 // over all the declarations when we have a full definition.
4437 const CXXRecordDecl *Def = RD->getDefinition();
4438 if (!Def || Def->isBeingDefined())
4439 return false;
4440
4441 return RD->isAbstract();
4442 }
4443
RequireNonAbstractType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)4444 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
4445 TypeDiagnoser &Diagnoser) {
4446 if (!isAbstractType(Loc, T))
4447 return false;
4448
4449 T = Context.getBaseElementType(T);
4450 Diagnoser.diagnose(*this, Loc, T);
4451 DiagnoseAbstractType(T->getAsCXXRecordDecl());
4452 return true;
4453 }
4454
DiagnoseAbstractType(const CXXRecordDecl * RD)4455 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
4456 // Check if we've already emitted the list of pure virtual functions
4457 // for this class.
4458 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
4459 return;
4460
4461 // If the diagnostic is suppressed, don't emit the notes. We're only
4462 // going to emit them once, so try to attach them to a diagnostic we're
4463 // actually going to show.
4464 if (Diags.isLastDiagnosticIgnored())
4465 return;
4466
4467 CXXFinalOverriderMap FinalOverriders;
4468 RD->getFinalOverriders(FinalOverriders);
4469
4470 // Keep a set of seen pure methods so we won't diagnose the same method
4471 // more than once.
4472 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
4473
4474 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
4475 MEnd = FinalOverriders.end();
4476 M != MEnd;
4477 ++M) {
4478 for (OverridingMethods::iterator SO = M->second.begin(),
4479 SOEnd = M->second.end();
4480 SO != SOEnd; ++SO) {
4481 // C++ [class.abstract]p4:
4482 // A class is abstract if it contains or inherits at least one
4483 // pure virtual function for which the final overrider is pure
4484 // virtual.
4485
4486 //
4487 if (SO->second.size() != 1)
4488 continue;
4489
4490 if (!SO->second.front().Method->isPure())
4491 continue;
4492
4493 if (!SeenPureMethods.insert(SO->second.front().Method).second)
4494 continue;
4495
4496 Diag(SO->second.front().Method->getLocation(),
4497 diag::note_pure_virtual_function)
4498 << SO->second.front().Method->getDeclName() << RD->getDeclName();
4499 }
4500 }
4501
4502 if (!PureVirtualClassDiagSet)
4503 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
4504 PureVirtualClassDiagSet->insert(RD);
4505 }
4506
4507 namespace {
4508 struct AbstractUsageInfo {
4509 Sema &S;
4510 CXXRecordDecl *Record;
4511 CanQualType AbstractType;
4512 bool Invalid;
4513
AbstractUsageInfo__anonb9d573a20611::AbstractUsageInfo4514 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
4515 : S(S), Record(Record),
4516 AbstractType(S.Context.getCanonicalType(
4517 S.Context.getTypeDeclType(Record))),
4518 Invalid(false) {}
4519
DiagnoseAbstractType__anonb9d573a20611::AbstractUsageInfo4520 void DiagnoseAbstractType() {
4521 if (Invalid) return;
4522 S.DiagnoseAbstractType(Record);
4523 Invalid = true;
4524 }
4525
4526 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
4527 };
4528
4529 struct CheckAbstractUsage {
4530 AbstractUsageInfo &Info;
4531 const NamedDecl *Ctx;
4532
CheckAbstractUsage__anonb9d573a20611::CheckAbstractUsage4533 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
4534 : Info(Info), Ctx(Ctx) {}
4535
Visit__anonb9d573a20611::CheckAbstractUsage4536 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4537 switch (TL.getTypeLocClass()) {
4538 #define ABSTRACT_TYPELOC(CLASS, PARENT)
4539 #define TYPELOC(CLASS, PARENT) \
4540 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
4541 #include "clang/AST/TypeLocNodes.def"
4542 }
4543 }
4544
Check__anonb9d573a20611::CheckAbstractUsage4545 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4546 Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
4547 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
4548 if (!TL.getParam(I))
4549 continue;
4550
4551 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
4552 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
4553 }
4554 }
4555
Check__anonb9d573a20611::CheckAbstractUsage4556 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4557 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
4558 }
4559
Check__anonb9d573a20611::CheckAbstractUsage4560 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4561 // Visit the type parameters from a permissive context.
4562 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4563 TemplateArgumentLoc TAL = TL.getArgLoc(I);
4564 if (TAL.getArgument().getKind() == TemplateArgument::Type)
4565 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
4566 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
4567 // TODO: other template argument types?
4568 }
4569 }
4570
4571 // Visit pointee types from a permissive context.
4572 #define CheckPolymorphic(Type) \
4573 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
4574 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
4575 }
4576 CheckPolymorphic(PointerTypeLoc)
CheckPolymorphic__anonb9d573a20611::CheckAbstractUsage4577 CheckPolymorphic(ReferenceTypeLoc)
4578 CheckPolymorphic(MemberPointerTypeLoc)
4579 CheckPolymorphic(BlockPointerTypeLoc)
4580 CheckPolymorphic(AtomicTypeLoc)
4581
4582 /// Handle all the types we haven't given a more specific
4583 /// implementation for above.
4584 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4585 // Every other kind of type that we haven't called out already
4586 // that has an inner type is either (1) sugar or (2) contains that
4587 // inner type in some way as a subobject.
4588 if (TypeLoc Next = TL.getNextTypeLoc())
4589 return Visit(Next, Sel);
4590
4591 // If there's no inner type and we're in a permissive context,
4592 // don't diagnose.
4593 if (Sel == Sema::AbstractNone) return;
4594
4595 // Check whether the type matches the abstract type.
4596 QualType T = TL.getType();
4597 if (T->isArrayType()) {
4598 Sel = Sema::AbstractArrayType;
4599 T = Info.S.Context.getBaseElementType(T);
4600 }
4601 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
4602 if (CT != Info.AbstractType) return;
4603
4604 // It matched; do some magic.
4605 if (Sel == Sema::AbstractArrayType) {
4606 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
4607 << T << TL.getSourceRange();
4608 } else {
4609 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
4610 << Sel << T << TL.getSourceRange();
4611 }
4612 Info.DiagnoseAbstractType();
4613 }
4614 };
4615
CheckType(const NamedDecl * D,TypeLoc TL,Sema::AbstractDiagSelID Sel)4616 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
4617 Sema::AbstractDiagSelID Sel) {
4618 CheckAbstractUsage(*this, D).Visit(TL, Sel);
4619 }
4620
4621 }
4622
4623 /// Check for invalid uses of an abstract type in a method declaration.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXMethodDecl * MD)4624 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4625 CXXMethodDecl *MD) {
4626 // No need to do the check on definitions, which require that
4627 // the return/param types be complete.
4628 if (MD->doesThisDeclarationHaveABody())
4629 return;
4630
4631 // For safety's sake, just ignore it if we don't have type source
4632 // information. This should never happen for non-implicit methods,
4633 // but...
4634 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
4635 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
4636 }
4637
4638 /// Check for invalid uses of an abstract type within a class definition.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXRecordDecl * RD)4639 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4640 CXXRecordDecl *RD) {
4641 for (auto *D : RD->decls()) {
4642 if (D->isImplicit()) continue;
4643
4644 // Methods and method templates.
4645 if (isa<CXXMethodDecl>(D)) {
4646 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
4647 } else if (isa<FunctionTemplateDecl>(D)) {
4648 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
4649 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
4650
4651 // Fields and static variables.
4652 } else if (isa<FieldDecl>(D)) {
4653 FieldDecl *FD = cast<FieldDecl>(D);
4654 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
4655 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
4656 } else if (isa<VarDecl>(D)) {
4657 VarDecl *VD = cast<VarDecl>(D);
4658 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
4659 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
4660
4661 // Nested classes and class templates.
4662 } else if (isa<CXXRecordDecl>(D)) {
4663 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
4664 } else if (isa<ClassTemplateDecl>(D)) {
4665 CheckAbstractClassUsage(Info,
4666 cast<ClassTemplateDecl>(D)->getTemplatedDecl());
4667 }
4668 }
4669 }
4670
ReferenceDllExportedMethods(Sema & S,CXXRecordDecl * Class)4671 static void ReferenceDllExportedMethods(Sema &S, CXXRecordDecl *Class) {
4672 Attr *ClassAttr = getDLLAttr(Class);
4673 if (!ClassAttr)
4674 return;
4675
4676 assert(ClassAttr->getKind() == attr::DLLExport);
4677
4678 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
4679
4680 if (TSK == TSK_ExplicitInstantiationDeclaration)
4681 // Don't go any further if this is just an explicit instantiation
4682 // declaration.
4683 return;
4684
4685 for (Decl *Member : Class->decls()) {
4686 auto *MD = dyn_cast<CXXMethodDecl>(Member);
4687 if (!MD)
4688 continue;
4689
4690 if (Member->getAttr<DLLExportAttr>()) {
4691 if (MD->isUserProvided()) {
4692 // Instantiate non-default class member functions ...
4693
4694 // .. except for certain kinds of template specializations.
4695 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
4696 continue;
4697
4698 S.MarkFunctionReferenced(Class->getLocation(), MD);
4699
4700 // The function will be passed to the consumer when its definition is
4701 // encountered.
4702 } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() ||
4703 MD->isCopyAssignmentOperator() ||
4704 MD->isMoveAssignmentOperator()) {
4705 // Synthesize and instantiate non-trivial implicit methods, explicitly
4706 // defaulted methods, and the copy and move assignment operators. The
4707 // latter are exported even if they are trivial, because the address of
4708 // an operator can be taken and should compare equal accross libraries.
4709 DiagnosticErrorTrap Trap(S.Diags);
4710 S.MarkFunctionReferenced(Class->getLocation(), MD);
4711 if (Trap.hasErrorOccurred()) {
4712 S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class)
4713 << Class->getName() << !S.getLangOpts().CPlusPlus11;
4714 break;
4715 }
4716
4717 // There is no later point when we will see the definition of this
4718 // function, so pass it to the consumer now.
4719 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
4720 }
4721 }
4722 }
4723 }
4724
4725 /// \brief Check class-level dllimport/dllexport attribute.
checkClassLevelDLLAttribute(CXXRecordDecl * Class)4726 void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
4727 Attr *ClassAttr = getDLLAttr(Class);
4728
4729 // MSVC inherits DLL attributes to partial class template specializations.
4730 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) {
4731 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
4732 if (Attr *TemplateAttr =
4733 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
4734 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
4735 A->setInherited(true);
4736 ClassAttr = A;
4737 }
4738 }
4739 }
4740
4741 if (!ClassAttr)
4742 return;
4743
4744 if (!Class->isExternallyVisible()) {
4745 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
4746 << Class << ClassAttr;
4747 return;
4748 }
4749
4750 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
4751 !ClassAttr->isInherited()) {
4752 // Diagnose dll attributes on members of class with dll attribute.
4753 for (Decl *Member : Class->decls()) {
4754 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
4755 continue;
4756 InheritableAttr *MemberAttr = getDLLAttr(Member);
4757 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
4758 continue;
4759
4760 Diag(MemberAttr->getLocation(),
4761 diag::err_attribute_dll_member_of_dll_class)
4762 << MemberAttr << ClassAttr;
4763 Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
4764 Member->setInvalidDecl();
4765 }
4766 }
4767
4768 if (Class->getDescribedClassTemplate())
4769 // Don't inherit dll attribute until the template is instantiated.
4770 return;
4771
4772 // The class is either imported or exported.
4773 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
4774 const bool ClassImported = !ClassExported;
4775
4776 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
4777
4778 // Ignore explicit dllexport on explicit class template instantiation declarations.
4779 if (ClassExported && !ClassAttr->isInherited() &&
4780 TSK == TSK_ExplicitInstantiationDeclaration) {
4781 Class->dropAttr<DLLExportAttr>();
4782 return;
4783 }
4784
4785 // Force declaration of implicit members so they can inherit the attribute.
4786 ForceDeclarationOfImplicitMembers(Class);
4787
4788 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
4789 // seem to be true in practice?
4790
4791 for (Decl *Member : Class->decls()) {
4792 VarDecl *VD = dyn_cast<VarDecl>(Member);
4793 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
4794
4795 // Only methods and static fields inherit the attributes.
4796 if (!VD && !MD)
4797 continue;
4798
4799 if (MD) {
4800 // Don't process deleted methods.
4801 if (MD->isDeleted())
4802 continue;
4803
4804 if (MD->isInlined()) {
4805 // MinGW does not import or export inline methods.
4806 if (!Context.getTargetInfo().getCXXABI().isMicrosoft())
4807 continue;
4808
4809 // MSVC versions before 2015 don't export the move assignment operators,
4810 // so don't attempt to import them if we have a definition.
4811 if (ClassImported && MD->isMoveAssignmentOperator() &&
4812 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
4813 continue;
4814 }
4815 }
4816
4817 if (!cast<NamedDecl>(Member)->isExternallyVisible())
4818 continue;
4819
4820 if (!getDLLAttr(Member)) {
4821 auto *NewAttr =
4822 cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
4823 NewAttr->setInherited(true);
4824 Member->addAttr(NewAttr);
4825 }
4826 }
4827
4828 if (ClassExported)
4829 DelayedDllExportClasses.push_back(Class);
4830 }
4831
4832 /// \brief Perform propagation of DLL attributes from a derived class to a
4833 /// templated base class for MS compatibility.
propagateDLLAttrToBaseClassTemplate(CXXRecordDecl * Class,Attr * ClassAttr,ClassTemplateSpecializationDecl * BaseTemplateSpec,SourceLocation BaseLoc)4834 void Sema::propagateDLLAttrToBaseClassTemplate(
4835 CXXRecordDecl *Class, Attr *ClassAttr,
4836 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
4837 if (getDLLAttr(
4838 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
4839 // If the base class template has a DLL attribute, don't try to change it.
4840 return;
4841 }
4842
4843 auto TSK = BaseTemplateSpec->getSpecializationKind();
4844 if (!getDLLAttr(BaseTemplateSpec) &&
4845 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
4846 TSK == TSK_ImplicitInstantiation)) {
4847 // The template hasn't been instantiated yet (or it has, but only as an
4848 // explicit instantiation declaration or implicit instantiation, which means
4849 // we haven't codegenned any members yet), so propagate the attribute.
4850 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
4851 NewAttr->setInherited(true);
4852 BaseTemplateSpec->addAttr(NewAttr);
4853
4854 // If the template is already instantiated, checkDLLAttributeRedeclaration()
4855 // needs to be run again to work see the new attribute. Otherwise this will
4856 // get run whenever the template is instantiated.
4857 if (TSK != TSK_Undeclared)
4858 checkClassLevelDLLAttribute(BaseTemplateSpec);
4859
4860 return;
4861 }
4862
4863 if (getDLLAttr(BaseTemplateSpec)) {
4864 // The template has already been specialized or instantiated with an
4865 // attribute, explicitly or through propagation. We should not try to change
4866 // it.
4867 return;
4868 }
4869
4870 // The template was previously instantiated or explicitly specialized without
4871 // a dll attribute, It's too late for us to add an attribute, so warn that
4872 // this is unsupported.
4873 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
4874 << BaseTemplateSpec->isExplicitSpecialization();
4875 Diag(ClassAttr->getLocation(), diag::note_attribute);
4876 if (BaseTemplateSpec->isExplicitSpecialization()) {
4877 Diag(BaseTemplateSpec->getLocation(),
4878 diag::note_template_class_explicit_specialization_was_here)
4879 << BaseTemplateSpec;
4880 } else {
4881 Diag(BaseTemplateSpec->getPointOfInstantiation(),
4882 diag::note_template_class_instantiation_was_here)
4883 << BaseTemplateSpec;
4884 }
4885 }
4886
4887 /// \brief Perform semantic checks on a class definition that has been
4888 /// completing, introducing implicitly-declared members, checking for
4889 /// abstract types, etc.
CheckCompletedCXXClass(CXXRecordDecl * Record)4890 void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
4891 if (!Record)
4892 return;
4893
4894 if (Record->isAbstract() && !Record->isInvalidDecl()) {
4895 AbstractUsageInfo Info(*this, Record);
4896 CheckAbstractClassUsage(Info, Record);
4897 }
4898
4899 // If this is not an aggregate type and has no user-declared constructor,
4900 // complain about any non-static data members of reference or const scalar
4901 // type, since they will never get initializers.
4902 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
4903 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
4904 !Record->isLambda()) {
4905 bool Complained = false;
4906 for (const auto *F : Record->fields()) {
4907 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
4908 continue;
4909
4910 if (F->getType()->isReferenceType() ||
4911 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
4912 if (!Complained) {
4913 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
4914 << Record->getTagKind() << Record;
4915 Complained = true;
4916 }
4917
4918 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4919 << F->getType()->isReferenceType()
4920 << F->getDeclName();
4921 }
4922 }
4923 }
4924
4925 if (Record->getIdentifier()) {
4926 // C++ [class.mem]p13:
4927 // If T is the name of a class, then each of the following shall have a
4928 // name different from T:
4929 // - every member of every anonymous union that is a member of class T.
4930 //
4931 // C++ [class.mem]p14:
4932 // In addition, if class T has a user-declared constructor (12.1), every
4933 // non-static data member of class T shall have a name different from T.
4934 DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4935 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4936 ++I) {
4937 NamedDecl *D = *I;
4938 if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4939 isa<IndirectFieldDecl>(D)) {
4940 Diag(D->getLocation(), diag::err_member_name_of_class)
4941 << D->getDeclName();
4942 break;
4943 }
4944 }
4945 }
4946
4947 // Warn if the class has virtual methods but non-virtual public destructor.
4948 if (Record->isPolymorphic() && !Record->isDependentType()) {
4949 CXXDestructorDecl *dtor = Record->getDestructor();
4950 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
4951 !Record->hasAttr<FinalAttr>())
4952 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4953 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4954 }
4955
4956 if (Record->isAbstract()) {
4957 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
4958 Diag(Record->getLocation(), diag::warn_abstract_final_class)
4959 << FA->isSpelledAsSealed();
4960 DiagnoseAbstractType(Record);
4961 }
4962 }
4963
4964 bool HasMethodWithOverrideControl = false,
4965 HasOverridingMethodWithoutOverrideControl = false;
4966 if (!Record->isDependentType()) {
4967 for (auto *M : Record->methods()) {
4968 // See if a method overloads virtual methods in a base
4969 // class without overriding any.
4970 if (!M->isStatic())
4971 DiagnoseHiddenVirtualMethods(M);
4972 if (M->hasAttr<OverrideAttr>())
4973 HasMethodWithOverrideControl = true;
4974 else if (M->size_overridden_methods() > 0)
4975 HasOverridingMethodWithoutOverrideControl = true;
4976 // Check whether the explicitly-defaulted special members are valid.
4977 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4978 CheckExplicitlyDefaultedSpecialMember(M);
4979
4980 // For an explicitly defaulted or deleted special member, we defer
4981 // determining triviality until the class is complete. That time is now!
4982 if (!M->isImplicit() && !M->isUserProvided()) {
4983 CXXSpecialMember CSM = getSpecialMember(M);
4984 if (CSM != CXXInvalid) {
4985 M->setTrivial(SpecialMemberIsTrivial(M, CSM));
4986
4987 // Inform the class that we've finished declaring this member.
4988 Record->finishedDefaultedOrDeletedMember(M);
4989 }
4990 }
4991 }
4992 }
4993
4994 if (HasMethodWithOverrideControl &&
4995 HasOverridingMethodWithoutOverrideControl) {
4996 // At least one method has the 'override' control declared.
4997 // Diagnose all other overridden methods which do not have 'override' specified on them.
4998 for (auto *M : Record->methods())
4999 DiagnoseAbsenceOfOverrideControl(M);
5000 }
5001
5002 // ms_struct is a request to use the same ABI rules as MSVC. Check
5003 // whether this class uses any C++ features that are implemented
5004 // completely differently in MSVC, and if so, emit a diagnostic.
5005 // That diagnostic defaults to an error, but we allow projects to
5006 // map it down to a warning (or ignore it). It's a fairly common
5007 // practice among users of the ms_struct pragma to mass-annotate
5008 // headers, sweeping up a bunch of types that the project doesn't
5009 // really rely on MSVC-compatible layout for. We must therefore
5010 // support "ms_struct except for C++ stuff" as a secondary ABI.
5011 if (Record->isMsStruct(Context) &&
5012 (Record->isPolymorphic() || Record->getNumBases())) {
5013 Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
5014 }
5015
5016 // Declare inheriting constructors. We do this eagerly here because:
5017 // - The standard requires an eager diagnostic for conflicting inheriting
5018 // constructors from different classes.
5019 // - The lazy declaration of the other implicit constructors is so as to not
5020 // waste space and performance on classes that are not meant to be
5021 // instantiated (e.g. meta-functions). This doesn't apply to classes that
5022 // have inheriting constructors.
5023 DeclareInheritingConstructors(Record);
5024
5025 checkClassLevelDLLAttribute(Record);
5026 }
5027
5028 /// Look up the special member function that would be called by a special
5029 /// member function for a subobject of class type.
5030 ///
5031 /// \param Class The class type of the subobject.
5032 /// \param CSM The kind of special member function.
5033 /// \param FieldQuals If the subobject is a field, its cv-qualifiers.
5034 /// \param ConstRHS True if this is a copy operation with a const object
5035 /// on its RHS, that is, if the argument to the outer special member
5036 /// function is 'const' and this is not a field marked 'mutable'.
lookupCallFromSpecialMember(Sema & S,CXXRecordDecl * Class,Sema::CXXSpecialMember CSM,unsigned FieldQuals,bool ConstRHS)5037 static Sema::SpecialMemberOverloadResult *lookupCallFromSpecialMember(
5038 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
5039 unsigned FieldQuals, bool ConstRHS) {
5040 unsigned LHSQuals = 0;
5041 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
5042 LHSQuals = FieldQuals;
5043
5044 unsigned RHSQuals = FieldQuals;
5045 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
5046 RHSQuals = 0;
5047 else if (ConstRHS)
5048 RHSQuals |= Qualifiers::Const;
5049
5050 return S.LookupSpecialMember(Class, CSM,
5051 RHSQuals & Qualifiers::Const,
5052 RHSQuals & Qualifiers::Volatile,
5053 false,
5054 LHSQuals & Qualifiers::Const,
5055 LHSQuals & Qualifiers::Volatile);
5056 }
5057
5058 /// Is the special member function which would be selected to perform the
5059 /// specified operation on the specified class type a constexpr constructor?
specialMemberIsConstexpr(Sema & S,CXXRecordDecl * ClassDecl,Sema::CXXSpecialMember CSM,unsigned Quals,bool ConstRHS)5060 static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
5061 Sema::CXXSpecialMember CSM,
5062 unsigned Quals, bool ConstRHS) {
5063 Sema::SpecialMemberOverloadResult *SMOR =
5064 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
5065 if (!SMOR || !SMOR->getMethod())
5066 // A constructor we wouldn't select can't be "involved in initializing"
5067 // anything.
5068 return true;
5069 return SMOR->getMethod()->isConstexpr();
5070 }
5071
5072 /// Determine whether the specified special member function would be constexpr
5073 /// if it were implicitly defined.
defaultedSpecialMemberIsConstexpr(Sema & S,CXXRecordDecl * ClassDecl,Sema::CXXSpecialMember CSM,bool ConstArg)5074 static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
5075 Sema::CXXSpecialMember CSM,
5076 bool ConstArg) {
5077 if (!S.getLangOpts().CPlusPlus11)
5078 return false;
5079
5080 // C++11 [dcl.constexpr]p4:
5081 // In the definition of a constexpr constructor [...]
5082 bool Ctor = true;
5083 switch (CSM) {
5084 case Sema::CXXDefaultConstructor:
5085 // Since default constructor lookup is essentially trivial (and cannot
5086 // involve, for instance, template instantiation), we compute whether a
5087 // defaulted default constructor is constexpr directly within CXXRecordDecl.
5088 //
5089 // This is important for performance; we need to know whether the default
5090 // constructor is constexpr to determine whether the type is a literal type.
5091 return ClassDecl->defaultedDefaultConstructorIsConstexpr();
5092
5093 case Sema::CXXCopyConstructor:
5094 case Sema::CXXMoveConstructor:
5095 // For copy or move constructors, we need to perform overload resolution.
5096 break;
5097
5098 case Sema::CXXCopyAssignment:
5099 case Sema::CXXMoveAssignment:
5100 if (!S.getLangOpts().CPlusPlus14)
5101 return false;
5102 // In C++1y, we need to perform overload resolution.
5103 Ctor = false;
5104 break;
5105
5106 case Sema::CXXDestructor:
5107 case Sema::CXXInvalid:
5108 return false;
5109 }
5110
5111 // -- if the class is a non-empty union, or for each non-empty anonymous
5112 // union member of a non-union class, exactly one non-static data member
5113 // shall be initialized; [DR1359]
5114 //
5115 // If we squint, this is guaranteed, since exactly one non-static data member
5116 // will be initialized (if the constructor isn't deleted), we just don't know
5117 // which one.
5118 if (Ctor && ClassDecl->isUnion())
5119 return true;
5120
5121 // -- the class shall not have any virtual base classes;
5122 if (Ctor && ClassDecl->getNumVBases())
5123 return false;
5124
5125 // C++1y [class.copy]p26:
5126 // -- [the class] is a literal type, and
5127 if (!Ctor && !ClassDecl->isLiteral())
5128 return false;
5129
5130 // -- every constructor involved in initializing [...] base class
5131 // sub-objects shall be a constexpr constructor;
5132 // -- the assignment operator selected to copy/move each direct base
5133 // class is a constexpr function, and
5134 for (const auto &B : ClassDecl->bases()) {
5135 const RecordType *BaseType = B.getType()->getAs<RecordType>();
5136 if (!BaseType) continue;
5137
5138 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5139 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg))
5140 return false;
5141 }
5142
5143 // -- every constructor involved in initializing non-static data members
5144 // [...] shall be a constexpr constructor;
5145 // -- every non-static data member and base class sub-object shall be
5146 // initialized
5147 // -- for each non-static data member of X that is of class type (or array
5148 // thereof), the assignment operator selected to copy/move that member is
5149 // a constexpr function
5150 for (const auto *F : ClassDecl->fields()) {
5151 if (F->isInvalidDecl())
5152 continue;
5153 QualType BaseType = S.Context.getBaseElementType(F->getType());
5154 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
5155 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5156 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
5157 BaseType.getCVRQualifiers(),
5158 ConstArg && !F->isMutable()))
5159 return false;
5160 }
5161 }
5162
5163 // All OK, it's constexpr!
5164 return true;
5165 }
5166
5167 static Sema::ImplicitExceptionSpecification
computeImplicitExceptionSpec(Sema & S,SourceLocation Loc,CXXMethodDecl * MD)5168 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
5169 switch (S.getSpecialMember(MD)) {
5170 case Sema::CXXDefaultConstructor:
5171 return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
5172 case Sema::CXXCopyConstructor:
5173 return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
5174 case Sema::CXXCopyAssignment:
5175 return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
5176 case Sema::CXXMoveConstructor:
5177 return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
5178 case Sema::CXXMoveAssignment:
5179 return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
5180 case Sema::CXXDestructor:
5181 return S.ComputeDefaultedDtorExceptionSpec(MD);
5182 case Sema::CXXInvalid:
5183 break;
5184 }
5185 assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
5186 "only special members have implicit exception specs");
5187 return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
5188 }
5189
getImplicitMethodEPI(Sema & S,CXXMethodDecl * MD)5190 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
5191 CXXMethodDecl *MD) {
5192 FunctionProtoType::ExtProtoInfo EPI;
5193
5194 // Build an exception specification pointing back at this member.
5195 EPI.ExceptionSpec.Type = EST_Unevaluated;
5196 EPI.ExceptionSpec.SourceDecl = MD;
5197
5198 // Set the calling convention to the default for C++ instance methods.
5199 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
5200 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
5201 /*IsCXXMethod=*/true));
5202 return EPI;
5203 }
5204
EvaluateImplicitExceptionSpec(SourceLocation Loc,CXXMethodDecl * MD)5205 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
5206 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
5207 if (FPT->getExceptionSpecType() != EST_Unevaluated)
5208 return;
5209
5210 // Evaluate the exception specification.
5211 auto ESI = computeImplicitExceptionSpec(*this, Loc, MD).getExceptionSpec();
5212
5213 // Update the type of the special member to use it.
5214 UpdateExceptionSpec(MD, ESI);
5215
5216 // A user-provided destructor can be defined outside the class. When that
5217 // happens, be sure to update the exception specification on both
5218 // declarations.
5219 const FunctionProtoType *CanonicalFPT =
5220 MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
5221 if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
5222 UpdateExceptionSpec(MD->getCanonicalDecl(), ESI);
5223 }
5224
CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl * MD)5225 void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
5226 CXXRecordDecl *RD = MD->getParent();
5227 CXXSpecialMember CSM = getSpecialMember(MD);
5228
5229 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
5230 "not an explicitly-defaulted special member");
5231
5232 // Whether this was the first-declared instance of the constructor.
5233 // This affects whether we implicitly add an exception spec and constexpr.
5234 bool First = MD == MD->getCanonicalDecl();
5235
5236 bool HadError = false;
5237
5238 // C++11 [dcl.fct.def.default]p1:
5239 // A function that is explicitly defaulted shall
5240 // -- be a special member function (checked elsewhere),
5241 // -- have the same type (except for ref-qualifiers, and except that a
5242 // copy operation can take a non-const reference) as an implicit
5243 // declaration, and
5244 // -- not have default arguments.
5245 unsigned ExpectedParams = 1;
5246 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
5247 ExpectedParams = 0;
5248 if (MD->getNumParams() != ExpectedParams) {
5249 // This also checks for default arguments: a copy or move constructor with a
5250 // default argument is classified as a default constructor, and assignment
5251 // operations and destructors can't have default arguments.
5252 Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
5253 << CSM << MD->getSourceRange();
5254 HadError = true;
5255 } else if (MD->isVariadic()) {
5256 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
5257 << CSM << MD->getSourceRange();
5258 HadError = true;
5259 }
5260
5261 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
5262
5263 bool CanHaveConstParam = false;
5264 if (CSM == CXXCopyConstructor)
5265 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
5266 else if (CSM == CXXCopyAssignment)
5267 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
5268
5269 QualType ReturnType = Context.VoidTy;
5270 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
5271 // Check for return type matching.
5272 ReturnType = Type->getReturnType();
5273 QualType ExpectedReturnType =
5274 Context.getLValueReferenceType(Context.getTypeDeclType(RD));
5275 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
5276 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
5277 << (CSM == CXXMoveAssignment) << ExpectedReturnType;
5278 HadError = true;
5279 }
5280
5281 // A defaulted special member cannot have cv-qualifiers.
5282 if (Type->getTypeQuals()) {
5283 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
5284 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
5285 HadError = true;
5286 }
5287 }
5288
5289 // Check for parameter type matching.
5290 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
5291 bool HasConstParam = false;
5292 if (ExpectedParams && ArgType->isReferenceType()) {
5293 // Argument must be reference to possibly-const T.
5294 QualType ReferentType = ArgType->getPointeeType();
5295 HasConstParam = ReferentType.isConstQualified();
5296
5297 if (ReferentType.isVolatileQualified()) {
5298 Diag(MD->getLocation(),
5299 diag::err_defaulted_special_member_volatile_param) << CSM;
5300 HadError = true;
5301 }
5302
5303 if (HasConstParam && !CanHaveConstParam) {
5304 if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
5305 Diag(MD->getLocation(),
5306 diag::err_defaulted_special_member_copy_const_param)
5307 << (CSM == CXXCopyAssignment);
5308 // FIXME: Explain why this special member can't be const.
5309 } else {
5310 Diag(MD->getLocation(),
5311 diag::err_defaulted_special_member_move_const_param)
5312 << (CSM == CXXMoveAssignment);
5313 }
5314 HadError = true;
5315 }
5316 } else if (ExpectedParams) {
5317 // A copy assignment operator can take its argument by value, but a
5318 // defaulted one cannot.
5319 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
5320 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
5321 HadError = true;
5322 }
5323
5324 // C++11 [dcl.fct.def.default]p2:
5325 // An explicitly-defaulted function may be declared constexpr only if it
5326 // would have been implicitly declared as constexpr,
5327 // Do not apply this rule to members of class templates, since core issue 1358
5328 // makes such functions always instantiate to constexpr functions. For
5329 // functions which cannot be constexpr (for non-constructors in C++11 and for
5330 // destructors in C++1y), this is checked elsewhere.
5331 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
5332 HasConstParam);
5333 if ((getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
5334 : isa<CXXConstructorDecl>(MD)) &&
5335 MD->isConstexpr() && !Constexpr &&
5336 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
5337 Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
5338 // FIXME: Explain why the special member can't be constexpr.
5339 HadError = true;
5340 }
5341
5342 // and may have an explicit exception-specification only if it is compatible
5343 // with the exception-specification on the implicit declaration.
5344 if (Type->hasExceptionSpec()) {
5345 // Delay the check if this is the first declaration of the special member,
5346 // since we may not have parsed some necessary in-class initializers yet.
5347 if (First) {
5348 // If the exception specification needs to be instantiated, do so now,
5349 // before we clobber it with an EST_Unevaluated specification below.
5350 if (Type->getExceptionSpecType() == EST_Uninstantiated) {
5351 InstantiateExceptionSpec(MD->getLocStart(), MD);
5352 Type = MD->getType()->getAs<FunctionProtoType>();
5353 }
5354 DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
5355 } else
5356 CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
5357 }
5358
5359 // If a function is explicitly defaulted on its first declaration,
5360 if (First) {
5361 // -- it is implicitly considered to be constexpr if the implicit
5362 // definition would be,
5363 MD->setConstexpr(Constexpr);
5364
5365 // -- it is implicitly considered to have the same exception-specification
5366 // as if it had been implicitly declared,
5367 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
5368 EPI.ExceptionSpec.Type = EST_Unevaluated;
5369 EPI.ExceptionSpec.SourceDecl = MD;
5370 MD->setType(Context.getFunctionType(ReturnType,
5371 llvm::makeArrayRef(&ArgType,
5372 ExpectedParams),
5373 EPI));
5374 }
5375
5376 if (ShouldDeleteSpecialMember(MD, CSM)) {
5377 if (First) {
5378 SetDeclDeleted(MD, MD->getLocation());
5379 } else {
5380 // C++11 [dcl.fct.def.default]p4:
5381 // [For a] user-provided explicitly-defaulted function [...] if such a
5382 // function is implicitly defined as deleted, the program is ill-formed.
5383 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
5384 ShouldDeleteSpecialMember(MD, CSM, /*Diagnose*/true);
5385 HadError = true;
5386 }
5387 }
5388
5389 if (HadError)
5390 MD->setInvalidDecl();
5391 }
5392
5393 /// Check whether the exception specification provided for an
5394 /// explicitly-defaulted special member matches the exception specification
5395 /// that would have been generated for an implicit special member, per
5396 /// C++11 [dcl.fct.def.default]p2.
CheckExplicitlyDefaultedMemberExceptionSpec(CXXMethodDecl * MD,const FunctionProtoType * SpecifiedType)5397 void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
5398 CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
5399 // If the exception specification was explicitly specified but hadn't been
5400 // parsed when the method was defaulted, grab it now.
5401 if (SpecifiedType->getExceptionSpecType() == EST_Unparsed)
5402 SpecifiedType =
5403 MD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
5404
5405 // Compute the implicit exception specification.
5406 CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false,
5407 /*IsCXXMethod=*/true);
5408 FunctionProtoType::ExtProtoInfo EPI(CC);
5409 EPI.ExceptionSpec = computeImplicitExceptionSpec(*this, MD->getLocation(), MD)
5410 .getExceptionSpec();
5411 const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
5412 Context.getFunctionType(Context.VoidTy, None, EPI));
5413
5414 // Ensure that it matches.
5415 CheckEquivalentExceptionSpec(
5416 PDiag(diag::err_incorrect_defaulted_exception_spec)
5417 << getSpecialMember(MD), PDiag(),
5418 ImplicitType, SourceLocation(),
5419 SpecifiedType, MD->getLocation());
5420 }
5421
CheckDelayedMemberExceptionSpecs()5422 void Sema::CheckDelayedMemberExceptionSpecs() {
5423 decltype(DelayedExceptionSpecChecks) Checks;
5424 decltype(DelayedDefaultedMemberExceptionSpecs) Specs;
5425
5426 std::swap(Checks, DelayedExceptionSpecChecks);
5427 std::swap(Specs, DelayedDefaultedMemberExceptionSpecs);
5428
5429 // Perform any deferred checking of exception specifications for virtual
5430 // destructors.
5431 for (auto &Check : Checks)
5432 CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
5433
5434 // Check that any explicitly-defaulted methods have exception specifications
5435 // compatible with their implicit exception specifications.
5436 for (auto &Spec : Specs)
5437 CheckExplicitlyDefaultedMemberExceptionSpec(Spec.first, Spec.second);
5438 }
5439
5440 namespace {
5441 struct SpecialMemberDeletionInfo {
5442 Sema &S;
5443 CXXMethodDecl *MD;
5444 Sema::CXXSpecialMember CSM;
5445 bool Diagnose;
5446
5447 // Properties of the special member, computed for convenience.
5448 bool IsConstructor, IsAssignment, IsMove, ConstArg;
5449 SourceLocation Loc;
5450
5451 bool AllFieldsAreConst;
5452
SpecialMemberDeletionInfo__anonb9d573a20711::SpecialMemberDeletionInfo5453 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
5454 Sema::CXXSpecialMember CSM, bool Diagnose)
5455 : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
5456 IsConstructor(false), IsAssignment(false), IsMove(false),
5457 ConstArg(false), Loc(MD->getLocation()),
5458 AllFieldsAreConst(true) {
5459 switch (CSM) {
5460 case Sema::CXXDefaultConstructor:
5461 case Sema::CXXCopyConstructor:
5462 IsConstructor = true;
5463 break;
5464 case Sema::CXXMoveConstructor:
5465 IsConstructor = true;
5466 IsMove = true;
5467 break;
5468 case Sema::CXXCopyAssignment:
5469 IsAssignment = true;
5470 break;
5471 case Sema::CXXMoveAssignment:
5472 IsAssignment = true;
5473 IsMove = true;
5474 break;
5475 case Sema::CXXDestructor:
5476 break;
5477 case Sema::CXXInvalid:
5478 llvm_unreachable("invalid special member kind");
5479 }
5480
5481 if (MD->getNumParams()) {
5482 if (const ReferenceType *RT =
5483 MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
5484 ConstArg = RT->getPointeeType().isConstQualified();
5485 }
5486 }
5487
inUnion__anonb9d573a20711::SpecialMemberDeletionInfo5488 bool inUnion() const { return MD->getParent()->isUnion(); }
5489
5490 /// Look up the corresponding special member in the given class.
lookupIn__anonb9d573a20711::SpecialMemberDeletionInfo5491 Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
5492 unsigned Quals, bool IsMutable) {
5493 return lookupCallFromSpecialMember(S, Class, CSM, Quals,
5494 ConstArg && !IsMutable);
5495 }
5496
5497 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
5498
5499 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
5500 bool shouldDeleteForField(FieldDecl *FD);
5501 bool shouldDeleteForAllConstMembers();
5502
5503 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
5504 unsigned Quals);
5505 bool shouldDeleteForSubobjectCall(Subobject Subobj,
5506 Sema::SpecialMemberOverloadResult *SMOR,
5507 bool IsDtorCallInCtor);
5508
5509 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
5510 };
5511 }
5512
5513 /// Is the given special member inaccessible when used on the given
5514 /// sub-object.
isAccessible(Subobject Subobj,CXXMethodDecl * target)5515 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
5516 CXXMethodDecl *target) {
5517 /// If we're operating on a base class, the object type is the
5518 /// type of this special member.
5519 QualType objectTy;
5520 AccessSpecifier access = target->getAccess();
5521 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
5522 objectTy = S.Context.getTypeDeclType(MD->getParent());
5523 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
5524
5525 // If we're operating on a field, the object type is the type of the field.
5526 } else {
5527 objectTy = S.Context.getTypeDeclType(target->getParent());
5528 }
5529
5530 return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
5531 }
5532
5533 /// Check whether we should delete a special member due to the implicit
5534 /// definition containing a call to a special member of a subobject.
shouldDeleteForSubobjectCall(Subobject Subobj,Sema::SpecialMemberOverloadResult * SMOR,bool IsDtorCallInCtor)5535 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
5536 Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
5537 bool IsDtorCallInCtor) {
5538 CXXMethodDecl *Decl = SMOR->getMethod();
5539 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
5540
5541 int DiagKind = -1;
5542
5543 if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
5544 DiagKind = !Decl ? 0 : 1;
5545 else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5546 DiagKind = 2;
5547 else if (!isAccessible(Subobj, Decl))
5548 DiagKind = 3;
5549 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
5550 !Decl->isTrivial()) {
5551 // A member of a union must have a trivial corresponding special member.
5552 // As a weird special case, a destructor call from a union's constructor
5553 // must be accessible and non-deleted, but need not be trivial. Such a
5554 // destructor is never actually called, but is semantically checked as
5555 // if it were.
5556 DiagKind = 4;
5557 }
5558
5559 if (DiagKind == -1)
5560 return false;
5561
5562 if (Diagnose) {
5563 if (Field) {
5564 S.Diag(Field->getLocation(),
5565 diag::note_deleted_special_member_class_subobject)
5566 << CSM << MD->getParent() << /*IsField*/true
5567 << Field << DiagKind << IsDtorCallInCtor;
5568 } else {
5569 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
5570 S.Diag(Base->getLocStart(),
5571 diag::note_deleted_special_member_class_subobject)
5572 << CSM << MD->getParent() << /*IsField*/false
5573 << Base->getType() << DiagKind << IsDtorCallInCtor;
5574 }
5575
5576 if (DiagKind == 1)
5577 S.NoteDeletedFunction(Decl);
5578 // FIXME: Explain inaccessibility if DiagKind == 3.
