1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===/
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===/
8 //
9 // This file implements semantic analysis for C++ templates.
10 //===----------------------------------------------------------------------===/
11
12 #include "TreeTransform.h"
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/DeclFriend.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/RecursiveASTVisitor.h"
20 #include "clang/AST/TypeVisitor.h"
21 #include "clang/Basic/Builtins.h"
22 #include "clang/Basic/LangOptions.h"
23 #include "clang/Basic/PartialDiagnostic.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Sema/DeclSpec.h"
26 #include "clang/Sema/Lookup.h"
27 #include "clang/Sema/ParsedTemplate.h"
28 #include "clang/Sema/Scope.h"
29 #include "clang/Sema/SemaInternal.h"
30 #include "clang/Sema/Template.h"
31 #include "clang/Sema/TemplateDeduction.h"
32 #include "llvm/ADT/SmallBitVector.h"
33 #include "llvm/ADT/SmallString.h"
34 #include "llvm/ADT/StringExtras.h"
35 using namespace clang;
36 using namespace sema;
37
38 // Exported for use by Parser.
39 SourceRange
getTemplateParamsRange(TemplateParameterList const * const * Ps,unsigned N)40 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
41 unsigned N) {
42 if (!N) return SourceRange();
43 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
44 }
45
46 /// \brief Determine whether the declaration found is acceptable as the name
47 /// of a template and, if so, return that template declaration. Otherwise,
48 /// returns NULL.
isAcceptableTemplateName(ASTContext & Context,NamedDecl * Orig,bool AllowFunctionTemplates)49 static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
50 NamedDecl *Orig,
51 bool AllowFunctionTemplates) {
52 NamedDecl *D = Orig->getUnderlyingDecl();
53
54 if (isa<TemplateDecl>(D)) {
55 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
56 return nullptr;
57
58 return Orig;
59 }
60
61 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
62 // C++ [temp.local]p1:
63 // Like normal (non-template) classes, class templates have an
64 // injected-class-name (Clause 9). The injected-class-name
65 // can be used with or without a template-argument-list. When
66 // it is used without a template-argument-list, it is
67 // equivalent to the injected-class-name followed by the
68 // template-parameters of the class template enclosed in
69 // <>. When it is used with a template-argument-list, it
70 // refers to the specified class template specialization,
71 // which could be the current specialization or another
72 // specialization.
73 if (Record->isInjectedClassName()) {
74 Record = cast<CXXRecordDecl>(Record->getDeclContext());
75 if (Record->getDescribedClassTemplate())
76 return Record->getDescribedClassTemplate();
77
78 if (ClassTemplateSpecializationDecl *Spec
79 = dyn_cast<ClassTemplateSpecializationDecl>(Record))
80 return Spec->getSpecializedTemplate();
81 }
82
83 return nullptr;
84 }
85
86 return nullptr;
87 }
88
FilterAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)89 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
90 bool AllowFunctionTemplates) {
91 // The set of class templates we've already seen.
92 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
93 LookupResult::Filter filter = R.makeFilter();
94 while (filter.hasNext()) {
95 NamedDecl *Orig = filter.next();
96 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
97 AllowFunctionTemplates);
98 if (!Repl)
99 filter.erase();
100 else if (Repl != Orig) {
101
102 // C++ [temp.local]p3:
103 // A lookup that finds an injected-class-name (10.2) can result in an
104 // ambiguity in certain cases (for example, if it is found in more than
105 // one base class). If all of the injected-class-names that are found
106 // refer to specializations of the same class template, and if the name
107 // is used as a template-name, the reference refers to the class
108 // template itself and not a specialization thereof, and is not
109 // ambiguous.
110 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
111 if (!ClassTemplates.insert(ClassTmpl).second) {
112 filter.erase();
113 continue;
114 }
115
116 // FIXME: we promote access to public here as a workaround to
117 // the fact that LookupResult doesn't let us remember that we
118 // found this template through a particular injected class name,
119 // which means we end up doing nasty things to the invariants.