5579 }
5580
5581 return true;
5582 }
5583
5584 /// Check whether we should delete a special member function due to having a
5585 /// direct or virtual base class or non-static data member of class type M.
shouldDeleteForClassSubobject(CXXRecordDecl * Class,Subobject Subobj,unsigned Quals)5586 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
5587 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
5588 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
5589 bool IsMutable = Field && Field->isMutable();
5590
5591 // C++11 [class.ctor]p5:
5592 // -- any direct or virtual base class, or non-static data member with no
5593 // brace-or-equal-initializer, has class type M (or array thereof) and
5594 // either M has no default constructor or overload resolution as applied
5595 // to M's default constructor results in an ambiguity or in a function
5596 // that is deleted or inaccessible
5597 // C++11 [class.copy]p11, C++11 [class.copy]p23:
5598 // -- a direct or virtual base class B that cannot be copied/moved because
5599 // overload resolution, as applied to B's corresponding special member,
5600 // results in an ambiguity or a function that is deleted or inaccessible
5601 // from the defaulted special member
5602 // C++11 [class.dtor]p5:
5603 // -- any direct or virtual base class [...] has a type with a destructor
5604 // that is deleted or inaccessible
5605 if (!(CSM == Sema::CXXDefaultConstructor &&
5606 Field && Field->hasInClassInitializer()) &&
5607 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
5608 false))
5609 return true;
5610
5611 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
5612 // -- any direct or virtual base class or non-static data member has a
5613 // type with a destructor that is deleted or inaccessible
5614 if (IsConstructor) {
5615 Sema::SpecialMemberOverloadResult *SMOR =
5616 S.LookupSpecialMember(Class, Sema::CXXDestructor,
5617 false, false, false, false, false);
5618 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
5619 return true;
5620 }
5621
5622 return false;
5623 }
5624
5625 /// Check whether we should delete a special member function due to the class
5626 /// having a particular direct or virtual base class.
shouldDeleteForBase(CXXBaseSpecifier * Base)5627 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
5628 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
5629 return shouldDeleteForClassSubobject(BaseClass, Base, 0);
5630 }
5631
5632 /// Check whether we should delete a special member function due to the class
5633 /// having a particular non-static data member.
shouldDeleteForField(FieldDecl * FD)5634 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
5635 QualType FieldType = S.Context.getBaseElementType(FD->getType());
5636 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
5637
5638 if (CSM == Sema::CXXDefaultConstructor) {
5639 // For a default constructor, all references must be initialized in-class
5640 // and, if a union, it must have a non-const member.
5641 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
5642 if (Diagnose)
5643 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
5644 << MD->getParent() << FD << FieldType << /*Reference*/0;
5645 return true;
5646 }
5647 // C++11 [class.ctor]p5: any non-variant non-static data member of
5648 // const-qualified type (or array thereof) with no
5649 // brace-or-equal-initializer does not have a user-provided default
5650 // constructor.
5651 if (!inUnion() && FieldType.isConstQualified() &&
5652 !FD->hasInClassInitializer() &&
5653 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
5654 if (Diagnose)
5655 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
5656 << MD->getParent() << FD << FD->getType() << /*Const*/1;
5657 return true;
5658 }
5659
5660 if (inUnion() && !FieldType.isConstQualified())
5661 AllFieldsAreConst = false;
5662 } else if (CSM == Sema::CXXCopyConstructor) {
5663 // For a copy constructor, data members must not be of rvalue reference
5664 // type.
5665 if (FieldType->isRValueReferenceType()) {
5666 if (Diagnose)
5667 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
5668 << MD->getParent() << FD << FieldType;
5669 return true;
5670 }
5671 } else if (IsAssignment) {
5672 // For an assignment operator, data members must not be of reference type.
5673 if (FieldType->isReferenceType()) {
5674 if (Diagnose)
5675 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
5676 << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
5677 return true;
5678 }
5679 if (!FieldRecord && FieldType.isConstQualified()) {
5680 // C++11 [class.copy]p23:
5681 // -- a non-static data member of const non-class type (or array thereof)
5682 if (Diagnose)
5683 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
5684 << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
5685 return true;
5686 }
5687 }
5688
5689 if (FieldRecord) {
5690 // Some additional restrictions exist on the variant members.
5691 if (!inUnion() && FieldRecord->isUnion() &&
5692 FieldRecord->isAnonymousStructOrUnion()) {
5693 bool AllVariantFieldsAreConst = true;
5694
5695 // FIXME: Handle anonymous unions declared within anonymous unions.
5696 for (auto *UI : FieldRecord->fields()) {
5697 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
5698
5699 if (!UnionFieldType.isConstQualified())
5700 AllVariantFieldsAreConst = false;
5701
5702 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
5703 if (UnionFieldRecord &&
5704 shouldDeleteForClassSubobject(UnionFieldRecord, UI,
5705 UnionFieldType.getCVRQualifiers()))
5706 return true;
5707 }
5708
5709 // At least one member in each anonymous union must be non-const
5710 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
5711 !FieldRecord->field_empty()) {
5712 if (Diagnose)
5713 S.Diag(FieldRecord->getLocation(),
5714 diag::note_deleted_default_ctor_all_const)
5715 << MD->getParent() << /*anonymous union*/1;
5716 return true;
5717 }
5718
5719 // Don't check the implicit member of the anonymous union type.
5720 // This is technically non-conformant, but sanity demands it.
5721 return false;
5722 }
5723
5724 if (shouldDeleteForClassSubobject(FieldRecord, FD,
5725 FieldType.getCVRQualifiers()))
5726 return true;
5727 }
5728
5729 return false;
5730 }
5731
5732 /// C++11 [class.ctor] p5:
5733 /// A defaulted default constructor for a class X is defined as deleted if
5734 /// X is a union and all of its variant members are of const-qualified type.
shouldDeleteForAllConstMembers()5735 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
5736 // This is a silly definition, because it gives an empty union a deleted
5737 // default constructor. Don't do that.
5738 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
5739 !MD->getParent()->field_empty()) {
5740 if (Diagnose)
5741 S.Diag(MD->getParent()->getLocation(),
5742 diag::note_deleted_default_ctor_all_const)
5743 << MD->getParent() << /*not anonymous union*/0;
5744 return true;
5745 }
5746 return false;
5747 }
5748
5749 /// Determine whether a defaulted special member function should be defined as
5750 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
5751 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
ShouldDeleteSpecialMember(CXXMethodDecl * MD,CXXSpecialMember CSM,bool Diagnose)5752 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
5753 bool Diagnose) {
5754 if (MD->isInvalidDecl())
5755 return false;
5756 CXXRecordDecl *RD = MD->getParent();
5757 assert(!RD->isDependentType() && "do deletion after instantiation");
5758 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
5759 return false;
5760
5761 // C++11 [expr.lambda.prim]p19:
5762 // The closure type associated with a lambda-expression has a
5763 // deleted (8.4.3) default constructor and a deleted copy
5764 // assignment operator.
5765 if (RD->isLambda() &&
5766 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
5767 if (Diagnose)
5768 Diag(RD->getLocation(), diag::note_lambda_decl);
5769 return true;
5770 }
5771
5772 // For an anonymous struct or union, the copy and assignment special members
5773 // will never be used, so skip the check. For an anonymous union declared at
5774 // namespace scope, the constructor and destructor are used.
5775 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
5776 RD->isAnonymousStructOrUnion())
5777 return false;
5778
5779 // C++11 [class.copy]p7, p18:
5780 // If the class definition declares a move constructor or move assignment
5781 // operator, an implicitly declared copy constructor or copy assignment
5782 // operator is defined as deleted.
5783 if (MD->isImplicit() &&
5784 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
5785 CXXMethodDecl *UserDeclaredMove = nullptr;
5786
5787 // In Microsoft mode, a user-declared move only causes the deletion of the
5788 // corresponding copy operation, not both copy operations.
5789 if (RD->hasUserDeclaredMoveConstructor() &&
5790 (!getLangOpts().MSVCCompat || CSM == CXXCopyConstructor)) {
5791 if (!Diagnose) return true;
5792
5793 // Find any user-declared move constructor.
5794 for (auto *I : RD->ctors()) {
5795 if (I->isMoveConstructor()) {
5796 UserDeclaredMove = I;
5797 break;
5798 }
5799 }
5800 assert(UserDeclaredMove);
5801 } else if (RD->hasUserDeclaredMoveAssignment() &&
5802 (!getLangOpts().MSVCCompat || CSM == CXXCopyAssignment)) {
5803 if (!Diagnose) return true;
5804
5805 // Find any user-declared move assignment operator.
5806 for (auto *I : RD->methods()) {
5807 if (I->isMoveAssignmentOperator()) {
5808 UserDeclaredMove = I;
5809 break;
5810 }
5811 }
5812 assert(UserDeclaredMove);
5813 }
5814
5815 if (UserDeclaredMove) {
5816 Diag(UserDeclaredMove->getLocation(),
5817 diag::note_deleted_copy_user_declared_move)
5818 << (CSM == CXXCopyAssignment) << RD
5819 << UserDeclaredMove->isMoveAssignmentOperator();
5820 return true;
5821 }
5822 }
5823
5824 // Do access control from the special member function
5825 ContextRAII MethodContext(*this, MD);
5826
5827 // C++11 [class.dtor]p5:
5828 // -- for a virtual destructor, lookup of the non-array deallocation function
5829 // results in an ambiguity or in a function that is deleted or inaccessible
5830 if (CSM == CXXDestructor && MD->isVirtual()) {
5831 FunctionDecl *OperatorDelete = nullptr;
5832 DeclarationName Name =
5833 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5834 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
5835 OperatorDelete, false)) {
5836 if (Diagnose)
5837 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
5838 return true;
5839 }
5840 }
5841
5842 SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
5843
5844 for (auto &BI : RD->bases())
5845 if (!BI.isVirtual() &&
5846 SMI.shouldDeleteForBase(&BI))
5847 return true;
5848
5849 // Per DR1611, do not consider virtual bases of constructors of abstract
5850 // classes, since we are not going to construct them.
5851 if (!RD->isAbstract() || !SMI.IsConstructor) {
5852 for (auto &BI : RD->vbases())
5853 if (SMI.shouldDeleteForBase(&BI))
5854 return true;
5855 }
5856
5857 for (auto *FI : RD->fields())
5858 if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
5859 SMI.shouldDeleteForField(FI))
5860 return true;
5861
5862 if (SMI.shouldDeleteForAllConstMembers())
5863 return true;
5864
5865 if (getLangOpts().CUDA) {
5866 // We should delete the special member in CUDA mode if target inference
5867 // failed.
5868 return inferCUDATargetForImplicitSpecialMember(RD, CSM, MD, SMI.ConstArg,
5869 Diagnose);
5870 }
5871
5872 return false;
5873 }
5874
5875 /// Perform lookup for a special member of the specified kind, and determine
5876 /// whether it is trivial. If the triviality can be determined without the
5877 /// lookup, skip it. This is intended for use when determining whether a
5878 /// special member of a containing object is trivial, and thus does not ever
5879 /// perform overload resolution for default constructors.
5880 ///
5881 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the
5882 /// member that was most likely to be intended to be trivial, if any.
findTrivialSpecialMember(Sema & S,CXXRecordDecl * RD,Sema::CXXSpecialMember CSM,unsigned Quals,bool ConstRHS,CXXMethodDecl ** Selected)5883 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
5884 Sema::CXXSpecialMember CSM, unsigned Quals,
5885 bool ConstRHS, CXXMethodDecl **Selected) {
5886 if (Selected)
5887 *Selected = nullptr;
5888
5889 switch (CSM) {
5890 case Sema::CXXInvalid:
5891 llvm_unreachable("not a special member");
5892
5893 case Sema::CXXDefaultConstructor:
5894 // C++11 [class.ctor]p5:
5895 // A default constructor is trivial if:
5896 // - all the [direct subobjects] have trivial default constructors
5897 //
5898 // Note, no overload resolution is performed in this case.
5899 if (RD->hasTrivialDefaultConstructor())
5900 return true;
5901
5902 if (Selected) {
5903 // If there's a default constructor which could have been trivial, dig it
5904 // out. Otherwise, if there's any user-provided default constructor, point
5905 // to that as an example of why there's not a trivial one.
5906 CXXConstructorDecl *DefCtor = nullptr;
5907 if (RD->needsImplicitDefaultConstructor())
5908 S.DeclareImplicitDefaultConstructor(RD);
5909 for (auto *CI : RD->ctors()) {
5910 if (!CI->isDefaultConstructor())
5911 continue;
5912 DefCtor = CI;
5913 if (!DefCtor->isUserProvided())
5914 break;
5915 }
5916
5917 *Selected = DefCtor;
5918 }
5919
5920 return false;
5921
5922 case Sema::CXXDestructor:
5923 // C++11 [class.dtor]p5:
5924 // A destructor is trivial if:
5925 // - all the direct [subobjects] have trivial destructors
5926 if (RD->hasTrivialDestructor())
5927 return true;
5928
5929 if (Selected) {
5930 if (RD->needsImplicitDestructor())
5931 S.DeclareImplicitDestructor(RD);
5932 *Selected = RD->getDestructor();
5933 }
5934
5935 return false;
5936
5937 case Sema::CXXCopyConstructor:
5938 // C++11 [class.copy]p12:
5939 // A copy constructor is trivial if:
5940 // - the constructor selected to copy each direct [subobject] is trivial
5941 if (RD->hasTrivialCopyConstructor()) {
5942 if (Quals == Qualifiers::Const)
5943 // We must either select the trivial copy constructor or reach an
5944 // ambiguity; no need to actually perform overload resolution.
5945 return true;
5946 } else if (!Selected) {
5947 return false;
5948 }
5949 // In C++98, we are not supposed to perform overload resolution here, but we
5950 // treat that as a language defect, as suggested on cxx-abi-dev, to treat
5951 // cases like B as having a non-trivial copy constructor:
5952 // struct A { template<typename T> A(T&); };
5953 // struct B { mutable A a; };
5954 goto NeedOverloadResolution;
5955
5956 case Sema::CXXCopyAssignment:
5957 // C++11 [class.copy]p25:
5958 // A copy assignment operator is trivial if:
5959 // - the assignment operator selected to copy each direct [subobject] is
5960 // trivial
5961 if (RD->hasTrivialCopyAssignment()) {
5962 if (Quals == Qualifiers::Const)
5963 return true;
5964 } else if (!Selected) {
5965 return false;
5966 }
5967 // In C++98, we are not supposed to perform overload resolution here, but we
5968 // treat that as a language defect.
5969 goto NeedOverloadResolution;
5970
5971 case Sema::CXXMoveConstructor:
5972 case Sema::CXXMoveAssignment:
5973 NeedOverloadResolution:
5974 Sema::SpecialMemberOverloadResult *SMOR =
5975 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
5976
5977 // The standard doesn't describe how to behave if the lookup is ambiguous.
5978 // We treat it as not making the member non-trivial, just like the standard
5979 // mandates for the default constructor. This should rarely matter, because
5980 // the member will also be deleted.
5981 if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5982 return true;
5983
5984 if (!SMOR->getMethod()) {
5985 assert(SMOR->getKind() ==
5986 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5987 return false;
5988 }
5989
5990 // We deliberately don't check if we found a deleted special member. We're
5991 // not supposed to!
5992 if (Selected)
5993 *Selected = SMOR->getMethod();
5994 return SMOR->getMethod()->isTrivial();
5995 }
5996
5997 llvm_unreachable("unknown special method kind");
5998 }
5999
findUserDeclaredCtor(CXXRecordDecl * RD)6000 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
6001 for (auto *CI : RD->ctors())
6002 if (!CI->isImplicit())
6003 return CI;
6004
6005 // Look for constructor templates.
6006 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
6007 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
6008 if (CXXConstructorDecl *CD =
6009 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
6010 return CD;
6011 }
6012
6013 return nullptr;
6014 }
6015
6016 /// The kind of subobject we are checking for triviality. The values of this
6017 /// enumeration are used in diagnostics.
6018 enum TrivialSubobjectKind {
6019 /// The subobject is a base class.
6020 TSK_BaseClass,
6021 /// The subobject is a non-static data member.
6022 TSK_Field,
6023 /// The object is actually the complete object.
6024 TSK_CompleteObject
6025 };
6026
6027 /// Check whether the special member selected for a given type would be trivial.
checkTrivialSubobjectCall(Sema & S,SourceLocation SubobjLoc,QualType SubType,bool ConstRHS,Sema::CXXSpecialMember CSM,TrivialSubobjectKind Kind,bool Diagnose)6028 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
6029 QualType SubType, bool ConstRHS,
6030 Sema::CXXSpecialMember CSM,
6031 TrivialSubobjectKind Kind,
6032 bool Diagnose) {
6033 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
6034 if (!SubRD)
6035 return true;
6036
6037 CXXMethodDecl *Selected;
6038 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
6039 ConstRHS, Diagnose ? &Selected : nullptr))
6040 return true;
6041
6042 if (Diagnose) {
6043 if (ConstRHS)
6044 SubType.addConst();
6045
6046 if (!Selected && CSM == Sema::CXXDefaultConstructor) {
6047 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
6048 << Kind << SubType.getUnqualifiedType();
6049 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
6050 S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
6051 } else if (!Selected)
6052 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
6053 << Kind << SubType.getUnqualifiedType() << CSM << SubType;
6054 else if (Selected->isUserProvided()) {
6055 if (Kind == TSK_CompleteObject)
6056 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
6057 << Kind << SubType.getUnqualifiedType() << CSM;
6058 else {
6059 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
6060 << Kind << SubType.getUnqualifiedType() << CSM;
6061 S.Diag(Selected->getLocation(), diag::note_declared_at);
6062 }
6063 } else {
6064 if (Kind != TSK_CompleteObject)
6065 S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
6066 << Kind << SubType.getUnqualifiedType() << CSM;
6067
6068 // Explain why the defaulted or deleted special member isn't trivial.
6069 S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
6070 }
6071 }
6072
6073 return false;
6074 }
6075
6076 /// Check whether the members of a class type allow a special member to be
6077 /// trivial.
checkTrivialClassMembers(Sema & S,CXXRecordDecl * RD,Sema::CXXSpecialMember CSM,bool ConstArg,bool Diagnose)6078 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
6079 Sema::CXXSpecialMember CSM,
6080 bool ConstArg, bool Diagnose) {
6081 for (const auto *FI : RD->fields()) {
6082 if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
6083 continue;
6084
6085 QualType FieldType = S.Context.getBaseElementType(FI->getType());
6086
6087 // Pretend anonymous struct or union members are members of this class.
6088 if (FI->isAnonymousStructOrUnion()) {
6089 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
6090 CSM, ConstArg, Diagnose))
6091 return false;
6092 continue;
6093 }
6094
6095 // C++11 [class.ctor]p5:
6096 // A default constructor is trivial if [...]
6097 // -- no non-static data member of its class has a
6098 // brace-or-equal-initializer
6099 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
6100 if (Diagnose)
6101 S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI;
6102 return false;
6103 }
6104
6105 // Objective C ARC 4.3.5:
6106 // [...] nontrivally ownership-qualified types are [...] not trivially
6107 // default constructible, copy constructible, move constructible, copy
6108 // assignable, move assignable, or destructible [...]
6109 if (S.getLangOpts().ObjCAutoRefCount &&
6110 FieldType.hasNonTrivialObjCLifetime()) {
6111 if (Diagnose)
6112 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
6113 << RD << FieldType.getObjCLifetime();
6114 return false;
6115 }
6116
6117 bool ConstRHS = ConstArg && !FI->isMutable();
6118 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
6119 CSM, TSK_Field, Diagnose))
6120 return false;
6121 }
6122
6123 return true;
6124 }
6125
6126 /// Diagnose why the specified class does not have a trivial special member of
6127 /// the given kind.
DiagnoseNontrivial(const CXXRecordDecl * RD,CXXSpecialMember CSM)6128 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
6129 QualType Ty = Context.getRecordType(RD);
6130
6131 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
6132 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
6133 TSK_CompleteObject, /*Diagnose*/true);
6134 }
6135
6136 /// Determine whether a defaulted or deleted special member function is trivial,
6137 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
6138 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
SpecialMemberIsTrivial(CXXMethodDecl * MD,CXXSpecialMember CSM,bool Diagnose)6139 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
6140 bool Diagnose) {
6141 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
6142
6143 CXXRecordDecl *RD = MD->getParent();
6144
6145 bool ConstArg = false;
6146
6147 // C++11 [class.copy]p12, p25: [DR1593]
6148 // A [special member] is trivial if [...] its parameter-type-list is
6149 // equivalent to the parameter-type-list of an implicit declaration [...]
6150 switch (CSM) {
6151 case CXXDefaultConstructor:
6152 case CXXDestructor:
6153 // Trivial default constructors and destructors cannot have parameters.
6154 break;
6155
6156 case CXXCopyConstructor:
6157 case CXXCopyAssignment: {
6158 // Trivial copy operations always have const, non-volatile parameter types.
6159 ConstArg = true;
6160 const ParmVarDecl *Param0 = MD->getParamDecl(0);
6161 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
6162 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
6163 if (Diagnose)
6164 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
6165 << Param0->getSourceRange() << Param0->getType()
6166 << Context.getLValueReferenceType(
6167 Context.getRecordType(RD).withConst());
6168 return false;
6169 }
6170 break;
6171 }
6172
6173 case CXXMoveConstructor:
6174 case CXXMoveAssignment: {
6175 // Trivial move operations always have non-cv-qualified parameters.
6176 const ParmVarDecl *Param0 = MD->getParamDecl(0);
6177 const RValueReferenceType *RT =
6178 Param0->getType()->getAs<RValueReferenceType>();
6179 if (!RT || RT->getPointeeType().getCVRQualifiers()) {
6180 if (Diagnose)
6181 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
6182 << Param0->getSourceRange() << Param0->getType()
6183 << Context.getRValueReferenceType(Context.getRecordType(RD));
6184 return false;
6185 }
6186 break;
6187 }
6188
6189 case CXXInvalid:
6190 llvm_unreachable("not a special member");
6191 }
6192
6193 if (MD->getMinRequiredArguments() < MD->getNumParams()) {
6194 if (Diagnose)
6195 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
6196 diag::note_nontrivial_default_arg)
6197 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
6198 return false;
6199 }
6200 if (MD->isVariadic()) {
6201 if (Diagnose)
6202 Diag(MD->getLocation(), diag::note_nontrivial_variadic);
6203 return false;
6204 }
6205
6206 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
6207 // A copy/move [constructor or assignment operator] is trivial if
6208 // -- the [member] selected to copy/move each direct base class subobject
6209 // is trivial
6210 //
6211 // C++11 [class.copy]p12, C++11 [class.copy]p25:
6212 // A [default constructor or destructor] is trivial if
6213 // -- all the direct base classes have trivial [default constructors or
6214 // destructors]
6215 for (const auto &BI : RD->bases())
6216 if (!checkTrivialSubobjectCall(*this, BI.getLocStart(), BI.getType(),
6217 ConstArg, CSM, TSK_BaseClass, Diagnose))
6218 return false;
6219
6220 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
6221 // A copy/move [constructor or assignment operator] for a class X is
6222 // trivial if
6223 // -- for each non-static data member of X that is of class type (or array
6224 // thereof), the constructor selected to copy/move that member is
6225 // trivial
6226 //
6227 // C++11 [class.copy]p12, C++11 [class.copy]p25:
6228 // A [default constructor or destructor] is trivial if
6229 // -- for all of the non-static data members of its class that are of class
6230 // type (or array thereof), each such class has a trivial [default
6231 // constructor or destructor]
6232 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
6233 return false;
6234
6235 // C++11 [class.dtor]p5:
6236 // A destructor is trivial if [...]
6237 // -- the destructor is not virtual
6238 if (CSM == CXXDestructor && MD->isVirtual()) {
6239 if (Diagnose)
6240 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
6241 return false;
6242 }
6243
6244 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
6245 // A [special member] for class X is trivial if [...]
6246 // -- class X has no virtual functions and no virtual base classes
6247 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
6248 if (!Diagnose)
6249 return false;
6250
6251 if (RD->getNumVBases()) {
6252 // Check for virtual bases. We already know that the corresponding
6253 // member in all bases is trivial, so vbases must all be direct.
6254 CXXBaseSpecifier &BS = *RD->vbases_begin();
6255 assert(BS.isVirtual());
6256 Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
6257 return false;
6258 }
6259
6260 // Must have a virtual method.
6261 for (const auto *MI : RD->methods()) {
6262 if (MI->isVirtual()) {
6263 SourceLocation MLoc = MI->getLocStart();
6264 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
6265 return false;
6266 }
6267 }
6268
6269 llvm_unreachable("dynamic class with no vbases and no virtual functions");
6270 }
6271
6272 // Looks like it's trivial!
6273 return true;
6274 }
6275
6276 namespace {
6277 struct FindHiddenVirtualMethod {
6278 Sema *S;
6279 CXXMethodDecl *Method;
6280 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
6281 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
6282
6283 private:
6284 /// Check whether any most overriden method from MD in Methods
CheckMostOverridenMethods__anonb9d573a20811::FindHiddenVirtualMethod6285 static bool CheckMostOverridenMethods(
6286 const CXXMethodDecl *MD,
6287 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
6288 if (MD->size_overridden_methods() == 0)
6289 return Methods.count(MD->getCanonicalDecl());
6290 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
6291 E = MD->end_overridden_methods();
6292 I != E; ++I)
6293 if (CheckMostOverridenMethods(*I, Methods))
6294 return true;
6295 return false;
6296 }
6297
6298 public:
6299 /// Member lookup function that determines whether a given C++
6300 /// method overloads virtual methods in a base class without overriding any,
6301 /// to be used with CXXRecordDecl::lookupInBases().
operator ()__anonb9d573a20811::FindHiddenVirtualMethod6302 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
6303 RecordDecl *BaseRecord =
6304 Specifier->getType()->getAs<RecordType>()->getDecl();
6305
6306 DeclarationName Name = Method->getDeclName();
6307 assert(Name.getNameKind() == DeclarationName::Identifier);
6308
6309 bool foundSameNameMethod = false;
6310 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
6311 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
6312 Path.Decls = Path.Decls.slice(1)) {
6313 NamedDecl *D = Path.Decls.front();
6314 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
6315 MD = MD->getCanonicalDecl();
6316 foundSameNameMethod = true;
6317 // Interested only in hidden virtual methods.
6318 if (!MD->isVirtual())
6319 continue;
6320 // If the method we are checking overrides a method from its base
6321 // don't warn about the other overloaded methods. Clang deviates from
6322 // GCC by only diagnosing overloads of inherited virtual functions that
6323 // do not override any other virtual functions in the base. GCC's
6324 // -Woverloaded-virtual diagnoses any derived function hiding a virtual
6325 // function from a base class. These cases may be better served by a
6326 // warning (not specific to virtual functions) on call sites when the
6327 // call would select a different function from the base class, were it
6328 // visible.
6329 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
6330 if (!S->IsOverload(Method, MD, false))
6331 return true;
6332 // Collect the overload only if its hidden.
6333 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
6334 overloadedMethods.push_back(MD);
6335 }
6336 }
6337
6338 if (foundSameNameMethod)
6339 OverloadedMethods.append(overloadedMethods.begin(),
6340 overloadedMethods.end());
6341 return foundSameNameMethod;
6342 }
6343 };
6344 } // end anonymous namespace
6345
6346 /// \brief Add the most overriden methods from MD to Methods
AddMostOverridenMethods(const CXXMethodDecl * MD,llvm::SmallPtrSetImpl<const CXXMethodDecl * > & Methods)6347 static void AddMostOverridenMethods(const CXXMethodDecl *MD,
6348 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
6349 if (MD->size_overridden_methods() == 0)
6350 Methods.insert(MD->getCanonicalDecl());
6351 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
6352 E = MD->end_overridden_methods();
6353 I != E; ++I)
6354 AddMostOverridenMethods(*I, Methods);
6355 }
6356
6357 /// \brief Check if a method overloads virtual methods in a base class without
6358 /// overriding any.
FindHiddenVirtualMethods(CXXMethodDecl * MD,SmallVectorImpl<CXXMethodDecl * > & OverloadedMethods)6359 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
6360 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
6361 if (!MD->getDeclName().isIdentifier())
6362 return;
6363
6364 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
6365 /*bool RecordPaths=*/false,
6366 /*bool DetectVirtual=*/false);
6367 FindHiddenVirtualMethod FHVM;
6368 FHVM.Method = MD;
6369 FHVM.S = this;
6370
6371 // Keep the base methods that were overriden or introduced in the subclass
6372 // by 'using' in a set. A base method not in this set is hidden.
6373 CXXRecordDecl *DC = MD->getParent();
6374 DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
6375 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
6376 NamedDecl *ND = *I;
6377 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
6378 ND = shad->getTargetDecl();
6379 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
6380 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
6381 }
6382
6383 if (DC->lookupInBases(FHVM, Paths))
6384 OverloadedMethods = FHVM.OverloadedMethods;
6385 }
6386
NoteHiddenVirtualMethods(CXXMethodDecl * MD,SmallVectorImpl<CXXMethodDecl * > & OverloadedMethods)6387 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
6388 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
6389 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
6390 CXXMethodDecl *overloadedMD = OverloadedMethods[i];
6391 PartialDiagnostic PD = PDiag(
6392 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
6393 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
6394 Diag(overloadedMD->getLocation(), PD);
6395 }
6396 }
6397
6398 /// \brief Diagnose methods which overload virtual methods in a base class
6399 /// without overriding any.
DiagnoseHiddenVirtualMethods(CXXMethodDecl * MD)6400 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
6401 if (MD->isInvalidDecl())
6402 return;
6403
6404 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
6405 return;
6406
6407 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
6408 FindHiddenVirtualMethods(MD, OverloadedMethods);
6409 if (!OverloadedMethods.empty()) {
6410 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
6411 << MD << (OverloadedMethods.size() > 1);
6412
6413 NoteHiddenVirtualMethods(MD, OverloadedMethods);
6414 }
6415 }
6416
ActOnFinishCXXMemberSpecification(Scope * S,SourceLocation RLoc,Decl * TagDecl,SourceLocation LBrac,SourceLocation RBrac,AttributeList * AttrList)6417 void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
6418 Decl *TagDecl,
6419 SourceLocation LBrac,
6420 SourceLocation RBrac,
6421 AttributeList *AttrList) {
6422 if (!TagDecl)
6423 return;
6424
6425 AdjustDeclIfTemplate(TagDecl);
6426
6427 for (const AttributeList* l = AttrList; l; l = l->getNext()) {
6428 if (l->getKind() != AttributeList::AT_Visibility)
6429 continue;
6430 l->setInvalid();
6431 Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
6432 l->getName();
6433 }
6434
6435 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
6436 // strict aliasing violation!
6437 reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
6438 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
6439
6440 CheckCompletedCXXClass(
6441 dyn_cast_or_null<CXXRecordDecl>(TagDecl));
6442 }
6443
6444 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
6445 /// special functions, such as the default constructor, copy
6446 /// constructor, or destructor, to the given C++ class (C++
6447 /// [special]p1). This routine can only be executed just before the
6448 /// definition of the class is complete.
AddImplicitlyDeclaredMembersToClass(CXXRecordDecl * ClassDecl)6449 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
6450 if (!ClassDecl->hasUserDeclaredConstructor())
6451 ++ASTContext::NumImplicitDefaultConstructors;
6452
6453 if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
6454 ++ASTContext::NumImplicitCopyConstructors;
6455
6456 // If the properties or semantics of the copy constructor couldn't be
6457 // determined while the class was being declared, force a declaration
6458 // of it now.
6459 if (ClassDecl->needsOverloadResolutionForCopyConstructor())
6460 DeclareImplicitCopyConstructor(ClassDecl);
6461 }
6462
6463 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
6464 ++ASTContext::NumImplicitMoveConstructors;
6465
6466 if (ClassDecl->needsOverloadResolutionForMoveConstructor())
6467 DeclareImplicitMoveConstructor(ClassDecl);
6468 }
6469
6470 if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
6471 ++ASTContext::NumImplicitCopyAssignmentOperators;
6472
6473 // If we have a dynamic class, then the copy assignment operator may be
6474 // virtual, so we have to declare it immediately. This ensures that, e.g.,
6475 // it shows up in the right place in the vtable and that we diagnose
6476 // problems with the implicit exception specification.
6477 if (ClassDecl->isDynamicClass() ||
6478 ClassDecl->needsOverloadResolutionForCopyAssignment())
6479 DeclareImplicitCopyAssignment(ClassDecl);
6480 }
6481
6482 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
6483 ++ASTContext::NumImplicitMoveAssignmentOperators;
6484
6485 // Likewise for the move assignment operator.
6486 if (ClassDecl->isDynamicClass() ||
6487 ClassDecl->needsOverloadResolutionForMoveAssignment())
6488 DeclareImplicitMoveAssignment(ClassDecl);
6489 }
6490
6491 if (!ClassDecl->hasUserDeclaredDestructor()) {
6492 ++ASTContext::NumImplicitDestructors;
6493
6494 // If we have a dynamic class, then the destructor may be virtual, so we
6495 // have to declare the destructor immediately. This ensures that, e.g., it
6496 // shows up in the right place in the vtable and that we diagnose problems
6497 // with the implicit exception specification.
6498 if (ClassDecl->isDynamicClass() ||
6499 ClassDecl->needsOverloadResolutionForDestructor())
6500 DeclareImplicitDestructor(ClassDecl);
6501 }
6502 }
6503
ActOnReenterTemplateScope(Scope * S,Decl * D)6504 unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
6505 if (!D)
6506 return 0;
6507
6508 // The order of template parameters is not important here. All names
6509 // get added to the same scope.
6510 SmallVector<TemplateParameterList *, 4> ParameterLists;
6511
6512 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
6513 D = TD->getTemplatedDecl();
6514
6515 if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
6516 ParameterLists.push_back(PSD->getTemplateParameters());
6517
6518 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
6519 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
6520 ParameterLists.push_back(DD->getTemplateParameterList(i));
6521
6522 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6523 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
6524 ParameterLists.push_back(FTD->getTemplateParameters());
6525 }
6526 }
6527
6528 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
6529 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
6530 ParameterLists.push_back(TD->getTemplateParameterList(i));
6531
6532 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
6533 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
6534 ParameterLists.push_back(CTD->getTemplateParameters());
6535 }
6536 }
6537
6538 unsigned Count = 0;
6539 for (TemplateParameterList *Params : ParameterLists) {
6540 if (Params->size() > 0)
6541 // Ignore explicit specializations; they don't contribute to the template
6542 // depth.
6543 ++Count;
6544 for (NamedDecl *Param : *Params) {
6545 if (Param->getDeclName()) {
6546 S->AddDecl(Param);
6547 IdResolver.AddDecl(Param);
6548 }
6549 }
6550 }
6551
6552 return Count;
6553 }
6554
ActOnStartDelayedMemberDeclarations(Scope * S,Decl * RecordD)6555 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
6556 if (!RecordD) return;
6557 AdjustDeclIfTemplate(RecordD);
6558 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
6559 PushDeclContext(S, Record);
6560 }
6561
ActOnFinishDelayedMemberDeclarations(Scope * S,Decl * RecordD)6562 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
6563 if (!RecordD) return;
6564 PopDeclContext();
6565 }
6566
6567 /// This is used to implement the constant expression evaluation part of the
6568 /// attribute enable_if extension. There is nothing in standard C++ which would
6569 /// require reentering parameters.
ActOnReenterCXXMethodParameter(Scope * S,ParmVarDecl * Param)6570 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
6571 if (!Param)
6572 return;
6573
6574 S->AddDecl(Param);
6575 if (Param->getDeclName())
6576 IdResolver.AddDecl(Param);
6577 }
6578
6579 /// ActOnStartDelayedCXXMethodDeclaration - We have completed
6580 /// parsing a top-level (non-nested) C++ class, and we are now
6581 /// parsing those parts of the given Method declaration that could
6582 /// not be parsed earlier (C++ [class.mem]p2), such as default
6583 /// arguments. This action should enter the scope of the given
6584 /// Method declaration as if we had just parsed the qualified method
6585 /// name. However, it should not bring the parameters into scope;
6586 /// that will be performed by ActOnDelayedCXXMethodParameter.
ActOnStartDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)6587 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
6588 }
6589
6590 /// ActOnDelayedCXXMethodParameter - We've already started a delayed
6591 /// C++ method declaration. We're (re-)introducing the given
6592 /// function parameter into scope for use in parsing later parts of
6593 /// the method declaration. For example, we could see an
6594 /// ActOnParamDefaultArgument event for this parameter.
ActOnDelayedCXXMethodParameter(Scope * S,Decl * ParamD)6595 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
6596 if (!ParamD)
6597 return;
6598
6599 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
6600
6601 // If this parameter has an unparsed default argument, clear it out
6602 // to make way for the parsed default argument.
6603 if (Param->hasUnparsedDefaultArg())
6604 Param->setDefaultArg(nullptr);
6605
6606 S->AddDecl(Param);
6607 if (Param->getDeclName())
6608 IdResolver.AddDecl(Param);
6609 }
6610
6611 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
6612 /// processing the delayed method declaration for Method. The method
6613 /// declaration is now considered finished. There may be a separate
6614 /// ActOnStartOfFunctionDef action later (not necessarily
6615 /// immediately!) for this method, if it was also defined inside the
6616 /// class body.
ActOnFinishDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)6617 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
6618 if (!MethodD)
6619 return;
6620
6621 AdjustDeclIfTemplate(MethodD);
6622
6623 FunctionDecl *Method = cast<FunctionDecl>(MethodD);
6624
6625 // Now that we have our default arguments, check the constructor
6626 // again. It could produce additional diagnostics or affect whether
6627 // the class has implicitly-declared destructors, among other
6628 // things.
6629 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
6630 CheckConstructor(Constructor);
6631
6632 // Check the default arguments, which we may have added.
6633 if (!Method->isInvalidDecl())
6634 CheckCXXDefaultArguments(Method);
6635 }
6636
6637 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
6638 /// the well-formedness of the constructor declarator @p D with type @p
6639 /// R. If there are any errors in the declarator, this routine will
6640 /// emit diagnostics and set the invalid bit to true. In any case, the type
6641 /// will be updated to reflect a well-formed type for the constructor and
6642 /// returned.
CheckConstructorDeclarator(Declarator & D,QualType R,StorageClass & SC)6643 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
6644 StorageClass &SC) {
6645 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6646
6647 // C++ [class.ctor]p3:
6648 // A constructor shall not be virtual (10.3) or static (9.4). A
6649 // constructor can be invoked for a const, volatile or const
6650 // volatile object. A constructor shall not be declared const,
6651 // volatile, or const volatile (9.3.2).
6652 if (isVirtual) {
6653 if (!D.isInvalidType())
6654 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
6655 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
6656 << SourceRange(D.getIdentifierLoc());
6657 D.setInvalidType();
6658 }
6659 if (SC == SC_Static) {
6660 if (!D.isInvalidType())
6661 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
6662 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6663 << SourceRange(D.getIdentifierLoc());
6664 D.setInvalidType();
6665 SC = SC_None;
6666 }
6667
6668 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
6669 diagnoseIgnoredQualifiers(
6670 diag::err_constructor_return_type, TypeQuals, SourceLocation(),
6671 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
6672 D.getDeclSpec().getRestrictSpecLoc(),
6673 D.getDeclSpec().getAtomicSpecLoc());
6674 D.setInvalidType();
6675 }
6676
6677 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6678 if (FTI.TypeQuals != 0) {
6679 if (FTI.TypeQuals & Qualifiers::Const)
6680 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6681 << "const" << SourceRange(D.getIdentifierLoc());
6682 if (FTI.TypeQuals & Qualifiers::Volatile)
6683 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6684 << "volatile" << SourceRange(D.getIdentifierLoc());
6685 if (FTI.TypeQuals & Qualifiers::Restrict)
6686 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6687 << "restrict" << SourceRange(D.getIdentifierLoc());
6688 D.setInvalidType();
6689 }
6690
6691 // C++0x [class.ctor]p4:
6692 // A constructor shall not be declared with a ref-qualifier.
6693 if (FTI.hasRefQualifier()) {
6694 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
6695 << FTI.RefQualifierIsLValueRef
6696 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6697 D.setInvalidType();
6698 }
6699
6700 // Rebuild the function type "R" without any type qualifiers (in
6701 // case any of the errors above fired) and with "void" as the
6702 // return type, since constructors don't have return types.
6703 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6704 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
6705 return R;
6706
6707 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6708 EPI.TypeQuals = 0;
6709 EPI.RefQualifier = RQ_None;
6710
6711 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
6712 }
6713
6714 /// CheckConstructor - Checks a fully-formed constructor for
6715 /// well-formedness, issuing any diagnostics required. Returns true if
6716 /// the constructor declarator is invalid.
CheckConstructor(CXXConstructorDecl * Constructor)6717 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
6718 CXXRecordDecl *ClassDecl
6719 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
6720 if (!ClassDecl)
6721 return Constructor->setInvalidDecl();
6722
6723 // C++ [class.copy]p3:
6724 // A declaration of a constructor for a class X is ill-formed if
6725 // its first parameter is of type (optionally cv-qualified) X and
6726 // either there are no other parameters or else all other
6727 // parameters have default arguments.
6728 if (!Constructor->isInvalidDecl() &&
6729 ((Constructor->getNumParams() == 1) ||
6730 (Constructor->getNumParams() > 1 &&
6731 Constructor->getParamDecl(1)->hasDefaultArg())) &&
6732 Constructor->getTemplateSpecializationKind()
6733 != TSK_ImplicitInstantiation) {
6734 QualType ParamType = Constructor->getParamDecl(0)->getType();
6735 QualType ClassTy = Context.getTagDeclType(ClassDecl);
6736 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
6737 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
6738 const char *ConstRef
6739 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
6740 : " const &";
6741 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
6742 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
6743
6744 // FIXME: Rather that making the constructor invalid, we should endeavor
6745 // to fix the type.
6746 Constructor->setInvalidDecl();
6747 }
6748 }
6749 }
6750
6751 /// CheckDestructor - Checks a fully-formed destructor definition for
6752 /// well-formedness, issuing any diagnostics required. Returns true
6753 /// on error.
CheckDestructor(CXXDestructorDecl * Destructor)6754 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
6755 CXXRecordDecl *RD = Destructor->getParent();
6756
6757 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
6758 SourceLocation Loc;
6759
6760 if (!Destructor->isImplicit())
6761 Loc = Destructor->getLocation();
6762 else
6763 Loc = RD->getLocation();
6764
6765 // If we have a virtual destructor, look up the deallocation function
6766 FunctionDecl *OperatorDelete = nullptr;
6767 DeclarationName Name =
6768 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
6769 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
6770 return true;
6771 // If there's no class-specific operator delete, look up the global
6772 // non-array delete.
6773 if (!OperatorDelete)
6774 OperatorDelete = FindUsualDeallocationFunction(Loc, true, Name);
6775
6776 MarkFunctionReferenced(Loc, OperatorDelete);
6777
6778 Destructor->setOperatorDelete(OperatorDelete);
6779 }
6780
6781 return false;
6782 }
6783
6784 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
6785 /// the well-formednes of the destructor declarator @p D with type @p
6786 /// R. If there are any errors in the declarator, this routine will
6787 /// emit diagnostics and set the declarator to invalid. Even if this happens,
6788 /// will be updated to reflect a well-formed type for the destructor and
6789 /// returned.
CheckDestructorDeclarator(Declarator & D,QualType R,StorageClass & SC)6790 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
6791 StorageClass& SC) {
6792 // C++ [class.dtor]p1:
6793 // [...] A typedef-name that names a class is a class-name
6794 // (7.1.3); however, a typedef-name that names a class shall not
6795 // be used as the identifier in the declarator for a destructor
6796 // declaration.