120 // Pretending that access is public is *much* safer.
121 filter.replace(Repl, AS_public);
122 }
123 }
124 filter.done();
125 }
126
hasAnyAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)127 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
128 bool AllowFunctionTemplates) {
129 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
130 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
131 return true;
132
133 return false;
134 }
135
isTemplateName(Scope * S,CXXScopeSpec & SS,bool hasTemplateKeyword,UnqualifiedId & Name,ParsedType ObjectTypePtr,bool EnteringContext,TemplateTy & TemplateResult,bool & MemberOfUnknownSpecialization)136 TemplateNameKind Sema::isTemplateName(Scope *S,
137 CXXScopeSpec &SS,
138 bool hasTemplateKeyword,
139 UnqualifiedId &Name,
140 ParsedType ObjectTypePtr,
141 bool EnteringContext,
142 TemplateTy &TemplateResult,
143 bool &MemberOfUnknownSpecialization) {
144 assert(getLangOpts().CPlusPlus && "No template names in C!");
145
146 DeclarationName TName;
147 MemberOfUnknownSpecialization = false;
148
149 switch (Name.getKind()) {
150 case UnqualifiedId::IK_Identifier:
151 TName = DeclarationName(Name.Identifier);
152 break;
153
154 case UnqualifiedId::IK_OperatorFunctionId:
155 TName = Context.DeclarationNames.getCXXOperatorName(
156 Name.OperatorFunctionId.Operator);
157 break;
158
159 case UnqualifiedId::IK_LiteralOperatorId:
160 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
161 break;
162
163 default:
164 return TNK_Non_template;
165 }
166
167 QualType ObjectType = ObjectTypePtr.get();
168
169 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
170 LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
171 MemberOfUnknownSpecialization);
172 if (R.empty()) return TNK_Non_template;
173 if (R.isAmbiguous()) {
174 // Suppress diagnostics; we'll redo this lookup later.
175 R.suppressDiagnostics();
176
177 // FIXME: we might have ambiguous templates, in which case we
178 // should at least parse them properly!
179 return TNK_Non_template;
180 }
181
182 TemplateName Template;
183 TemplateNameKind TemplateKind;
184
185 unsigned ResultCount = R.end() - R.begin();
186 if (ResultCount > 1) {
187 // We assume that we'll preserve the qualifier from a function
188 // template name in other ways.
189 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
190 TemplateKind = TNK_Function_template;
191
192 // We'll do this lookup again later.
193 R.suppressDiagnostics();
194 } else {
195 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
196
197 if (SS.isSet() && !SS.isInvalid()) {
198 NestedNameSpecifier *Qualifier = SS.getScopeRep();
199 Template = Context.getQualifiedTemplateName(Qualifier,
200 hasTemplateKeyword, TD);
201 } else {
202 Template = TemplateName(TD);
203 }
204
205 if (isa<FunctionTemplateDecl>(TD)) {
206 TemplateKind = TNK_Function_template;
207
208 // We'll do this lookup again later.
209 R.suppressDiagnostics();
210 } else {
211 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
212 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
213 isa<BuiltinTemplateDecl>(TD));
214 TemplateKind =
215 isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
216 }
217 }
218
219 TemplateResult = TemplateTy::make(Template);
220 return TemplateKind;
221 }
222
DiagnoseUnknownTemplateName(const IdentifierInfo & II,SourceLocation IILoc,Scope * S,const CXXScopeSpec * SS,TemplateTy & SuggestedTemplate,TemplateNameKind & SuggestedKind)223 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
224 SourceLocation IILoc,
225 Scope *S,
226 const CXXScopeSpec *SS,
227 TemplateTy &SuggestedTemplate,
228 TemplateNameKind &SuggestedKind) {
229 // We can't recover unless there's a dependent scope specifier preceding the
230 // template name.
231 // FIXME: Typo correction?