6797 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
6798 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
6799 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
6800 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
6801 else if (const TemplateSpecializationType *TST =
6802 DeclaratorType->getAs<TemplateSpecializationType>())
6803 if (TST->isTypeAlias())
6804 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
6805 << DeclaratorType << 1;
6806
6807 // C++ [class.dtor]p2:
6808 // A destructor is used to destroy objects of its class type. A
6809 // destructor takes no parameters, and no return type can be
6810 // specified for it (not even void). The address of a destructor
6811 // shall not be taken. A destructor shall not be static. A
6812 // destructor can be invoked for a const, volatile or const
6813 // volatile object. A destructor shall not be declared const,
6814 // volatile or const volatile (9.3.2).
6815 if (SC == SC_Static) {
6816 if (!D.isInvalidType())
6817 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
6818 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6819 << SourceRange(D.getIdentifierLoc())
6820 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6821
6822 SC = SC_None;
6823 }
6824 if (!D.isInvalidType()) {
6825 // Destructors don't have return types, but the parser will
6826 // happily parse something like:
6827 //
6828 // class X {
6829 // float ~X();
6830 // };
6831 //
6832 // The return type will be eliminated later.
6833 if (D.getDeclSpec().hasTypeSpecifier())
6834 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
6835 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6836 << SourceRange(D.getIdentifierLoc());
6837 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
6838 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
6839 SourceLocation(),
6840 D.getDeclSpec().getConstSpecLoc(),
6841 D.getDeclSpec().getVolatileSpecLoc(),
6842 D.getDeclSpec().getRestrictSpecLoc(),
6843 D.getDeclSpec().getAtomicSpecLoc());
6844 D.setInvalidType();
6845 }
6846 }
6847
6848 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6849 if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
6850 if (FTI.TypeQuals & Qualifiers::Const)
6851 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6852 << "const" << SourceRange(D.getIdentifierLoc());
6853 if (FTI.TypeQuals & Qualifiers::Volatile)
6854 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6855 << "volatile" << SourceRange(D.getIdentifierLoc());
6856 if (FTI.TypeQuals & Qualifiers::Restrict)
6857 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6858 << "restrict" << SourceRange(D.getIdentifierLoc());
6859 D.setInvalidType();
6860 }
6861
6862 // C++0x [class.dtor]p2:
6863 // A destructor shall not be declared with a ref-qualifier.
6864 if (FTI.hasRefQualifier()) {
6865 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
6866 << FTI.RefQualifierIsLValueRef
6867 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6868 D.setInvalidType();
6869 }
6870
6871 // Make sure we don't have any parameters.
6872 if (FTIHasNonVoidParameters(FTI)) {
6873 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
6874
6875 // Delete the parameters.
6876 FTI.freeParams();
6877 D.setInvalidType();
6878 }
6879
6880 // Make sure the destructor isn't variadic.
6881 if (FTI.isVariadic) {
6882 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
6883 D.setInvalidType();
6884 }
6885
6886 // Rebuild the function type "R" without any type qualifiers or
6887 // parameters (in case any of the errors above fired) and with
6888 // "void" as the return type, since destructors don't have return
6889 // types.
6890 if (!D.isInvalidType())
6891 return R;
6892
6893 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6894 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6895 EPI.Variadic = false;
6896 EPI.TypeQuals = 0;
6897 EPI.RefQualifier = RQ_None;
6898 return Context.getFunctionType(Context.VoidTy, None, EPI);
6899 }
6900
extendLeft(SourceRange & R,SourceRange Before)6901 static void extendLeft(SourceRange &R, SourceRange Before) {
6902 if (Before.isInvalid())
6903 return;
6904 R.setBegin(Before.getBegin());
6905 if (R.getEnd().isInvalid())
6906 R.setEnd(Before.getEnd());
6907 }
6908
extendRight(SourceRange & R,SourceRange After)6909 static void extendRight(SourceRange &R, SourceRange After) {
6910 if (After.isInvalid())
6911 return;
6912 if (R.getBegin().isInvalid())
6913 R.setBegin(After.getBegin());
6914 R.setEnd(After.getEnd());
6915 }
6916
6917 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
6918 /// well-formednes of the conversion function declarator @p D with
6919 /// type @p R. If there are any errors in the declarator, this routine
6920 /// will emit diagnostics and return true. Otherwise, it will return
6921 /// false. Either way, the type @p R will be updated to reflect a
6922 /// well-formed type for the conversion operator.
CheckConversionDeclarator(Declarator & D,QualType & R,StorageClass & SC)6923 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
6924 StorageClass& SC) {
6925 // C++ [class.conv.fct]p1:
6926 // Neither parameter types nor return type can be specified. The
6927 // type of a conversion function (8.3.5) is "function taking no
6928 // parameter returning conversion-type-id."
6929 if (SC == SC_Static) {
6930 if (!D.isInvalidType())
6931 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
6932 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6933 << D.getName().getSourceRange();
6934 D.setInvalidType();
6935 SC = SC_None;
6936 }
6937
6938 TypeSourceInfo *ConvTSI = nullptr;
6939 QualType ConvType =
6940 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
6941
6942 if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6943 // Conversion functions don't have return types, but the parser will
6944 // happily parse something like:
6945 //
6946 // class X {
6947 // float operator bool();
6948 // };
6949 //
6950 // The return type will be changed later anyway.
6951 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
6952 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6953 << SourceRange(D.getIdentifierLoc());
6954 D.setInvalidType();
6955 }
6956
6957 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6958
6959 // Make sure we don't have any parameters.
6960 if (Proto->getNumParams() > 0) {
6961 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
6962
6963 // Delete the parameters.
6964 D.getFunctionTypeInfo().freeParams();
6965 D.setInvalidType();
6966 } else if (Proto->isVariadic()) {
6967 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
6968 D.setInvalidType();
6969 }
6970
6971 // Diagnose "&operator bool()" and other such nonsense. This
6972 // is actually a gcc extension which we don't support.
6973 if (Proto->getReturnType() != ConvType) {
6974 bool NeedsTypedef = false;
6975 SourceRange Before, After;
6976
6977 // Walk the chunks and extract information on them for our diagnostic.
6978 bool PastFunctionChunk = false;
6979 for (auto &Chunk : D.type_objects()) {
6980 switch (Chunk.Kind) {
6981 case DeclaratorChunk::Function:
6982 if (!PastFunctionChunk) {
6983 if (Chunk.Fun.HasTrailingReturnType) {
6984 TypeSourceInfo *TRT = nullptr;
6985 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
6986 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
6987 }
6988 PastFunctionChunk = true;
6989 break;
6990 }
6991 // Fall through.
6992 case DeclaratorChunk::Array:
6993 NeedsTypedef = true;
6994 extendRight(After, Chunk.getSourceRange());
6995 break;
6996
6997 case DeclaratorChunk::Pointer:
6998 case DeclaratorChunk::BlockPointer:
6999 case DeclaratorChunk::Reference:
7000 case DeclaratorChunk::MemberPointer:
7001 extendLeft(Before, Chunk.getSourceRange());
7002 break;
7003
7004 case DeclaratorChunk::Paren:
7005 extendLeft(Before, Chunk.Loc);
7006 extendRight(After, Chunk.EndLoc);
7007 break;
7008 }
7009 }
7010
7011 SourceLocation Loc = Before.isValid() ? Before.getBegin() :
7012 After.isValid() ? After.getBegin() :
7013 D.getIdentifierLoc();
7014 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
7015 DB << Before << After;
7016
7017 if (!NeedsTypedef) {
7018 DB << /*don't need a typedef*/0;
7019
7020 // If we can provide a correct fix-it hint, do so.
7021 if (After.isInvalid() && ConvTSI) {
7022 SourceLocation InsertLoc =
7023 getLocForEndOfToken(ConvTSI->getTypeLoc().getLocEnd());
7024 DB << FixItHint::CreateInsertion(InsertLoc, " ")
7025 << FixItHint::CreateInsertionFromRange(
7026 InsertLoc, CharSourceRange::getTokenRange(Before))
7027 << FixItHint::CreateRemoval(Before);
7028 }
7029 } else if (!Proto->getReturnType()->isDependentType()) {
7030 DB << /*typedef*/1 << Proto->getReturnType();
7031 } else if (getLangOpts().CPlusPlus11) {
7032 DB << /*alias template*/2 << Proto->getReturnType();
7033 } else {
7034 DB << /*might not be fixable*/3;
7035 }
7036
7037 // Recover by incorporating the other type chunks into the result type.
7038 // Note, this does *not* change the name of the function. This is compatible
7039 // with the GCC extension:
7040 // struct S { &operator int(); } s;
7041 // int &r = s.operator int(); // ok in GCC
7042 // S::operator int&() {} // error in GCC, function name is 'operator int'.
7043 ConvType = Proto->getReturnType();
7044 }
7045
7046 // C++ [class.conv.fct]p4:
7047 // The conversion-type-id shall not represent a function type nor
7048 // an array type.
7049 if (ConvType->isArrayType()) {
7050 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
7051 ConvType = Context.getPointerType(ConvType);
7052 D.setInvalidType();
7053 } else if (ConvType->isFunctionType()) {
7054 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
7055 ConvType = Context.getPointerType(ConvType);
7056 D.setInvalidType();
7057 }
7058
7059 // Rebuild the function type "R" without any parameters (in case any
7060 // of the errors above fired) and with the conversion type as the
7061 // return type.
7062 if (D.isInvalidType())
7063 R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
7064
7065 // C++0x explicit conversion operators.
7066 if (D.getDeclSpec().isExplicitSpecified())
7067 Diag(D.getDeclSpec().getExplicitSpecLoc(),
7068 getLangOpts().CPlusPlus11 ?
7069 diag::warn_cxx98_compat_explicit_conversion_functions :
7070 diag::ext_explicit_conversion_functions)
7071 << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
7072 }
7073
7074 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
7075 /// the declaration of the given C++ conversion function. This routine
7076 /// is responsible for recording the conversion function in the C++
7077 /// class, if possible.
ActOnConversionDeclarator(CXXConversionDecl * Conversion)7078 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
7079 assert(Conversion && "Expected to receive a conversion function declaration");
7080
7081 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
7082
7083 // Make sure we aren't redeclaring the conversion function.
7084 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
7085
7086 // C++ [class.conv.fct]p1:
7087 // [...] A conversion function is never used to convert a
7088 // (possibly cv-qualified) object to the (possibly cv-qualified)
7089 // same object type (or a reference to it), to a (possibly
7090 // cv-qualified) base class of that type (or a reference to it),
7091 // or to (possibly cv-qualified) void.
7092 // FIXME: Suppress this warning if the conversion function ends up being a
7093 // virtual function that overrides a virtual function in a base class.
7094 QualType ClassType
7095 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7096 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
7097 ConvType = ConvTypeRef->getPointeeType();
7098 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
7099 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
7100 /* Suppress diagnostics for instantiations. */;
7101 else if (ConvType->isRecordType()) {
7102 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
7103 if (ConvType == ClassType)
7104 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
7105 << ClassType;
7106 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType))
7107 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
7108 << ClassType << ConvType;
7109 } else if (ConvType->isVoidType()) {
7110 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
7111 << ClassType << ConvType;
7112 }
7113
7114 if (FunctionTemplateDecl *ConversionTemplate
7115 = Conversion->getDescribedFunctionTemplate())
7116 return ConversionTemplate;
7117
7118 return Conversion;
7119 }
7120
7121 //===----------------------------------------------------------------------===//
7122 // Namespace Handling
7123 //===----------------------------------------------------------------------===//
7124
7125 /// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
7126 /// reopened.
DiagnoseNamespaceInlineMismatch(Sema & S,SourceLocation KeywordLoc,SourceLocation Loc,IdentifierInfo * II,bool * IsInline,NamespaceDecl * PrevNS)7127 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
7128 SourceLocation Loc,
7129 IdentifierInfo *II, bool *IsInline,
7130 NamespaceDecl *PrevNS) {
7131 assert(*IsInline != PrevNS->isInline());
7132
7133 // HACK: Work around a bug in libstdc++4.6's <atomic>, where
7134 // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
7135 // inline namespaces, with the intention of bringing names into namespace std.
7136 //
7137 // We support this just well enough to get that case working; this is not
7138 // sufficient to support reopening namespaces as inline in general.
7139 if (*IsInline && II && II->getName().startswith("__atomic") &&
7140 S.getSourceManager().isInSystemHeader(Loc)) {
7141 // Mark all prior declarations of the namespace as inline.
7142 for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
7143 NS = NS->getPreviousDecl())
7144 NS->setInline(*IsInline);
7145 // Patch up the lookup table for the containing namespace. This isn't really
7146 // correct, but it's good enough for this particular case.
7147 for (auto *I : PrevNS->decls())
7148 if (auto *ND = dyn_cast<NamedDecl>(I))
7149 PrevNS->getParent()->makeDeclVisibleInContext(ND);
7150 return;
7151 }
7152
7153 if (PrevNS->isInline())
7154 // The user probably just forgot the 'inline', so suggest that it
7155 // be added back.
7156 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
7157 << FixItHint::CreateInsertion(KeywordLoc, "inline ");
7158 else
7159 S.Diag(Loc, diag::err_inline_namespace_mismatch) << *IsInline;
7160
7161 S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
7162 *IsInline = PrevNS->isInline();
7163 }
7164
7165 /// ActOnStartNamespaceDef - This is called at the start of a namespace
7166 /// definition.
ActOnStartNamespaceDef(Scope * NamespcScope,SourceLocation InlineLoc,SourceLocation NamespaceLoc,SourceLocation IdentLoc,IdentifierInfo * II,SourceLocation LBrace,AttributeList * AttrList,UsingDirectiveDecl * & UD)7167 Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
7168 SourceLocation InlineLoc,
7169 SourceLocation NamespaceLoc,
7170 SourceLocation IdentLoc,
7171 IdentifierInfo *II,
7172 SourceLocation LBrace,
7173 AttributeList *AttrList,
7174 UsingDirectiveDecl *&UD) {
7175 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
7176 // For anonymous namespace, take the location of the left brace.
7177 SourceLocation Loc = II ? IdentLoc : LBrace;
7178 bool IsInline = InlineLoc.isValid();
7179 bool IsInvalid = false;
7180 bool IsStd = false;
7181 bool AddToKnown = false;
7182 Scope *DeclRegionScope = NamespcScope->getParent();
7183
7184 NamespaceDecl *PrevNS = nullptr;
7185 if (II) {
7186 // C++ [namespace.def]p2:
7187 // The identifier in an original-namespace-definition shall not
7188 // have been previously defined in the declarative region in
7189 // which the original-namespace-definition appears. The
7190 // identifier in an original-namespace-definition is the name of
7191 // the namespace. Subsequently in that declarative region, it is
7192 // treated as an original-namespace-name.
7193 //
7194 // Since namespace names are unique in their scope, and we don't
7195 // look through using directives, just look for any ordinary names
7196 // as if by qualified name lookup.
7197 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName, ForRedeclaration);
7198 LookupQualifiedName(R, CurContext->getRedeclContext());
7199 NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
7200 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
7201
7202 if (PrevNS) {
7203 // This is an extended namespace definition.
7204 if (IsInline != PrevNS->isInline())
7205 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
7206 &IsInline, PrevNS);
7207 } else if (PrevDecl) {
7208 // This is an invalid name redefinition.
7209 Diag(Loc, diag::err_redefinition_different_kind)
7210 << II;
7211 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7212 IsInvalid = true;
7213 // Continue on to push Namespc as current DeclContext and return it.
7214 } else if (II->isStr("std") &&
7215 CurContext->getRedeclContext()->isTranslationUnit()) {
7216 // This is the first "real" definition of the namespace "std", so update
7217 // our cache of the "std" namespace to point at this definition.
7218 PrevNS = getStdNamespace();
7219 IsStd = true;
7220 AddToKnown = !IsInline;
7221 } else {
7222 // We've seen this namespace for the first time.
7223 AddToKnown = !IsInline;
7224 }
7225 } else {
7226 // Anonymous namespaces.
7227
7228 // Determine whether the parent already has an anonymous namespace.
7229 DeclContext *Parent = CurContext->getRedeclContext();
7230 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
7231 PrevNS = TU->getAnonymousNamespace();
7232 } else {
7233 NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
7234 PrevNS = ND->getAnonymousNamespace();
7235 }
7236
7237 if (PrevNS && IsInline != PrevNS->isInline())
7238 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
7239 &IsInline, PrevNS);
7240 }
7241
7242 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
7243 StartLoc, Loc, II, PrevNS);
7244 if (IsInvalid)
7245 Namespc->setInvalidDecl();
7246
7247 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
7248
7249 // FIXME: Should we be merging attributes?
7250 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
7251 PushNamespaceVisibilityAttr(Attr, Loc);
7252
7253 if (IsStd)
7254 StdNamespace = Namespc;
7255 if (AddToKnown)
7256 KnownNamespaces[Namespc] = false;
7257
7258 if (II) {
7259 PushOnScopeChains(Namespc, DeclRegionScope);
7260 } else {
7261 // Link the anonymous namespace into its parent.
7262 DeclContext *Parent = CurContext->getRedeclContext();
7263 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
7264 TU->setAnonymousNamespace(Namespc);
7265 } else {
7266 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
7267 }
7268
7269 CurContext->addDecl(Namespc);
7270
7271 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition
7272 // behaves as if it were replaced by
7273 // namespace unique { /* empty body */ }
7274 // using namespace unique;
7275 // namespace unique { namespace-body }
7276 // where all occurrences of 'unique' in a translation unit are
7277 // replaced by the same identifier and this identifier differs
7278 // from all other identifiers in the entire program.
7279
7280 // We just create the namespace with an empty name and then add an
7281 // implicit using declaration, just like the standard suggests.
7282 //
7283 // CodeGen enforces the "universally unique" aspect by giving all
7284 // declarations semantically contained within an anonymous
7285 // namespace internal linkage.
7286
7287 if (!PrevNS) {
7288 UD = UsingDirectiveDecl::Create(Context, Parent,
7289 /* 'using' */ LBrace,
7290 /* 'namespace' */ SourceLocation(),
7291 /* qualifier */ NestedNameSpecifierLoc(),
7292 /* identifier */ SourceLocation(),
7293 Namespc,
7294 /* Ancestor */ Parent);
7295 UD->setImplicit();
7296 Parent->addDecl(UD);
7297 }
7298 }
7299
7300 ActOnDocumentableDecl(Namespc);
7301
7302 // Although we could have an invalid decl (i.e. the namespace name is a
7303 // redefinition), push it as current DeclContext and try to continue parsing.
7304 // FIXME: We should be able to push Namespc here, so that the each DeclContext
7305 // for the namespace has the declarations that showed up in that particular
7306 // namespace definition.
7307 PushDeclContext(NamespcScope, Namespc);
7308 return Namespc;
7309 }
7310
7311 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
7312 /// is a namespace alias, returns the namespace it points to.
getNamespaceDecl(NamedDecl * D)7313 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
7314 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
7315 return AD->getNamespace();
7316 return dyn_cast_or_null<NamespaceDecl>(D);
7317 }
7318
7319 /// ActOnFinishNamespaceDef - This callback is called after a namespace is
7320 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
ActOnFinishNamespaceDef(Decl * Dcl,SourceLocation RBrace)7321 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
7322 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
7323 assert(Namespc && "Invalid parameter, expected NamespaceDecl");
7324 Namespc->setRBraceLoc(RBrace);
7325 PopDeclContext();
7326 if (Namespc->hasAttr<VisibilityAttr>())
7327 PopPragmaVisibility(true, RBrace);
7328 }
7329
getStdBadAlloc() const7330 CXXRecordDecl *Sema::getStdBadAlloc() const {
7331 return cast_or_null<CXXRecordDecl>(
7332 StdBadAlloc.get(Context.getExternalSource()));
7333 }
7334
getStdNamespace() const7335 NamespaceDecl *Sema::getStdNamespace() const {
7336 return cast_or_null<NamespaceDecl>(
7337 StdNamespace.get(Context.getExternalSource()));
7338 }
7339
7340 /// \brief Retrieve the special "std" namespace, which may require us to
7341 /// implicitly define the namespace.
getOrCreateStdNamespace()7342 NamespaceDecl *Sema::getOrCreateStdNamespace() {
7343 if (!StdNamespace) {
7344 // The "std" namespace has not yet been defined, so build one implicitly.
7345 StdNamespace = NamespaceDecl::Create(Context,
7346 Context.getTranslationUnitDecl(),
7347 /*Inline=*/false,
7348 SourceLocation(), SourceLocation(),
7349 &PP.getIdentifierTable().get("std"),
7350 /*PrevDecl=*/nullptr);
7351 getStdNamespace()->setImplicit(true);
7352 }
7353
7354 return getStdNamespace();
7355 }
7356
isStdInitializerList(QualType Ty,QualType * Element)7357 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
7358 assert(getLangOpts().CPlusPlus &&
7359 "Looking for std::initializer_list outside of C++.");
7360
7361 // We're looking for implicit instantiations of
7362 // template <typename E> class std::initializer_list.
7363
7364 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
7365 return false;
7366
7367 ClassTemplateDecl *Template = nullptr;
7368 const TemplateArgument *Arguments = nullptr;
7369
7370 if (const RecordType *RT = Ty->getAs<RecordType>()) {
7371
7372 ClassTemplateSpecializationDecl *Specialization =
7373 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
7374 if (!Specialization)
7375 return false;
7376
7377 Template = Specialization->getSpecializedTemplate();
7378 Arguments = Specialization->getTemplateArgs().data();
7379 } else if (const TemplateSpecializationType *TST =
7380 Ty->getAs<TemplateSpecializationType>()) {
7381 Template = dyn_cast_or_null<ClassTemplateDecl>(
7382 TST->getTemplateName().getAsTemplateDecl());
7383 Arguments = TST->getArgs();
7384 }
7385 if (!Template)
7386 return false;
7387
7388 if (!StdInitializerList) {
7389 // Haven't recognized std::initializer_list yet, maybe this is it.
7390 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
7391 if (TemplateClass->getIdentifier() !=
7392 &PP.getIdentifierTable().get("initializer_list") ||
7393 !getStdNamespace()->InEnclosingNamespaceSetOf(
7394 TemplateClass->getDeclContext()))
7395 return false;
7396 // This is a template called std::initializer_list, but is it the right
7397 // template?
7398 TemplateParameterList *Params = Template->getTemplateParameters();
7399 if (Params->getMinRequiredArguments() != 1)
7400 return false;
7401 if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
7402 return false;
7403
7404 // It's the right template.
7405 StdInitializerList = Template;
7406 }
7407
7408 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl())
7409 return false;
7410
7411 // This is an instance of std::initializer_list. Find the argument type.
7412 if (Element)
7413 *Element = Arguments[0].getAsType();
7414 return true;
7415 }
7416
LookupStdInitializerList(Sema & S,SourceLocation Loc)7417 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
7418 NamespaceDecl *Std = S.getStdNamespace();
7419 if (!Std) {
7420 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
7421 return nullptr;
7422 }
7423
7424 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
7425 Loc, Sema::LookupOrdinaryName);
7426 if (!S.LookupQualifiedName(Result, Std)) {
7427 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
7428 return nullptr;
7429 }
7430 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
7431 if (!Template) {
7432 Result.suppressDiagnostics();
7433 // We found something weird. Complain about the first thing we found.
7434 NamedDecl *Found = *Result.begin();
7435 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
7436 return nullptr;
7437 }
7438
7439 // We found some template called std::initializer_list. Now verify that it's
7440 // correct.
7441 TemplateParameterList *Params = Template->getTemplateParameters();
7442 if (Params->getMinRequiredArguments() != 1 ||
7443 !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
7444 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
7445 return nullptr;
7446 }
7447
7448 return Template;
7449 }
7450
BuildStdInitializerList(QualType Element,SourceLocation Loc)7451 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
7452 if (!StdInitializerList) {
7453 StdInitializerList = LookupStdInitializerList(*this, Loc);
7454 if (!StdInitializerList)
7455 return QualType();
7456 }
7457
7458 TemplateArgumentListInfo Args(Loc, Loc);
7459 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
7460 Context.getTrivialTypeSourceInfo(Element,
7461 Loc)));
7462 return Context.getCanonicalType(
7463 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
7464 }
7465
isInitListConstructor(const CXXConstructorDecl * Ctor)7466 bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
7467 // C++ [dcl.init.list]p2:
7468 // A constructor is an initializer-list constructor if its first parameter
7469 // is of type std::initializer_list<E> or reference to possibly cv-qualified
7470 // std::initializer_list<E> for some type E, and either there are no other
7471 // parameters or else all other parameters have default arguments.
7472 if (Ctor->getNumParams() < 1 ||
7473 (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
7474 return false;
7475
7476 QualType ArgType = Ctor->getParamDecl(0)->getType();
7477 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
7478 ArgType = RT->getPointeeType().getUnqualifiedType();
7479
7480 return isStdInitializerList(ArgType, nullptr);
7481 }
7482
7483 /// \brief Determine whether a using statement is in a context where it will be
7484 /// apply in all contexts.
IsUsingDirectiveInToplevelContext(DeclContext * CurContext)7485 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
7486 switch (CurContext->getDeclKind()) {
7487 case Decl::TranslationUnit:
7488 return true;
7489 case Decl::LinkageSpec:
7490 return IsUsingDirectiveInToplevelContext(CurContext->getParent());
7491 default:
7492 return false;
7493 }
7494 }
7495
7496 namespace {
7497
7498 // Callback to only accept typo corrections that are namespaces.
7499 class NamespaceValidatorCCC : public CorrectionCandidateCallback {
7500 public:
ValidateCandidate(const TypoCorrection & candidate)7501 bool ValidateCandidate(const TypoCorrection &candidate) override {
7502 if (NamedDecl *ND = candidate.getCorrectionDecl())
7503 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
7504 return false;
7505 }
7506 };
7507
7508 }
7509
TryNamespaceTypoCorrection(Sema & S,LookupResult & R,Scope * Sc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)7510 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
7511 CXXScopeSpec &SS,
7512 SourceLocation IdentLoc,
7513 IdentifierInfo *Ident) {
7514 R.clear();
7515 if (TypoCorrection Corrected =
7516 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS,
7517 llvm::make_unique<NamespaceValidatorCCC>(),
7518 Sema::CTK_ErrorRecovery)) {
7519 if (DeclContext *DC = S.computeDeclContext(SS, false)) {
7520 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
7521 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
7522 Ident->getName().equals(CorrectedStr);
7523 S.diagnoseTypo(Corrected,
7524 S.PDiag(diag::err_using_directive_member_suggest)
7525 << Ident << DC << DroppedSpecifier << SS.getRange(),
7526 S.PDiag(diag::note_namespace_defined_here));
7527 } else {
7528 S.diagnoseTypo(Corrected,
7529 S.PDiag(diag::err_using_directive_suggest) << Ident,
7530 S.PDiag(diag::note_namespace_defined_here));
7531 }
7532 R.addDecl(Corrected.getCorrectionDecl());
7533 return true;
7534 }
7535 return false;
7536 }
7537
ActOnUsingDirective(Scope * S,SourceLocation UsingLoc,SourceLocation NamespcLoc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * NamespcName,AttributeList * AttrList)7538 Decl *Sema::ActOnUsingDirective(Scope *S,
7539 SourceLocation UsingLoc,
7540 SourceLocation NamespcLoc,
7541 CXXScopeSpec &SS,
7542 SourceLocation IdentLoc,
7543 IdentifierInfo *NamespcName,
7544 AttributeList *AttrList) {
7545 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
7546 assert(NamespcName && "Invalid NamespcName.");
7547 assert(IdentLoc.isValid() && "Invalid NamespceName location.");
7548
7549 // This can only happen along a recovery path.
7550 while (S->isTemplateParamScope())
7551 S = S->getParent();
7552 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
7553
7554 UsingDirectiveDecl *UDir = nullptr;
7555 NestedNameSpecifier *Qualifier = nullptr;
7556 if (SS.isSet())
7557 Qualifier = SS.getScopeRep();
7558
7559 // Lookup namespace name.
7560 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
7561 LookupParsedName(R, S, &SS);
7562 if (R.isAmbiguous())
7563 return nullptr;
7564
7565 if (R.empty()) {
7566 R.clear();
7567 // Allow "using namespace std;" or "using namespace ::std;" even if
7568 // "std" hasn't been defined yet, for GCC compatibility.
7569 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
7570 NamespcName->isStr("std")) {
7571 Diag(IdentLoc, diag::ext_using_undefined_std);
7572 R.addDecl(getOrCreateStdNamespace());
7573 R.resolveKind();
7574 }
7575 // Otherwise, attempt typo correction.
7576 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
7577 }
7578
7579 if (!R.empty()) {
7580 NamedDecl *Named = R.getFoundDecl();
7581 assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
7582 && "expected namespace decl");
7583
7584 // The use of a nested name specifier may trigger deprecation warnings.
7585 DiagnoseUseOfDecl(Named, IdentLoc);
7586
7587 // C++ [namespace.udir]p1:
7588 // A using-directive specifies that the names in the nominated
7589 // namespace can be used in the scope in which the
7590 // using-directive appears after the using-directive. During
7591 // unqualified name lookup (3.4.1), the names appear as if they
7592 // were declared in the nearest enclosing namespace which
7593 // contains both the using-directive and the nominated
7594 // namespace. [Note: in this context, "contains" means "contains
7595 // directly or indirectly". ]
7596
7597 // Find enclosing context containing both using-directive and
7598 // nominated namespace.
7599 NamespaceDecl *NS = getNamespaceDecl(Named);
7600 DeclContext *CommonAncestor = cast<DeclContext>(NS);
7601 while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
7602 CommonAncestor = CommonAncestor->getParent();
7603
7604 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
7605 SS.getWithLocInContext(Context),
7606 IdentLoc, Named, CommonAncestor);
7607
7608 if (IsUsingDirectiveInToplevelContext(CurContext) &&
7609 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
7610 Diag(IdentLoc, diag::warn_using_directive_in_header);
7611 }
7612
7613 PushUsingDirective(S, UDir);
7614 } else {
7615 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7616 }
7617
7618 if (UDir)
7619 ProcessDeclAttributeList(S, UDir, AttrList);
7620
7621 return UDir;
7622 }
7623
PushUsingDirective(Scope * S,UsingDirectiveDecl * UDir)7624 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
7625 // If the scope has an associated entity and the using directive is at
7626 // namespace or translation unit scope, add the UsingDirectiveDecl into
7627 // its lookup structure so qualified name lookup can find it.
7628 DeclContext *Ctx = S->getEntity();
7629 if (Ctx && !Ctx->isFunctionOrMethod())
7630 Ctx->addDecl(UDir);
7631 else
7632 // Otherwise, it is at block scope. The using-directives will affect lookup
7633 // only to the end of the scope.
7634 S->PushUsingDirective(UDir);
7635 }
7636
7637
ActOnUsingDeclaration(Scope * S,AccessSpecifier AS,bool HasUsingKeyword,SourceLocation UsingLoc,CXXScopeSpec & SS,UnqualifiedId & Name,AttributeList * AttrList,bool HasTypenameKeyword,SourceLocation TypenameLoc)7638 Decl *Sema::ActOnUsingDeclaration(Scope *S,
7639 AccessSpecifier AS,
7640 bool HasUsingKeyword,
7641 SourceLocation UsingLoc,
7642 CXXScopeSpec &SS,
7643 UnqualifiedId &Name,
7644 AttributeList *AttrList,
7645 bool HasTypenameKeyword,
7646 SourceLocation TypenameLoc) {
7647 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
7648
7649 switch (Name.getKind()) {
7650 case UnqualifiedId::IK_ImplicitSelfParam:
7651 case UnqualifiedId::IK_Identifier:
7652 case UnqualifiedId::IK_OperatorFunctionId:
7653 case UnqualifiedId::IK_LiteralOperatorId:
7654 case UnqualifiedId::IK_ConversionFunctionId:
7655 break;
7656
7657 case UnqualifiedId::IK_ConstructorName:
7658 case UnqualifiedId::IK_ConstructorTemplateId:
7659 // C++11 inheriting constructors.
7660 Diag(Name.getLocStart(),
7661 getLangOpts().CPlusPlus11 ?
7662 diag::warn_cxx98_compat_using_decl_constructor :
7663 diag::err_using_decl_constructor)
7664 << SS.getRange();
7665
7666 if (getLangOpts().CPlusPlus11) break;
7667
7668 return nullptr;
7669
7670 case UnqualifiedId::IK_DestructorName:
7671 Diag(Name.getLocStart(), diag::err_using_decl_destructor)
7672 << SS.getRange();
7673 return nullptr;
7674
7675 case UnqualifiedId::IK_TemplateId:
7676 Diag(Name.getLocStart(), diag::err_using_decl_template_id)
7677 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
7678 return nullptr;
7679 }
7680
7681 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
7682 DeclarationName TargetName = TargetNameInfo.getName();
7683 if (!TargetName)
7684 return nullptr;
7685
7686 // Warn about access declarations.
7687 if (!HasUsingKeyword) {
7688 Diag(Name.getLocStart(),
7689 getLangOpts().CPlusPlus11 ? diag::err_access_decl
7690 : diag::warn_access_decl_deprecated)
7691 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
7692 }
7693
7694 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
7695 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
7696 return nullptr;
7697
7698 NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
7699 TargetNameInfo, AttrList,
7700 /* IsInstantiation */ false,
7701 HasTypenameKeyword, TypenameLoc);
7702 if (UD)
7703 PushOnScopeChains(UD, S, /*AddToContext*/ false);
7704
7705 return UD;
7706 }
7707
7708 /// \brief Determine whether a using declaration considers the given
7709 /// declarations as "equivalent", e.g., if they are redeclarations of
7710 /// the same entity or are both typedefs of the same type.
7711 static bool
IsEquivalentForUsingDecl(ASTContext & Context,NamedDecl * D1,NamedDecl * D2)7712 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
7713 if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
7714 return true;
7715
7716 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
7717 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
7718 return Context.hasSameType(TD1->getUnderlyingType(),
7719 TD2->getUnderlyingType());
7720
7721 return false;
7722 }
7723
7724
7725 /// Determines whether to create a using shadow decl for a particular
7726 /// decl, given the set of decls existing prior to this using lookup.
CheckUsingShadowDecl(UsingDecl * Using,NamedDecl * Orig,const LookupResult & Previous,UsingShadowDecl * & PrevShadow)7727 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
7728 const LookupResult &Previous,
7729 UsingShadowDecl *&PrevShadow) {
7730 // Diagnose finding a decl which is not from a base class of the
7731 // current class. We do this now because there are cases where this
7732 // function will silently decide not to build a shadow decl, which
7733 // will pre-empt further diagnostics.
7734 //
7735 // We don't need to do this in C++0x because we do the check once on
7736 // the qualifier.
7737 //
7738 // FIXME: diagnose the following if we care enough:
7739 // struct A { int foo; };
7740 // struct B : A { using A::foo; };
7741 // template <class T> struct C : A {};
7742 // template <class T> struct D : C<T> { using B::foo; } // <---
7743 // This is invalid (during instantiation) in C++03 because B::foo
7744 // resolves to the using decl in B, which is not a base class of D<T>.
7745 // We can't diagnose it immediately because C<T> is an unknown
7746 // specialization. The UsingShadowDecl in D<T> then points directly
7747 // to A::foo, which will look well-formed when we instantiate.
7748 // The right solution is to not collapse the shadow-decl chain.
7749 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
7750 DeclContext *OrigDC = Orig->getDeclContext();
7751
7752 // Handle enums and anonymous structs.
7753 if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
7754 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
7755 while (OrigRec->isAnonymousStructOrUnion())
7756 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
7757
7758 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
7759 if (OrigDC == CurContext) {
7760 Diag(Using->getLocation(),
7761 diag::err_using_decl_nested_name_specifier_is_current_class)
7762 << Using->getQualifierLoc().getSourceRange();
7763 Diag(Orig->getLocation(), diag::note_using_decl_target);
7764 return true;
7765 }
7766
7767 Diag(Using->getQualifierLoc().getBeginLoc(),
7768 diag::err_using_decl_nested_name_specifier_is_not_base_class)
7769 << Using->getQualifier()
7770 << cast<CXXRecordDecl>(CurContext)
7771 << Using->getQualifierLoc().getSourceRange();
7772 Diag(Orig->getLocation(), diag::note_using_decl_target);
7773 return true;
7774 }
7775 }
7776
7777 if (Previous.empty()) return false;
7778
7779 NamedDecl *Target = Orig;
7780 if (isa<UsingShadowDecl>(Target))
7781 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
7782
7783 // If the target happens to be one of the previous declarations, we
7784 // don't have a conflict.
7785 //
7786 // FIXME: but we might be increasing its access, in which case we
7787 // should redeclare it.
7788 NamedDecl *NonTag = nullptr, *Tag = nullptr;
7789 bool FoundEquivalentDecl = false;
7790 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7791 I != E; ++I) {
7792 NamedDecl *D = (*I)->getUnderlyingDecl();
7793 if (IsEquivalentForUsingDecl(Context, D, Target)) {
7794 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
7795 PrevShadow = Shadow;
7796 FoundEquivalentDecl = true;
7797 }
7798
7799 if (isVisible(D))
7800 (isa<TagDecl>(D) ? Tag : NonTag) = D;
7801 }
7802
7803 if (FoundEquivalentDecl)
7804 return false;
7805
7806 if (FunctionDecl *FD = Target->getAsFunction()) {
7807 NamedDecl *OldDecl = nullptr;
7808 switch (CheckOverload(nullptr, FD, Previous, OldDecl,
7809 /*IsForUsingDecl*/ true)) {
7810 case Ovl_Overload:
7811 return false;
7812
7813 case Ovl_NonFunction:
7814 Diag(Using->getLocation(), diag::err_using_decl_conflict);
7815 break;
7816
7817 // We found a decl with the exact signature.
7818 case Ovl_Match:
7819 // If we're in a record, we want to hide the target, so we
7820 // return true (without a diagnostic) to tell the caller not to
7821 // build a shadow decl.
7822 if (CurContext->isRecord())
7823 return true;
7824
7825 // If we're not in a record, this is an error.
7826 Diag(Using->getLocation(), diag::err_using_decl_conflict);
7827 break;
7828 }
7829
7830 Diag(Target->getLocation(), diag::note_using_decl_target);
7831 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
7832 return true;
7833 }
7834
7835 // Target is not a function.
7836
7837 if (isa<TagDecl>(Target)) {
7838 // No conflict between a tag and a non-tag.
7839 if (!Tag) return false;
7840
7841 Diag(Using->getLocation(), diag::err_using_decl_conflict);
7842 Diag(Target->getLocation(), diag::note_using_decl_target);
7843 Diag(Tag->getLocation(), diag::note_using_decl_conflict);
7844 return true;
7845 }
7846
7847 // No conflict between a tag and a non-tag.
7848 if (!NonTag) return false;
7849
7850 Diag(Using->getLocation(), diag::err_using_decl_conflict);
7851 Diag(Target->getLocation(), diag::note_using_decl_target);
7852 Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
7853 return true;
7854 }
7855
7856 /// Builds a shadow declaration corresponding to a 'using' declaration.
BuildUsingShadowDecl(Scope * S,UsingDecl * UD,NamedDecl * Orig,UsingShadowDecl * PrevDecl)7857 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
7858 UsingDecl *UD,
7859 NamedDecl *Orig,
7860 UsingShadowDecl *PrevDecl) {
7861
7862 // If we resolved to another shadow declaration, just coalesce them.
7863 NamedDecl *Target = Orig;
7864 if (isa<UsingShadowDecl>(Target)) {
7865 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
7866 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
7867 }
7868
7869 UsingShadowDecl *Shadow
7870 = UsingShadowDecl::Create(Context, CurContext,
7871 UD->getLocation(), UD, Target);
7872 UD->addShadowDecl(Shadow);
7873
7874 Shadow->setAccess(UD->getAccess());
7875 if (Orig->isInvalidDecl() || UD->isInvalidDecl())
7876 Shadow->setInvalidDecl();
7877
7878 Shadow->setPreviousDecl(PrevDecl);
7879
7880 if (S)
7881 PushOnScopeChains(Shadow, S);
7882 else
7883 CurContext->addDecl(Shadow);
7884
7885
7886 return Shadow;
7887 }
7888
7889 /// Hides a using shadow declaration. This is required by the current
7890 /// using-decl implementation when a resolvable using declaration in a
7891 /// class is followed by a declaration which would hide or override
7892 /// one or more of the using decl's targets; for example:
7893 ///
7894 /// struct Base { void foo(int); };
7895 /// struct Derived : Base {
7896 /// using Base::foo;
7897 /// void foo(int);
7898 /// };
7899 ///
7900 /// The governing language is C++03 [namespace.udecl]p12:
7901 ///
7902 /// When a using-declaration brings names from a base class into a
7903 /// derived class scope, member functions in the derived class
7904 /// override and/or hide member functions with the same name and
7905 /// parameter types in a base class (rather than conflicting).
7906 ///
7907 /// There are two ways to implement this:
7908 /// (1) optimistically create shadow decls when they're not hidden
7909 /// by existing declarations, or
7910 /// (2) don't create any shadow decls (or at least don't make them
7911 /// visible) until we've fully parsed/instantiated the class.
7912 /// The problem with (1) is that we might have to retroactively remove
7913 /// a shadow decl, which requires several O(n) operations because the
7914 /// decl structures are (very reasonably) not designed for removal.
7915 /// (2) avoids this but is very fiddly and phase-dependent.
HideUsingShadowDecl(Scope * S,UsingShadowDecl * Shadow)7916 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
7917 if (Shadow->getDeclName().getNameKind() ==
7918 DeclarationName::CXXConversionFunctionName)
7919 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
7920
7921 // Remove it from the DeclContext...
7922 Shadow->getDeclContext()->removeDecl(Shadow);
7923
7924 // ...and the scope, if applicable...
7925 if (S) {
7926 S->RemoveDecl(Shadow);
7927 IdResolver.RemoveDecl(Shadow);
7928 }
7929
7930 // ...and the using decl.
7931 Shadow->getUsingDecl()->removeShadowDecl(Shadow);
7932
7933 // TODO: complain somehow if Shadow was used. It shouldn't
7934 // be possible for this to happen, because...?
7935 }
7936
7937 /// Find the base specifier for a base class with the given type.
findDirectBaseWithType(CXXRecordDecl * Derived,QualType DesiredBase,bool & AnyDependentBases)7938 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
7939 QualType DesiredBase,
7940 bool &AnyDependentBases) {
7941 // Check whether the named type is a direct base class.
7942 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified();
7943 for (auto &Base : Derived->bases()) {
7944 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
7945 if (CanonicalDesiredBase == BaseType)
7946 return &Base;
7947 if (BaseType->isDependentType())
7948 AnyDependentBases = true;
7949 }
7950 return nullptr;
7951 }
7952
7953 namespace {
7954 class UsingValidatorCCC : public CorrectionCandidateCallback {
7955 public:
UsingValidatorCCC(bool HasTypenameKeyword,bool IsInstantiation,NestedNameSpecifier * NNS,CXXRecordDecl * RequireMemberOf)7956 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
7957 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
7958 : HasTypenameKeyword(HasTypenameKeyword),
7959 IsInstantiation(IsInstantiation), OldNNS(NNS),
7960 RequireMemberOf(RequireMemberOf) {}
7961
ValidateCandidate(const TypoCorrection & Candidate)7962 bool ValidateCandidate(const TypoCorrection &Candidate) override {
7963 NamedDecl *ND = Candidate.getCorrectionDecl();
7964
7965 // Keywords are not valid here.