232 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
233 computeDeclContext(*SS))
234 return false;
235
236 // The code is missing a 'template' keyword prior to the dependent template
237 // name.
238 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
239 Diag(IILoc, diag::err_template_kw_missing)
240 << Qualifier << II.getName()
241 << FixItHint::CreateInsertion(IILoc, "template ");
242 SuggestedTemplate
243 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
244 SuggestedKind = TNK_Dependent_template_name;
245 return true;
246 }
247
LookupTemplateName(LookupResult & Found,Scope * S,CXXScopeSpec & SS,QualType ObjectType,bool EnteringContext,bool & MemberOfUnknownSpecialization)248 void Sema::LookupTemplateName(LookupResult &Found,
249 Scope *S, CXXScopeSpec &SS,
250 QualType ObjectType,
251 bool EnteringContext,
252 bool &MemberOfUnknownSpecialization) {
253 // Determine where to perform name lookup
254 MemberOfUnknownSpecialization = false;
255 DeclContext *LookupCtx = nullptr;
256 bool isDependent = false;
257 if (!ObjectType.isNull()) {
258 // This nested-name-specifier occurs in a member access expression, e.g.,
259 // x->B::f, and we are looking into the type of the object.
260 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
261 LookupCtx = computeDeclContext(ObjectType);
262 isDependent = ObjectType->isDependentType();
263 assert((isDependent || !ObjectType->isIncompleteType() ||
264 ObjectType->castAs<TagType>()->isBeingDefined()) &&
265 "Caller should have completed object type");
266
267 // Template names cannot appear inside an Objective-C class or object type.
268 if (ObjectType->isObjCObjectOrInterfaceType()) {
269 Found.clear();
270 return;
271 }
272 } else if (SS.isSet()) {
273 // This nested-name-specifier occurs after another nested-name-specifier,
274 // so long into the context associated with the prior nested-name-specifier.
275 LookupCtx = computeDeclContext(SS, EnteringContext);
276 isDependent = isDependentScopeSpecifier(SS);
277
278 // The declaration context must be complete.
279 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
280 return;
281 }
282
283 bool ObjectTypeSearchedInScope = false;
284 bool AllowFunctionTemplatesInLookup = true;
285 if (LookupCtx) {
286 // Perform "qualified" name lookup into the declaration context we
287 // computed, which is either the type of the base of a member access
288 // expression or the declaration context associated with a prior
289 // nested-name-specifier.
290 LookupQualifiedName(Found, LookupCtx);
291 if (!ObjectType.isNull() && Found.empty()) {
292 // C++ [basic.lookup.classref]p1:
293 // In a class member access expression (5.2.5), if the . or -> token is
294 // immediately followed by an identifier followed by a <, the
295 // identifier must be looked up to determine whether the < is the
296 // beginning of a template argument list (14.2) or a less-than operator.
297 // The identifier is first looked up in the class of the object
298 // expression. If the identifier is not found, it is then looked up in
299 // the context of the entire postfix-expression and shall name a class
300 // or function template.
301 if (S) LookupName(Found, S);
302 ObjectTypeSearchedInScope = true;
303 AllowFunctionTemplatesInLookup = false;
304 }
305 } else if (isDependent && (!S || ObjectType.isNull())) {
306 // We cannot look into a dependent object type or nested nme
307 // specifier.
308 MemberOfUnknownSpecialization = true;
309 return;
310 } else {
311 // Perform unqualified name lookup in the current scope.
312 LookupName(Found, S);
313
314 if (!ObjectType.isNull())
315 AllowFunctionTemplatesInLookup = false;
316 }
317
318 if (Found.empty() && !isDependent) {
319 // If we did not find any names, attempt to correct any typos.