7966 if (!ND || isa<NamespaceDecl>(ND))
7967 return false;
7968
7969 // Completely unqualified names are invalid for a 'using' declaration.
7970 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
7971 return false;
7972
7973 if (RequireMemberOf) {
7974 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
7975 if (FoundRecord && FoundRecord->isInjectedClassName()) {
7976 // No-one ever wants a using-declaration to name an injected-class-name
7977 // of a base class, unless they're declaring an inheriting constructor.
7978 ASTContext &Ctx = ND->getASTContext();
7979 if (!Ctx.getLangOpts().CPlusPlus11)
7980 return false;
7981 QualType FoundType = Ctx.getRecordType(FoundRecord);
7982
7983 // Check that the injected-class-name is named as a member of its own
7984 // type; we don't want to suggest 'using Derived::Base;', since that
7985 // means something else.
7986 NestedNameSpecifier *Specifier =
7987 Candidate.WillReplaceSpecifier()
7988 ? Candidate.getCorrectionSpecifier()
7989 : OldNNS;
7990 if (!Specifier->getAsType() ||
7991 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
7992 return false;
7993
7994 // Check that this inheriting constructor declaration actually names a
7995 // direct base class of the current class.
7996 bool AnyDependentBases = false;
7997 if (!findDirectBaseWithType(RequireMemberOf,
7998 Ctx.getRecordType(FoundRecord),
7999 AnyDependentBases) &&
8000 !AnyDependentBases)
8001 return false;
8002 } else {
8003 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
8004 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
8005 return false;
8006
8007 // FIXME: Check that the base class member is accessible?
8008 }
8009 } else {
8010 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
8011 if (FoundRecord && FoundRecord->isInjectedClassName())
8012 return false;
8013 }
8014
8015 if (isa<TypeDecl>(ND))
8016 return HasTypenameKeyword || !IsInstantiation;
8017
8018 return !HasTypenameKeyword;
8019 }
8020
8021 private:
8022 bool HasTypenameKeyword;
8023 bool IsInstantiation;
8024 NestedNameSpecifier *OldNNS;
8025 CXXRecordDecl *RequireMemberOf;
8026 };
8027 } // end anonymous namespace
8028
8029 /// Builds a using declaration.
8030 ///
8031 /// \param IsInstantiation - Whether this call arises from an
8032 /// instantiation of an unresolved using declaration. We treat
8033 /// the lookup differently for these declarations.
BuildUsingDeclaration(Scope * S,AccessSpecifier AS,SourceLocation UsingLoc,CXXScopeSpec & SS,DeclarationNameInfo NameInfo,AttributeList * AttrList,bool IsInstantiation,bool HasTypenameKeyword,SourceLocation TypenameLoc)8034 NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
8035 SourceLocation UsingLoc,
8036 CXXScopeSpec &SS,
8037 DeclarationNameInfo NameInfo,
8038 AttributeList *AttrList,
8039 bool IsInstantiation,
8040 bool HasTypenameKeyword,
8041 SourceLocation TypenameLoc) {
8042 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
8043 SourceLocation IdentLoc = NameInfo.getLoc();
8044 assert(IdentLoc.isValid() && "Invalid TargetName location.");
8045
8046 // FIXME: We ignore attributes for now.
8047
8048 if (SS.isEmpty()) {
8049 Diag(IdentLoc, diag::err_using_requires_qualname);
8050 return nullptr;
8051 }
8052
8053 // Do the redeclaration lookup in the current scope.
8054 LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
8055 ForRedeclaration);
8056 Previous.setHideTags(false);
8057 if (S) {
8058 LookupName(Previous, S);
8059
8060 // It is really dumb that we have to do this.
8061 LookupResult::Filter F = Previous.makeFilter();
8062 while (F.hasNext()) {
8063 NamedDecl *D = F.next();
8064 if (!isDeclInScope(D, CurContext, S))
8065 F.erase();
8066 // If we found a local extern declaration that's not ordinarily visible,
8067 // and this declaration is being added to a non-block scope, ignore it.
8068 // We're only checking for scope conflicts here, not also for violations
8069 // of the linkage rules.
8070 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
8071 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
8072 F.erase();
8073 }
8074 F.done();
8075 } else {
8076 assert(IsInstantiation && "no scope in non-instantiation");
8077 assert(CurContext->isRecord() && "scope not record in instantiation");
8078 LookupQualifiedName(Previous, CurContext);
8079 }
8080
8081 // Check for invalid redeclarations.
8082 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
8083 SS, IdentLoc, Previous))
8084 return nullptr;
8085
8086 // Check for bad qualifiers.
8087 if (CheckUsingDeclQualifier(UsingLoc, SS, NameInfo, IdentLoc))
8088 return nullptr;
8089
8090 DeclContext *LookupContext = computeDeclContext(SS);
8091 NamedDecl *D;
8092 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8093 if (!LookupContext) {
8094 if (HasTypenameKeyword) {
8095 // FIXME: not all declaration name kinds are legal here
8096 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
8097 UsingLoc, TypenameLoc,
8098 QualifierLoc,
8099 IdentLoc, NameInfo.getName());
8100 } else {
8101 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
8102 QualifierLoc, NameInfo);
8103 }
8104 D->setAccess(AS);
8105 CurContext->addDecl(D);
8106 return D;
8107 }
8108
8109 auto Build = [&](bool Invalid) {
8110 UsingDecl *UD =
8111 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, NameInfo,
8112 HasTypenameKeyword);
8113 UD->setAccess(AS);
8114 CurContext->addDecl(UD);
8115 UD->setInvalidDecl(Invalid);
8116 return UD;
8117 };
8118 auto BuildInvalid = [&]{ return Build(true); };
8119 auto BuildValid = [&]{ return Build(false); };
8120
8121 if (RequireCompleteDeclContext(SS, LookupContext))
8122 return BuildInvalid();
8123
8124 // Look up the target name.
8125 LookupResult R(*this, NameInfo, LookupOrdinaryName);
8126
8127 // Unlike most lookups, we don't always want to hide tag
8128 // declarations: tag names are visible through the using declaration
8129 // even if hidden by ordinary names, *except* in a dependent context
8130 // where it's important for the sanity of two-phase lookup.
8131 if (!IsInstantiation)
8132 R.setHideTags(false);
8133
8134 // For the purposes of this lookup, we have a base object type
8135 // equal to that of the current context.
8136 if (CurContext->isRecord()) {
8137 R.setBaseObjectType(
8138 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
8139 }
8140
8141 LookupQualifiedName(R, LookupContext);
8142
8143 // Try to correct typos if possible. If constructor name lookup finds no
8144 // results, that means the named class has no explicit constructors, and we
8145 // suppressed declaring implicit ones (probably because it's dependent or
8146 // invalid).
8147 if (R.empty() &&
8148 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) {
8149 if (TypoCorrection Corrected = CorrectTypo(
8150 R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
8151 llvm::make_unique<UsingValidatorCCC>(
8152 HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
8153 dyn_cast<CXXRecordDecl>(CurContext)),
8154 CTK_ErrorRecovery)) {
8155 // We reject any correction for which ND would be NULL.
8156 NamedDecl *ND = Corrected.getCorrectionDecl();
8157
8158 // We reject candidates where DroppedSpecifier == true, hence the
8159 // literal '0' below.
8160 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
8161 << NameInfo.getName() << LookupContext << 0
8162 << SS.getRange());
8163
8164 // If we corrected to an inheriting constructor, handle it as one.
8165 auto *RD = dyn_cast<CXXRecordDecl>(ND);
8166 if (RD && RD->isInjectedClassName()) {
8167 // Fix up the information we'll use to build the using declaration.
8168 if (Corrected.WillReplaceSpecifier()) {
8169 NestedNameSpecifierLocBuilder Builder;
8170 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
8171 QualifierLoc.getSourceRange());
8172 QualifierLoc = Builder.getWithLocInContext(Context);
8173 }
8174
8175 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
8176 Context.getCanonicalType(Context.getRecordType(RD))));
8177 NameInfo.setNamedTypeInfo(nullptr);
8178 for (auto *Ctor : LookupConstructors(RD))
8179 R.addDecl(Ctor);
8180 } else {
8181 // FIXME: Pick up all the declarations if we found an overloaded function.
8182 R.addDecl(ND);
8183 }
8184 } else {
8185 Diag(IdentLoc, diag::err_no_member)
8186 << NameInfo.getName() << LookupContext << SS.getRange();
8187 return BuildInvalid();
8188 }
8189 }
8190
8191 if (R.isAmbiguous())
8192 return BuildInvalid();
8193
8194 if (HasTypenameKeyword) {
8195 // If we asked for a typename and got a non-type decl, error out.
8196 if (!R.getAsSingle<TypeDecl>()) {
8197 Diag(IdentLoc, diag::err_using_typename_non_type);
8198 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
8199 Diag((*I)->getUnderlyingDecl()->getLocation(),
8200 diag::note_using_decl_target);
8201 return BuildInvalid();
8202 }
8203 } else {
8204 // If we asked for a non-typename and we got a type, error out,
8205 // but only if this is an instantiation of an unresolved using
8206 // decl. Otherwise just silently find the type name.
8207 if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
8208 Diag(IdentLoc, diag::err_using_dependent_value_is_type);
8209 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
8210 return BuildInvalid();
8211 }
8212 }
8213
8214 // C++0x N2914 [namespace.udecl]p6:
8215 // A using-declaration shall not name a namespace.
8216 if (R.getAsSingle<NamespaceDecl>()) {
8217 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
8218 << SS.getRange();
8219 return BuildInvalid();
8220 }
8221
8222 UsingDecl *UD = BuildValid();
8223
8224 // The normal rules do not apply to inheriting constructor declarations.
8225 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
8226 // Suppress access diagnostics; the access check is instead performed at the
8227 // point of use for an inheriting constructor.
8228 R.suppressDiagnostics();
8229 CheckInheritingConstructorUsingDecl(UD);
8230 return UD;
8231 }
8232
8233 // Otherwise, look up the target name.
8234
8235 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
8236 UsingShadowDecl *PrevDecl = nullptr;
8237 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
8238 BuildUsingShadowDecl(S, UD, *I, PrevDecl);
8239 }
8240
8241 return UD;
8242 }
8243
8244 /// Additional checks for a using declaration referring to a constructor name.
CheckInheritingConstructorUsingDecl(UsingDecl * UD)8245 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
8246 assert(!UD->hasTypename() && "expecting a constructor name");
8247
8248 const Type *SourceType = UD->getQualifier()->getAsType();
8249 assert(SourceType &&
8250 "Using decl naming constructor doesn't have type in scope spec.");
8251 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
8252
8253 // Check whether the named type is a direct base class.
8254 bool AnyDependentBases = false;
8255 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
8256 AnyDependentBases);
8257 if (!Base && !AnyDependentBases) {
8258 Diag(UD->getUsingLoc(),
8259 diag::err_using_decl_constructor_not_in_direct_base)
8260 << UD->getNameInfo().getSourceRange()
8261 << QualType(SourceType, 0) << TargetClass;
8262 UD->setInvalidDecl();
8263 return true;
8264 }
8265
8266 if (Base)
8267 Base->setInheritConstructors();
8268
8269 return false;
8270 }
8271
8272 /// Checks that the given using declaration is not an invalid
8273 /// redeclaration. Note that this is checking only for the using decl
8274 /// itself, not for any ill-formedness among the UsingShadowDecls.
CheckUsingDeclRedeclaration(SourceLocation UsingLoc,bool HasTypenameKeyword,const CXXScopeSpec & SS,SourceLocation NameLoc,const LookupResult & Prev)8275 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
8276 bool HasTypenameKeyword,
8277 const CXXScopeSpec &SS,
8278 SourceLocation NameLoc,
8279 const LookupResult &Prev) {
8280 // C++03 [namespace.udecl]p8:
8281 // C++0x [namespace.udecl]p10:
8282 // A using-declaration is a declaration and can therefore be used
8283 // repeatedly where (and only where) multiple declarations are
8284 // allowed.
8285 //
8286 // That's in non-member contexts.
8287 if (!CurContext->getRedeclContext()->isRecord())
8288 return false;
8289
8290 NestedNameSpecifier *Qual = SS.getScopeRep();
8291
8292 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
8293 NamedDecl *D = *I;
8294
8295 bool DTypename;
8296 NestedNameSpecifier *DQual;
8297 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
8298 DTypename = UD->hasTypename();
8299 DQual = UD->getQualifier();
8300 } else if (UnresolvedUsingValueDecl *UD
8301 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
8302 DTypename = false;
8303 DQual = UD->getQualifier();
8304 } else if (UnresolvedUsingTypenameDecl *UD
8305 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
8306 DTypename = true;
8307 DQual = UD->getQualifier();
8308 } else continue;
8309
8310 // using decls differ if one says 'typename' and the other doesn't.
8311 // FIXME: non-dependent using decls?
8312 if (HasTypenameKeyword != DTypename) continue;
8313
8314 // using decls differ if they name different scopes (but note that
8315 // template instantiation can cause this check to trigger when it
8316 // didn't before instantiation).
8317 if (Context.getCanonicalNestedNameSpecifier(Qual) !=
8318 Context.getCanonicalNestedNameSpecifier(DQual))
8319 continue;
8320
8321 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
8322 Diag(D->getLocation(), diag::note_using_decl) << 1;
8323 return true;
8324 }
8325
8326 return false;
8327 }
8328
8329
8330 /// Checks that the given nested-name qualifier used in a using decl
8331 /// in the current context is appropriately related to the current
8332 /// scope. If an error is found, diagnoses it and returns true.
CheckUsingDeclQualifier(SourceLocation UsingLoc,const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,SourceLocation NameLoc)8333 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
8334 const CXXScopeSpec &SS,
8335 const DeclarationNameInfo &NameInfo,
8336 SourceLocation NameLoc) {
8337 DeclContext *NamedContext = computeDeclContext(SS);
8338
8339 if (!CurContext->isRecord()) {
8340 // C++03 [namespace.udecl]p3:
8341 // C++0x [namespace.udecl]p8:
8342 // A using-declaration for a class member shall be a member-declaration.
8343
8344 // If we weren't able to compute a valid scope, it must be a
8345 // dependent class scope.
8346 if (!NamedContext || NamedContext->isRecord()) {
8347 auto *RD = dyn_cast_or_null<CXXRecordDecl>(NamedContext);
8348 if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD))
8349 RD = nullptr;
8350
8351 Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
8352 << SS.getRange();
8353
8354 // If we have a complete, non-dependent source type, try to suggest a
8355 // way to get the same effect.
8356 if (!RD)
8357 return true;
8358
8359 // Find what this using-declaration was referring to.
8360 LookupResult R(*this, NameInfo, LookupOrdinaryName);
8361 R.setHideTags(false);
8362 R.suppressDiagnostics();
8363 LookupQualifiedName(R, RD);
8364
8365 if (R.getAsSingle<TypeDecl>()) {
8366 if (getLangOpts().CPlusPlus11) {
8367 // Convert 'using X::Y;' to 'using Y = X::Y;'.
8368 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
8369 << 0 // alias declaration
8370 << FixItHint::CreateInsertion(SS.getBeginLoc(),
8371 NameInfo.getName().getAsString() +
8372 " = ");
8373 } else {
8374 // Convert 'using X::Y;' to 'typedef X::Y Y;'.
8375 SourceLocation InsertLoc =
8376 getLocForEndOfToken(NameInfo.getLocEnd());
8377 Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
8378 << 1 // typedef declaration
8379 << FixItHint::CreateReplacement(UsingLoc, "typedef")
8380 << FixItHint::CreateInsertion(
8381 InsertLoc, " " + NameInfo.getName().getAsString());
8382 }
8383 } else if (R.getAsSingle<VarDecl>()) {
8384 // Don't provide a fixit outside C++11 mode; we don't want to suggest
8385 // repeating the type of the static data member here.
8386 FixItHint FixIt;
8387 if (getLangOpts().CPlusPlus11) {
8388 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
8389 FixIt = FixItHint::CreateReplacement(
8390 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
8391 }
8392
8393 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
8394 << 2 // reference declaration
8395 << FixIt;
8396 }
8397 return true;
8398 }
8399
8400 // Otherwise, everything is known to be fine.
8401 return false;
8402 }
8403
8404 // The current scope is a record.
8405
8406 // If the named context is dependent, we can't decide much.
8407 if (!NamedContext) {
8408 // FIXME: in C++0x, we can diagnose if we can prove that the
8409 // nested-name-specifier does not refer to a base class, which is
8410 // still possible in some cases.
8411
8412 // Otherwise we have to conservatively report that things might be
8413 // okay.
8414 return false;
8415 }
8416
8417 if (!NamedContext->isRecord()) {
8418 // Ideally this would point at the last name in the specifier,
8419 // but we don't have that level of source info.
8420 Diag(SS.getRange().getBegin(),
8421 diag::err_using_decl_nested_name_specifier_is_not_class)
8422 << SS.getScopeRep() << SS.getRange();
8423 return true;
8424 }
8425
8426 if (!NamedContext->isDependentContext() &&
8427 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
8428 return true;
8429
8430 if (getLangOpts().CPlusPlus11) {
8431 // C++0x [namespace.udecl]p3:
8432 // In a using-declaration used as a member-declaration, the
8433 // nested-name-specifier shall name a base class of the class
8434 // being defined.
8435
8436 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
8437 cast<CXXRecordDecl>(NamedContext))) {
8438 if (CurContext == NamedContext) {
8439 Diag(NameLoc,
8440 diag::err_using_decl_nested_name_specifier_is_current_class)
8441 << SS.getRange();
8442 return true;
8443 }
8444
8445 Diag(SS.getRange().getBegin(),
8446 diag::err_using_decl_nested_name_specifier_is_not_base_class)
8447 << SS.getScopeRep()
8448 << cast<CXXRecordDecl>(CurContext)
8449 << SS.getRange();
8450 return true;
8451 }
8452
8453 return false;
8454 }
8455
8456 // C++03 [namespace.udecl]p4:
8457 // A using-declaration used as a member-declaration shall refer
8458 // to a member of a base class of the class being defined [etc.].
8459
8460 // Salient point: SS doesn't have to name a base class as long as
8461 // lookup only finds members from base classes. Therefore we can
8462 // diagnose here only if we can prove that that can't happen,
8463 // i.e. if the class hierarchies provably don't intersect.
8464
8465 // TODO: it would be nice if "definitely valid" results were cached
8466 // in the UsingDecl and UsingShadowDecl so that these checks didn't
8467 // need to be repeated.
8468
8469 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases;
8470 auto Collect = [&Bases](const CXXRecordDecl *Base) {
8471 Bases.insert(Base);
8472 return true;
8473 };
8474
8475 // Collect all bases. Return false if we find a dependent base.
8476 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect))
8477 return false;
8478
8479 // Returns true if the base is dependent or is one of the accumulated base
8480 // classes.
8481 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) {
8482 return !Bases.count(Base);
8483 };
8484
8485 // Return false if the class has a dependent base or if it or one
8486 // of its bases is present in the base set of the current context.
8487 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) ||
8488 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase))
8489 return false;
8490
8491 Diag(SS.getRange().getBegin(),
8492 diag::err_using_decl_nested_name_specifier_is_not_base_class)
8493 << SS.getScopeRep()
8494 << cast<CXXRecordDecl>(CurContext)
8495 << SS.getRange();
8496
8497 return true;
8498 }
8499
ActOnAliasDeclaration(Scope * S,AccessSpecifier AS,MultiTemplateParamsArg TemplateParamLists,SourceLocation UsingLoc,UnqualifiedId & Name,AttributeList * AttrList,TypeResult Type,Decl * DeclFromDeclSpec)8500 Decl *Sema::ActOnAliasDeclaration(Scope *S,
8501 AccessSpecifier AS,
8502 MultiTemplateParamsArg TemplateParamLists,
8503 SourceLocation UsingLoc,
8504 UnqualifiedId &Name,
8505 AttributeList *AttrList,
8506 TypeResult Type,
8507 Decl *DeclFromDeclSpec) {
8508 // Skip up to the relevant declaration scope.
8509 while (S->isTemplateParamScope())
8510 S = S->getParent();
8511 assert((S->getFlags() & Scope::DeclScope) &&
8512 "got alias-declaration outside of declaration scope");
8513
8514 if (Type.isInvalid())
8515 return nullptr;
8516
8517 bool Invalid = false;
8518 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
8519 TypeSourceInfo *TInfo = nullptr;
8520 GetTypeFromParser(Type.get(), &TInfo);
8521
8522 if (DiagnoseClassNameShadow(CurContext, NameInfo))
8523 return nullptr;
8524
8525 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
8526 UPPC_DeclarationType)) {
8527 Invalid = true;
8528 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
8529 TInfo->getTypeLoc().getBeginLoc());
8530 }
8531
8532 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
8533 LookupName(Previous, S);
8534
8535 // Warn about shadowing the name of a template parameter.
8536 if (Previous.isSingleResult() &&
8537 Previous.getFoundDecl()->isTemplateParameter()) {
8538 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
8539 Previous.clear();
8540 }
8541
8542 assert(Name.Kind == UnqualifiedId::IK_Identifier &&
8543 "name in alias declaration must be an identifier");
8544 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
8545 Name.StartLocation,
8546 Name.Identifier, TInfo);
8547
8548 NewTD->setAccess(AS);
8549
8550 if (Invalid)
8551 NewTD->setInvalidDecl();
8552
8553 ProcessDeclAttributeList(S, NewTD, AttrList);
8554
8555 CheckTypedefForVariablyModifiedType(S, NewTD);
8556 Invalid |= NewTD->isInvalidDecl();
8557
8558 bool Redeclaration = false;
8559
8560 NamedDecl *NewND;
8561 if (TemplateParamLists.size()) {
8562 TypeAliasTemplateDecl *OldDecl = nullptr;
8563 TemplateParameterList *OldTemplateParams = nullptr;
8564
8565 if (TemplateParamLists.size() != 1) {
8566 Diag(UsingLoc, diag::err_alias_template_extra_headers)
8567 << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
8568 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
8569 }
8570 TemplateParameterList *TemplateParams = TemplateParamLists[0];
8571
8572 // Only consider previous declarations in the same scope.
8573 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
8574 /*ExplicitInstantiationOrSpecialization*/false);
8575 if (!Previous.empty()) {
8576 Redeclaration = true;
8577
8578 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
8579 if (!OldDecl && !Invalid) {
8580 Diag(UsingLoc, diag::err_redefinition_different_kind)
8581 << Name.Identifier;
8582
8583 NamedDecl *OldD = Previous.getRepresentativeDecl();
8584 if (OldD->getLocation().isValid())
8585 Diag(OldD->getLocation(), diag::note_previous_definition);
8586
8587 Invalid = true;
8588 }
8589
8590 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
8591 if (TemplateParameterListsAreEqual(TemplateParams,
8592 OldDecl->getTemplateParameters(),
8593 /*Complain=*/true,
8594 TPL_TemplateMatch))
8595 OldTemplateParams = OldDecl->getTemplateParameters();
8596 else
8597 Invalid = true;
8598
8599 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
8600 if (!Invalid &&
8601 !Context.hasSameType(OldTD->getUnderlyingType(),
8602 NewTD->getUnderlyingType())) {
8603 // FIXME: The C++0x standard does not clearly say this is ill-formed,
8604 // but we can't reasonably accept it.
8605 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
8606 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
8607 if (OldTD->getLocation().isValid())
8608 Diag(OldTD->getLocation(), diag::note_previous_definition);
8609 Invalid = true;
8610 }
8611 }
8612 }
8613
8614 // Merge any previous default template arguments into our parameters,
8615 // and check the parameter list.
8616 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
8617 TPC_TypeAliasTemplate))
8618 return nullptr;
8619
8620 TypeAliasTemplateDecl *NewDecl =
8621 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
8622 Name.Identifier, TemplateParams,
8623 NewTD);
8624 NewTD->setDescribedAliasTemplate(NewDecl);
8625
8626 NewDecl->setAccess(AS);
8627
8628 if (Invalid)
8629 NewDecl->setInvalidDecl();
8630 else if (OldDecl)
8631 NewDecl->setPreviousDecl(OldDecl);
8632
8633 NewND = NewDecl;
8634 } else {
8635 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) {
8636 setTagNameForLinkagePurposes(TD, NewTD);
8637 handleTagNumbering(TD, S);
8638 }
8639 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
8640 NewND = NewTD;
8641 }
8642
8643 if (!Redeclaration)
8644 PushOnScopeChains(NewND, S);
8645
8646 ActOnDocumentableDecl(NewND);
8647 return NewND;
8648 }
8649
ActOnNamespaceAliasDef(Scope * S,SourceLocation NamespaceLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)8650 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc,
8651 SourceLocation AliasLoc,
8652 IdentifierInfo *Alias, CXXScopeSpec &SS,
8653 SourceLocation IdentLoc,
8654 IdentifierInfo *Ident) {
8655
8656 // Lookup the namespace name.
8657 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
8658 LookupParsedName(R, S, &SS);
8659
8660 if (R.isAmbiguous())
8661 return nullptr;
8662
8663 if (R.empty()) {
8664 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
8665 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
8666 return nullptr;
8667 }
8668 }
8669 assert(!R.isAmbiguous() && !R.empty());
8670 NamedDecl *ND = R.getFoundDecl();
8671
8672 // Check if we have a previous declaration with the same name.
8673 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName,
8674 ForRedeclaration);
8675 LookupName(PrevR, S);
8676
8677 // Check we're not shadowing a template parameter.
8678 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) {
8679 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl());
8680 PrevR.clear();
8681 }
8682
8683 // Filter out any other lookup result from an enclosing scope.
8684 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false,
8685 /*AllowInlineNamespace*/false);
8686
8687 // Find the previous declaration and check that we can redeclare it.
8688 NamespaceAliasDecl *Prev = nullptr;
8689 if (NamedDecl *PrevDecl = PrevR.getAsSingle<NamedDecl>()) {
8690 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
8691 // We already have an alias with the same name that points to the same
8692 // namespace; check that it matches.
8693 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) {
8694 Prev = AD;
8695 } else if (isVisible(PrevDecl)) {
8696 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias)
8697 << Alias;
8698 Diag(PrevDecl->getLocation(), diag::note_previous_namespace_alias)
8699 << AD->getNamespace();
8700 return nullptr;
8701 }
8702 } else if (isVisible(PrevDecl)) {
8703 unsigned DiagID = isa<NamespaceDecl>(PrevDecl)
8704 ? diag::err_redefinition
8705 : diag::err_redefinition_different_kind;
8706 Diag(AliasLoc, DiagID) << Alias;
8707 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8708 return nullptr;
8709 }
8710 }
8711
8712 // The use of a nested name specifier may trigger deprecation warnings.
8713 DiagnoseUseOfDecl(ND, IdentLoc);
8714
8715 NamespaceAliasDecl *AliasDecl =
8716 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
8717 Alias, SS.getWithLocInContext(Context),
8718 IdentLoc, ND);
8719 if (Prev)
8720 AliasDecl->setPreviousDecl(Prev);
8721
8722 PushOnScopeChains(AliasDecl, S);
8723 return AliasDecl;
8724 }
8725
8726 Sema::ImplicitExceptionSpecification
ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,CXXMethodDecl * MD)8727 Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
8728 CXXMethodDecl *MD) {
8729 CXXRecordDecl *ClassDecl = MD->getParent();
8730
8731 // C++ [except.spec]p14:
8732 // An implicitly declared special member function (Clause 12) shall have an
8733 // exception-specification. [...]
8734 ImplicitExceptionSpecification ExceptSpec(*this);
8735 if (ClassDecl->isInvalidDecl())
8736 return ExceptSpec;
8737
8738 // Direct base-class constructors.
8739 for (const auto &B : ClassDecl->bases()) {
8740 if (B.isVirtual()) // Handled below.
8741 continue;
8742
8743 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8744 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8745 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8746 // If this is a deleted function, add it anyway. This might be conformant
8747 // with the standard. This might not. I'm not sure. It might not matter.
8748 if (Constructor)
8749 ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8750 }
8751 }
8752
8753 // Virtual base-class constructors.
8754 for (const auto &B : ClassDecl->vbases()) {
8755 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8756 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8757 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8758 // If this is a deleted function, add it anyway. This might be conformant
8759 // with the standard. This might not. I'm not sure. It might not matter.
8760 if (Constructor)
8761 ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8762 }
8763 }
8764
8765 // Field constructors.
8766 for (const auto *F : ClassDecl->fields()) {
8767 if (F->hasInClassInitializer()) {
8768 if (Expr *E = F->getInClassInitializer())
8769 ExceptSpec.CalledExpr(E);
8770 } else if (const RecordType *RecordTy
8771 = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8772 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8773 CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
8774 // If this is a deleted function, add it anyway. This might be conformant
8775 // with the standard. This might not. I'm not sure. It might not matter.
8776 // In particular, the problem is that this function never gets called. It
8777 // might just be ill-formed because this function attempts to refer to
8778 // a deleted function here.
8779 if (Constructor)
8780 ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8781 }
8782 }
8783
8784 return ExceptSpec;
8785 }
8786
8787 Sema::ImplicitExceptionSpecification
ComputeInheritingCtorExceptionSpec(CXXConstructorDecl * CD)8788 Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
8789 CXXRecordDecl *ClassDecl = CD->getParent();
8790
8791 // C++ [except.spec]p14:
8792 // An inheriting constructor [...] shall have an exception-specification. [...]
8793 ImplicitExceptionSpecification ExceptSpec(*this);
8794 if (ClassDecl->isInvalidDecl())
8795 return ExceptSpec;
8796
8797 // Inherited constructor.
8798 const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
8799 const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
8800 // FIXME: Copying or moving the parameters could add extra exceptions to the
8801 // set, as could the default arguments for the inherited constructor. This
8802 // will be addressed when we implement the resolution of core issue 1351.
8803 ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
8804
8805 // Direct base-class constructors.
8806 for (const auto &B : ClassDecl->bases()) {
8807 if (B.isVirtual()) // Handled below.
8808 continue;
8809
8810 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8811 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8812 if (BaseClassDecl == InheritedDecl)
8813 continue;
8814 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8815 if (Constructor)
8816 ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8817 }
8818 }
8819
8820 // Virtual base-class constructors.
8821 for (const auto &B : ClassDecl->vbases()) {
8822 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8823 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8824 if (BaseClassDecl == InheritedDecl)
8825 continue;
8826 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8827 if (Constructor)
8828 ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8829 }
8830 }
8831
8832 // Field constructors.
8833 for (const auto *F : ClassDecl->fields()) {
8834 if (F->hasInClassInitializer()) {
8835 if (Expr *E = F->getInClassInitializer())
8836 ExceptSpec.CalledExpr(E);
8837 } else if (const RecordType *RecordTy
8838 = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8839 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8840 CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
8841 if (Constructor)
8842 ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8843 }
8844 }
8845
8846 return ExceptSpec;
8847 }
8848
8849 namespace {
8850 /// RAII object to register a special member as being currently declared.
8851 struct DeclaringSpecialMember {
8852 Sema &S;
8853 Sema::SpecialMemberDecl D;
8854 bool WasAlreadyBeingDeclared;
8855
DeclaringSpecialMember__anonb9d573a21011::DeclaringSpecialMember8856 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
8857 : S(S), D(RD, CSM) {
8858 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second;
8859 if (WasAlreadyBeingDeclared)
8860 // This almost never happens, but if it does, ensure that our cache
8861 // doesn't contain a stale result.
8862 S.SpecialMemberCache.clear();
8863
8864 // FIXME: Register a note to be produced if we encounter an error while
8865 // declaring the special member.
8866 }
~DeclaringSpecialMember__anonb9d573a21011::DeclaringSpecialMember8867 ~DeclaringSpecialMember() {
8868 if (!WasAlreadyBeingDeclared)
8869 S.SpecialMembersBeingDeclared.erase(D);
8870 }
8871
8872 /// \brief Are we already trying to declare this special member?
isAlreadyBeingDeclared__anonb9d573a21011::DeclaringSpecialMember8873 bool isAlreadyBeingDeclared() const {
8874 return WasAlreadyBeingDeclared;
8875 }
8876 };
8877 }
8878
DeclareImplicitDefaultConstructor(CXXRecordDecl * ClassDecl)8879 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
8880 CXXRecordDecl *ClassDecl) {
8881 // C++ [class.ctor]p5:
8882 // A default constructor for a class X is a constructor of class X
8883 // that can be called without an argument. If there is no
8884 // user-declared constructor for class X, a default constructor is
8885 // implicitly declared. An implicitly-declared default constructor
8886 // is an inline public member of its class.
8887 assert(ClassDecl->needsImplicitDefaultConstructor() &&
8888 "Should not build implicit default constructor!");
8889
8890 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
8891 if (DSM.isAlreadyBeingDeclared())
8892 return nullptr;
8893
8894 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8895 CXXDefaultConstructor,
8896 false);
8897
8898 // Create the actual constructor declaration.
8899 CanQualType ClassType
8900 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8901 SourceLocation ClassLoc = ClassDecl->getLocation();
8902 DeclarationName Name
8903 = Context.DeclarationNames.getCXXConstructorName(ClassType);
8904 DeclarationNameInfo NameInfo(Name, ClassLoc);
8905 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
8906 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(),
8907 /*TInfo=*/nullptr, /*isExplicit=*/false, /*isInline=*/true,
8908 /*isImplicitlyDeclared=*/true, Constexpr);
8909 DefaultCon->setAccess(AS_public);
8910 DefaultCon->setDefaulted();
8911
8912 if (getLangOpts().CUDA) {
8913 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor,
8914 DefaultCon,
8915 /* ConstRHS */ false,
8916 /* Diagnose */ false);
8917 }
8918
8919 // Build an exception specification pointing back at this constructor.
8920 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, DefaultCon);
8921 DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8922
8923 // We don't need to use SpecialMemberIsTrivial here; triviality for default
8924 // constructors is easy to compute.
8925 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
8926
8927 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
8928 SetDeclDeleted(DefaultCon, ClassLoc);
8929
8930 // Note that we have declared this constructor.
8931 ++ASTContext::NumImplicitDefaultConstructorsDeclared;
8932
8933 if (Scope *S = getScopeForContext(ClassDecl))
8934 PushOnScopeChains(DefaultCon, S, false);
8935 ClassDecl->addDecl(DefaultCon);
8936
8937 return DefaultCon;
8938 }
8939
DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)8940 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
8941 CXXConstructorDecl *Constructor) {
8942 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
8943 !Constructor->doesThisDeclarationHaveABody() &&
8944 !Constructor->isDeleted()) &&
8945 "DefineImplicitDefaultConstructor - call it for implicit default ctor");
8946
8947 CXXRecordDecl *ClassDecl = Constructor->getParent();
8948 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
8949
8950 SynthesizedFunctionScope Scope(*this, Constructor);
8951 DiagnosticErrorTrap Trap(Diags);
8952 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8953 Trap.hasErrorOccurred()) {
8954 Diag(CurrentLocation, diag::note_member_synthesized_at)
8955 << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
8956 Constructor->setInvalidDecl();
8957 return;
8958 }
8959
8960 // The exception specification is needed because we are defining the
8961 // function.
8962 ResolveExceptionSpec(CurrentLocation,
8963 Constructor->getType()->castAs<FunctionProtoType>());
8964
8965 SourceLocation Loc = Constructor->getLocEnd().isValid()
8966 ? Constructor->getLocEnd()
8967 : Constructor->getLocation();
8968 Constructor->setBody(new (Context) CompoundStmt(Loc));
8969
8970 Constructor->markUsed(Context);
8971 MarkVTableUsed(CurrentLocation, ClassDecl);
8972
8973 if (ASTMutationListener *L = getASTMutationListener()) {
8974 L->CompletedImplicitDefinition(Constructor);
8975 }
8976
8977 DiagnoseUninitializedFields(*this, Constructor);
8978 }
8979
ActOnFinishDelayedMemberInitializers(Decl * D)8980 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
8981 // Perform any delayed checks on exception specifications.
8982 CheckDelayedMemberExceptionSpecs();
8983 }
8984
8985 namespace {
8986 /// Information on inheriting constructors to declare.
8987 class InheritingConstructorInfo {
8988 public:
InheritingConstructorInfo(Sema & SemaRef,CXXRecordDecl * Derived)8989 InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
8990 : SemaRef(SemaRef), Derived(Derived) {
8991 // Mark the constructors that we already have in the derived class.
8992 //
8993 // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
8994 // unless there is a user-declared constructor with the same signature in
8995 // the class where the using-declaration appears.
8996 visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
8997 }
8998
inheritAll(CXXRecordDecl * RD)8999 void inheritAll(CXXRecordDecl *RD) {
9000 visitAll(RD, &InheritingConstructorInfo::inherit);
9001 }
9002
9003 private:
9004 /// Information about an inheriting constructor.
9005 struct InheritingConstructor {
InheritingConstructor__anonb9d573a21111::InheritingConstructorInfo::InheritingConstructor9006 InheritingConstructor()
9007 : DeclaredInDerived(false), BaseCtor(nullptr), DerivedCtor(nullptr) {}
9008
9009 /// If \c true, a constructor with this signature is already declared
9010 /// in the derived class.
9011 bool DeclaredInDerived;
9012
9013 /// The constructor which is inherited.
9014 const CXXConstructorDecl *BaseCtor;
9015
9016 /// The derived constructor we declared.
9017 CXXConstructorDecl *DerivedCtor;
9018 };
9019
9020 /// Inheriting constructors with a given canonical type. There can be at
9021 /// most one such non-template constructor, and any number of templated
9022 /// constructors.
9023 struct InheritingConstructorsForType {
9024 InheritingConstructor NonTemplate;
9025 SmallVector<std::pair<TemplateParameterList *, InheritingConstructor>, 4>
9026 Templates;
9027
getEntry__anonb9d573a21111::InheritingConstructorInfo::InheritingConstructorsForType9028 InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
9029 if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
9030 TemplateParameterList *ParamList = FTD->getTemplateParameters();
9031 for (unsigned I = 0, N = Templates.size(); I != N; ++I)
9032 if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
9033 false, S.TPL_TemplateMatch))
9034 return Templates[I].second;
9035 Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
9036 return Templates.back().second;
9037 }
9038
9039 return NonTemplate;
9040 }
9041 };
9042
9043 /// Get or create the inheriting constructor record for a constructor.
getEntry(const CXXConstructorDecl * Ctor,QualType CtorType)9044 InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
9045 QualType CtorType) {
9046 return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
9047 .getEntry(SemaRef, Ctor);
9048 }
9049
9050 typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
9051
9052 /// Process all constructors for a class.
visitAll(const CXXRecordDecl * RD,VisitFn Callback)9053 void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
9054 for (const auto *Ctor : RD->ctors())
9055 (this->*Callback)(Ctor);
9056 for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9057 I(RD->decls_begin()), E(RD->decls_end());
9058 I != E; ++I) {
9059 const FunctionDecl *FD = (*I)->getTemplatedDecl();
9060 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
9061 (this->*Callback)(CD);
9062 }
9063 }
9064
9065 /// Note that a constructor (or constructor template) was declared in Derived.
noteDeclaredInDerived(const CXXConstructorDecl * Ctor)9066 void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
9067 getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
9068 }
9069
9070 /// Inherit a single constructor.
inherit(const CXXConstructorDecl * Ctor)9071 void inherit(const CXXConstructorDecl *Ctor) {
9072 const FunctionProtoType *CtorType =
9073 Ctor->getType()->castAs<FunctionProtoType>();
9074 ArrayRef<QualType> ArgTypes = CtorType->getParamTypes();
9075 FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
9076
9077 SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
9078
9079 // Core issue (no number yet): the ellipsis is always discarded.
9080 if (EPI.Variadic) {
9081 SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
9082 SemaRef.Diag(Ctor->getLocation(),
9083 diag::note_using_decl_constructor_ellipsis);
9084 EPI.Variadic = false;
9085 }
9086
9087 // Declare a constructor for each number of parameters.
9088 //
9089 // C++11 [class.inhctor]p1:
9090 // The candidate set of inherited constructors from the class X named in
9091 // the using-declaration consists of [... modulo defects ...] for each
9092 // constructor or constructor template of X, the set of constructors or
9093 // constructor templates that results from omitting any ellipsis parameter
9094 // specification and successively omitting parameters with a default
9095 // argument from the end of the parameter-type-list
9096 unsigned MinParams = minParamsToInherit(Ctor);
9097 unsigned Params = Ctor->getNumParams();
9098 if (Params >= MinParams) {
9099 do
9100 declareCtor(UsingLoc, Ctor,
9101 SemaRef.Context.getFunctionType(
9102 Ctor->getReturnType(), ArgTypes.slice(0, Params), EPI));
9103 while (Params > MinParams &&
9104 Ctor->getParamDecl(--Params)->hasDefaultArg());
9105 }
9106 }
9107
9108 /// Find the using-declaration which specified that we should inherit the
9109 /// constructors of \p Base.
getUsingLoc(const CXXRecordDecl * Base)9110 SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
9111 // No fancy lookup required; just look for the base constructor name
9112 // directly within the derived class.
9113 ASTContext &Context = SemaRef.Context;
9114 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
9115 Context.getCanonicalType(Context.getRecordType(Base)));
9116 DeclContext::lookup_result Decls = Derived->lookup(Name);
9117 return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
9118 }
9119
minParamsToInherit(const CXXConstructorDecl * Ctor)9120 unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
9121 // C++11 [class.inhctor]p3:
9122 // [F]or each constructor template in the candidate set of inherited
9123 // constructors, a constructor template is implicitly declared
9124 if (Ctor->getDescribedFunctionTemplate())
9125 return 0;
9126
9127 // For each non-template constructor in the candidate set of inherited
9128 // constructors other than a constructor having no parameters or a
9129 // copy/move constructor having a single parameter, a constructor is
9130 // implicitly declared [...]
9131 if (Ctor->getNumParams() == 0)
9132 return 1;
9133 if (Ctor->isCopyOrMoveConstructor())
9134 return 2;
9135
9136 // Per discussion on core reflector, never inherit a constructor which
9137 // would become a default, copy, or move constructor of Derived either.
9138 const ParmVarDecl *PD = Ctor->getParamDecl(0);
9139 const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
9140 return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
9141 }
9142
9143 /// Declare a single inheriting constructor, inheriting the specified
9144 /// constructor, with the given type.
declareCtor(SourceLocation UsingLoc,const CXXConstructorDecl * BaseCtor,QualType DerivedType)9145 void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
9146 QualType DerivedType) {
9147 InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
9148
9149 // C++11 [class.inhctor]p3:
9150 // ... a constructor is implicitly declared with the same constructor
9151 // characteristics unless there is a user-declared constructor with
9152 // the same signature in the class where the using-declaration appears
9153 if (Entry.DeclaredInDerived)
9154 return;
9155
9156 // C++11 [class.inhctor]p7:
9157 // If two using-declarations declare inheriting constructors with the
9158 // same signature, the program is ill-formed
9159 if (Entry.DerivedCtor) {
9160 if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
9161 // Only diagnose this once per constructor.
9162 if (Entry.DerivedCtor->isInvalidDecl())
9163 return;
9164 Entry.DerivedCtor->setInvalidDecl();
9165
9166 SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
9167 SemaRef.Diag(BaseCtor->getLocation(),
9168 diag::note_using_decl_constructor_conflict_current_ctor);
9169 SemaRef.Diag(Entry.BaseCtor->getLocation(),
9170 diag::note_using_decl_constructor_conflict_previous_ctor);
9171 SemaRef.Diag(Entry.DerivedCtor->getLocation(),
9172 diag::note_using_decl_constructor_conflict_previous_using);
9173 } else {
9174 // Core issue (no number): if the same inheriting constructor is
9175 // produced by multiple base class constructors from the same base
9176 // class, the inheriting constructor is defined as deleted.
9177 SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
9178 }
9179
9180 return;
9181 }
9182
9183 ASTContext &Context = SemaRef.Context;
9184 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
9185 Context.getCanonicalType(Context.getRecordType(Derived)));
9186 DeclarationNameInfo NameInfo(Name, UsingLoc);
9187
9188 TemplateParameterList *TemplateParams = nullptr;
9189 if (const FunctionTemplateDecl *FTD =
9190 BaseCtor->getDescribedFunctionTemplate()) {
9191 TemplateParams = FTD->getTemplateParameters();
9192 // We're reusing template parameters from a different DeclContext. This
9193 // is questionable at best, but works out because the template depth in
9194 // both places is guaranteed to be 0.
9195 // FIXME: Rebuild the template parameters in the new context, and
9196 // transform the function type to refer to them.
9197 }
9198
9199 // Build type source info pointing at the using-declaration. This is
9200 // required by template instantiation.
9201 TypeSourceInfo *TInfo =
9202 Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
9203 FunctionProtoTypeLoc ProtoLoc =
9204 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
9205
9206 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
9207 Context, Derived, UsingLoc, NameInfo, DerivedType,
9208 TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
9209 /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
9210
9211 // Build an unevaluated exception specification for this constructor.
9212 const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
9213 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9214 EPI.ExceptionSpec.Type = EST_Unevaluated;
9215 EPI.ExceptionSpec.SourceDecl = DerivedCtor;
9216 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
9217 FPT->getParamTypes(), EPI));
9218
9219 // Build the parameter declarations.
9220 SmallVector<ParmVarDecl *, 16> ParamDecls;
9221 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
9222 TypeSourceInfo *TInfo =
9223 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
9224 ParmVarDecl *PD = ParmVarDecl::Create(
9225 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
9226 FPT->getParamType(I), TInfo, SC_None, /*DefaultArg=*/nullptr);
9227 PD->setScopeInfo(0, I);
9228 PD->setImplicit();
9229 ParamDecls.push_back(PD);
9230 ProtoLoc.setParam(I, PD);
9231 }
9232
9233 // Set up the new constructor.
9234 DerivedCtor->setAccess(BaseCtor->getAccess());
9235 DerivedCtor->setParams(ParamDecls);
9236 DerivedCtor->setInheritedConstructor(BaseCtor);
9237 if (BaseCtor->isDeleted())
9238 SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
9239
9240 // If this is a constructor template, build the template declaration.
9241 if (TemplateParams) {
9242 FunctionTemplateDecl *DerivedTemplate =
9243 FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
9244 TemplateParams, DerivedCtor);
9245 DerivedTemplate->setAccess(BaseCtor->getAccess());
9246 DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
9247 Derived->addDecl(DerivedTemplate);
9248 } else {
9249 Derived->addDecl(DerivedCtor);
9250 }
9251
9252 Entry.BaseCtor = BaseCtor;
9253 Entry.DerivedCtor = DerivedCtor;
9254 }
9255
9256 Sema &SemaRef;
9257 CXXRecordDecl *Derived;
9258 typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
9259 MapType Map;
9260 };
9261 }
9262
DeclareInheritingConstructors(CXXRecordDecl * ClassDecl)9263 void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
9264 // Defer declaring the inheriting constructors until the class is
9265 // instantiated.
9266 if (ClassDecl->isDependentContext())
9267 return;
9268
9269 // Find base classes from which we might inherit constructors.
9270 SmallVector<CXXRecordDecl*, 4> InheritedBases;
9271 for (const auto &BaseIt : ClassDecl->bases())
9272 if (BaseIt.getInheritConstructors())
9273 InheritedBases.push_back(BaseIt.getType()->getAsCXXRecordDecl());
9274
9275 // Go no further if we're not inheriting any constructors.
9276 if (InheritedBases.empty())
9277 return;
9278
9279 // Declare the inherited constructors.
9280 InheritingConstructorInfo ICI(*this, ClassDecl);
9281 for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
9282 ICI.inheritAll(InheritedBases[I]);
9283 }
9284
DefineInheritingConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)9285 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
9286 CXXConstructorDecl *Constructor) {
9287 CXXRecordDecl *ClassDecl = Constructor->getParent();
9288 assert(Constructor->getInheritedConstructor() &&
9289 !Constructor->doesThisDeclarationHaveABody() &&
9290 !Constructor->isDeleted());
9291
9292 SynthesizedFunctionScope Scope(*this, Constructor);
9293 DiagnosticErrorTrap Trap(Diags);
9294 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
9295 Trap.hasErrorOccurred()) {
9296 Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
9297 << Context.getTagDeclType(ClassDecl);
9298 Constructor->setInvalidDecl();
9299 return;
9300 }
9301
9302 SourceLocation Loc = Constructor->getLocation();
9303 Constructor->setBody(new (Context) CompoundStmt(Loc));
9304
9305 Constructor->markUsed(Context);
9306 MarkVTableUsed(CurrentLocation, ClassDecl);
9307
9308 if (ASTMutationListener *L = getASTMutationListener()) {
9309 L->CompletedImplicitDefinition(Constructor);
9310 }
9311 }
9312
9313
9314 Sema::ImplicitExceptionSpecification
ComputeDefaultedDtorExceptionSpec(CXXMethodDecl * MD)9315 Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
9316 CXXRecordDecl *ClassDecl = MD->getParent();
9317
9318 // C++ [except.spec]p14:
9319 // An implicitly declared special member function (Clause 12) shall have
9320 // an exception-specification.
9321 ImplicitExceptionSpecification ExceptSpec(*this);
9322 if (ClassDecl->isInvalidDecl())
9323 return ExceptSpec;
9324
9325 // Direct base-class destructors.
9326 for (const auto &B : ClassDecl->bases()) {
9327 if (B.isVirtual()) // Handled below.
9328 continue;
9329
9330 if (const RecordType *BaseType = B.getType()->getAs<RecordType>())
9331 ExceptSpec.CalledDecl(B.getLocStart(),
9332 LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
9333 }
9334
9335 // Virtual base-class destructors.
9336 for (const auto &B : ClassDecl->vbases()) {
9337 if (const RecordType *BaseType = B.getType()->getAs<RecordType>())
9338 ExceptSpec.CalledDecl(B.getLocStart(),
9339 LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
9340 }
9341
9342 // Field destructors.
9343 for (const auto *F : ClassDecl->fields()) {
9344 if (const RecordType *RecordTy
9345 = Context.getBaseElementType(F->getType())->getAs<RecordType>())
9346 ExceptSpec.CalledDecl(F->getLocation(),
9347 LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
9348 }
9349
9350 return ExceptSpec;
9351 }
9352
DeclareImplicitDestructor(CXXRecordDecl * ClassDecl)9353 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
9354 // C++ [class.dtor]p2:
9355 // If a class has no user-declared destructor, a destructor is
9356 // declared implicitly. An implicitly-declared destructor is an
9357 // inline public member of its class.
9358 assert(ClassDecl->needsImplicitDestructor());
9359
9360 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
9361 if (DSM.isAlreadyBeingDeclared())
9362 return nullptr;
9363
9364 // Create the actual destructor declaration.
9365 CanQualType ClassType
9366 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
9367 SourceLocation ClassLoc = ClassDecl->getLocation();
9368 DeclarationName Name
9369 = Context.DeclarationNames.getCXXDestructorName(ClassType);
9370 DeclarationNameInfo NameInfo(Name, ClassLoc);
9371 CXXDestructorDecl *Destructor
9372 = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
9373 QualType(), nullptr, /*isInline=*/true,
9374 /*isImplicitlyDeclared=*/true);
9375 Destructor->setAccess(AS_public);
9376 Destructor->setDefaulted();
9377
9378 if (getLangOpts().CUDA) {
9379 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor,
9380 Destructor,
9381 /* ConstRHS */ false,
9382 /* Diagnose */ false);
9383 }
9384
9385 // Build an exception specification pointing back at this destructor.
9386 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, Destructor);
9387 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
9388
9389 AddOverriddenMethods(ClassDecl, Destructor);
9390
9391 // We don't need to use SpecialMemberIsTrivial here; triviality for
9392 // destructors is easy to compute.
9393 Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
9394
9395 if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
9396 SetDeclDeleted(Destructor, ClassLoc);
9397
9398 // Note that we have declared this destructor.
9399 ++ASTContext::NumImplicitDestructorsDeclared;
9400
9401 // Introduce this destructor into its scope.
9402 if (Scope *S = getScopeForContext(ClassDecl))
9403 PushOnScopeChains(Destructor, S, false);
9404 ClassDecl->addDecl(Destructor);
9405
9406 return Destructor;
9407 }
9408
DefineImplicitDestructor(SourceLocation CurrentLocation,CXXDestructorDecl * Destructor)9409 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
9410 CXXDestructorDecl *Destructor) {
9411 assert((Destructor->isDefaulted() &&
9412 !Destructor->doesThisDeclarationHaveABody() &&
9413 !Destructor->isDeleted()) &&
9414 "DefineImplicitDestructor - call it for implicit default dtor");
9415 CXXRecordDecl *ClassDecl = Destructor->getParent();
9416 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
9417
9418 if (Destructor->isInvalidDecl())
9419 return;
9420
9421 SynthesizedFunctionScope Scope(*this, Destructor);
9422
9423 DiagnosticErrorTrap Trap(Diags);
9424 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
9425 Destructor->getParent());
9426
9427 if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
9428 Diag(CurrentLocation, diag::note_member_synthesized_at)
9429 << CXXDestructor << Context.getTagDeclType(ClassDecl);
9430
9431 Destructor->setInvalidDecl();
9432 return;
9433 }
9434
9435 // The exception specification is needed because we are defining the
9436 // function.
9437 ResolveExceptionSpec(CurrentLocation,
9438 Destructor->getType()->castAs<FunctionProtoType>());
9439
9440 SourceLocation Loc = Destructor->getLocEnd().isValid()
9441 ? Destructor->getLocEnd()
9442 : Destructor->getLocation();
9443 Destructor->setBody(new (Context) CompoundStmt(Loc));
9444 Destructor->markUsed(Context);
9445 MarkVTableUsed(CurrentLocation, ClassDecl);
9446
9447 if (ASTMutationListener *L = getASTMutationListener()) {
9448 L->CompletedImplicitDefinition(Destructor);
9449 }
9450 }
9451
9452 /// \brief Perform any semantic analysis which needs to be delayed until all
9453 /// pending class member declarations have been parsed.
ActOnFinishCXXMemberDecls()9454 void Sema::ActOnFinishCXXMemberDecls() {
9455 // If the context is an invalid C++ class, just suppress these checks.
9456 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
9457 if (Record->isInvalidDecl()) {
9458 DelayedDefaultedMemberExceptionSpecs.clear();
9459 DelayedExceptionSpecChecks.clear();
9460 return;
9461 }
9462 }
9463 }
9464
getDefaultArgExprsForConstructors(Sema & S,CXXRecordDecl * Class)9465 static void getDefaultArgExprsForConstructors(Sema &S, CXXRecordDecl *Class) {
9466 // Don't do anything for template patterns.
9467 if (Class->getDescribedClassTemplate())
9468 return;
9469
9470 for (Decl *Member : Class->decls()) {
9471 auto *CD = dyn_cast<CXXConstructorDecl>(Member);
9472 if (!CD) {
9473 // Recurse on nested classes.
9474 if (auto *NestedRD = dyn_cast<CXXRecordDecl>(Member))
9475 getDefaultArgExprsForConstructors(S, NestedRD);
9476 continue;
9477 } else if (!CD->isDefaultConstructor() || !CD->hasAttr<DLLExportAttr>()) {
9478 continue;
9479 }
9480
9481 for (unsigned I = 0, E = CD->getNumParams(); I != E; ++I) {
9482 // Skip any default arguments that we've already instantiated.
9483 if (S.Context.getDefaultArgExprForConstructor(CD, I))
9484 continue;
9485
9486 Expr *DefaultArg = S.BuildCXXDefaultArgExpr(Class->getLocation(), CD,
9487 CD->getParamDecl(I)).get();
9488 S.DiscardCleanupsInEvaluationContext();
9489 S.Context.addDefaultArgExprForConstructor(CD, I, DefaultArg);
9490 }
9491 }
9492 }
9493
ActOnFinishCXXNonNestedClass(Decl * D)9494 void Sema::ActOnFinishCXXNonNestedClass(Decl *D) {
9495 auto *RD = dyn_cast<CXXRecordDecl>(D);
9496
9497 // Default constructors that are annotated with __declspec(dllexport) which
9498 // have default arguments or don't use the standard calling convention are
9499 // wrapped with a thunk called the default constructor closure.
9500 if (RD && Context.getTargetInfo().getCXXABI().isMicrosoft())
9501 getDefaultArgExprsForConstructors(*this, RD);
9502
9503 if (!DelayedDllExportClasses.empty()) {
9504 // Calling ReferenceDllExportedMethods might cause the current function to
9505 // be called again, so use a local copy of DelayedDllExportClasses.
9506 SmallVector<CXXRecordDecl *, 4> WorkList;
9507 std::swap(DelayedDllExportClasses, WorkList);
9508 for (CXXRecordDecl *Class : WorkList)
9509 ReferenceDllExportedMethods(*this, Class);
9510 }
9511 }
9512
AdjustDestructorExceptionSpec(CXXRecordDecl * ClassDecl,CXXDestructorDecl * Destructor)9513 void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
9514 CXXDestructorDecl *Destructor) {
9515 assert(getLangOpts().CPlusPlus11 &&
9516 "adjusting dtor exception specs was introduced in c++11");
9517
9518 // C++11 [class.dtor]p3:
9519 // A declaration of a destructor that does not have an exception-
9520 // specification is implicitly considered to have the same exception-
9521 // specification as an implicit declaration.
9522 const FunctionProtoType *DtorType = Destructor->getType()->
9523 getAs<FunctionProtoType>();
9524 if (DtorType->hasExceptionSpec())
9525 return;
9526
9527 // Replace the destructor's type, building off the existing one. Fortunately,
9528 // the only thing of interest in the destructor type is its extended info.
9529 // The return and arguments are fixed.
9530 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
9531 EPI.ExceptionSpec.Type = EST_Unevaluated;
9532 EPI.ExceptionSpec.SourceDecl = Destructor;
9533 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
9534
9535 // FIXME: If the destructor has a body that could throw, and the newly created
9536 // spec doesn't allow exceptions, we should emit a warning, because this
9537 // change in behavior can break conforming C++03 programs at runtime.
9538 // However, we don't have a body or an exception specification yet, so it
9539 // needs to be done somewhere else.
9540 }
9541
9542 namespace {
9543 /// \brief An abstract base class for all helper classes used in building the
9544 // copy/move operators. These classes serve as factory functions and help us
9545 // avoid using the same Expr* in the AST twice.
9546 class ExprBuilder {
9547 ExprBuilder(const ExprBuilder&) = delete;
9548 ExprBuilder &operator=(const ExprBuilder&) = delete;
9549
9550 protected:
assertNotNull(Expr * E)9551 static Expr *assertNotNull(Expr *E) {
9552 assert(E && "Expression construction must not fail.");
9553 return E;
9554 }
9555
9556 public:
ExprBuilder()9557 ExprBuilder() {}
~ExprBuilder()9558 virtual ~ExprBuilder() {}
9559
9560 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
9561 };
9562
9563 class RefBuilder: public ExprBuilder {
9564 VarDecl *Var;
9565 QualType VarType;
9566
9567 public:
build(Sema & S,SourceLocation Loc) const9568 Expr *build(Sema &S, SourceLocation Loc) const override {
9569 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc).get());
9570 }
9571
RefBuilder(VarDecl * Var,QualType VarType)9572 RefBuilder(VarDecl *Var, QualType VarType)
9573 : Var(Var), VarType(VarType) {}
9574 };
9575
9576 class ThisBuilder: public ExprBuilder {
9577 public:
build(Sema & S,SourceLocation Loc) const9578 Expr *build(Sema &S, SourceLocation Loc) const override {
9579 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
9580 }
9581 };
9582
9583 class CastBuilder: public ExprBuilder {
9584 const ExprBuilder &Builder;
9585 QualType Type;
9586 ExprValueKind Kind;
9587 const CXXCastPath &Path;
9588
9589 public:
build(Sema & S,SourceLocation Loc) const9590 Expr *build(Sema &S, SourceLocation Loc) const override {
9591 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
9592 CK_UncheckedDerivedToBase, Kind,
9593 &Path).get());
9594 }
9595
CastBuilder(const ExprBuilder & Builder,QualType Type,ExprValueKind Kind,const CXXCastPath & Path)9596 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
9597 const CXXCastPath &Path)
9598 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
9599 };
9600
9601 class DerefBuilder: public ExprBuilder {
9602 const ExprBuilder &Builder;
9603
9604 public:
build(Sema & S,SourceLocation Loc) const9605 Expr *build(Sema &S, SourceLocation Loc) const override {
9606 return assertNotNull(
9607 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
9608 }
9609
DerefBuilder(const ExprBuilder & Builder)9610 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
9611 };
9612
9613 class MemberBuilder: public ExprBuilder {
9614 const ExprBuilder &Builder;
9615 QualType Type;
9616 CXXScopeSpec SS;
9617 bool IsArrow;
9618 LookupResult &MemberLookup;
9619
9620 public:
build(Sema & S,SourceLocation Loc) const9621 Expr *build(Sema &S, SourceLocation Loc) const override {
9622 return assertNotNull(S.BuildMemberReferenceExpr(
9623 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
9624 nullptr, MemberLookup, nullptr, nullptr).get());
9625 }
9626
MemberBuilder(const ExprBuilder & Builder,QualType Type,bool IsArrow,LookupResult & MemberLookup)9627 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
9628 LookupResult &MemberLookup)
9629 : Builder(Builder), Type(Type), IsArrow(IsArrow),
9630 MemberLookup(MemberLookup) {}
9631 };
9632
9633 class MoveCastBuilder: public ExprBuilder {
9634 const ExprBuilder &Builder;
9635
9636 public:
build(Sema & S,SourceLocation Loc) const9637 Expr *build(Sema &S, SourceLocation Loc) const override {
9638 return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
9639 }
9640
MoveCastBuilder(const ExprBuilder & Builder)9641 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
9642 };
9643
9644 class LvalueConvBuilder: public ExprBuilder {
9645 const ExprBuilder &Builder;
9646
9647 public:
build(Sema & S,SourceLocation Loc) const9648 Expr *build(Sema &S, SourceLocation Loc) const override {
9649 return assertNotNull(
9650 S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
9651 }
9652
LvalueConvBuilder(const ExprBuilder & Builder)9653 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
9654 };
9655
9656 class SubscriptBuilder: public ExprBuilder {
9657 const ExprBuilder &Base;
9658 const ExprBuilder &Index;
9659
9660 public:
build(Sema & S,SourceLocation Loc) const9661 Expr *build(Sema &S, SourceLocation Loc) const override {
9662 return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
9663 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
9664 }
9665
SubscriptBuilder(const ExprBuilder & Base,const ExprBuilder & Index)9666 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
9667 : Base(Base), Index(Index) {}
9668 };
9669
9670 } // end anonymous namespace
9671
9672 /// When generating a defaulted copy or move assignment operator, if a field
9673 /// should be copied with __builtin_memcpy rather than via explicit assignments,
9674 /// do so. This optimization only applies for arrays of scalars, and for arrays
9675 /// of class type where the selected copy/move-assignment operator is trivial.
9676 static StmtResult
buildMemcpyForAssignmentOp(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & ToB,const ExprBuilder & FromB)9677 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
9678 const ExprBuilder &ToB, const ExprBuilder &FromB) {
9679 // Compute the size of the memory buffer to be copied.
9680 QualType SizeType = S.Context.getSizeType();
9681 llvm::APInt Size(S.Context.getTypeSize(SizeType),
9682 S.Context.getTypeSizeInChars(T).getQuantity());
9683
9684 // Take the address of the field references for "from" and "to". We
9685 // directly construct UnaryOperators here because semantic analysis
9686 // does not permit us to take the address of an xvalue.
9687 Expr *From = FromB.build(S, Loc);
9688 From = new (S.Context) UnaryOperator(From, UO_AddrOf,
9689 S.Context.getPointerType(From->getType()),
9690 VK_RValue, OK_Ordinary, Loc);
9691 Expr *To = ToB.build(S, Loc);
9692 To = new (S.Context) UnaryOperator(To, UO_AddrOf,
9693 S.Context.getPointerType(To->getType()),
9694 VK_RValue, OK_Ordinary, Loc);
9695
9696 const Type *E = T->getBaseElementTypeUnsafe();
9697 bool NeedsCollectableMemCpy =
9698 E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
9699
9700 // Create a reference to the __builtin_objc_memmove_collectable function
9701 StringRef MemCpyName = NeedsCollectableMemCpy ?
9702 "__builtin_objc_memmove_collectable" :
9703 "__builtin_memcpy";
9704 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
9705 Sema::LookupOrdinaryName);
9706 S.LookupName(R, S.TUScope, true);
9707
9708 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
9709 if (!MemCpy)
9710 // Something went horribly wrong earlier, and we will have complained
9711 // about it.
9712 return StmtError();
9713
9714 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
9715 VK_RValue, Loc, nullptr);
9716 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
9717
9718 Expr *CallArgs[] = {
9719 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
9720 };
9721 ExprResult Call = S.ActOnCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
9722 Loc, CallArgs, Loc);
9723
9724 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
9725 return Call.getAs<Stmt>();
9726 }
9727
9728 /// \brief Builds a statement that copies/moves the given entity from \p From to
9729 /// \c To.
9730 ///
9731 /// This routine is used to copy/move the members of a class with an
9732 /// implicitly-declared copy/move assignment operator. When the entities being
9733 /// copied are arrays, this routine builds for loops to copy them.
9734 ///
9735 /// \param S The Sema object used for type-checking.
9736 ///
9737 /// \param Loc The location where the implicit copy/move is being generated.
9738 ///
9739 /// \param T The type of the expressions being copied/moved. Both expressions
9740 /// must have this type.
9741 ///
9742 /// \param To The expression we are copying/moving to.
9743 ///
9744 /// \param From The expression we are copying/moving from.
9745 ///
9746 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
9747 /// Otherwise, it's a non-static member subobject.
9748 ///
9749 /// \param Copying Whether we're copying or moving.
9750 ///
9751 /// \param Depth Internal parameter recording the depth of the recursion.
9752 ///
9753 /// \returns A statement or a loop that copies the expressions, or StmtResult(0)
9754 /// if a memcpy should be used instead.
9755 static StmtResult
buildSingleCopyAssignRecursively(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & To,const ExprBuilder & From,bool CopyingBaseSubobject,bool Copying,unsigned Depth=0)9756 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
9757 const ExprBuilder &To, const ExprBuilder &From,
9758 bool CopyingBaseSubobject, bool Copying,
9759 unsigned Depth = 0) {
9760 // C++11 [class.copy]p28:
9761 // Each subobject is assigned in the manner appropriate to its type:
9762 //
9763 // - if the subobject is of class type, as if by a call to operator= with
9764 // the subobject as the object expression and the corresponding
9765 // subobject of x as a single function argument (as if by explicit
9766 // qualification; that is, ignoring any possible virtual overriding
9767 // functions in more derived classes);
9768 //
9769 // C++03 [class.copy]p13:
9770 // - if the subobject is of class type, the copy assignment operator for
9771 // the class is used (as if by explicit qualification; that is,
9772 // ignoring any possible virtual overriding functions in more derived
9773 // classes);
9774 if (const RecordType *RecordTy = T->getAs<RecordType>()) {
9775 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
9776
9777 // Look for operator=.
9778 DeclarationName Name
9779 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9780 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
9781 S.LookupQualifiedName(OpLookup, ClassDecl, false);
9782
9783 // Prior to C++11, filter out any result that isn't a copy/move-assignment
9784 // operator.
9785 if (!S.getLangOpts().CPlusPlus11) {
9786 LookupResult::Filter F = OpLookup.makeFilter();
9787 while (F.hasNext()) {
9788 NamedDecl *D = F.next();
9789 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
9790 if (Method->isCopyAssignmentOperator() ||
9791 (!Copying && Method->isMoveAssignmentOperator()))
9792 continue;
9793
9794 F.erase();
9795 }
9796 F.done();
9797 }
9798
9799 // Suppress the protected check (C++ [class.protected]) for each of the
9800 // assignment operators we found. This strange dance is required when
9801 // we're assigning via a base classes's copy-assignment operator. To
9802 // ensure that we're getting the right base class subobject (without
9803 // ambiguities), we need to cast "this" to that subobject type; to
9804 // ensure that we don't go through the virtual call mechanism, we need
9805 // to qualify the operator= name with the base class (see below). However,
9806 // this means that if the base class has a protected copy assignment
9807 // operator, the protected member access check will fail. So, we
9808 // rewrite "protected" access to "public" access in this case, since we
9809 // know by construction that we're calling from a derived class.
9810 if (CopyingBaseSubobject) {
9811 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
9812 L != LEnd; ++L) {
9813 if (L.getAccess() == AS_protected)
9814 L.setAccess(AS_public);
9815 }
9816 }
9817
9818 // Create the nested-name-specifier that will be used to qualify the
9819 // reference to operator=; this is required to suppress the virtual
9820 // call mechanism.
9821 CXXScopeSpec SS;
9822 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
9823 SS.MakeTrivial(S.Context,
9824 NestedNameSpecifier::Create(S.Context, nullptr, false,
9825 CanonicalT),
9826 Loc);
9827
9828 // Create the reference to operator=.
9829 ExprResult OpEqualRef
9830 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*isArrow=*/false,
9831 SS, /*TemplateKWLoc=*/SourceLocation(),
9832 /*FirstQualifierInScope=*/nullptr,
9833 OpLookup,
9834 /*TemplateArgs=*/nullptr, /*S*/nullptr,
9835 /*SuppressQualifierCheck=*/true);
9836 if (OpEqualRef.isInvalid())
9837 return StmtError();
9838
9839 // Build the call to the assignment operator.
9840
9841 Expr *FromInst = From.build(S, Loc);
9842 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
9843 OpEqualRef.getAs<Expr>(),
9844 Loc, FromInst, Loc);
9845 if (Call.isInvalid())
9846 return StmtError();
9847
9848 // If we built a call to a trivial 'operator=' while copying an array,
9849 // bail out. We'll replace the whole shebang with a memcpy.
9850 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
9851 if (CE && CE->getMethodDecl()->isTrivial() && Depth)
9852 return StmtResult((Stmt*)nullptr);
9853
9854 // Convert to an expression-statement, and clean up any produced
9855 // temporaries.
9856 return S.ActOnExprStmt(Call);
9857 }
9858
9859 // - if the subobject is of scalar type, the built-in assignment
9860 // operator is used.
9861 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
9862 if (!ArrayTy) {
9863 ExprResult Assignment = S.CreateBuiltinBinOp(
9864 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
9865 if (Assignment.isInvalid())
9866 return StmtError();
9867 return S.ActOnExprStmt(Assignment);
9868 }
9869
9870 // - if the subobject is an array, each element is assigned, in the
9871 // manner appropriate to the element type;
9872
9873 // Construct a loop over the array bounds, e.g.,
9874 //
9875 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
9876 //
9877 // that will copy each of the array elements.
9878 QualType SizeType = S.Context.getSizeType();
9879
9880 // Create the iteration variable.
9881 IdentifierInfo *IterationVarName = nullptr;
9882 {
9883 SmallString<8> Str;
9884 llvm::raw_svector_ostream OS(Str);
9885 OS << "__i" << Depth;
9886 IterationVarName = &S.Context.Idents.get(OS.str());
9887 }
9888 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
9889 IterationVarName, SizeType,
9890 S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
9891 SC_None);
9892
9893 // Initialize the iteration variable to zero.
9894 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
9895 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
9896
9897 // Creates a reference to the iteration variable.
9898 RefBuilder IterationVarRef(IterationVar, SizeType);
9899 LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
9900
9901 // Create the DeclStmt that holds the iteration variable.
9902 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
9903
9904 // Subscript the "from" and "to" expressions with the iteration variable.
9905 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
9906 MoveCastBuilder FromIndexMove(FromIndexCopy);
9907 const ExprBuilder *FromIndex;
9908 if (Copying)
9909 FromIndex = &FromIndexCopy;
9910 else
9911 FromIndex = &FromIndexMove;
9912
9913 SubscriptBuilder ToIndex(To, IterationVarRefRVal);
9914
9915 // Build the copy/move for an individual element of the array.
9916 StmtResult Copy =
9917 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
9918 ToIndex, *FromIndex, CopyingBaseSubobject,
9919 Copying, Depth + 1);
9920 // Bail out if copying fails or if we determined that we should use memcpy.
9921 if (Copy.isInvalid() || !Copy.get())
9922 return Copy;
9923
9924 // Create the comparison against the array bound.
9925 llvm::APInt Upper
9926 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
9927 Expr *Comparison
9928 = new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc),
9929 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
9930 BO_NE, S.Context.BoolTy,
9931 VK_RValue, OK_Ordinary, Loc, false);
9932
9933 // Create the pre-increment of the iteration variable.
9934 Expr *Increment
9935 = new (S.Context) UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc,
9936 SizeType, VK_LValue, OK_Ordinary, Loc);
9937
9938 // Construct the loop that copies all elements of this array.
9939 return S.ActOnForStmt(Loc, Loc, InitStmt,
9940 S.MakeFullExpr(Comparison),
9941 nullptr, S.MakeFullDiscardedValueExpr(Increment),
9942 Loc, Copy.get());
9943 }
9944
9945 static StmtResult
buildSingleCopyAssign(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & To,const ExprBuilder & From,bool CopyingBaseSubobject,bool Copying)9946 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
9947 const ExprBuilder &To, const ExprBuilder &From,
9948 bool CopyingBaseSubobject, bool Copying) {
9949 // Maybe we should use a memcpy?
9950 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
9951 T.isTriviallyCopyableType(S.Context))
9952 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
9953
9954 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
9955 CopyingBaseSubobject,
9956 Copying, 0));
9957
9958 // If we ended up picking a trivial assignment operator for an array of a
9959 // non-trivially-copyable class type, just emit a memcpy.
9960 if (!Result.isInvalid() && !Result.get())
9961 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
9962
9963 return Result;
9964 }
9965
9966 Sema::ImplicitExceptionSpecification
ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl * MD)9967 Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
9968 CXXRecordDecl *ClassDecl = MD->getParent();
9969
9970 ImplicitExceptionSpecification ExceptSpec(*this);
9971 if (ClassDecl->isInvalidDecl())
9972 return ExceptSpec;
9973
9974 const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9975 assert(T->getNumParams() == 1 && "not a copy assignment op");
9976 unsigned ArgQuals =
9977 T->getParamType(0).getNonReferenceType().getCVRQualifiers();
9978
9979 // C++ [except.spec]p14:
9980 // An implicitly declared special member function (Clause 12) shall have an
9981 // exception-specification. [...]
9982
9983 // It is unspecified whether or not an implicit copy assignment operator
9984 // attempts to deduplicate calls to assignment operators of virtual bases are
9985 // made. As such, this exception specification is effectively unspecified.
9986 // Based on a similar decision made for constness in C++0x, we're erring on
9987 // the side of assuming such calls to be made regardless of whether they
9988 // actually happen.
9989 for (const auto &Base : ClassDecl->bases()) {
9990 if (Base.isVirtual())
9991 continue;
9992
9993 CXXRecordDecl *BaseClassDecl
9994 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
9995 if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
9996 ArgQuals, false, 0))
9997 ExceptSpec.CalledDecl(Base.getLocStart(), CopyAssign);
9998 }
9999
10000 for (const auto &Base : ClassDecl->vbases()) {
10001 CXXRecordDecl *BaseClassDecl
10002 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10003 if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
10004 ArgQuals, false, 0))
10005 ExceptSpec.CalledDecl(Base.getLocStart(), CopyAssign);
10006 }
10007
10008 for (const auto *Field : ClassDecl->fields()) {
10009 QualType FieldType = Context.getBaseElementType(Field->getType());
10010 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
10011 if (CXXMethodDecl *CopyAssign =
10012 LookupCopyingAssignment(FieldClassDecl,
10013 ArgQuals | FieldType.getCVRQualifiers(),
10014 false, 0))
10015 ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
10016 }
10017 }
10018
10019 return ExceptSpec;
10020 }
10021
DeclareImplicitCopyAssignment(CXXRecordDecl * ClassDecl)10022 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
10023 // Note: The following rules are largely analoguous to the copy
10024 // constructor rules. Note that virtual bases are not taken into account
10025 // for determining the argument type of the operator. Note also that
10026 // operators taking an object instead of a reference are allowed.
10027 assert(ClassDecl->needsImplicitCopyAssignment());
10028
10029 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
10030 if (DSM.isAlreadyBeingDeclared())
10031 return nullptr;
10032
10033 QualType ArgType = Context.getTypeDeclType(ClassDecl);
10034 QualType RetType = Context.getLValueReferenceType(ArgType);
10035 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
10036 if (Const)
10037 ArgType = ArgType.withConst();
10038 ArgType = Context.getLValueReferenceType(ArgType);
10039
10040 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10041 CXXCopyAssignment,
10042 Const);
10043
10044 // An implicitly-declared copy assignment operator is an inline public
10045 // member of its class.
10046 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
10047 SourceLocation ClassLoc = ClassDecl->getLocation();
10048 DeclarationNameInfo NameInfo(Name, ClassLoc);
10049 CXXMethodDecl *CopyAssignment =
10050 CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
10051 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
10052 /*isInline=*/true, Constexpr, SourceLocation());
10053 CopyAssignment->setAccess(AS_public);
10054 CopyAssignment->setDefaulted();
10055 CopyAssignment->setImplicit();
10056
10057 if (getLangOpts().CUDA) {
10058 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment,
10059 CopyAssignment,
10060 /* ConstRHS */ Const,
10061 /* Diagnose */ false);
10062 }
10063
10064 // Build an exception specification pointing back at this member.
10065 FunctionProtoType::ExtProtoInfo EPI =
10066 getImplicitMethodEPI(*this, CopyAssignment);
10067 CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
10068
10069 // Add the parameter to the operator.
10070 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
10071 ClassLoc, ClassLoc,
10072 /*Id=*/nullptr, ArgType,
10073 /*TInfo=*/nullptr, SC_None,
10074 nullptr);
10075 CopyAssignment->setParams(FromParam);
10076
10077 AddOverriddenMethods(ClassDecl, CopyAssignment);
10078
10079 CopyAssignment->setTrivial(
10080 ClassDecl->needsOverloadResolutionForCopyAssignment()
10081 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
10082 : ClassDecl->hasTrivialCopyAssignment());
10083
10084 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
10085 SetDeclDeleted(CopyAssignment, ClassLoc);
10086
10087 // Note that we have added this copy-assignment operator.
10088 ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
10089
10090 if (Scope *S = getScopeForContext(ClassDecl))
10091 PushOnScopeChains(CopyAssignment, S, false);
10092 ClassDecl->addDecl(CopyAssignment);
10093
10094 return CopyAssignment;
10095 }
10096
10097 /// Diagnose an implicit copy operation for a class which is odr-used, but
10098 /// which is deprecated because the class has a user-declared copy constructor,
10099 /// copy assignment operator, or destructor.
diagnoseDeprecatedCopyOperation(Sema & S,CXXMethodDecl * CopyOp,SourceLocation UseLoc)10100 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp,
10101 SourceLocation UseLoc) {
10102 assert(CopyOp->isImplicit());
10103
10104 CXXRecordDecl *RD = CopyOp->getParent();
10105 CXXMethodDecl *UserDeclaredOperation = nullptr;
10106
10107 // In Microsoft mode, assignment operations don't affect constructors and
10108 // vice versa.
10109 if (RD->hasUserDeclaredDestructor()) {
10110 UserDeclaredOperation = RD->getDestructor();
10111 } else if (!isa<CXXConstructorDecl>(CopyOp) &&
10112 RD->hasUserDeclaredCopyConstructor() &&
10113 !S.getLangOpts().MSVCCompat) {
10114 // Find any user-declared copy constructor.
10115 for (auto *I : RD->ctors()) {
10116 if (I->isCopyConstructor()) {
10117 UserDeclaredOperation = I;
10118 break;
10119 }
10120 }
10121 assert(UserDeclaredOperation);
10122 } else if (isa<CXXConstructorDecl>(CopyOp) &&
10123 RD->hasUserDeclaredCopyAssignment() &&
10124 !S.getLangOpts().MSVCCompat) {
10125 // Find any user-declared move assignment operator.
10126 for (auto *I : RD->methods()) {
10127 if (I->isCopyAssignmentOperator()) {
10128 UserDeclaredOperation = I;
10129 break;
10130 }
10131 }
10132 assert(UserDeclaredOperation);
10133 }
10134
10135 if (UserDeclaredOperation) {
10136 S.Diag(UserDeclaredOperation->getLocation(),
10137 diag::warn_deprecated_copy_operation)
10138 << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
10139 << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
10140 S.Diag(UseLoc, diag::note_member_synthesized_at)
10141 << (isa<CXXConstructorDecl>(CopyOp) ? Sema::CXXCopyConstructor
10142 : Sema::CXXCopyAssignment)
10143 << RD;
10144 }
10145 }
10146
DefineImplicitCopyAssignment(SourceLocation CurrentLocation,CXXMethodDecl * CopyAssignOperator)10147 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
10148 CXXMethodDecl *CopyAssignOperator) {
10149 assert((CopyAssignOperator->isDefaulted() &&
10150 CopyAssignOperator->isOverloadedOperator() &&
10151 CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
10152 !CopyAssignOperator->doesThisDeclarationHaveABody() &&
10153 !CopyAssignOperator->isDeleted()) &&
10154 "DefineImplicitCopyAssignment called for wrong function");
10155
10156 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
10157
10158 if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
10159 CopyAssignOperator->setInvalidDecl();
10160 return;
10161 }
10162
10163 // C++11 [class.copy]p18:
10164 // The [definition of an implicitly declared copy assignment operator] is
10165 // deprecated if the class has a user-declared copy constructor or a
10166 // user-declared destructor.
10167 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
10168 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator, CurrentLocation);
10169
10170 CopyAssignOperator->markUsed(Context);
10171
10172 SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
10173 DiagnosticErrorTrap Trap(Diags);
10174
10175 // C++0x [class.copy]p30:
10176 // The implicitly-defined or explicitly-defaulted copy assignment operator
10177 // for a non-union class X performs memberwise copy assignment of its
10178 // subobjects. The direct base classes of X are assigned first, in the
10179 // order of their declaration in the base-specifier-list, and then the
10180 // immediate non-static data members of X are assigned, in the order in
10181 // which they were declared in the class definition.
10182
10183 // The statements that form the synthesized function body.
10184 SmallVector<Stmt*, 8> Statements;
10185
10186 // The parameter for the "other" object, which we are copying from.
10187 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
10188 Qualifiers OtherQuals = Other->getType().getQualifiers();
10189 QualType OtherRefType = Other->getType();
10190 if (const LValueReferenceType *OtherRef
10191 = OtherRefType->getAs<LValueReferenceType>()) {
10192 OtherRefType = OtherRef->getPointeeType();
10193 OtherQuals = OtherRefType.getQualifiers();
10194 }
10195
10196 // Our location for everything implicitly-generated.
10197 SourceLocation Loc = CopyAssignOperator->getLocEnd().isValid()
10198 ? CopyAssignOperator->getLocEnd()
10199 : CopyAssignOperator->getLocation();
10200
10201 // Builds a DeclRefExpr for the "other" object.
10202 RefBuilder OtherRef(Other, OtherRefType);
10203
10204 // Builds the "this" pointer.
10205 ThisBuilder This;
10206
10207 // Assign base classes.
10208 bool Invalid = false;
10209 for (auto &Base : ClassDecl->bases()) {
10210 // Form the assignment:
10211 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
10212 QualType BaseType = Base.getType().getUnqualifiedType();
10213 if (!BaseType->isRecordType()) {
10214 Invalid = true;
10215 continue;
10216 }
10217
10218 CXXCastPath BasePath;
10219 BasePath.push_back(&Base);
10220
10221 // Construct the "from" expression, which is an implicit cast to the
10222 // appropriately-qualified base type.
10223 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
10224 VK_LValue, BasePath);
10225
10226 // Dereference "this".
10227 DerefBuilder DerefThis(This);
10228 CastBuilder To(DerefThis,
10229 Context.getCVRQualifiedType(
10230 BaseType, CopyAssignOperator->getTypeQualifiers()),
10231 VK_LValue, BasePath);
10232
10233 // Build the copy.
10234 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
10235 To, From,
10236 /*CopyingBaseSubobject=*/true,
10237 /*Copying=*/true);
10238 if (Copy.isInvalid()) {
10239 Diag(CurrentLocation, diag::note_member_synthesized_at)
10240 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
10241 CopyAssignOperator->setInvalidDecl();
10242 return;
10243 }
10244
10245 // Success! Record the copy.
10246 Statements.push_back(Copy.getAs<Expr>());
10247 }
10248
10249 // Assign non-static members.
10250 for (auto *Field : ClassDecl->fields()) {
10251 // FIXME: We should form some kind of AST representation for the implied
10252 // memcpy in a union copy operation.
10253 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
10254 continue;
10255
10256 if (Field->isInvalidDecl()) {
10257 Invalid = true;
10258 continue;
10259 }
10260
10261 // Check for members of reference type; we can't copy those.
10262 if (Field->getType()->isReferenceType()) {
10263 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
10264 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
10265 Diag(Field->getLocation(), diag::note_declared_at);
10266 Diag(CurrentLocation, diag::note_member_synthesized_at)
10267 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
10268 Invalid = true;
10269 continue;
10270 }
10271
10272 // Check for members of const-qualified, non-class type.
10273 QualType BaseType = Context.getBaseElementType(Field->getType());
10274 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
10275 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
10276 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
10277 Diag(Field->getLocation(), diag::note_declared_at);
10278 Diag(CurrentLocation, diag::note_member_synthesized_at)
10279 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
10280 Invalid = true;
10281 continue;
10282 }
10283
10284 // Suppress assigning zero-width bitfields.