320 DeclarationName Name = Found.getLookupName();
321 Found.clear();
322 // Simple filter callback that, for keywords, only accepts the C++ *_cast
323 auto FilterCCC = llvm::make_unique<CorrectionCandidateCallback>();
324 FilterCCC->WantTypeSpecifiers = false;
325 FilterCCC->WantExpressionKeywords = false;
326 FilterCCC->WantRemainingKeywords = false;
327 FilterCCC->WantCXXNamedCasts = true;
328 if (TypoCorrection Corrected = CorrectTypo(
329 Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
330 std::move(FilterCCC), CTK_ErrorRecovery, LookupCtx)) {
331 Found.setLookupName(Corrected.getCorrection());
332 if (Corrected.getCorrectionDecl())
333 Found.addDecl(Corrected.getCorrectionDecl());
334 FilterAcceptableTemplateNames(Found);
335 if (!Found.empty()) {
336 if (LookupCtx) {
337 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
338 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
339 Name.getAsString() == CorrectedStr;
340 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
341 << Name << LookupCtx << DroppedSpecifier
342 << SS.getRange());
343 } else {
344 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
345 }
346 }
347 } else {
348 Found.setLookupName(Name);
349 }
350 }
351
352 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
353 if (Found.empty()) {
354 if (isDependent)
355 MemberOfUnknownSpecialization = true;
356 return;
357 }
358
359 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
360 !getLangOpts().CPlusPlus11) {
361 // C++03 [basic.lookup.classref]p1:
362 // [...] If the lookup in the class of the object expression finds a
363 // template, the name is also looked up in the context of the entire
364 // postfix-expression and [...]
365 //
366 // Note: C++11 does not perform this second lookup.
367 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
368 LookupOrdinaryName);
369 LookupName(FoundOuter, S);
370 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
371
372 if (FoundOuter.empty()) {
373 // - if the name is not found, the name found in the class of the
374 // object expression is used, otherwise
375 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
376 FoundOuter.isAmbiguous()) {
377 // - if the name is found in the context of the entire
378 // postfix-expression and does not name a class template, the name
379 // found in the class of the object expression is used, otherwise
380 FoundOuter.clear();
381 } else if (!Found.isSuppressingDiagnostics()) {
382 // - if the name found is a class template, it must refer to the same
383 // entity as the one found in the class of the object expression,
384 // otherwise the program is ill-formed.
385 if (!Found.isSingleResult() ||
386 Found.getFoundDecl()->getCanonicalDecl()
387 != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
388 Diag(Found.getNameLoc(),
389 diag::ext_nested_name_member_ref_lookup_ambiguous)
390 << Found.getLookupName()
391 << ObjectType;
392 Diag(Found.getRepresentativeDecl()->getLocation(),
393 diag::note_ambig_member_ref_object_type)
394 << ObjectType;
395 Diag(FoundOuter.getFoundDecl()->getLocation(),
396 diag::note_ambig_member_ref_scope);
397
398 // Recover by taking the template that we found in the object
399 // expression's type.
400 }
401 }
402 }
403 }
404
405 /// ActOnDependentIdExpression - Handle a dependent id-expression that
406 /// was just parsed. This is only possible with an explicit scope
407 /// specifier naming a dependent type.
408 ExprResult
ActOnDependentIdExpression(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,bool isAddressOfOperand,const TemplateArgumentListInfo * TemplateArgs)409 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
410 SourceLocation TemplateKWLoc,
411 const DeclarationNameInfo &NameInfo,
412 bool isAddressOfOperand,
413 const TemplateArgumentListInfo *TemplateArgs) {
414 DeclContext *DC = getFunctionLevelDeclContext();
415
416 if (!isAddressOfOperand &&
417 isa<CXXMethodDecl>(DC) &&
418 cast<CXXMethodDecl>(DC)->isInstance()) {
419 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
420
421 // Since the 'this' expression is synthesized, we don't need to
422 // perform the double-lookup check.