10285 if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
10286 continue;
10287
10288 QualType FieldType = Field->getType().getNonReferenceType();
10289 if (FieldType->isIncompleteArrayType()) {
10290 assert(ClassDecl->hasFlexibleArrayMember() &&
10291 "Incomplete array type is not valid");
10292 continue;
10293 }
10294
10295 // Build references to the field in the object we're copying from and to.
10296 CXXScopeSpec SS; // Intentionally empty
10297 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
10298 LookupMemberName);
10299 MemberLookup.addDecl(Field);
10300 MemberLookup.resolveKind();
10301
10302 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
10303
10304 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
10305
10306 // Build the copy of this field.
10307 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
10308 To, From,
10309 /*CopyingBaseSubobject=*/false,
10310 /*Copying=*/true);
10311 if (Copy.isInvalid()) {
10312 Diag(CurrentLocation, diag::note_member_synthesized_at)
10313 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
10314 CopyAssignOperator->setInvalidDecl();
10315 return;
10316 }
10317
10318 // Success! Record the copy.
10319 Statements.push_back(Copy.getAs<Stmt>());
10320 }
10321
10322 if (!Invalid) {
10323 // Add a "return *this;"
10324 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
10325
10326 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
10327 if (Return.isInvalid())
10328 Invalid = true;
10329 else {
10330 Statements.push_back(Return.getAs<Stmt>());
10331
10332 if (Trap.hasErrorOccurred()) {
10333 Diag(CurrentLocation, diag::note_member_synthesized_at)
10334 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
10335 Invalid = true;
10336 }
10337 }
10338 }
10339
10340 // The exception specification is needed because we are defining the
10341 // function.
10342 ResolveExceptionSpec(CurrentLocation,
10343 CopyAssignOperator->getType()->castAs<FunctionProtoType>());
10344
10345 if (Invalid) {
10346 CopyAssignOperator->setInvalidDecl();
10347 return;
10348 }
10349
10350 StmtResult Body;
10351 {
10352 CompoundScopeRAII CompoundScope(*this);
10353 Body = ActOnCompoundStmt(Loc, Loc, Statements,
10354 /*isStmtExpr=*/false);
10355 assert(!Body.isInvalid() && "Compound statement creation cannot fail");
10356 }
10357 CopyAssignOperator->setBody(Body.getAs<Stmt>());
10358
10359 if (ASTMutationListener *L = getASTMutationListener()) {
10360 L->CompletedImplicitDefinition(CopyAssignOperator);
10361 }
10362 }
10363
10364 Sema::ImplicitExceptionSpecification
ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl * MD)10365 Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
10366 CXXRecordDecl *ClassDecl = MD->getParent();
10367
10368 ImplicitExceptionSpecification ExceptSpec(*this);
10369 if (ClassDecl->isInvalidDecl())
10370 return ExceptSpec;
10371
10372 // C++0x [except.spec]p14:
10373 // An implicitly declared special member function (Clause 12) shall have an
10374 // exception-specification. [...]
10375
10376 // It is unspecified whether or not an implicit move assignment operator
10377 // attempts to deduplicate calls to assignment operators of virtual bases are
10378 // made. As such, this exception specification is effectively unspecified.
10379 // Based on a similar decision made for constness in C++0x, we're erring on
10380 // the side of assuming such calls to be made regardless of whether they
10381 // actually happen.
10382 // Note that a move constructor is not implicitly declared when there are
10383 // virtual bases, but it can still be user-declared and explicitly defaulted.
10384 for (const auto &Base : ClassDecl->bases()) {
10385 if (Base.isVirtual())
10386 continue;
10387
10388 CXXRecordDecl *BaseClassDecl
10389 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10390 if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
10391 0, false, 0))
10392 ExceptSpec.CalledDecl(Base.getLocStart(), MoveAssign);
10393 }
10394
10395 for (const auto &Base : ClassDecl->vbases()) {
10396 CXXRecordDecl *BaseClassDecl
10397 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10398 if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
10399 0, false, 0))
10400 ExceptSpec.CalledDecl(Base.getLocStart(), MoveAssign);
10401 }
10402
10403 for (const auto *Field : ClassDecl->fields()) {
10404 QualType FieldType = Context.getBaseElementType(Field->getType());
10405 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
10406 if (CXXMethodDecl *MoveAssign =
10407 LookupMovingAssignment(FieldClassDecl,
10408 FieldType.getCVRQualifiers(),
10409 false, 0))
10410 ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
10411 }
10412 }
10413
10414 return ExceptSpec;
10415 }
10416
DeclareImplicitMoveAssignment(CXXRecordDecl * ClassDecl)10417 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
10418 assert(ClassDecl->needsImplicitMoveAssignment());
10419
10420 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
10421 if (DSM.isAlreadyBeingDeclared())
10422 return nullptr;
10423
10424 // Note: The following rules are largely analoguous to the move
10425 // constructor rules.
10426
10427 QualType ArgType = Context.getTypeDeclType(ClassDecl);
10428 QualType RetType = Context.getLValueReferenceType(ArgType);
10429 ArgType = Context.getRValueReferenceType(ArgType);
10430
10431 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10432 CXXMoveAssignment,
10433 false);
10434
10435 // An implicitly-declared move assignment operator is an inline public
10436 // member of its class.
10437 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
10438 SourceLocation ClassLoc = ClassDecl->getLocation();
10439 DeclarationNameInfo NameInfo(Name, ClassLoc);
10440 CXXMethodDecl *MoveAssignment =
10441 CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
10442 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
10443 /*isInline=*/true, Constexpr, SourceLocation());
10444 MoveAssignment->setAccess(AS_public);
10445 MoveAssignment->setDefaulted();
10446 MoveAssignment->setImplicit();
10447
10448 if (getLangOpts().CUDA) {
10449 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment,
10450 MoveAssignment,
10451 /* ConstRHS */ false,
10452 /* Diagnose */ false);
10453 }
10454
10455 // Build an exception specification pointing back at this member.
10456 FunctionProtoType::ExtProtoInfo EPI =
10457 getImplicitMethodEPI(*this, MoveAssignment);
10458 MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
10459
10460 // Add the parameter to the operator.
10461 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
10462 ClassLoc, ClassLoc,
10463 /*Id=*/nullptr, ArgType,
10464 /*TInfo=*/nullptr, SC_None,
10465 nullptr);
10466 MoveAssignment->setParams(FromParam);
10467
10468 AddOverriddenMethods(ClassDecl, MoveAssignment);
10469
10470 MoveAssignment->setTrivial(
10471 ClassDecl->needsOverloadResolutionForMoveAssignment()
10472 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
10473 : ClassDecl->hasTrivialMoveAssignment());
10474
10475 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
10476 ClassDecl->setImplicitMoveAssignmentIsDeleted();
10477 SetDeclDeleted(MoveAssignment, ClassLoc);
10478 }
10479
10480 // Note that we have added this copy-assignment operator.
10481 ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
10482
10483 if (Scope *S = getScopeForContext(ClassDecl))
10484 PushOnScopeChains(MoveAssignment, S, false);
10485 ClassDecl->addDecl(MoveAssignment);
10486
10487 return MoveAssignment;
10488 }
10489
10490 /// Check if we're implicitly defining a move assignment operator for a class
10491 /// with virtual bases. Such a move assignment might move-assign the virtual
10492 /// base multiple times.
checkMoveAssignmentForRepeatedMove(Sema & S,CXXRecordDecl * Class,SourceLocation CurrentLocation)10493 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
10494 SourceLocation CurrentLocation) {
10495 assert(!Class->isDependentContext() && "should not define dependent move");
10496
10497 // Only a virtual base could get implicitly move-assigned multiple times.
10498 // Only a non-trivial move assignment can observe this. We only want to
10499 // diagnose if we implicitly define an assignment operator that assigns
10500 // two base classes, both of which move-assign the same virtual base.
10501 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
10502 Class->getNumBases() < 2)
10503 return;
10504
10505 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
10506 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
10507 VBaseMap VBases;
10508
10509 for (auto &BI : Class->bases()) {
10510 Worklist.push_back(&BI);
10511 while (!Worklist.empty()) {
10512 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
10513 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
10514
10515 // If the base has no non-trivial move assignment operators,
10516 // we don't care about moves from it.
10517 if (!Base->hasNonTrivialMoveAssignment())
10518 continue;
10519
10520 // If there's nothing virtual here, skip it.
10521 if (!BaseSpec->isVirtual() && !Base->getNumVBases())
10522 continue;
10523
10524 // If we're not actually going to call a move assignment for this base,
10525 // or the selected move assignment is trivial, skip it.
10526 Sema::SpecialMemberOverloadResult *SMOR =
10527 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
10528 /*ConstArg*/false, /*VolatileArg*/false,
10529 /*RValueThis*/true, /*ConstThis*/false,
10530 /*VolatileThis*/false);
10531 if (!SMOR->getMethod() || SMOR->getMethod()->isTrivial() ||
10532 !SMOR->getMethod()->isMoveAssignmentOperator())
10533 continue;
10534
10535 if (BaseSpec->isVirtual()) {
10536 // We're going to move-assign this virtual base, and its move
10537 // assignment operator is not trivial. If this can happen for
10538 // multiple distinct direct bases of Class, diagnose it. (If it
10539 // only happens in one base, we'll diagnose it when synthesizing
10540 // that base class's move assignment operator.)
10541 CXXBaseSpecifier *&Existing =
10542 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
10543 .first->second;
10544 if (Existing && Existing != &BI) {
10545 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
10546 << Class << Base;
10547 S.Diag(Existing->getLocStart(), diag::note_vbase_moved_here)
10548 << (Base->getCanonicalDecl() ==
10549 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
10550 << Base << Existing->getType() << Existing->getSourceRange();
10551 S.Diag(BI.getLocStart(), diag::note_vbase_moved_here)
10552 << (Base->getCanonicalDecl() ==
10553 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
10554 << Base << BI.getType() << BaseSpec->getSourceRange();
10555
10556 // Only diagnose each vbase once.
10557 Existing = nullptr;
10558 }
10559 } else {
10560 // Only walk over bases that have defaulted move assignment operators.
10561 // We assume that any user-provided move assignment operator handles
10562 // the multiple-moves-of-vbase case itself somehow.
10563 if (!SMOR->getMethod()->isDefaulted())
10564 continue;
10565
10566 // We're going to move the base classes of Base. Add them to the list.
10567 for (auto &BI : Base->bases())
10568 Worklist.push_back(&BI);
10569 }
10570 }
10571 }
10572 }
10573
DefineImplicitMoveAssignment(SourceLocation CurrentLocation,CXXMethodDecl * MoveAssignOperator)10574 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
10575 CXXMethodDecl *MoveAssignOperator) {
10576 assert((MoveAssignOperator->isDefaulted() &&
10577 MoveAssignOperator->isOverloadedOperator() &&
10578 MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
10579 !MoveAssignOperator->doesThisDeclarationHaveABody() &&
10580 !MoveAssignOperator->isDeleted()) &&
10581 "DefineImplicitMoveAssignment called for wrong function");
10582
10583 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
10584
10585 if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
10586 MoveAssignOperator->setInvalidDecl();
10587 return;
10588 }
10589
10590 MoveAssignOperator->markUsed(Context);
10591
10592 SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
10593 DiagnosticErrorTrap Trap(Diags);
10594
10595 // C++0x [class.copy]p28:
10596 // The implicitly-defined or move assignment operator for a non-union class
10597 // X performs memberwise move assignment of its subobjects. The direct base
10598 // classes of X are assigned first, in the order of their declaration in the
10599 // base-specifier-list, and then the immediate non-static data members of X
10600 // are assigned, in the order in which they were declared in the class
10601 // definition.
10602
10603 // Issue a warning if our implicit move assignment operator will move
10604 // from a virtual base more than once.
10605 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
10606
10607 // The statements that form the synthesized function body.
10608 SmallVector<Stmt*, 8> Statements;
10609
10610 // The parameter for the "other" object, which we are move from.
10611 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
10612 QualType OtherRefType = Other->getType()->
10613 getAs<RValueReferenceType>()->getPointeeType();
10614 assert(!OtherRefType.getQualifiers() &&
10615 "Bad argument type of defaulted move assignment");
10616
10617 // Our location for everything implicitly-generated.
10618 SourceLocation Loc = MoveAssignOperator->getLocEnd().isValid()
10619 ? MoveAssignOperator->getLocEnd()
10620 : MoveAssignOperator->getLocation();
10621
10622 // Builds a reference to the "other" object.
10623 RefBuilder OtherRef(Other, OtherRefType);
10624 // Cast to rvalue.
10625 MoveCastBuilder MoveOther(OtherRef);
10626
10627 // Builds the "this" pointer.
10628 ThisBuilder This;
10629
10630 // Assign base classes.
10631 bool Invalid = false;
10632 for (auto &Base : ClassDecl->bases()) {
10633 // C++11 [class.copy]p28:
10634 // It is unspecified whether subobjects representing virtual base classes
10635 // are assigned more than once by the implicitly-defined copy assignment
10636 // operator.
10637 // FIXME: Do not assign to a vbase that will be assigned by some other base
10638 // class. For a move-assignment, this can result in the vbase being moved
10639 // multiple times.
10640
10641 // Form the assignment:
10642 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
10643 QualType BaseType = Base.getType().getUnqualifiedType();
10644 if (!BaseType->isRecordType()) {
10645 Invalid = true;
10646 continue;
10647 }
10648
10649 CXXCastPath BasePath;
10650 BasePath.push_back(&Base);
10651
10652 // Construct the "from" expression, which is an implicit cast to the
10653 // appropriately-qualified base type.
10654 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
10655
10656 // Dereference "this".
10657 DerefBuilder DerefThis(This);
10658
10659 // Implicitly cast "this" to the appropriately-qualified base type.
10660 CastBuilder To(DerefThis,
10661 Context.getCVRQualifiedType(
10662 BaseType, MoveAssignOperator->getTypeQualifiers()),
10663 VK_LValue, BasePath);
10664
10665 // Build the move.
10666 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
10667 To, From,
10668 /*CopyingBaseSubobject=*/true,
10669 /*Copying=*/false);
10670 if (Move.isInvalid()) {
10671 Diag(CurrentLocation, diag::note_member_synthesized_at)
10672 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10673 MoveAssignOperator->setInvalidDecl();
10674 return;
10675 }
10676
10677 // Success! Record the move.
10678 Statements.push_back(Move.getAs<Expr>());
10679 }
10680
10681 // Assign non-static members.
10682 for (auto *Field : ClassDecl->fields()) {
10683 // FIXME: We should form some kind of AST representation for the implied
10684 // memcpy in a union copy operation.
10685 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
10686 continue;
10687
10688 if (Field->isInvalidDecl()) {
10689 Invalid = true;
10690 continue;
10691 }
10692
10693 // Check for members of reference type; we can't move those.
10694 if (Field->getType()->isReferenceType()) {
10695 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
10696 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
10697 Diag(Field->getLocation(), diag::note_declared_at);
10698 Diag(CurrentLocation, diag::note_member_synthesized_at)
10699 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10700 Invalid = true;
10701 continue;
10702 }
10703
10704 // Check for members of const-qualified, non-class type.
10705 QualType BaseType = Context.getBaseElementType(Field->getType());
10706 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
10707 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
10708 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
10709 Diag(Field->getLocation(), diag::note_declared_at);
10710 Diag(CurrentLocation, diag::note_member_synthesized_at)
10711 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10712 Invalid = true;
10713 continue;
10714 }
10715
10716 // Suppress assigning zero-width bitfields.
10717 if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
10718 continue;
10719
10720 QualType FieldType = Field->getType().getNonReferenceType();
10721 if (FieldType->isIncompleteArrayType()) {
10722 assert(ClassDecl->hasFlexibleArrayMember() &&
10723 "Incomplete array type is not valid");
10724 continue;
10725 }
10726
10727 // Build references to the field in the object we're copying from and to.
10728 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
10729 LookupMemberName);
10730 MemberLookup.addDecl(Field);
10731 MemberLookup.resolveKind();
10732 MemberBuilder From(MoveOther, OtherRefType,
10733 /*IsArrow=*/false, MemberLookup);
10734 MemberBuilder To(This, getCurrentThisType(),
10735 /*IsArrow=*/true, MemberLookup);
10736
10737 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue
10738 "Member reference with rvalue base must be rvalue except for reference "
10739 "members, which aren't allowed for move assignment.");
10740
10741 // Build the move of this field.
10742 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
10743 To, From,
10744 /*CopyingBaseSubobject=*/false,
10745 /*Copying=*/false);
10746 if (Move.isInvalid()) {
10747 Diag(CurrentLocation, diag::note_member_synthesized_at)
10748 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10749 MoveAssignOperator->setInvalidDecl();
10750 return;
10751 }
10752
10753 // Success! Record the copy.
10754 Statements.push_back(Move.getAs<Stmt>());
10755 }
10756
10757 if (!Invalid) {
10758 // Add a "return *this;"
10759 ExprResult ThisObj =
10760 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
10761
10762 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
10763 if (Return.isInvalid())
10764 Invalid = true;
10765 else {
10766 Statements.push_back(Return.getAs<Stmt>());
10767
10768 if (Trap.hasErrorOccurred()) {
10769 Diag(CurrentLocation, diag::note_member_synthesized_at)
10770 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10771 Invalid = true;
10772 }
10773 }
10774 }
10775
10776 // The exception specification is needed because we are defining the
10777 // function.
10778 ResolveExceptionSpec(CurrentLocation,
10779 MoveAssignOperator->getType()->castAs<FunctionProtoType>());
10780
10781 if (Invalid) {
10782 MoveAssignOperator->setInvalidDecl();
10783 return;
10784 }
10785
10786 StmtResult Body;
10787 {
10788 CompoundScopeRAII CompoundScope(*this);
10789 Body = ActOnCompoundStmt(Loc, Loc, Statements,
10790 /*isStmtExpr=*/false);
10791 assert(!Body.isInvalid() && "Compound statement creation cannot fail");
10792 }
10793 MoveAssignOperator->setBody(Body.getAs<Stmt>());
10794
10795 if (ASTMutationListener *L = getASTMutationListener()) {
10796 L->CompletedImplicitDefinition(MoveAssignOperator);
10797 }
10798 }
10799
10800 Sema::ImplicitExceptionSpecification
ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl * MD)10801 Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
10802 CXXRecordDecl *ClassDecl = MD->getParent();
10803
10804 ImplicitExceptionSpecification ExceptSpec(*this);
10805 if (ClassDecl->isInvalidDecl())
10806 return ExceptSpec;
10807
10808 const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
10809 assert(T->getNumParams() >= 1 && "not a copy ctor");
10810 unsigned Quals = T->getParamType(0).getNonReferenceType().getCVRQualifiers();
10811
10812 // C++ [except.spec]p14:
10813 // An implicitly declared special member function (Clause 12) shall have an
10814 // exception-specification. [...]
10815 for (const auto &Base : ClassDecl->bases()) {
10816 // Virtual bases are handled below.
10817 if (Base.isVirtual())
10818 continue;
10819
10820 CXXRecordDecl *BaseClassDecl
10821 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10822 if (CXXConstructorDecl *CopyConstructor =
10823 LookupCopyingConstructor(BaseClassDecl, Quals))
10824 ExceptSpec.CalledDecl(Base.getLocStart(), CopyConstructor);
10825 }
10826 for (const auto &Base : ClassDecl->vbases()) {
10827 CXXRecordDecl *BaseClassDecl
10828 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10829 if (CXXConstructorDecl *CopyConstructor =
10830 LookupCopyingConstructor(BaseClassDecl, Quals))
10831 ExceptSpec.CalledDecl(Base.getLocStart(), CopyConstructor);
10832 }
10833 for (const auto *Field : ClassDecl->fields()) {
10834 QualType FieldType = Context.getBaseElementType(Field->getType());
10835 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
10836 if (CXXConstructorDecl *CopyConstructor =
10837 LookupCopyingConstructor(FieldClassDecl,
10838 Quals | FieldType.getCVRQualifiers()))
10839 ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
10840 }
10841 }
10842
10843 return ExceptSpec;
10844 }
10845
DeclareImplicitCopyConstructor(CXXRecordDecl * ClassDecl)10846 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
10847 CXXRecordDecl *ClassDecl) {
10848 // C++ [class.copy]p4:
10849 // If the class definition does not explicitly declare a copy
10850 // constructor, one is declared implicitly.
10851 assert(ClassDecl->needsImplicitCopyConstructor());
10852
10853 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
10854 if (DSM.isAlreadyBeingDeclared())
10855 return nullptr;
10856
10857 QualType ClassType = Context.getTypeDeclType(ClassDecl);
10858 QualType ArgType = ClassType;
10859 bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
10860 if (Const)
10861 ArgType = ArgType.withConst();
10862 ArgType = Context.getLValueReferenceType(ArgType);
10863
10864 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10865 CXXCopyConstructor,
10866 Const);
10867
10868 DeclarationName Name
10869 = Context.DeclarationNames.getCXXConstructorName(
10870 Context.getCanonicalType(ClassType));
10871 SourceLocation ClassLoc = ClassDecl->getLocation();
10872 DeclarationNameInfo NameInfo(Name, ClassLoc);
10873
10874 // An implicitly-declared copy constructor is an inline public
10875 // member of its class.
10876 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
10877 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
10878 /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
10879 Constexpr);
10880 CopyConstructor->setAccess(AS_public);
10881 CopyConstructor->setDefaulted();
10882
10883 if (getLangOpts().CUDA) {
10884 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor,
10885 CopyConstructor,
10886 /* ConstRHS */ Const,
10887 /* Diagnose */ false);
10888 }
10889
10890 // Build an exception specification pointing back at this member.
10891 FunctionProtoType::ExtProtoInfo EPI =
10892 getImplicitMethodEPI(*this, CopyConstructor);
10893 CopyConstructor->setType(
10894 Context.getFunctionType(Context.VoidTy, ArgType, EPI));
10895
10896 // Add the parameter to the constructor.
10897 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
10898 ClassLoc, ClassLoc,
10899 /*IdentifierInfo=*/nullptr,
10900 ArgType, /*TInfo=*/nullptr,
10901 SC_None, nullptr);
10902 CopyConstructor->setParams(FromParam);
10903
10904 CopyConstructor->setTrivial(
10905 ClassDecl->needsOverloadResolutionForCopyConstructor()
10906 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
10907 : ClassDecl->hasTrivialCopyConstructor());
10908
10909 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
10910 SetDeclDeleted(CopyConstructor, ClassLoc);
10911
10912 // Note that we have declared this constructor.
10913 ++ASTContext::NumImplicitCopyConstructorsDeclared;
10914
10915 if (Scope *S = getScopeForContext(ClassDecl))
10916 PushOnScopeChains(CopyConstructor, S, false);
10917 ClassDecl->addDecl(CopyConstructor);
10918
10919 return CopyConstructor;
10920 }
10921
DefineImplicitCopyConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * CopyConstructor)10922 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
10923 CXXConstructorDecl *CopyConstructor) {
10924 assert((CopyConstructor->isDefaulted() &&
10925 CopyConstructor->isCopyConstructor() &&
10926 !CopyConstructor->doesThisDeclarationHaveABody() &&
10927 !CopyConstructor->isDeleted()) &&
10928 "DefineImplicitCopyConstructor - call it for implicit copy ctor");
10929
10930 CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
10931 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
10932
10933 // C++11 [class.copy]p7:
10934 // The [definition of an implicitly declared copy constructor] is
10935 // deprecated if the class has a user-declared copy assignment operator
10936 // or a user-declared destructor.
10937 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
10938 diagnoseDeprecatedCopyOperation(*this, CopyConstructor, CurrentLocation);
10939
10940 SynthesizedFunctionScope Scope(*this, CopyConstructor);
10941 DiagnosticErrorTrap Trap(Diags);
10942
10943 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
10944 Trap.hasErrorOccurred()) {
10945 Diag(CurrentLocation, diag::note_member_synthesized_at)
10946 << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
10947 CopyConstructor->setInvalidDecl();
10948 } else {
10949 SourceLocation Loc = CopyConstructor->getLocEnd().isValid()
10950 ? CopyConstructor->getLocEnd()
10951 : CopyConstructor->getLocation();
10952 Sema::CompoundScopeRAII CompoundScope(*this);
10953 CopyConstructor->setBody(
10954 ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>());
10955 }
10956
10957 // The exception specification is needed because we are defining the
10958 // function.
10959 ResolveExceptionSpec(CurrentLocation,
10960 CopyConstructor->getType()->castAs<FunctionProtoType>());
10961
10962 CopyConstructor->markUsed(Context);
10963 MarkVTableUsed(CurrentLocation, ClassDecl);
10964
10965 if (ASTMutationListener *L = getASTMutationListener()) {
10966 L->CompletedImplicitDefinition(CopyConstructor);
10967 }
10968 }
10969
10970 Sema::ImplicitExceptionSpecification
ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl * MD)10971 Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
10972 CXXRecordDecl *ClassDecl = MD->getParent();
10973
10974 // C++ [except.spec]p14:
10975 // An implicitly declared special member function (Clause 12) shall have an
10976 // exception-specification. [...]
10977 ImplicitExceptionSpecification ExceptSpec(*this);
10978 if (ClassDecl->isInvalidDecl())
10979 return ExceptSpec;
10980
10981 // Direct base-class constructors.
10982 for (const auto &B : ClassDecl->bases()) {
10983 if (B.isVirtual()) // Handled below.
10984 continue;
10985
10986 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
10987 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
10988 CXXConstructorDecl *Constructor =
10989 LookupMovingConstructor(BaseClassDecl, 0);
10990 // If this is a deleted function, add it anyway. This might be conformant
10991 // with the standard. This might not. I'm not sure. It might not matter.
10992 if (Constructor)
10993 ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
10994 }
10995 }
10996
10997 // Virtual base-class constructors.
10998 for (const auto &B : ClassDecl->vbases()) {
10999 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
11000 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
11001 CXXConstructorDecl *Constructor =
11002 LookupMovingConstructor(BaseClassDecl, 0);
11003 // If this is a deleted function, add it anyway. This might be conformant
11004 // with the standard. This might not. I'm not sure. It might not matter.
11005 if (Constructor)
11006 ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
11007 }
11008 }
11009
11010 // Field constructors.
11011 for (const auto *F : ClassDecl->fields()) {
11012 QualType FieldType = Context.getBaseElementType(F->getType());
11013 if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
11014 CXXConstructorDecl *Constructor =
11015 LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
11016 // If this is a deleted function, add it anyway. This might be conformant
11017 // with the standard. This might not. I'm not sure. It might not matter.
11018 // In particular, the problem is that this function never gets called. It
11019 // might just be ill-formed because this function attempts to refer to
11020 // a deleted function here.
11021 if (Constructor)
11022 ExceptSpec.CalledDecl(F->getLocation(), Constructor);
11023 }
11024 }
11025
11026 return ExceptSpec;
11027 }
11028
DeclareImplicitMoveConstructor(CXXRecordDecl * ClassDecl)11029 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
11030 CXXRecordDecl *ClassDecl) {
11031 assert(ClassDecl->needsImplicitMoveConstructor());
11032
11033 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
11034 if (DSM.isAlreadyBeingDeclared())
11035 return nullptr;
11036
11037 QualType ClassType = Context.getTypeDeclType(ClassDecl);
11038 QualType ArgType = Context.getRValueReferenceType(ClassType);
11039
11040 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
11041 CXXMoveConstructor,
11042 false);
11043
11044 DeclarationName Name
11045 = Context.DeclarationNames.getCXXConstructorName(
11046 Context.getCanonicalType(ClassType));
11047 SourceLocation ClassLoc = ClassDecl->getLocation();
11048 DeclarationNameInfo NameInfo(Name, ClassLoc);
11049
11050 // C++11 [class.copy]p11:
11051 // An implicitly-declared copy/move constructor is an inline public
11052 // member of its class.
11053 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
11054 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
11055 /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
11056 Constexpr);
11057 MoveConstructor->setAccess(AS_public);
11058 MoveConstructor->setDefaulted();
11059
11060 if (getLangOpts().CUDA) {
11061 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor,
11062 MoveConstructor,
11063 /* ConstRHS */ false,
11064 /* Diagnose */ false);
11065 }
11066
11067 // Build an exception specification pointing back at this member.
11068 FunctionProtoType::ExtProtoInfo EPI =
11069 getImplicitMethodEPI(*this, MoveConstructor);
11070 MoveConstructor->setType(
11071 Context.getFunctionType(Context.VoidTy, ArgType, EPI));
11072
11073 // Add the parameter to the constructor.
11074 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
11075 ClassLoc, ClassLoc,
11076 /*IdentifierInfo=*/nullptr,
11077 ArgType, /*TInfo=*/nullptr,
11078 SC_None, nullptr);
11079 MoveConstructor->setParams(FromParam);
11080
11081 MoveConstructor->setTrivial(
11082 ClassDecl->needsOverloadResolutionForMoveConstructor()
11083 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
11084 : ClassDecl->hasTrivialMoveConstructor());
11085
11086 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
11087 ClassDecl->setImplicitMoveConstructorIsDeleted();
11088 SetDeclDeleted(MoveConstructor, ClassLoc);
11089 }
11090
11091 // Note that we have declared this constructor.
11092 ++ASTContext::NumImplicitMoveConstructorsDeclared;
11093
11094 if (Scope *S = getScopeForContext(ClassDecl))
11095 PushOnScopeChains(MoveConstructor, S, false);
11096 ClassDecl->addDecl(MoveConstructor);
11097
11098 return MoveConstructor;
11099 }
11100
DefineImplicitMoveConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * MoveConstructor)11101 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
11102 CXXConstructorDecl *MoveConstructor) {
11103 assert((MoveConstructor->isDefaulted() &&
11104 MoveConstructor->isMoveConstructor() &&
11105 !MoveConstructor->doesThisDeclarationHaveABody() &&
11106 !MoveConstructor->isDeleted()) &&
11107 "DefineImplicitMoveConstructor - call it for implicit move ctor");
11108
11109 CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
11110 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
11111
11112 SynthesizedFunctionScope Scope(*this, MoveConstructor);
11113 DiagnosticErrorTrap Trap(Diags);
11114
11115 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
11116 Trap.hasErrorOccurred()) {
11117 Diag(CurrentLocation, diag::note_member_synthesized_at)
11118 << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
11119 MoveConstructor->setInvalidDecl();
11120 } else {
11121 SourceLocation Loc = MoveConstructor->getLocEnd().isValid()
11122 ? MoveConstructor->getLocEnd()
11123 : MoveConstructor->getLocation();
11124 Sema::CompoundScopeRAII CompoundScope(*this);
11125 MoveConstructor->setBody(ActOnCompoundStmt(
11126 Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>());
11127 }
11128
11129 // The exception specification is needed because we are defining the
11130 // function.
11131 ResolveExceptionSpec(CurrentLocation,
11132 MoveConstructor->getType()->castAs<FunctionProtoType>());
11133
11134 MoveConstructor->markUsed(Context);
11135 MarkVTableUsed(CurrentLocation, ClassDecl);
11136
11137 if (ASTMutationListener *L = getASTMutationListener()) {
11138 L->CompletedImplicitDefinition(MoveConstructor);
11139 }
11140 }
11141
isImplicitlyDeleted(FunctionDecl * FD)11142 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
11143 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
11144 }
11145
DefineImplicitLambdaToFunctionPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)11146 void Sema::DefineImplicitLambdaToFunctionPointerConversion(
11147 SourceLocation CurrentLocation,
11148 CXXConversionDecl *Conv) {
11149 CXXRecordDecl *Lambda = Conv->getParent();
11150 CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
11151 // If we are defining a specialization of a conversion to function-ptr
11152 // cache the deduced template arguments for this specialization
11153 // so that we can use them to retrieve the corresponding call-operator
11154 // and static-invoker.
11155 const TemplateArgumentList *DeducedTemplateArgs = nullptr;
11156
11157 // Retrieve the corresponding call-operator specialization.
11158 if (Lambda->isGenericLambda()) {
11159 assert(Conv->isFunctionTemplateSpecialization());
11160 FunctionTemplateDecl *CallOpTemplate =
11161 CallOp->getDescribedFunctionTemplate();
11162 DeducedTemplateArgs = Conv->getTemplateSpecializationArgs();
11163 void *InsertPos = nullptr;
11164 FunctionDecl *CallOpSpec = CallOpTemplate->findSpecialization(
11165 DeducedTemplateArgs->asArray(),
11166 InsertPos);
11167 assert(CallOpSpec &&
11168 "Conversion operator must have a corresponding call operator");
11169 CallOp = cast<CXXMethodDecl>(CallOpSpec);
11170 }
11171 // Mark the call operator referenced (and add to pending instantiations
11172 // if necessary).
11173 // For both the conversion and static-invoker template specializations
11174 // we construct their body's in this function, so no need to add them
11175 // to the PendingInstantiations.
11176 MarkFunctionReferenced(CurrentLocation, CallOp);
11177
11178 SynthesizedFunctionScope Scope(*this, Conv);
11179 DiagnosticErrorTrap Trap(Diags);
11180
11181 // Retrieve the static invoker...
11182 CXXMethodDecl *Invoker = Lambda->getLambdaStaticInvoker();
11183 // ... and get the corresponding specialization for a generic lambda.
11184 if (Lambda->isGenericLambda()) {
11185 assert(DeducedTemplateArgs &&
11186 "Must have deduced template arguments from Conversion Operator");
11187 FunctionTemplateDecl *InvokeTemplate =
11188 Invoker->getDescribedFunctionTemplate();
11189 void *InsertPos = nullptr;
11190 FunctionDecl *InvokeSpec = InvokeTemplate->findSpecialization(
11191 DeducedTemplateArgs->asArray(),
11192 InsertPos);
11193 assert(InvokeSpec &&
11194 "Must have a corresponding static invoker specialization");
11195 Invoker = cast<CXXMethodDecl>(InvokeSpec);
11196 }
11197 // Construct the body of the conversion function { return __invoke; }.
11198 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
11199 VK_LValue, Conv->getLocation()).get();
11200 assert(FunctionRef && "Can't refer to __invoke function?");
11201 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
11202 Conv->setBody(new (Context) CompoundStmt(Context, Return,
11203 Conv->getLocation(),
11204 Conv->getLocation()));
11205
11206 Conv->markUsed(Context);
11207 Conv->setReferenced();
11208
11209 // Fill in the __invoke function with a dummy implementation. IR generation
11210 // will fill in the actual details.
11211 Invoker->markUsed(Context);
11212 Invoker->setReferenced();
11213 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
11214
11215 if (ASTMutationListener *L = getASTMutationListener()) {
11216 L->CompletedImplicitDefinition(Conv);
11217 L->CompletedImplicitDefinition(Invoker);
11218 }
11219 }
11220
11221
11222
DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)11223 void Sema::DefineImplicitLambdaToBlockPointerConversion(
11224 SourceLocation CurrentLocation,
11225 CXXConversionDecl *Conv)
11226 {
11227 assert(!Conv->getParent()->isGenericLambda());
11228
11229 Conv->markUsed(Context);
11230
11231 SynthesizedFunctionScope Scope(*this, Conv);
11232 DiagnosticErrorTrap Trap(Diags);
11233
11234 // Copy-initialize the lambda object as needed to capture it.
11235 Expr *This = ActOnCXXThis(CurrentLocation).get();
11236 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
11237
11238 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
11239 Conv->getLocation(),
11240 Conv, DerefThis);
11241
11242 // If we're not under ARC, make sure we still get the _Block_copy/autorelease
11243 // behavior. Note that only the general conversion function does this
11244 // (since it's unusable otherwise); in the case where we inline the
11245 // block literal, it has block literal lifetime semantics.
11246 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
11247 BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
11248 CK_CopyAndAutoreleaseBlockObject,
11249 BuildBlock.get(), nullptr, VK_RValue);
11250
11251 if (BuildBlock.isInvalid()) {
11252 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
11253 Conv->setInvalidDecl();
11254 return;
11255 }
11256
11257 // Create the return statement that returns the block from the conversion
11258 // function.
11259 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
11260 if (Return.isInvalid()) {
11261 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
11262 Conv->setInvalidDecl();
11263 return;
11264 }
11265
11266 // Set the body of the conversion function.
11267 Stmt *ReturnS = Return.get();
11268 Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
11269 Conv->getLocation(),
11270 Conv->getLocation()));
11271
11272 // We're done; notify the mutation listener, if any.
11273 if (ASTMutationListener *L = getASTMutationListener()) {
11274 L->CompletedImplicitDefinition(Conv);
11275 }
11276 }
11277
11278 /// \brief Determine whether the given list arguments contains exactly one
11279 /// "real" (non-default) argument.
hasOneRealArgument(MultiExprArg Args)11280 static bool hasOneRealArgument(MultiExprArg Args) {
11281 switch (Args.size()) {
11282 case 0:
11283 return false;
11284
11285 default:
11286 if (!Args[1]->isDefaultArgument())
11287 return false;
11288
11289 // fall through
11290 case 1:
11291 return !Args[0]->isDefaultArgument();
11292 }
11293
11294 return false;
11295 }
11296
11297 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool IsStdInitListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)11298 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
11299 CXXConstructorDecl *Constructor,
11300 MultiExprArg ExprArgs,
11301 bool HadMultipleCandidates,
11302 bool IsListInitialization,
11303 bool IsStdInitListInitialization,
11304 bool RequiresZeroInit,
11305 unsigned ConstructKind,
11306 SourceRange ParenRange) {
11307 bool Elidable = false;
11308
11309 // C++0x [class.copy]p34:
11310 // When certain criteria are met, an implementation is allowed to
11311 // omit the copy/move construction of a class object, even if the
11312 // copy/move constructor and/or destructor for the object have
11313 // side effects. [...]
11314 // - when a temporary class object that has not been bound to a
11315 // reference (12.2) would be copied/moved to a class object
11316 // with the same cv-unqualified type, the copy/move operation
11317 // can be omitted by constructing the temporary object
11318 // directly into the target of the omitted copy/move
11319 if (ConstructKind == CXXConstructExpr::CK_Complete &&
11320 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
11321 Expr *SubExpr = ExprArgs[0];
11322 Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
11323 }
11324
11325 return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
11326 Elidable, ExprArgs, HadMultipleCandidates,
11327 IsListInitialization,
11328 IsStdInitListInitialization, RequiresZeroInit,
11329 ConstructKind, ParenRange);
11330 }
11331
11332 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
11333 /// including handling of its default argument expressions.
11334 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,bool Elidable,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool IsStdInitListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)11335 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
11336 CXXConstructorDecl *Constructor, bool Elidable,
11337 MultiExprArg ExprArgs,
11338 bool HadMultipleCandidates,
11339 bool IsListInitialization,
11340 bool IsStdInitListInitialization,
11341 bool RequiresZeroInit,
11342 unsigned ConstructKind,
11343 SourceRange ParenRange) {
11344 MarkFunctionReferenced(ConstructLoc, Constructor);
11345 return CXXConstructExpr::Create(
11346 Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs,
11347 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization,
11348 RequiresZeroInit,
11349 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
11350 ParenRange);
11351 }
11352
BuildCXXDefaultInitExpr(SourceLocation Loc,FieldDecl * Field)11353 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
11354 assert(Field->hasInClassInitializer());
11355
11356 // If we already have the in-class initializer nothing needs to be done.
11357 if (Field->getInClassInitializer())
11358 return CXXDefaultInitExpr::Create(Context, Loc, Field);
11359
11360 // Maybe we haven't instantiated the in-class initializer. Go check the
11361 // pattern FieldDecl to see if it has one.
11362 CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent());
11363
11364 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
11365 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
11366 DeclContext::lookup_result Lookup =
11367 ClassPattern->lookup(Field->getDeclName());
11368 assert(Lookup.size() == 1);
11369 FieldDecl *Pattern = cast<FieldDecl>(Lookup[0]);
11370 if (InstantiateInClassInitializer(Loc, Field, Pattern,
11371 getTemplateInstantiationArgs(Field)))
11372 return ExprError();
11373 return CXXDefaultInitExpr::Create(Context, Loc, Field);
11374 }
11375
11376 // DR1351:
11377 // If the brace-or-equal-initializer of a non-static data member
11378 // invokes a defaulted default constructor of its class or of an
11379 // enclosing class in a potentially evaluated subexpression, the
11380 // program is ill-formed.
11381 //
11382 // This resolution is unworkable: the exception specification of the
11383 // default constructor can be needed in an unevaluated context, in
11384 // particular, in the operand of a noexcept-expression, and we can be
11385 // unable to compute an exception specification for an enclosed class.
11386 //
11387 // Any attempt to resolve the exception specification of a defaulted default
11388 // constructor before the initializer is lexically complete will ultimately
11389 // come here at which point we can diagnose it.
11390 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
11391 if (OutermostClass == ParentRD) {
11392 Diag(Field->getLocEnd(), diag::err_in_class_initializer_not_yet_parsed)
11393 << ParentRD << Field;
11394 } else {
11395 Diag(Field->getLocEnd(),
11396 diag::err_in_class_initializer_not_yet_parsed_outer_class)
11397 << ParentRD << OutermostClass << Field;
11398 }
11399
11400 return ExprError();
11401 }
11402
FinalizeVarWithDestructor(VarDecl * VD,const RecordType * Record)11403 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
11404 if (VD->isInvalidDecl()) return;
11405
11406 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
11407 if (ClassDecl->isInvalidDecl()) return;
11408 if (ClassDecl->hasIrrelevantDestructor()) return;
11409 if (ClassDecl->isDependentContext()) return;
11410
11411 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
11412 MarkFunctionReferenced(VD->getLocation(), Destructor);
11413 CheckDestructorAccess(VD->getLocation(), Destructor,
11414 PDiag(diag::err_access_dtor_var)
11415 << VD->getDeclName()
11416 << VD->getType());
11417 DiagnoseUseOfDecl(Destructor, VD->getLocation());
11418
11419 if (Destructor->isTrivial()) return;
11420 if (!VD->hasGlobalStorage()) return;
11421
11422 // Emit warning for non-trivial dtor in global scope (a real global,
11423 // class-static, function-static).
11424 Diag(VD->getLocation(), diag::warn_exit_time_destructor);
11425
11426 // TODO: this should be re-enabled for static locals by !CXAAtExit
11427 if (!VD->isStaticLocal())
11428 Diag(VD->getLocation(), diag::warn_global_destructor);
11429 }
11430
11431 /// \brief Given a constructor and the set of arguments provided for the
11432 /// constructor, convert the arguments and add any required default arguments
11433 /// to form a proper call to this constructor.
11434 ///
11435 /// \returns true if an error occurred, false otherwise.
11436 bool
CompleteConstructorCall(CXXConstructorDecl * Constructor,MultiExprArg ArgsPtr,SourceLocation Loc,SmallVectorImpl<Expr * > & ConvertedArgs,bool AllowExplicit,bool IsListInitialization)11437 Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
11438 MultiExprArg ArgsPtr,
11439 SourceLocation Loc,
11440 SmallVectorImpl<Expr*> &ConvertedArgs,
11441 bool AllowExplicit,
11442 bool IsListInitialization) {
11443 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
11444 unsigned NumArgs = ArgsPtr.size();
11445 Expr **Args = ArgsPtr.data();
11446
11447 const FunctionProtoType *Proto
11448 = Constructor->getType()->getAs<FunctionProtoType>();
11449 assert(Proto && "Constructor without a prototype?");
11450 unsigned NumParams = Proto->getNumParams();
11451
11452 // If too few arguments are available, we'll fill in the rest with defaults.
11453 if (NumArgs < NumParams)
11454 ConvertedArgs.reserve(NumParams);
11455 else
11456 ConvertedArgs.reserve(NumArgs);
11457
11458 VariadicCallType CallType =
11459 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
11460 SmallVector<Expr *, 8> AllArgs;
11461 bool Invalid = GatherArgumentsForCall(Loc, Constructor,
11462 Proto, 0,
11463 llvm::makeArrayRef(Args, NumArgs),
11464 AllArgs,
11465 CallType, AllowExplicit,
11466 IsListInitialization);
11467 ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
11468
11469 DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
11470
11471 CheckConstructorCall(Constructor,
11472 llvm::makeArrayRef(AllArgs.data(), AllArgs.size()),
11473 Proto, Loc);
11474
11475 return Invalid;
11476 }
11477
11478 static inline bool
CheckOperatorNewDeleteDeclarationScope(Sema & SemaRef,const FunctionDecl * FnDecl)11479 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
11480 const FunctionDecl *FnDecl) {
11481 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
11482 if (isa<NamespaceDecl>(DC)) {
11483 return SemaRef.Diag(FnDecl->getLocation(),
11484 diag::err_operator_new_delete_declared_in_namespace)
11485 << FnDecl->getDeclName();
11486 }
11487
11488 if (isa<TranslationUnitDecl>(DC) &&
11489 FnDecl->getStorageClass() == SC_Static) {
11490 return SemaRef.Diag(FnDecl->getLocation(),
11491 diag::err_operator_new_delete_declared_static)
11492 << FnDecl->getDeclName();
11493 }
11494
11495 return false;
11496 }
11497
11498 static inline bool
CheckOperatorNewDeleteTypes(Sema & SemaRef,const FunctionDecl * FnDecl,CanQualType ExpectedResultType,CanQualType ExpectedFirstParamType,unsigned DependentParamTypeDiag,unsigned InvalidParamTypeDiag)11499 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
11500 CanQualType ExpectedResultType,
11501 CanQualType ExpectedFirstParamType,
11502 unsigned DependentParamTypeDiag,
11503 unsigned InvalidParamTypeDiag) {
11504 QualType ResultType =
11505 FnDecl->getType()->getAs<FunctionType>()->getReturnType();
11506
11507 // Check that the result type is not dependent.
11508 if (ResultType->isDependentType())
11509 return SemaRef.Diag(FnDecl->getLocation(),
11510 diag::err_operator_new_delete_dependent_result_type)
11511 << FnDecl->getDeclName() << ExpectedResultType;
11512
11513 // Check that the result type is what we expect.
11514 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
11515 return SemaRef.Diag(FnDecl->getLocation(),
11516 diag::err_operator_new_delete_invalid_result_type)
11517 << FnDecl->getDeclName() << ExpectedResultType;
11518
11519 // A function template must have at least 2 parameters.
11520 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
11521 return SemaRef.Diag(FnDecl->getLocation(),
11522 diag::err_operator_new_delete_template_too_few_parameters)
11523 << FnDecl->getDeclName();
11524
11525 // The function decl must have at least 1 parameter.
11526 if (FnDecl->getNumParams() == 0)
11527 return SemaRef.Diag(FnDecl->getLocation(),
11528 diag::err_operator_new_delete_too_few_parameters)
11529 << FnDecl->getDeclName();
11530
11531 // Check the first parameter type is not dependent.
11532 QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
11533 if (FirstParamType->isDependentType())
11534 return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
11535 << FnDecl->getDeclName() << ExpectedFirstParamType;
11536
11537 // Check that the first parameter type is what we expect.
11538 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
11539 ExpectedFirstParamType)
11540 return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
11541 << FnDecl->getDeclName() << ExpectedFirstParamType;
11542
11543 return false;
11544 }
11545
11546 static bool
CheckOperatorNewDeclaration(Sema & SemaRef,const FunctionDecl * FnDecl)11547 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
11548 // C++ [basic.stc.dynamic.allocation]p1:
11549 // A program is ill-formed if an allocation function is declared in a
11550 // namespace scope other than global scope or declared static in global
11551 // scope.
11552 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
11553 return true;
11554
11555 CanQualType SizeTy =
11556 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
11557
11558 // C++ [basic.stc.dynamic.allocation]p1:
11559 // The return type shall be void*. The first parameter shall have type
11560 // std::size_t.
11561 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
11562 SizeTy,
11563 diag::err_operator_new_dependent_param_type,
11564 diag::err_operator_new_param_type))
11565 return true;
11566
11567 // C++ [basic.stc.dynamic.allocation]p1:
11568 // The first parameter shall not have an associated default argument.
11569 if (FnDecl->getParamDecl(0)->hasDefaultArg())
11570 return SemaRef.Diag(FnDecl->getLocation(),
11571 diag::err_operator_new_default_arg)
11572 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
11573
11574 return false;
11575 }
11576
11577 static bool
CheckOperatorDeleteDeclaration(Sema & SemaRef,FunctionDecl * FnDecl)11578 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
11579 // C++ [basic.stc.dynamic.deallocation]p1:
11580 // A program is ill-formed if deallocation functions are declared in a
11581 // namespace scope other than global scope or declared static in global
11582 // scope.
11583 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
11584 return true;
11585
11586 // C++ [basic.stc.dynamic.deallocation]p2:
11587 // Each deallocation function shall return void and its first parameter
11588 // shall be void*.
11589 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
11590 SemaRef.Context.VoidPtrTy,
11591 diag::err_operator_delete_dependent_param_type,
11592 diag::err_operator_delete_param_type))
11593 return true;
11594
11595 return false;
11596 }
11597
11598 /// CheckOverloadedOperatorDeclaration - Check whether the declaration
11599 /// of this overloaded operator is well-formed. If so, returns false;
11600 /// otherwise, emits appropriate diagnostics and returns true.
CheckOverloadedOperatorDeclaration(FunctionDecl * FnDecl)11601 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
11602 assert(FnDecl && FnDecl->isOverloadedOperator() &&
11603 "Expected an overloaded operator declaration");
11604
11605 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
11606
11607 // C++ [over.oper]p5:
11608 // The allocation and deallocation functions, operator new,
11609 // operator new[], operator delete and operator delete[], are
11610 // described completely in 3.7.3. The attributes and restrictions
11611 // found in the rest of this subclause do not apply to them unless
11612 // explicitly stated in 3.7.3.
11613 if (Op == OO_Delete || Op == OO_Array_Delete)
11614 return CheckOperatorDeleteDeclaration(*this, FnDecl);
11615
11616 if (Op == OO_New || Op == OO_Array_New)
11617 return CheckOperatorNewDeclaration(*this, FnDecl);
11618
11619 // C++ [over.oper]p6:
11620 // An operator function shall either be a non-static member
11621 // function or be a non-member function and have at least one
11622 // parameter whose type is a class, a reference to a class, an
11623 // enumeration, or a reference to an enumeration.
11624 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
11625 if (MethodDecl->isStatic())
11626 return Diag(FnDecl->getLocation(),
11627 diag::err_operator_overload_static) << FnDecl->getDeclName();
11628 } else {
11629 bool ClassOrEnumParam = false;
11630 for (auto Param : FnDecl->params()) {
11631 QualType ParamType = Param->getType().getNonReferenceType();
11632 if (ParamType->isDependentType() || ParamType->isRecordType() ||
11633 ParamType->isEnumeralType()) {
11634 ClassOrEnumParam = true;
11635 break;
11636 }
11637 }
11638
11639 if (!ClassOrEnumParam)
11640 return Diag(FnDecl->getLocation(),
11641 diag::err_operator_overload_needs_class_or_enum)
11642 << FnDecl->getDeclName();
11643 }
11644
11645 // C++ [over.oper]p8:
11646 // An operator function cannot have default arguments (8.3.6),
11647 // except where explicitly stated below.
11648 //
11649 // Only the function-call operator allows default arguments
11650 // (C++ [over.call]p1).
11651 if (Op != OO_Call) {
11652 for (auto Param : FnDecl->params()) {
11653 if (Param->hasDefaultArg())
11654 return Diag(Param->getLocation(),
11655 diag::err_operator_overload_default_arg)
11656 << FnDecl->getDeclName() << Param->getDefaultArgRange();
11657 }
11658 }
11659
11660 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
11661 { false, false, false }
11662 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
11663 , { Unary, Binary, MemberOnly }
11664 #include "clang/Basic/OperatorKinds.def"
11665 };
11666
11667 bool CanBeUnaryOperator = OperatorUses[Op][0];
11668 bool CanBeBinaryOperator = OperatorUses[Op][1];
11669 bool MustBeMemberOperator = OperatorUses[Op][2];
11670
11671 // C++ [over.oper]p8:
11672 // [...] Operator functions cannot have more or fewer parameters
11673 // than the number required for the corresponding operator, as
11674 // described in the rest of this subclause.
11675 unsigned NumParams = FnDecl->getNumParams()
11676 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
11677 if (Op != OO_Call &&
11678 ((NumParams == 1 && !CanBeUnaryOperator) ||
11679 (NumParams == 2 && !CanBeBinaryOperator) ||
11680 (NumParams < 1) || (NumParams > 2))) {
11681 // We have the wrong number of parameters.
11682 unsigned ErrorKind;
11683 if (CanBeUnaryOperator && CanBeBinaryOperator) {
11684 ErrorKind = 2; // 2 -> unary or binary.
11685 } else if (CanBeUnaryOperator) {
11686 ErrorKind = 0; // 0 -> unary
11687 } else {
11688 assert(CanBeBinaryOperator &&
11689 "All non-call overloaded operators are unary or binary!");
11690 ErrorKind = 1; // 1 -> binary
11691 }
11692
11693 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
11694 << FnDecl->getDeclName() << NumParams << ErrorKind;
11695 }
11696
11697 // Overloaded operators other than operator() cannot be variadic.
11698 if (Op != OO_Call &&
11699 FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
11700 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
11701 << FnDecl->getDeclName();
11702 }
11703
11704 // Some operators must be non-static member functions.
11705 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
11706 return Diag(FnDecl->getLocation(),
11707 diag::err_operator_overload_must_be_member)
11708 << FnDecl->getDeclName();
11709 }
11710
11711 // C++ [over.inc]p1:
11712 // The user-defined function called operator++ implements the
11713 // prefix and postfix ++ operator. If this function is a member
11714 // function with no parameters, or a non-member function with one
11715 // parameter of class or enumeration type, it defines the prefix
11716 // increment operator ++ for objects of that type. If the function
11717 // is a member function with one parameter (which shall be of type
11718 // int) or a non-member function with two parameters (the second
11719 // of which shall be of type int), it defines the postfix
11720 // increment operator ++ for objects of that type.
11721 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
11722 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
11723 QualType ParamType = LastParam->getType();
11724
11725 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
11726 !ParamType->isDependentType())
11727 return Diag(LastParam->getLocation(),
11728 diag::err_operator_overload_post_incdec_must_be_int)
11729 << LastParam->getType() << (Op == OO_MinusMinus);
11730 }
11731
11732 return false;
11733 }
11734
11735 /// CheckLiteralOperatorDeclaration - Check whether the declaration
11736 /// of this literal operator function is well-formed. If so, returns
11737 /// false; otherwise, emits appropriate diagnostics and returns true.
CheckLiteralOperatorDeclaration(FunctionDecl * FnDecl)11738 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
11739 if (isa<CXXMethodDecl>(FnDecl)) {
11740 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
11741 << FnDecl->getDeclName();
11742 return true;
11743 }
11744
11745 if (FnDecl->isExternC()) {
11746 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
11747 return true;
11748 }
11749
11750 bool Valid = false;
11751
11752 // This might be the definition of a literal operator template.
11753 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
11754 // This might be a specialization of a literal operator template.
11755 if (!TpDecl)
11756 TpDecl = FnDecl->getPrimaryTemplate();
11757
11758 // template <char...> type operator "" name() and
11759 // template <class T, T...> type operator "" name() are the only valid
11760 // template signatures, and the only valid signatures with no parameters.
11761 if (TpDecl) {
11762 if (FnDecl->param_size() == 0) {
11763 // Must have one or two template parameters
11764 TemplateParameterList *Params = TpDecl->getTemplateParameters();
11765 if (Params->size() == 1) {
11766 NonTypeTemplateParmDecl *PmDecl =
11767 dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
11768
11769 // The template parameter must be a char parameter pack.
11770 if (PmDecl && PmDecl->isTemplateParameterPack() &&
11771 Context.hasSameType(PmDecl->getType(), Context.CharTy))
11772 Valid = true;
11773 } else if (Params->size() == 2) {
11774 TemplateTypeParmDecl *PmType =
11775 dyn_cast<TemplateTypeParmDecl>(Params->getParam(0));
11776 NonTypeTemplateParmDecl *PmArgs =
11777 dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
11778
11779 // The second template parameter must be a parameter pack with the
11780 // first template parameter as its type.
11781 if (PmType && PmArgs &&
11782 !PmType->isTemplateParameterPack() &&
11783 PmArgs->isTemplateParameterPack()) {
11784 const TemplateTypeParmType *TArgs =
11785 PmArgs->getType()->getAs<TemplateTypeParmType>();
11786 if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
11787 TArgs->getIndex() == PmType->getIndex()) {
11788 Valid = true;
11789 if (ActiveTemplateInstantiations.empty())
11790 Diag(FnDecl->getLocation(),
11791 diag::ext_string_literal_operator_template);
11792 }
11793 }
11794 }
11795 }
11796 } else if (FnDecl->param_size()) {
11797 // Check the first parameter
11798 FunctionDecl::param_iterator Param = FnDecl->param_begin();
11799
11800 QualType T = (*Param)->getType().getUnqualifiedType();
11801
11802 // unsigned long long int, long double, and any character type are allowed
11803 // as the only parameters.
11804 if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
11805 Context.hasSameType(T, Context.LongDoubleTy) ||
11806 Context.hasSameType(T, Context.CharTy) ||
11807 Context.hasSameType(T, Context.WideCharTy) ||
11808 Context.hasSameType(T, Context.Char16Ty) ||
11809 Context.hasSameType(T, Context.Char32Ty)) {
11810 if (++Param == FnDecl->param_end())
11811 Valid = true;
11812 goto FinishedParams;
11813 }
11814
11815 // Otherwise it must be a pointer to const; let's strip those qualifiers.
11816 const PointerType *PT = T->getAs<PointerType>();
11817 if (!PT)
11818 goto FinishedParams;
11819 T = PT->getPointeeType();
11820 if (!T.isConstQualified() || T.isVolatileQualified())
11821 goto FinishedParams;
11822 T = T.getUnqualifiedType();
11823
11824 // Move on to the second parameter;
11825 ++Param;
11826
11827 // If there is no second parameter, the first must be a const char *
11828 if (Param == FnDecl->param_end()) {
11829 if (Context.hasSameType(T, Context.CharTy))
11830 Valid = true;
11831 goto FinishedParams;
11832 }
11833
11834 // const char *, const wchar_t*, const char16_t*, and const char32_t*
11835 // are allowed as the first parameter to a two-parameter function
11836 if (!(Context.hasSameType(T, Context.CharTy) ||
11837 Context.hasSameType(T, Context.WideCharTy) ||
11838 Context.hasSameType(T, Context.Char16Ty) ||
11839 Context.hasSameType(T, Context.Char32Ty)))
11840 goto FinishedParams;
11841
11842 // The second and final parameter must be an std::size_t
11843 T = (*Param)->getType().getUnqualifiedType();
11844 if (Context.hasSameType(T, Context.getSizeType()) &&
11845 ++Param == FnDecl->param_end())
11846 Valid = true;
11847 }
11848
11849 // FIXME: This diagnostic is absolutely terrible.
11850 FinishedParams:
11851 if (!Valid) {
11852 Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
11853 << FnDecl->getDeclName();
11854 return true;
11855 }
11856
11857 // A parameter-declaration-clause containing a default argument is not
11858 // equivalent to any of the permitted forms.
11859 for (auto Param : FnDecl->params()) {
11860 if (Param->hasDefaultArg()) {
11861 Diag(Param->getDefaultArgRange().getBegin(),
11862 diag::err_literal_operator_default_argument)
11863 << Param->getDefaultArgRange();
11864 break;
11865 }
11866 }
11867
11868 StringRef LiteralName
11869 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
11870 if (LiteralName[0] != '_') {
11871 // C++11 [usrlit.suffix]p1:
11872 // Literal suffix identifiers that do not start with an underscore
11873 // are reserved for future standardization.
11874 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
11875 << NumericLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
11876 }
11877
11878 return false;
11879 }
11880
11881 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
11882 /// linkage specification, including the language and (if present)
11883 /// the '{'. ExternLoc is the location of the 'extern', Lang is the
11884 /// language string literal. LBraceLoc, if valid, provides the location of
11885 /// the '{' brace. Otherwise, this linkage specification does not
11886 /// have any braces.
ActOnStartLinkageSpecification(Scope * S,SourceLocation ExternLoc,Expr * LangStr,SourceLocation LBraceLoc)11887 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
11888 Expr *LangStr,
11889 SourceLocation LBraceLoc) {
11890 StringLiteral *Lit = cast<StringLiteral>(LangStr);
11891 if (!Lit->isAscii()) {
11892 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii)
11893 << LangStr->getSourceRange();
11894 return nullptr;
11895 }
11896
11897 StringRef Lang = Lit->getString();
11898 LinkageSpecDecl::LanguageIDs Language;
11899 if (Lang == "C")
11900 Language = LinkageSpecDecl::lang_c;
11901 else if (Lang == "C++")
11902 Language = LinkageSpecDecl::lang_cxx;
11903 else {
11904 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
11905 << LangStr->getSourceRange();
11906 return nullptr;
11907 }
11908
11909 // FIXME: Add all the various semantics of linkage specifications
11910
11911 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
11912 LangStr->getExprLoc(), Language,
11913 LBraceLoc.isValid());
11914 CurContext->addDecl(D);
11915 PushDeclContext(S, D);
11916 return D;
11917 }
11918
11919 /// ActOnFinishLinkageSpecification - Complete the definition of
11920 /// the C++ linkage specification LinkageSpec. If RBraceLoc is
11921 /// valid, it's the position of the closing '}' brace in a linkage
11922 /// specification that uses braces.
ActOnFinishLinkageSpecification(Scope * S,Decl * LinkageSpec,SourceLocation RBraceLoc)11923 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
11924 Decl *LinkageSpec,
11925 SourceLocation RBraceLoc) {
11926 if (RBraceLoc.isValid()) {
11927 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
11928 LSDecl->setRBraceLoc(RBraceLoc);
11929 }
11930 PopDeclContext();
11931 return LinkageSpec;
11932 }
11933
ActOnEmptyDeclaration(Scope * S,AttributeList * AttrList,SourceLocation SemiLoc)11934 Decl *Sema::ActOnEmptyDeclaration(Scope *S,
11935 AttributeList *AttrList,
11936 SourceLocation SemiLoc) {
11937 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
11938 // Attribute declarations appertain to empty declaration so we handle
11939 // them here.
11940 if (AttrList)
11941 ProcessDeclAttributeList(S, ED, AttrList);
11942
11943 CurContext->addDecl(ED);
11944 return ED;
11945 }
11946
11947 /// \brief Perform semantic analysis for the variable declaration that
11948 /// occurs within a C++ catch clause, returning the newly-created
11949 /// variable.
BuildExceptionDeclaration(Scope * S,TypeSourceInfo * TInfo,SourceLocation StartLoc,SourceLocation Loc,IdentifierInfo * Name)11950 VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
11951 TypeSourceInfo *TInfo,
11952 SourceLocation StartLoc,
11953 SourceLocation Loc,
11954 IdentifierInfo *Name) {
11955 bool Invalid = false;
11956 QualType ExDeclType = TInfo->getType();
11957
11958 // Arrays and functions decay.
11959 if (ExDeclType->isArrayType())
11960 ExDeclType = Context.getArrayDecayedType(ExDeclType);
11961 else if (ExDeclType->isFunctionType())
11962 ExDeclType = Context.getPointerType(ExDeclType);
11963
11964 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
11965 // The exception-declaration shall not denote a pointer or reference to an
11966 // incomplete type, other than [cv] void*.
11967 // N2844 forbids rvalue references.
11968 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
11969 Diag(Loc, diag::err_catch_rvalue_ref);
11970 Invalid = true;
11971 }
11972
11973 QualType BaseType = ExDeclType;
11974 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
11975 unsigned DK = diag::err_catch_incomplete;
11976 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
11977 BaseType = Ptr->getPointeeType();
11978 Mode = 1;
11979 DK = diag::err_catch_incomplete_ptr;
11980 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
11981 // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
11982 BaseType = Ref->getPointeeType();
11983 Mode = 2;
11984 DK = diag::err_catch_incomplete_ref;
11985 }
11986 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
11987 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
11988 Invalid = true;
11989
11990 if (!Invalid && !ExDeclType->isDependentType() &&
11991 RequireNonAbstractType(Loc, ExDeclType,
11992 diag::err_abstract_type_in_decl,
11993 AbstractVariableType))
11994 Invalid = true;
11995
11996 // Only the non-fragile NeXT runtime currently supports C++ catches
11997 // of ObjC types, and no runtime supports catching ObjC types by value.
11998 if (!Invalid && getLangOpts().ObjC1) {
11999 QualType T = ExDeclType;
12000 if (const ReferenceType *RT = T->getAs<ReferenceType>())
12001 T = RT->getPointeeType();
12002
12003 if (T->isObjCObjectType()) {
12004 Diag(Loc, diag::err_objc_object_catch);
12005 Invalid = true;
12006 } else if (T->isObjCObjectPointerType()) {
12007 // FIXME: should this be a test for macosx-fragile specifically?
12008 if (getLangOpts().ObjCRuntime.isFragile())
12009 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
12010 }
12011 }
12012
12013 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
12014 ExDeclType, TInfo, SC_None);
12015 ExDecl->setExceptionVariable(true);
12016
12017 // In ARC, infer 'retaining' for variables of retainable type.
12018 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
12019 Invalid = true;
12020
12021 if (!Invalid && !ExDeclType->isDependentType()) {
12022 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
12023 // Insulate this from anything else we might currently be parsing.
12024 EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
12025
12026 // C++ [except.handle]p16:
12027 // The object declared in an exception-declaration or, if the
12028 // exception-declaration does not specify a name, a temporary (12.2) is
12029 // copy-initialized (8.5) from the exception object. [...]
12030 // The object is destroyed when the handler exits, after the destruction
12031 // of any automatic objects initialized within the handler.
12032 //
12033 // We just pretend to initialize the object with itself, then make sure
12034 // it can be destroyed later.
12035 QualType initType = Context.getExceptionObjectType(ExDeclType);
12036
12037 InitializedEntity entity =
12038 InitializedEntity::InitializeVariable(ExDecl);
12039 InitializationKind initKind =
12040 InitializationKind::CreateCopy(Loc, SourceLocation());
12041
12042 Expr *opaqueValue =
12043 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
12044 InitializationSequence sequence(*this, entity, initKind, opaqueValue);
12045 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
12046 if (result.isInvalid())
12047 Invalid = true;
12048 else {
12049 // If the constructor used was non-trivial, set this as the
12050 // "initializer".
12051 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
12052 if (!construct->getConstructor()->isTrivial()) {
12053 Expr *init = MaybeCreateExprWithCleanups(construct);
12054 ExDecl->setInit(init);
12055 }
12056
12057 // And make sure it's destructable.
12058 FinalizeVarWithDestructor(ExDecl, recordType);
12059 }
12060 }
12061 }
12062
12063 if (Invalid)
12064 ExDecl->setInvalidDecl();
12065
12066 return ExDecl;
12067 }
12068
12069 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
12070 /// handler.
ActOnExceptionDeclarator(Scope * S,Declarator & D)12071 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
12072 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12073 bool Invalid = D.isInvalidType();
12074
12075 // Check for unexpanded parameter packs.
12076 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12077 UPPC_ExceptionType)) {
12078 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
12079 D.getIdentifierLoc());
12080 Invalid = true;
12081 }
12082
12083 IdentifierInfo *II = D.getIdentifier();
12084 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
12085 LookupOrdinaryName,
12086 ForRedeclaration)) {
12087 // The scope should be freshly made just for us. There is just no way
12088 // it contains any previous declaration, except for function parameters in
12089 // a function-try-block's catch statement.
12090 assert(!S->isDeclScope(PrevDecl));
12091 if (isDeclInScope(PrevDecl, CurContext, S)) {
12092 Diag(D.getIdentifierLoc(), diag::err_redefinition)
12093 << D.getIdentifier();
12094 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12095 Invalid = true;
12096 } else if (PrevDecl->isTemplateParameter())
12097 // Maybe we will complain about the shadowed template parameter.
12098 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12099 }
12100
12101 if (D.getCXXScopeSpec().isSet() && !Invalid) {
12102 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
12103 << D.getCXXScopeSpec().getRange();
12104 Invalid = true;
12105 }
12106
12107 VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
12108 D.getLocStart(),
12109 D.getIdentifierLoc(),
12110 D.getIdentifier());
12111 if (Invalid)
12112 ExDecl->setInvalidDecl();
12113
12114 // Add the exception declaration into this scope.
12115 if (II)
12116 PushOnScopeChains(ExDecl, S);
12117 else
12118 CurContext->addDecl(ExDecl);
12119
12120 ProcessDeclAttributes(S, ExDecl, D);
12121 return ExDecl;
12122 }
12123
ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,Expr * AssertMessageExpr,SourceLocation RParenLoc)12124 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
12125 Expr *AssertExpr,
12126 Expr *AssertMessageExpr,
12127 SourceLocation RParenLoc) {
12128 StringLiteral *AssertMessage =
12129 AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr;
12130
12131 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
12132 return nullptr;
12133
12134 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
12135 AssertMessage, RParenLoc, false);
12136 }
12137
BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * AssertMessage,SourceLocation RParenLoc,bool Failed)12138 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
12139 Expr *AssertExpr,
12140 StringLiteral *AssertMessage,
12141 SourceLocation RParenLoc,
12142 bool Failed) {
12143 assert(AssertExpr != nullptr && "Expected non-null condition");
12144 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
12145 !Failed) {
12146 // In a static_assert-declaration, the constant-expression shall be a
12147 // constant expression that can be contextually converted to bool.
12148 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
12149 if (Converted.isInvalid())
12150 Failed = true;
12151
12152 llvm::APSInt Cond;
12153 if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
12154 diag::err_static_assert_expression_is_not_constant,
12155 /*AllowFold=*/false).isInvalid())
12156 Failed = true;
12157
12158 if (!Failed && !Cond) {
12159 SmallString<256> MsgBuffer;
12160 llvm::raw_svector_ostream Msg(MsgBuffer);
12161 if (AssertMessage)
12162 AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy());
12163 Diag(StaticAssertLoc, diag::err_static_assert_failed)
12164 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
12165 Failed = true;
12166 }
12167 }
12168
12169 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
12170 AssertExpr, AssertMessage, RParenLoc,
12171 Failed);
12172
12173 CurContext->addDecl(Decl);
12174 return Decl;
12175 }
12176
12177 /// \brief Perform semantic analysis of the given friend type declaration.
12178 ///
12179 /// \returns A friend declaration that.
CheckFriendTypeDecl(SourceLocation LocStart,SourceLocation FriendLoc,TypeSourceInfo * TSInfo)12180 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
12181 SourceLocation FriendLoc,
12182 TypeSourceInfo *TSInfo) {
12183 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
12184
12185 QualType T = TSInfo->getType();
12186 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
12187
12188 // C++03 [class.friend]p2:
12189 // An elaborated-type-specifier shall be used in a friend declaration
12190 // for a class.*
12191 //
12192 // * The class-key of the elaborated-type-specifier is required.
12193 if (!ActiveTemplateInstantiations.empty()) {
12194 // Do not complain about the form of friend template types during
12195 // template instantiation; we will already have complained when the
12196 // template was declared.
12197 } else {
12198 if (!T->isElaboratedTypeSpecifier()) {
12199 // If we evaluated the type to a record type, suggest putting
12200 // a tag in front.
12201 if (const RecordType *RT = T->getAs<RecordType>()) {
12202 RecordDecl *RD = RT->getDecl();
12203
12204 SmallString<16> InsertionText(" ");
12205 InsertionText += RD->getKindName();
12206
12207 Diag(TypeRange.getBegin(),
12208 getLangOpts().CPlusPlus11 ?
12209 diag::warn_cxx98_compat_unelaborated_friend_type :
12210 diag::ext_unelaborated_friend_type)
12211 << (unsigned) RD->getTagKind()
12212 << T
12213 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc),
12214 InsertionText);
12215 } else {
12216 Diag(FriendLoc,
12217 getLangOpts().CPlusPlus11 ?
12218 diag::warn_cxx98_compat_nonclass_type_friend :
12219 diag::ext_nonclass_type_friend)
12220 << T
12221 << TypeRange;
12222 }
12223 } else if (T->getAs<EnumType>()) {
12224 Diag(FriendLoc,
12225 getLangOpts().CPlusPlus11 ?
12226 diag::warn_cxx98_compat_enum_friend :
12227 diag::ext_enum_friend)
12228 << T
12229 << TypeRange;
12230 }
12231
12232 // C++11 [class.friend]p3:
12233 // A friend declaration that does not declare a function shall have one
12234 // of the following forms:
12235 // friend elaborated-type-specifier ;
12236 // friend simple-type-specifier ;
12237 // friend typename-specifier ;
12238 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
12239 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
12240 }
12241
12242 // If the type specifier in a friend declaration designates a (possibly
12243 // cv-qualified) class type, that class is declared as a friend; otherwise,
12244 // the friend declaration is ignored.
12245 return FriendDecl::Create(Context, CurContext,
12246 TSInfo->getTypeLoc().getLocStart(), TSInfo,
12247 FriendLoc);
12248 }
12249
12250 /// Handle a friend tag declaration where the scope specifier was
12251 /// templated.
ActOnTemplatedFriendTag(Scope * S,SourceLocation FriendLoc,unsigned TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,MultiTemplateParamsArg TempParamLists)12252 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
12253 unsigned TagSpec, SourceLocation TagLoc,
12254 CXXScopeSpec &SS,
12255 IdentifierInfo *Name,
12256 SourceLocation NameLoc,
12257 AttributeList *Attr,
12258 MultiTemplateParamsArg TempParamLists) {
12259 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
12260
12261 bool isExplicitSpecialization = false;
12262 bool Invalid = false;
12263
12264 if (TemplateParameterList *TemplateParams =
12265 MatchTemplateParametersToScopeSpecifier(
12266 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
12267 isExplicitSpecialization, Invalid)) {
12268 if (TemplateParams->size() > 0) {
12269 // This is a declaration of a class template.
12270 if (Invalid)
12271 return nullptr;
12272
12273 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name,
12274 NameLoc, Attr, TemplateParams, AS_public,
12275 /*ModulePrivateLoc=*/SourceLocation(),
12276 FriendLoc, TempParamLists.size() - 1,
12277 TempParamLists.data()).get();
12278 } else {
12279 // The "template<>" header is extraneous.
12280 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
12281 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
12282 isExplicitSpecialization = true;
12283 }
12284 }
12285
12286 if (Invalid) return nullptr;
12287
12288 bool isAllExplicitSpecializations = true;
12289 for (unsigned I = TempParamLists.size(); I-- > 0; ) {
12290 if (TempParamLists[I]->size()) {
12291 isAllExplicitSpecializations = false;
12292 break;
12293 }
12294 }
12295
12296 // FIXME: don't ignore attributes.
12297
12298 // If it's explicit specializations all the way down, just forget
12299 // about the template header and build an appropriate non-templated
12300 // friend. TODO: for source fidelity, remember the headers.
12301 if (isAllExplicitSpecializations) {
12302 if (SS.isEmpty()) {
12303 bool Owned = false;
12304 bool IsDependent = false;
12305 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
12306 Attr, AS_public,
12307 /*ModulePrivateLoc=*/SourceLocation(),
12308 MultiTemplateParamsArg(), Owned, IsDependent,
12309 /*ScopedEnumKWLoc=*/SourceLocation(),
12310 /*ScopedEnumUsesClassTag=*/false,
12311 /*UnderlyingType=*/TypeResult(),
12312 /*IsTypeSpecifier=*/false);
12313 }
12314
12315 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
12316 ElaboratedTypeKeyword Keyword
12317 = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
12318 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
12319 *Name, NameLoc);
12320 if (T.isNull())
12321 return nullptr;
12322
12323 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
12324 if (isa<DependentNameType>(T)) {
12325 DependentNameTypeLoc TL =
12326 TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
12327 TL.setElaboratedKeywordLoc(TagLoc);
12328 TL.setQualifierLoc(QualifierLoc);
12329 TL.setNameLoc(NameLoc);
12330 } else {
12331 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
12332 TL.setElaboratedKeywordLoc(TagLoc);
12333 TL.setQualifierLoc(QualifierLoc);
12334 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
12335 }
12336
12337 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
12338 TSI, FriendLoc, TempParamLists);
12339 Friend->setAccess(AS_public);
12340 CurContext->addDecl(Friend);
12341 return Friend;
12342 }
12343
12344 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
12345
12346
12347
12348 // Handle the case of a templated-scope friend class. e.g.
12349 // template <class T> class A<T>::B;
12350 // FIXME: we don't support these right now.
12351 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
12352 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
12353 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
12354 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
12355 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
12356 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
12357 TL.setElaboratedKeywordLoc(TagLoc);
12358 TL.setQualifierLoc(SS.getWithLocInContext(Context));
12359 TL.setNameLoc(NameLoc);
12360
12361 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
12362 TSI, FriendLoc, TempParamLists);
12363 Friend->setAccess(AS_public);
12364 Friend->setUnsupportedFriend(true);
12365 CurContext->addDecl(Friend);
12366 return Friend;
12367 }
12368
12369
12370 /// Handle a friend type declaration. This works in tandem with
12371 /// ActOnTag.
12372 ///
12373 /// Notes on friend class templates:
12374 ///
12375 /// We generally treat friend class declarations as if they were
12376 /// declaring a class. So, for example, the elaborated type specifier
12377 /// in a friend declaration is required to obey the restrictions of a
12378 /// class-head (i.e. no typedefs in the scope chain), template
12379 /// parameters are required to match up with simple template-ids, &c.
12380 /// However, unlike when declaring a template specialization, it's
12381 /// okay to refer to a template specialization without an empty
12382 /// template parameter declaration, e.g.
12383 /// friend class A<T>::B<unsigned>;
12384 /// We permit this as a special case; if there are any template
12385 /// parameters present at all, require proper matching, i.e.
12386 /// template <> template \<class T> friend class A<int>::B;
ActOnFriendTypeDecl(Scope * S,const DeclSpec & DS,MultiTemplateParamsArg TempParams)12387 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
12388 MultiTemplateParamsArg TempParams) {
12389 SourceLocation Loc = DS.getLocStart();
12390
12391 assert(DS.isFriendSpecified());
12392 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
12393
12394 // Try to convert the decl specifier to a type. This works for
12395 // friend templates because ActOnTag never produces a ClassTemplateDecl
12396 // for a TUK_Friend.
12397 Declarator TheDeclarator(DS, Declarator::MemberContext);
12398 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
12399 QualType T = TSI->getType();
12400 if (TheDeclarator.isInvalidType())
12401 return nullptr;
12402
12403 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
12404 return nullptr;
12405
12406 // This is definitely an error in C++98. It's probably meant to
12407 // be forbidden in C++0x, too, but the specification is just
12408 // poorly written.
12409 //
12410 // The problem is with declarations like the following:
12411 // template <T> friend A<T>::foo;
12412 // where deciding whether a class C is a friend or not now hinges
12413 // on whether there exists an instantiation of A that causes
12414 // 'foo' to equal C. There are restrictions on class-heads
12415 // (which we declare (by fiat) elaborated friend declarations to
12416 // be) that makes this tractable.
12417 //
12418 // FIXME: handle "template <> friend class A<T>;", which
12419 // is possibly well-formed? Who even knows?
12420 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
12421 Diag(Loc, diag::err_tagless_friend_type_template)
12422 << DS.getSourceRange();
12423 return nullptr;
12424 }
12425
12426 // C++98 [class.friend]p1: A friend of a class is a function
12427 // or class that is not a member of the class . . .
12428 // This is fixed in DR77, which just barely didn't make the C++03
12429 // deadline. It's also a very silly restriction that seriously
12430 // affects inner classes and which nobody else seems to implement;
12431 // thus we never diagnose it, not even in -pedantic.
12432 //
12433 // But note that we could warn about it: it's always useless to
12434 // friend one of your own members (it's not, however, worthless to
12435 // friend a member of an arbitrary specialization of your template).
12436
12437 Decl *D;
12438 if (unsigned NumTempParamLists = TempParams.size())
12439 D = FriendTemplateDecl::Create(Context, CurContext, Loc,
12440 NumTempParamLists,
12441 TempParams.data(),
12442 TSI,
12443 DS.getFriendSpecLoc());
12444 else
12445 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
12446
12447 if (!D)
12448 return nullptr;
12449
12450 D->setAccess(AS_public);
12451 CurContext->addDecl(D);
12452
12453 return D;
12454 }
12455
ActOnFriendFunctionDecl(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParams)12456 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
12457 MultiTemplateParamsArg TemplateParams) {
12458 const DeclSpec &DS = D.getDeclSpec();
12459
12460 assert(DS.isFriendSpecified());
12461 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
12462
12463 SourceLocation Loc = D.getIdentifierLoc();
12464 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12465
12466 // C++ [class.friend]p1
12467 // A friend of a class is a function or class....
12468 // Note that this sees through typedefs, which is intended.
12469 // It *doesn't* see through dependent types, which is correct
12470 // according to [temp.arg.type]p3:
12471 // If a declaration acquires a function type through a
12472 // type dependent on a template-parameter and this causes
12473 // a declaration that does not use the syntactic form of a
12474 // function declarator to have a function type, the program
12475 // is ill-formed.
12476 if (!TInfo->getType()->isFunctionType()) {
12477 Diag(Loc, diag::err_unexpected_friend);
12478
12479 // It might be worthwhile to try to recover by creating an
12480 // appropriate declaration.
12481 return nullptr;
12482 }
12483
12484 // C++ [namespace.memdef]p3
12485 // - If a friend declaration in a non-local class first declares a
12486 // class or function, the friend class or function is a member
12487 // of the innermost enclosing namespace.
12488 // - The name of the friend is not found by simple name lookup
12489 // until a matching declaration is provided in that namespace
12490 // scope (either before or after the class declaration granting
12491 // friendship).
12492 // - If a friend function is called, its name may be found by the
12493 // name lookup that considers functions from namespaces and
12494 // classes associated with the types of the function arguments.
12495 // - When looking for a prior declaration of a class or a function
12496 // declared as a friend, scopes outside the innermost enclosing
12497 // namespace scope are not considered.
12498
12499 CXXScopeSpec &SS = D.getCXXScopeSpec();
12500 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
12501 DeclarationName Name = NameInfo.getName();
12502 assert(Name);
12503
12504 // Check for unexpanded parameter packs.
12505 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
12506 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
12507 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
12508 return nullptr;
12509
12510 // The context we found the declaration in, or in which we should
12511 // create the declaration.
12512 DeclContext *DC;
12513 Scope *DCScope = S;
12514 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
12515 ForRedeclaration);
12516
12517 // There are five cases here.
12518 // - There's no scope specifier and we're in a local class. Only look
12519 // for functions declared in the immediately-enclosing block scope.
12520 // We recover from invalid scope qualifiers as if they just weren't there.
12521 FunctionDecl *FunctionContainingLocalClass = nullptr;
12522 if ((SS.isInvalid() || !SS.isSet()) &&
12523 (FunctionContainingLocalClass =
12524 cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
12525 // C++11 [class.friend]p11:
12526 // If a friend declaration appears in a local class and the name
12527 // specified is an unqualified name, a prior declaration is
12528 // looked up without considering scopes that are outside the
12529 // innermost enclosing non-class scope. For a friend function
12530 // declaration, if there is no prior declaration, the program is
12531 // ill-formed.
12532
12533 // Find the innermost enclosing non-class scope. This is the block
12534 // scope containing the local class definition (or for a nested class,
12535 // the outer local class).
12536 DCScope = S->getFnParent();
12537
12538 // Look up the function name in the scope.
12539 Previous.clear(LookupLocalFriendName);
12540 LookupName(Previous, S, /*AllowBuiltinCreation*/false);
12541
12542 if (!Previous.empty()) {
12543 // All possible previous declarations must have the same context:
12544 // either they were declared at block scope or they are members of
12545 // one of the enclosing local classes.
12546 DC = Previous.getRepresentativeDecl()->getDeclContext();
12547 } else {
12548 // This is ill-formed, but provide the context that we would have
12549 // declared the function in, if we were permitted to, for error recovery.
12550 DC = FunctionContainingLocalClass;
12551 }
12552 adjustContextForLocalExternDecl(DC);
12553
12554 // C++ [class.friend]p6:
12555 // A function can be defined in a friend declaration of a class if and
12556 // only if the class is a non-local class (9.8), the function name is
12557 // unqualified, and the function has namespace scope.
12558 if (D.isFunctionDefinition()) {
12559 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
12560 }
12561
12562 // - There's no scope specifier, in which case we just go to the
12563 // appropriate scope and look for a function or function template
12564 // there as appropriate.
12565 } else if (SS.isInvalid() || !SS.isSet()) {
12566 // C++11 [namespace.memdef]p3:
12567 // If the name in a friend declaration is neither qualified nor
12568 // a template-id and the declaration is a function or an
12569 // elaborated-type-specifier, the lookup to determine whether
12570 // the entity has been previously declared shall not consider
12571 // any scopes outside the innermost enclosing namespace.
12572 bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
12573
12574 // Find the appropriate context according to the above.
12575 DC = CurContext;
12576
12577 // Skip class contexts. If someone can cite chapter and verse
12578 // for this behavior, that would be nice --- it's what GCC and
12579 // EDG do, and it seems like a reasonable intent, but the spec
12580 // really only says that checks for unqualified existing
12581 // declarations should stop at the nearest enclosing namespace,
12582 // not that they should only consider the nearest enclosing
12583 // namespace.
12584 while (DC->isRecord())
12585 DC = DC->getParent();
12586
12587 DeclContext *LookupDC = DC;
12588 while (LookupDC->isTransparentContext())
12589 LookupDC = LookupDC->getParent();
12590
12591 while (true) {
12592 LookupQualifiedName(Previous, LookupDC);
12593
12594 if (!Previous.empty()) {
12595 DC = LookupDC;
12596 break;
12597 }
12598
12599 if (isTemplateId) {
12600 if (isa<TranslationUnitDecl>(LookupDC)) break;
12601 } else {
12602 if (LookupDC->isFileContext()) break;
12603 }
12604 LookupDC = LookupDC->getParent();
12605 }
12606
12607 DCScope = getScopeForDeclContext(S, DC);
12608
12609 // - There's a non-dependent scope specifier, in which case we
12610 // compute it and do a previous lookup there for a function
12611 // or function template.
12612 } else if (!SS.getScopeRep()->isDependent()) {
12613 DC = computeDeclContext(SS);
12614 if (!DC) return nullptr;
12615
12616 if (RequireCompleteDeclContext(SS, DC)) return nullptr;
12617
12618 LookupQualifiedName(Previous, DC);
12619
12620 // Ignore things found implicitly in the wrong scope.
12621 // TODO: better diagnostics for this case. Suggesting the right
12622 // qualified scope would be nice...
12623 LookupResult::Filter F = Previous.makeFilter();
12624 while (F.hasNext()) {
12625 NamedDecl *D = F.next();
12626 if (!DC->InEnclosingNamespaceSetOf(
12627 D->getDeclContext()->getRedeclContext()))
12628 F.erase();
12629 }
12630 F.done();
12631
12632 if (Previous.empty()) {
12633 D.setInvalidType();
12634 Diag(Loc, diag::err_qualified_friend_not_found)
12635 << Name << TInfo->getType();
12636 return nullptr;
12637 }
12638
12639 // C++ [class.friend]p1: A friend of a class is a function or
12640 // class that is not a member of the class . . .
12641 if (DC->Equals(CurContext))
12642 Diag(DS.getFriendSpecLoc(),
12643 getLangOpts().CPlusPlus11 ?
12644 diag::warn_cxx98_compat_friend_is_member :
12645 diag::err_friend_is_member);
12646
12647 if (D.isFunctionDefinition()) {
12648 // C++ [class.friend]p6:
12649 // A function can be defined in a friend declaration of a class if and
12650 // only if the class is a non-local class (9.8), the function name is
12651 // unqualified, and the function has namespace scope.
12652 SemaDiagnosticBuilder DB
12653 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
12654
12655 DB << SS.getScopeRep();
12656 if (DC->isFileContext())
12657 DB << FixItHint::CreateRemoval(SS.getRange());
12658 SS.clear();
12659 }
12660
12661 // - There's a scope specifier that does not match any template
12662 // parameter lists, in which case we use some arbitrary context,
12663 // create a method or method template, and wait for instantiation.
12664 // - There's a scope specifier that does match some template
12665 // parameter lists, which we don't handle right now.
12666 } else {
12667 if (D.isFunctionDefinition()) {
12668 // C++ [class.friend]p6:
12669 // A function can be defined in a friend declaration of a class if and
12670 // only if the class is a non-local class (9.8), the function name is
12671 // unqualified, and the function has namespace scope.
12672 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
12673 << SS.getScopeRep();
12674 }
12675
12676 DC = CurContext;
12677 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
12678 }
12679
12680 if (!DC->isRecord()) {
12681 int DiagArg = -1;
12682 switch (D.getName().getKind()) {
12683 case UnqualifiedId::IK_ConstructorTemplateId:
12684 case UnqualifiedId::IK_ConstructorName:
12685 DiagArg = 0;
12686 break;
12687 case UnqualifiedId::IK_DestructorName:
12688 DiagArg = 1;
12689 break;
12690 case UnqualifiedId::IK_ConversionFunctionId:
12691 DiagArg = 2;
12692 break;
12693 case UnqualifiedId::IK_Identifier:
12694 case UnqualifiedId::IK_ImplicitSelfParam:
12695 case UnqualifiedId::IK_LiteralOperatorId:
12696 case UnqualifiedId::IK_OperatorFunctionId:
12697 case UnqualifiedId::IK_TemplateId:
12698 break;
12699 }
12700 // This implies that it has to be an operator or function.
12701 if (DiagArg >= 0) {
12702 Diag(Loc, diag::err_introducing_special_friend) << DiagArg;
12703 return nullptr;
12704 }
12705 }
12706
12707 // FIXME: This is an egregious hack to cope with cases where the scope stack
12708 // does not contain the declaration context, i.e., in an out-of-line
12709 // definition of a class.
12710 Scope FakeDCScope(S, Scope::DeclScope, Diags);
12711 if (!DCScope) {
12712 FakeDCScope.setEntity(DC);
12713 DCScope = &FakeDCScope;
12714 }
12715
12716 bool AddToScope = true;
12717 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
12718 TemplateParams, AddToScope);
12719 if (!ND) return nullptr;
12720
12721 assert(ND->getLexicalDeclContext() == CurContext);
12722
12723 // If we performed typo correction, we might have added a scope specifier
12724 // and changed the decl context.
12725 DC = ND->getDeclContext();
12726
12727 // Add the function declaration to the appropriate lookup tables,
12728 // adjusting the redeclarations list as necessary. We don't
12729 // want to do this yet if the friending class is dependent.
12730 //
12731 // Also update the scope-based lookup if the target context's
12732 // lookup context is in lexical scope.
12733 if (!CurContext->isDependentContext()) {
12734 DC = DC->getRedeclContext();
12735 DC->makeDeclVisibleInContext(ND);
12736 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
12737 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
12738 }
12739
12740 FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
12741 D.getIdentifierLoc(), ND,
12742 DS.getFriendSpecLoc());
12743 FrD->setAccess(AS_public);
12744 CurContext->addDecl(FrD);
12745
12746 if (ND->isInvalidDecl()) {
12747 FrD->setInvalidDecl();
12748 } else {
12749 if (DC->isRecord()) CheckFriendAccess(ND);
12750
12751 FunctionDecl *FD;
12752 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
12753 FD = FTD->getTemplatedDecl();
12754 else
12755 FD = cast<FunctionDecl>(ND);
12756
12757 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
12758 // default argument expression, that declaration shall be a definition
12759 // and shall be the only declaration of the function or function
12760 // template in the translation unit.
12761 if (functionDeclHasDefaultArgument(FD)) {
12762 if (FunctionDecl *OldFD = FD->getPreviousDecl()) {
12763 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
12764 Diag(OldFD->getLocation(), diag::note_previous_declaration);
12765 } else if (!D.isFunctionDefinition())
12766 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
12767 }
12768
12769 // Mark templated-scope function declarations as unsupported.
12770 if (FD->getNumTemplateParameterLists() && SS.isValid()) {
12771 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported)
12772 << SS.getScopeRep() << SS.getRange()
12773 << cast<CXXRecordDecl>(CurContext);
12774 FrD->setUnsupportedFriend(true);
12775 }
12776 }
12777
12778 return ND;
12779 }
12780
SetDeclDeleted(Decl * Dcl,SourceLocation DelLoc)12781 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
12782 AdjustDeclIfTemplate(Dcl);
12783
12784 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
12785 if (!Fn) {
12786 Diag(DelLoc, diag::err_deleted_non_function);
12787 return;
12788 }
12789
12790 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
12791 // Don't consider the implicit declaration we generate for explicit
12792 // specializations. FIXME: Do not generate these implicit declarations.
12793 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
12794 Prev->getPreviousDecl()) &&
12795 !Prev->isDefined()) {
12796 Diag(DelLoc, diag::err_deleted_decl_not_first);
12797 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
12798 Prev->isImplicit() ? diag::note_previous_implicit_declaration
12799 : diag::note_previous_declaration);
12800 }
12801 // If the declaration wasn't the first, we delete the function anyway for
12802 // recovery.
12803 Fn = Fn->getCanonicalDecl();
12804 }
12805
12806 // dllimport/dllexport cannot be deleted.
12807 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
12808 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
12809 Fn->setInvalidDecl();
12810 }
12811
12812 if (Fn->isDeleted())
12813 return;
12814
12815 // See if we're deleting a function which is already known to override a
12816 // non-deleted virtual function.
12817 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
12818 bool IssuedDiagnostic = false;
12819 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
12820 E = MD->end_overridden_methods();
12821 I != E; ++I) {
12822 if (!(*MD->begin_overridden_methods())->isDeleted()) {
12823 if (!IssuedDiagnostic) {
12824 Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
12825 IssuedDiagnostic = true;
12826 }
12827 Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
12828 }
12829 }
12830 }
12831
12832 // C++11 [basic.start.main]p3:
12833 // A program that defines main as deleted [...] is ill-formed.
12834 if (Fn->isMain())
12835 Diag(DelLoc, diag::err_deleted_main);
12836
12837 Fn->setDeletedAsWritten();
12838 }
12839
SetDeclDefaulted(Decl * Dcl,SourceLocation DefaultLoc)12840 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
12841 CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
12842
12843 if (MD) {
12844 if (MD->getParent()->isDependentType()) {
12845 MD->setDefaulted();
12846 MD->setExplicitlyDefaulted();
12847 return;
12848 }
12849
12850 CXXSpecialMember Member = getSpecialMember(MD);
12851 if (Member == CXXInvalid) {
12852 if (!MD->isInvalidDecl())
12853 Diag(DefaultLoc, diag::err_default_special_members);
12854 return;
12855 }
12856
12857 MD->setDefaulted();
12858 MD->setExplicitlyDefaulted();
12859
12860 // If this definition appears within the record, do the checking when
12861 // the record is complete.
12862 const FunctionDecl *Primary = MD;
12863 if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
12864 // Find the uninstantiated declaration that actually had the '= default'
12865 // on it.
12866 Pattern->isDefined(Primary);
12867
12868 // If the method was defaulted on its first declaration, we will have
12869 // already performed the checking in CheckCompletedCXXClass. Such a
12870 // declaration doesn't trigger an implicit definition.
12871 if (Primary == Primary->getCanonicalDecl())
12872 return;
12873
12874 CheckExplicitlyDefaultedSpecialMember(MD);
12875
12876 if (MD->isInvalidDecl())
12877 return;
12878
12879 switch (Member) {
12880 case CXXDefaultConstructor:
12881 DefineImplicitDefaultConstructor(DefaultLoc,
12882 cast<CXXConstructorDecl>(MD));
12883 break;
12884 case CXXCopyConstructor:
12885 DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
12886 break;
12887 case CXXCopyAssignment:
12888 DefineImplicitCopyAssignment(DefaultLoc, MD);
12889 break;
12890 case CXXDestructor:
12891 DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
12892 break;
12893 case CXXMoveConstructor:
12894 DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
12895 break;
12896 case CXXMoveAssignment:
12897 DefineImplicitMoveAssignment(DefaultLoc, MD);
12898 break;
12899 case CXXInvalid:
12900 llvm_unreachable("Invalid special member.");
12901 }
12902 } else {
12903 Diag(DefaultLoc, diag::err_default_special_members);
12904 }
12905 }
12906
SearchForReturnInStmt(Sema & Self,Stmt * S)12907 static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
12908 for (Stmt *SubStmt : S->children()) {
12909 if (!SubStmt)
12910 continue;
12911 if (isa<ReturnStmt>(SubStmt))
12912 Self.Diag(SubStmt->getLocStart(),
12913 diag::err_return_in_constructor_handler);
12914 if (!isa<Expr>(SubStmt))
12915 SearchForReturnInStmt(Self, SubStmt);
12916 }
12917 }
12918
DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt * TryBlock)12919 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
12920 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
12921 CXXCatchStmt *Handler = TryBlock->getHandler(I);
12922 SearchForReturnInStmt(*this, Handler);
12923 }
12924 }
12925
CheckOverridingFunctionAttributes(const CXXMethodDecl * New,const CXXMethodDecl * Old)12926 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
12927 const CXXMethodDecl *Old) {
12928 const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
12929 const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
12930
12931 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
12932
12933 // If the calling conventions match, everything is fine
12934 if (NewCC == OldCC)
12935 return false;
12936
12937 // If the calling conventions mismatch because the new function is static,
12938 // suppress the calling convention mismatch error; the error about static
12939 // function override (err_static_overrides_virtual from
12940 // Sema::CheckFunctionDeclaration) is more clear.
12941 if (New->getStorageClass() == SC_Static)
12942 return false;
12943
12944 Diag(New->getLocation(),
12945 diag::err_conflicting_overriding_cc_attributes)
12946 << New->getDeclName() << New->getType() << Old->getType();
12947 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12948 return true;
12949 }
12950
CheckOverridingFunctionReturnType(const CXXMethodDecl * New,const CXXMethodDecl * Old)12951 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
12952 const CXXMethodDecl *Old) {
12953 QualType NewTy = New->getType()->getAs<FunctionType>()->getReturnType();
12954 QualType OldTy = Old->getType()->getAs<FunctionType>()->getReturnType();
12955
12956 if (Context.hasSameType(NewTy, OldTy) ||
12957 NewTy->isDependentType() || OldTy->isDependentType())
12958 return false;
12959
12960 // Check if the return types are covariant
12961 QualType NewClassTy, OldClassTy;
12962
12963 /// Both types must be pointers or references to classes.
12964 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
12965 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
12966 NewClassTy = NewPT->getPointeeType();
12967 OldClassTy = OldPT->getPointeeType();
12968 }
12969 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
12970 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
12971 if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
12972 NewClassTy = NewRT->getPointeeType();
12973 OldClassTy = OldRT->getPointeeType();
12974 }
12975 }
12976 }
12977
12978 // The return types aren't either both pointers or references to a class type.
12979 if (NewClassTy.isNull()) {
12980 Diag(New->getLocation(),
12981 diag::err_different_return_type_for_overriding_virtual_function)
12982 << New->getDeclName() << NewTy << OldTy
12983 << New->getReturnTypeSourceRange();
12984 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12985 << Old->getReturnTypeSourceRange();
12986
12987 return true;
12988 }
12989
12990 // C++ [class.virtual]p6:
12991 // If the return type of D::f differs from the return type of B::f, the
12992 // class type in the return type of D::f shall be complete at the point of
12993 // declaration of D::f or shall be the class type D.
12994 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
12995 if (!RT->isBeingDefined() &&
12996 RequireCompleteType(New->getLocation(), NewClassTy,
12997 diag::err_covariant_return_incomplete,
12998 New->getDeclName()))
12999 return true;
13000 }
13001
13002 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
13003 // Check if the new class derives from the old class.
13004 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) {
13005 Diag(New->getLocation(), diag::err_covariant_return_not_derived)
13006 << New->getDeclName() << NewTy << OldTy
13007 << New->getReturnTypeSourceRange();
13008 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
13009 << Old->getReturnTypeSourceRange();
13010 return true;
13011 }
13012
13013 // Check if we the conversion from derived to base is valid.
13014 if (CheckDerivedToBaseConversion(
13015 NewClassTy, OldClassTy,
13016 diag::err_covariant_return_inaccessible_base,
13017 diag::err_covariant_return_ambiguous_derived_to_base_conv,
13018 New->getLocation(), New->getReturnTypeSourceRange(),
13019 New->getDeclName(), nullptr)) {
13020 // FIXME: this note won't trigger for delayed access control
13021 // diagnostics, and it's impossible to get an undelayed error
13022 // here from access control during the original parse because
13023 // the ParsingDeclSpec/ParsingDeclarator are still in scope.
13024 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
13025 << Old->getReturnTypeSourceRange();
13026 return true;
13027 }
13028 }
13029
13030 // The qualifiers of the return types must be the same.
13031 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
13032 Diag(New->getLocation(),
13033 diag::err_covariant_return_type_different_qualifications)
13034 << New->getDeclName() << NewTy << OldTy
13035 << New->getReturnTypeSourceRange();
13036 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
13037 << Old->getReturnTypeSourceRange();
13038 return true;
13039 };
13040
13041
13042 // The new class type must have the same or less qualifiers as the old type.
13043 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
13044 Diag(New->getLocation(),
13045 diag::err_covariant_return_type_class_type_more_qualified)
13046 << New->getDeclName() << NewTy << OldTy
13047 << New->getReturnTypeSourceRange();
13048 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
13049 << Old->getReturnTypeSourceRange();
13050 return true;
13051 };
13052
13053 return false;
13054 }
13055
13056 /// \brief Mark the given method pure.
13057 ///
13058 /// \param Method the method to be marked pure.
13059 ///
13060 /// \param InitRange the source range that covers the "0" initializer.
CheckPureMethod(CXXMethodDecl * Method,SourceRange InitRange)13061 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
13062 SourceLocation EndLoc = InitRange.getEnd();
13063 if (EndLoc.isValid())
13064 Method->setRangeEnd(EndLoc);
13065
13066 if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
13067 Method->setPure();
13068 return false;
13069 }
13070
13071 if (!Method->isInvalidDecl())
13072 Diag(Method->getLocation(), diag::err_non_virtual_pure)
13073 << Method->getDeclName() << InitRange;
13074 return true;
13075 }
13076
ActOnPureSpecifier(Decl * D,SourceLocation ZeroLoc)13077 void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) {
13078 if (D->getFriendObjectKind())
13079 Diag(D->getLocation(), diag::err_pure_friend);
13080 else if (auto *M = dyn_cast<CXXMethodDecl>(D))
13081 CheckPureMethod(M, ZeroLoc);
13082 else
13083 Diag(D->getLocation(), diag::err_illegal_initializer);
13084 }
13085
13086 /// \brief Determine whether the given declaration is a static data member.
isStaticDataMember(const Decl * D)13087 static bool isStaticDataMember(const Decl *D) {
13088 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
13089 return Var->isStaticDataMember();
13090
13091 return false;
13092 }
13093
13094 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
13095 /// an initializer for the out-of-line declaration 'Dcl'. The scope
13096 /// is a fresh scope pushed for just this purpose.
13097 ///
13098 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
13099 /// static data member of class X, names should be looked up in the scope of
13100 /// class X.
ActOnCXXEnterDeclInitializer(Scope * S,Decl * D)13101 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
13102 // If there is no declaration, there was an error parsing it.
13103 if (!D || D->isInvalidDecl())
13104 return;
13105
13106 // We will always have a nested name specifier here, but this declaration
13107 // might not be out of line if the specifier names the current namespace:
13108 // extern int n;
13109 // int ::n = 0;
13110 if (D->isOutOfLine())
13111 EnterDeclaratorContext(S, D->getDeclContext());
13112
13113 // If we are parsing the initializer for a static data member, push a
13114 // new expression evaluation context that is associated with this static
13115 // data member.
13116 if (isStaticDataMember(D))
13117 PushExpressionEvaluationContext(PotentiallyEvaluated, D);
13118 }
13119
13120 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
13121 /// initializer for the out-of-line declaration 'D'.
ActOnCXXExitDeclInitializer(Scope * S,Decl * D)13122 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
13123 // If there is no declaration, there was an error parsing it.
13124 if (!D || D->isInvalidDecl())
13125 return;
13126
13127 if (isStaticDataMember(D))
13128 PopExpressionEvaluationContext();
13129
13130 if (D->isOutOfLine())
13131 ExitDeclaratorContext(S);
13132 }
13133
13134 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
13135 /// C++ if/switch/while/for statement.
13136 /// e.g: "if (int x = f()) {...}"
ActOnCXXConditionDeclaration(Scope * S,Declarator & D)13137 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
13138 // C++ 6.4p2:
13139 // The declarator shall not specify a function or an array.
13140 // The type-specifier-seq shall not contain typedef and shall not declare a
13141 // new class or enumeration.
13142 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
13143 "Parser allowed 'typedef' as storage class of condition decl.");
13144
13145 Decl *Dcl = ActOnDeclarator(S, D);
13146 if (!Dcl)
13147 return true;
13148
13149 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
13150 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
13151 << D.getSourceRange();
13152 return true;
13153 }
13154
13155 return Dcl;
13156 }
13157
LoadExternalVTableUses()13158 void Sema::LoadExternalVTableUses() {
13159 if (!ExternalSource)
13160 return;
13161
13162 SmallVector<ExternalVTableUse, 4> VTables;
13163 ExternalSource->ReadUsedVTables(VTables);
13164 SmallVector<VTableUse, 4> NewUses;
13165 for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
13166 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
13167 = VTablesUsed.find(VTables[I].Record);
13168 // Even if a definition wasn't required before, it may be required now.
13169 if (Pos != VTablesUsed.end()) {
13170 if (!Pos->second && VTables[I].DefinitionRequired)
13171 Pos->second = true;
13172 continue;
13173 }
13174
13175 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
13176 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
13177 }
13178
13179 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
13180 }
13181
MarkVTableUsed(SourceLocation Loc,CXXRecordDecl * Class,bool DefinitionRequired)13182 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
13183 bool DefinitionRequired) {
13184 // Ignore any vtable uses in unevaluated operands or for classes that do
13185 // not have a vtable.
13186 if (!Class->isDynamicClass() || Class->isDependentContext() ||
13187 CurContext->isDependentContext() || isUnevaluatedContext())
13188 return;
13189
13190 // Try to insert this class into the map.
13191 LoadExternalVTableUses();
13192 Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
13193 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
13194 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
13195 if (!Pos.second) {
13196 // If we already had an entry, check to see if we are promoting this vtable
13197 // to require a definition. If so, we need to reappend to the VTableUses
13198 // list, since we may have already processed the first entry.
13199 if (DefinitionRequired && !Pos.first->second) {
13200 Pos.first->second = true;
13201 } else {
13202 // Otherwise, we can early exit.
13203 return;
13204 }
13205 } else {
13206 // The Microsoft ABI requires that we perform the destructor body
13207 // checks (i.e. operator delete() lookup) when the vtable is marked used, as
13208 // the deleting destructor is emitted with the vtable, not with the
13209 // destructor definition as in the Itanium ABI.
13210 // If it has a definition, we do the check at that point instead.
13211 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
13212 Class->hasUserDeclaredDestructor() &&
13213 !Class->getDestructor()->isDefined() &&
13214 !Class->getDestructor()->isDeleted()) {
13215 CXXDestructorDecl *DD = Class->getDestructor();
13216 ContextRAII SavedContext(*this, DD);
13217 CheckDestructor(DD);
13218 }
13219 }
13220
13221 // Local classes need to have their virtual members marked
13222 // immediately. For all other classes, we mark their virtual members
13223 // at the end of the translation unit.
13224 if (Class->isLocalClass())
13225 MarkVirtualMembersReferenced(Loc, Class);
13226 else
13227 VTableUses.push_back(std::make_pair(Class, Loc));
13228 }
13229
DefineUsedVTables()13230 bool Sema::DefineUsedVTables() {
13231 LoadExternalVTableUses();
13232 if (VTableUses.empty())
13233 return false;
13234
13235 // Note: The VTableUses vector could grow as a result of marking
13236 // the members of a class as "used", so we check the size each
13237 // time through the loop and prefer indices (which are stable) to
13238 // iterators (which are not).
13239 bool DefinedAnything = false;
13240 for (unsigned I = 0; I != VTableUses.size(); ++I) {
13241 CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
13242 if (!Class)
13243 continue;
13244
13245 SourceLocation Loc = VTableUses[I].second;
13246
13247 bool DefineVTable = true;
13248
13249 // If this class has a key function, but that key function is
13250 // defined in another translation unit, we don't need to emit the
13251 // vtable even though we're using it.
13252 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
13253 if (KeyFunction && !KeyFunction->hasBody()) {
13254 // The key function is in another translation unit.
13255 DefineVTable = false;
13256 TemplateSpecializationKind TSK =
13257 KeyFunction->getTemplateSpecializationKind();
13258 assert(TSK != TSK_ExplicitInstantiationDefinition &&
13259 TSK != TSK_ImplicitInstantiation &&
13260 "Instantiations don't have key functions");
13261 (void)TSK;
13262 } else if (!KeyFunction) {
13263 // If we have a class with no key function that is the subject
13264 // of an explicit instantiation declaration, suppress the
13265 // vtable; it will live with the explicit instantiation
13266 // definition.
13267 bool IsExplicitInstantiationDeclaration
13268 = Class->getTemplateSpecializationKind()
13269 == TSK_ExplicitInstantiationDeclaration;
13270 for (auto R : Class->redecls()) {
13271 TemplateSpecializationKind TSK
13272 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
13273 if (TSK == TSK_ExplicitInstantiationDeclaration)
13274 IsExplicitInstantiationDeclaration = true;
13275 else if (TSK == TSK_ExplicitInstantiationDefinition) {
13276 IsExplicitInstantiationDeclaration = false;
13277 break;
13278 }
13279 }
13280
13281 if (IsExplicitInstantiationDeclaration)
13282 DefineVTable = false;
13283 }
13284
13285 // The exception specifications for all virtual members may be needed even
13286 // if we are not providing an authoritative form of the vtable in this TU.
13287 // We may choose to emit it available_externally anyway.
13288 if (!DefineVTable) {
13289 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
13290 continue;
13291 }
13292
13293 // Mark all of the virtual members of this class as referenced, so
13294 // that we can build a vtable. Then, tell the AST consumer that a
13295 // vtable for this class is required.
13296 DefinedAnything = true;
13297 MarkVirtualMembersReferenced(Loc, Class);
13298 CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
13299 if (VTablesUsed[Canonical])
13300 Consumer.HandleVTable(Class);
13301
13302 // Optionally warn if we're emitting a weak vtable.
13303 if (Class->isExternallyVisible() &&
13304 Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
13305 const FunctionDecl *KeyFunctionDef = nullptr;
13306 if (!KeyFunction ||
13307 (KeyFunction->hasBody(KeyFunctionDef) &&
13308 KeyFunctionDef->isInlined()))
13309 Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
13310 TSK_ExplicitInstantiationDefinition
13311 ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
13312 << Class;
13313 }
13314 }
13315 VTableUses.clear();
13316
13317 return DefinedAnything;
13318 }
13319
MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,const CXXRecordDecl * RD)13320 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
13321 const CXXRecordDecl *RD) {
13322 for (const auto *I : RD->methods())
13323 if (I->isVirtual() && !I->isPure())
13324 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
13325 }
13326
MarkVirtualMembersReferenced(SourceLocation Loc,const CXXRecordDecl * RD)13327 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
13328 const CXXRecordDecl *RD) {
13329 // Mark all functions which will appear in RD's vtable as used.
13330 CXXFinalOverriderMap FinalOverriders;
13331 RD->getFinalOverriders(FinalOverriders);
13332 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
13333 E = FinalOverriders.end();
13334 I != E; ++I) {
13335 for (OverridingMethods::const_iterator OI = I->second.begin(),
13336 OE = I->second.end();
13337 OI != OE; ++OI) {
13338 assert(OI->second.size() > 0 && "no final overrider");
13339 CXXMethodDecl *Overrider = OI->second.front().Method;
13340
13341 // C++ [basic.def.odr]p2:
13342 // [...] A virtual member function is used if it is not pure. [...]
13343 if (!Overrider->isPure())
13344 MarkFunctionReferenced(Loc, Overrider);
13345 }
13346 }
13347
13348 // Only classes that have virtual bases need a VTT.
13349 if (RD->getNumVBases() == 0)
13350 return;
13351
13352 for (const auto &I : RD->bases()) {
13353 const CXXRecordDecl *Base =
13354 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
13355 if (Base->getNumVBases() == 0)
13356 continue;
13357 MarkVirtualMembersReferenced(Loc, Base);
13358 }
13359 }
13360
13361 /// SetIvarInitializers - This routine builds initialization ASTs for the
13362 /// Objective-C implementation whose ivars need be initialized.
SetIvarInitializers(ObjCImplementationDecl * ObjCImplementation)13363 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
13364 if (!getLangOpts().CPlusPlus)
13365 return;
13366 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
13367 SmallVector<ObjCIvarDecl*, 8> ivars;
13368 CollectIvarsToConstructOrDestruct(OID, ivars);
13369 if (ivars.empty())
13370 return;
13371 SmallVector<CXXCtorInitializer*, 32> AllToInit;
13372 for (unsigned i = 0; i < ivars.size(); i++) {
13373 FieldDecl *Field = ivars[i];
13374 if (Field->isInvalidDecl())
13375 continue;
13376
13377 CXXCtorInitializer *Member;
13378 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
13379 InitializationKind InitKind =
13380 InitializationKind::CreateDefault(ObjCImplementation->getLocation());
13381
13382 InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
13383 ExprResult MemberInit =
13384 InitSeq.Perform(*this, InitEntity, InitKind, None);
13385 MemberInit = MaybeCreateExprWithCleanups(MemberInit);
13386 // Note, MemberInit could actually come back empty if no initialization
13387 // is required (e.g., because it would call a trivial default constructor)
13388 if (!MemberInit.get() || MemberInit.isInvalid())
13389 continue;
13390
13391 Member =
13392 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
13393 SourceLocation(),
13394 MemberInit.getAs<Expr>(),
13395 SourceLocation());
13396 AllToInit.push_back(Member);
13397
13398 // Be sure that the destructor is accessible and is marked as referenced.
13399 if (const RecordType *RecordTy =
13400 Context.getBaseElementType(Field->getType())
13401 ->getAs<RecordType>()) {
13402 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
13403 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
13404 MarkFunctionReferenced(Field->getLocation(), Destructor);
13405 CheckDestructorAccess(Field->getLocation(), Destructor,
13406 PDiag(diag::err_access_dtor_ivar)
13407 << Context.getBaseElementType(Field->getType()));
13408 }
13409 }
13410 }
13411 ObjCImplementation->setIvarInitializers(Context,
13412 AllToInit.data(), AllToInit.size());
13413 }
13414 }
13415
13416 static
DelegatingCycleHelper(CXXConstructorDecl * Ctor,llvm::SmallSet<CXXConstructorDecl *,4> & Valid,llvm::SmallSet<CXXConstructorDecl *,4> & Invalid,llvm::SmallSet<CXXConstructorDecl *,4> & Current,Sema & S)13417 void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
13418 llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
13419 llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
13420 llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
13421 Sema &S) {
13422 if (Ctor->isInvalidDecl())
13423 return;
13424
13425 CXXConstructorDecl *Target = Ctor->getTargetConstructor();
13426
13427 // Target may not be determinable yet, for instance if this is a dependent
13428 // call in an uninstantiated template.
13429 if (Target) {
13430 const FunctionDecl *FNTarget = nullptr;
13431 (void)Target->hasBody(FNTarget);
13432 Target = const_cast<CXXConstructorDecl*>(
13433 cast_or_null<CXXConstructorDecl>(FNTarget));
13434 }
13435
13436 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
13437 // Avoid dereferencing a null pointer here.
13438 *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
13439
13440 if (!Current.insert(Canonical).second)
13441 return;
13442
13443 // We know that beyond here, we aren't chaining into a cycle.
13444 if (!Target || !Target->isDelegatingConstructor() ||
13445 Target->isInvalidDecl() || Valid.count(TCanonical)) {
13446 Valid.insert(Current.begin(), Current.end());
13447 Current.clear();
13448 // We've hit a cycle.
13449 } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
13450 Current.count(TCanonical)) {
13451 // If we haven't diagnosed this cycle yet, do so now.
13452 if (!Invalid.count(TCanonical)) {
13453 S.Diag((*Ctor->init_begin())->getSourceLocation(),
13454 diag::warn_delegating_ctor_cycle)
13455 << Ctor;
13456
13457 // Don't add a note for a function delegating directly to itself.
13458 if (TCanonical != Canonical)
13459 S.Diag(Target->getLocation(), diag::note_it_delegates_to);
13460
13461 CXXConstructorDecl *C = Target;
13462 while (C->getCanonicalDecl() != Canonical) {
13463 const FunctionDecl *FNTarget = nullptr;
13464 (void)C->getTargetConstructor()->hasBody(FNTarget);
13465 assert(FNTarget && "Ctor cycle through bodiless function");
13466
13467 C = const_cast<CXXConstructorDecl*>(
13468 cast<CXXConstructorDecl>(FNTarget));
13469 S.Diag(C->getLocation(), diag::note_which_delegates_to);
13470 }
13471 }
13472
13473 Invalid.insert(Current.begin(), Current.end());
13474 Current.clear();
13475 } else {
13476 DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
13477 }
13478 }
13479
13480
CheckDelegatingCtorCycles()13481 void Sema::CheckDelegatingCtorCycles() {
13482 llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
13483
13484 for (DelegatingCtorDeclsType::iterator
13485 I = DelegatingCtorDecls.begin(ExternalSource),
13486 E = DelegatingCtorDecls.end();
13487 I != E; ++I)
13488 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
13489
13490 for (llvm::SmallSet<CXXConstructorDecl *, 4>::iterator CI = Invalid.begin(),
13491 CE = Invalid.end();
13492 CI != CE; ++CI)
13493 (*CI)->setInvalidDecl();
13494 }
13495
13496 namespace {
13497 /// \brief AST visitor that finds references to the 'this' expression.
13498 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
13499 Sema &S;
13500
13501 public:
FindCXXThisExpr(Sema & S)13502 explicit FindCXXThisExpr(Sema &S) : S(S) { }
13503
VisitCXXThisExpr(CXXThisExpr * E)13504 bool VisitCXXThisExpr(CXXThisExpr *E) {
13505 S.Diag(E->getLocation(), diag::err_this_static_member_func)
13506 << E->isImplicit();
13507 return false;
13508 }
13509 };
13510 }
13511
checkThisInStaticMemberFunctionType(CXXMethodDecl * Method)13512 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
13513 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
13514 if (!TSInfo)
13515 return false;
13516
13517 TypeLoc TL = TSInfo->getTypeLoc();
13518 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
13519 if (!ProtoTL)
13520 return false;
13521
13522 // C++11 [expr.prim.general]p3:
13523 // [The expression this] shall not appear before the optional
13524 // cv-qualifier-seq and it shall not appear within the declaration of a
13525 // static member function (although its type and value category are defined
13526 // within a static member function as they are within a non-static member
13527 // function). [ Note: this is because declaration matching does not occur
13528 // until the complete declarator is known. - end note ]
13529 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
13530 FindCXXThisExpr Finder(*this);
13531
13532 // If the return type came after the cv-qualifier-seq, check it now.
13533 if (Proto->hasTrailingReturn() &&
13534 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
13535 return true;
13536
13537 // Check the exception specification.
13538 if (checkThisInStaticMemberFunctionExceptionSpec(Method))
13539 return true;
13540
13541 return checkThisInStaticMemberFunctionAttributes(Method);
13542 }
13543
checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl * Method)13544 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
13545 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
13546 if (!TSInfo)
13547 return false;
13548
13549 TypeLoc TL = TSInfo->getTypeLoc();
13550 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
13551 if (!ProtoTL)
13552 return false;
13553
13554 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
13555 FindCXXThisExpr Finder(*this);
13556
13557 switch (Proto->getExceptionSpecType()) {
13558 case EST_Unparsed:
13559 case EST_Uninstantiated:
13560 case EST_Unevaluated:
13561 case EST_BasicNoexcept:
13562 case EST_DynamicNone:
13563 case EST_MSAny:
13564 case EST_None:
13565 break;
13566
13567 case EST_ComputedNoexcept:
13568 if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
13569 return true;
13570
13571 case EST_Dynamic:
13572 for (const auto &E : Proto->exceptions()) {
13573 if (!Finder.TraverseType(E))
13574 return true;
13575 }
13576 break;
13577 }
13578
13579 return false;
13580 }
13581
checkThisInStaticMemberFunctionAttributes(CXXMethodDecl * Method)13582 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
13583 FindCXXThisExpr Finder(*this);
13584
13585 // Check attributes.
13586 for (const auto *A : Method->attrs()) {
13587 // FIXME: This should be emitted by tblgen.
13588 Expr *Arg = nullptr;
13589 ArrayRef<Expr *> Args;
13590 if (const auto *G = dyn_cast<GuardedByAttr>(A))
13591 Arg = G->getArg();
13592 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
13593 Arg = G->getArg();
13594 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
13595 Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size());
13596 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
13597 Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size());
13598 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
13599 Arg = ETLF->getSuccessValue();
13600 Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size());
13601 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
13602 Arg = STLF->getSuccessValue();
13603 Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size());
13604 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
13605 Arg = LR->getArg();
13606 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
13607 Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size());
13608 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
13609 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
13610 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
13611 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
13612 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
13613 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
13614 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
13615 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
13616
13617 if (Arg && !Finder.TraverseStmt(Arg))
13618 return true;
13619
13620 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
13621 if (!Finder.TraverseStmt(Args[I]))
13622 return true;
13623 }
13624 }
13625
13626 return false;
13627 }
13628
checkExceptionSpecification(bool IsTopLevel,ExceptionSpecificationType EST,ArrayRef<ParsedType> DynamicExceptions,ArrayRef<SourceRange> DynamicExceptionRanges,Expr * NoexceptExpr,SmallVectorImpl<QualType> & Exceptions,FunctionProtoType::ExceptionSpecInfo & ESI)13629 void Sema::checkExceptionSpecification(
13630 bool IsTopLevel, ExceptionSpecificationType EST,
13631 ArrayRef<ParsedType> DynamicExceptions,
13632 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr,
13633 SmallVectorImpl<QualType> &Exceptions,
13634 FunctionProtoType::ExceptionSpecInfo &ESI) {
13635 Exceptions.clear();
13636 ESI.Type = EST;
13637 if (EST == EST_Dynamic) {
13638 Exceptions.reserve(DynamicExceptions.size());
13639 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
13640 // FIXME: Preserve type source info.
13641 QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
13642
13643 if (IsTopLevel) {
13644 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
13645 collectUnexpandedParameterPacks(ET, Unexpanded);
13646 if (!Unexpanded.empty()) {
13647 DiagnoseUnexpandedParameterPacks(
13648 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType,
13649 Unexpanded);
13650 continue;
13651 }
13652 }
13653
13654 // Check that the type is valid for an exception spec, and
13655 // drop it if not.
13656 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
13657 Exceptions.push_back(ET);
13658 }
13659 ESI.Exceptions = Exceptions;
13660 return;
13661 }
13662
13663 if (EST == EST_ComputedNoexcept) {
13664 // If an error occurred, there's no expression here.
13665 if (NoexceptExpr) {
13666 assert((NoexceptExpr->isTypeDependent() ||
13667 NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
13668 Context.BoolTy) &&
13669 "Parser should have made sure that the expression is boolean");
13670 if (IsTopLevel && NoexceptExpr &&
13671 DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
13672 ESI.Type = EST_BasicNoexcept;
13673 return;
13674 }
13675
13676 if (!NoexceptExpr->isValueDependent())
13677 NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, nullptr,
13678 diag::err_noexcept_needs_constant_expression,
13679 /*AllowFold*/ false).get();
13680 ESI.NoexceptExpr = NoexceptExpr;
13681 }
13682 return;
13683 }
13684 }
13685
actOnDelayedExceptionSpecification(Decl * MethodD,ExceptionSpecificationType EST,SourceRange SpecificationRange,ArrayRef<ParsedType> DynamicExceptions,ArrayRef<SourceRange> DynamicExceptionRanges,Expr * NoexceptExpr)13686 void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
13687 ExceptionSpecificationType EST,
13688 SourceRange SpecificationRange,
13689 ArrayRef<ParsedType> DynamicExceptions,
13690 ArrayRef<SourceRange> DynamicExceptionRanges,
13691 Expr *NoexceptExpr) {
13692 if (!MethodD)
13693 return;
13694
13695 // Dig out the method we're referring to.
13696 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
13697 MethodD = FunTmpl->getTemplatedDecl();
13698
13699 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD);
13700 if (!Method)
13701 return;
13702
13703 // Check the exception specification.
13704 llvm::SmallVector<QualType, 4> Exceptions;
13705 FunctionProtoType::ExceptionSpecInfo ESI;
13706 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions,
13707 DynamicExceptionRanges, NoexceptExpr, Exceptions,
13708 ESI);
13709
13710 // Update the exception specification on the function type.
13711 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true);
13712
13713 if (Method->isStatic())
13714 checkThisInStaticMemberFunctionExceptionSpec(Method);
13715
13716 if (Method->isVirtual()) {
13717 // Check overrides, which we previously had to delay.
13718 for (CXXMethodDecl::method_iterator O = Method->begin_overridden_methods(),
13719 OEnd = Method->end_overridden_methods();
13720 O != OEnd; ++O)
13721 CheckOverridingFunctionExceptionSpec(Method, *O);
13722 }
13723 }
13724
13725 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
13726 ///
HandleMSProperty(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS,AttributeList * MSPropertyAttr)13727 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
13728 SourceLocation DeclStart,
13729 Declarator &D, Expr *BitWidth,
13730 InClassInitStyle InitStyle,
13731 AccessSpecifier AS,
13732 AttributeList *MSPropertyAttr) {
13733 IdentifierInfo *II = D.getIdentifier();
13734 if (!II) {
13735 Diag(DeclStart, diag::err_anonymous_property);
13736 return nullptr;
13737 }
13738 SourceLocation Loc = D.getIdentifierLoc();
13739
13740 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
13741 QualType T = TInfo->getType();
13742 if (getLangOpts().CPlusPlus) {
13743 CheckExtraCXXDefaultArguments(D);
13744
13745 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
13746 UPPC_DataMemberType)) {
13747 D.setInvalidType();
13748 T = Context.IntTy;
13749 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
13750 }
13751 }
13752
13753 DiagnoseFunctionSpecifiers(D.getDeclSpec());
13754
13755 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
13756 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
13757 diag::err_invalid_thread)
13758 << DeclSpec::getSpecifierName(TSCS);
13759
13760 // Check to see if this name was declared as a member previously
13761 NamedDecl *PrevDecl = nullptr;
13762 LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
13763 LookupName(Previous, S);
13764 switch (Previous.getResultKind()) {
13765 case LookupResult::Found:
13766 case LookupResult::FoundUnresolvedValue:
13767 PrevDecl = Previous.getAsSingle<NamedDecl>();
13768 break;
13769
13770 case LookupResult::FoundOverloaded:
13771 PrevDecl = Previous.getRepresentativeDecl();
13772 break;
13773
13774 case LookupResult::NotFound:
13775 case LookupResult::NotFoundInCurrentInstantiation:
13776 case LookupResult::Ambiguous:
13777 break;
13778 }
13779
13780 if (PrevDecl && PrevDecl->isTemplateParameter()) {
13781 // Maybe we will complain about the shadowed template parameter.
13782 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
13783 // Just pretend that we didn't see the previous declaration.
13784 PrevDecl = nullptr;
13785 }
13786
13787 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
13788 PrevDecl = nullptr;
13789
13790 SourceLocation TSSL = D.getLocStart();
13791 const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
13792 MSPropertyDecl *NewPD = MSPropertyDecl::Create(
13793 Context, Record, Loc, II, T, TInfo, TSSL, Data.GetterId, Data.SetterId);
13794 ProcessDeclAttributes(TUScope, NewPD, D);
13795 NewPD->setAccess(AS);
13796
13797 if (NewPD->isInvalidDecl())
13798 Record->setInvalidDecl();
13799
13800 if (D.getDeclSpec().isModulePrivateSpecified())
13801 NewPD->setModulePrivate();
13802
13803 if (NewPD->isInvalidDecl() && PrevDecl) {
13804 // Don't introduce NewFD into scope; there's already something
13805 // with the same name in the same scope.
13806 } else if (II) {
13807 PushOnScopeChains(NewPD, S);
13808 } else
13809 Record->addDecl(NewPD);
13810
13811 return NewPD;
13812 }
13813