423 NamedDecl *FirstQualifierInScope = nullptr;
424
425 return CXXDependentScopeMemberExpr::Create(
426 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
427 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
428 FirstQualifierInScope, NameInfo, TemplateArgs);
429 }
430
431 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
432 }
433
434 ExprResult
BuildDependentDeclRefExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)435 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
436 SourceLocation TemplateKWLoc,
437 const DeclarationNameInfo &NameInfo,
438 const TemplateArgumentListInfo *TemplateArgs) {
439 return DependentScopeDeclRefExpr::Create(
440 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
441 TemplateArgs);
442 }
443
444 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
445 /// that the template parameter 'PrevDecl' is being shadowed by a new
446 /// declaration at location Loc. Returns true to indicate that this is
447 /// an error, and false otherwise.
DiagnoseTemplateParameterShadow(SourceLocation Loc,Decl * PrevDecl)448 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
449 assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
450
451 // Microsoft Visual C++ permits template parameters to be shadowed.
452 if (getLangOpts().MicrosoftExt)
453 return;
454
455 // C++ [temp.local]p4:
456 // A template-parameter shall not be redeclared within its
457 // scope (including nested scopes).
458 Diag(Loc, diag::err_template_param_shadow)
459 << cast<NamedDecl>(PrevDecl)->getDeclName();
460 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
461 return;
462 }
463
464 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
465 /// the parameter D to reference the templated declaration and return a pointer
466 /// to the template declaration. Otherwise, do nothing to D and return null.
AdjustDeclIfTemplate(Decl * & D)467 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
468 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
469 D = Temp->getTemplatedDecl();
470 return Temp;
471 }
472 return nullptr;
473 }
474
getTemplatePackExpansion(SourceLocation EllipsisLoc) const475 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
476 SourceLocation EllipsisLoc) const {
477 assert(Kind == Template &&
478 "Only template template arguments can be pack expansions here");
479 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
480 "Template template argument pack expansion without packs");
481 ParsedTemplateArgument Result(*this);
482 Result.EllipsisLoc = EllipsisLoc;
483 return Result;
484 }
485
translateTemplateArgument(Sema & SemaRef,const ParsedTemplateArgument & Arg)486 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
487 const ParsedTemplateArgument &Arg) {
488
489 switch (Arg.getKind()) {
490 case ParsedTemplateArgument::Type: {
491 TypeSourceInfo *DI;
492 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
493 if (!DI)
494 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
495 return TemplateArgumentLoc(TemplateArgument(T), DI);
496 }
497
498 case ParsedTemplateArgument::NonType: {
499 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
500 return TemplateArgumentLoc(TemplateArgument(E), E);
501 }
502
503 case ParsedTemplateArgument::Template: {
504 TemplateName Template = Arg.getAsTemplate().get();
505 TemplateArgument TArg;
506 if (Arg.getEllipsisLoc().isValid())
507 TArg = TemplateArgument(Template, Optional<unsigned int>());
508 else
509 TArg = Template;
510 return TemplateArgumentLoc(TArg,
511 Arg.getScopeSpec().getWithLocInContext(
512 SemaRef.Context),
513 Arg.getLocation(),
514 Arg.getEllipsisLoc());
515 }
516 }
517
518 llvm_unreachable("Unhandled parsed template argument");
519 }
520
521 /// \brief Translates template arguments as provided by the parser
522 /// into template arguments used by semantic analysis.
translateTemplateArguments(const ASTTemplateArgsPtr & TemplateArgsIn,TemplateArgumentListInfo & TemplateArgs)523 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
524 TemplateArgumentListInfo &TemplateArgs) {
525 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
526 TemplateArgs.addArgument(translateTemplateArgument(*this,
527 TemplateArgsIn[I]));
528 }
529
maybeDiagnoseTemplateParameterShadow(Sema & SemaRef,Scope * S,SourceLocation Loc,IdentifierInfo * Name)530 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
531 SourceLocation Loc,
532 IdentifierInfo *Name) {
533 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
534 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
535 if (PrevDecl && PrevDecl->isTemplateParameter())
536 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
537 }
538
539 /// ActOnTypeParameter - Called when a C++ template type parameter
540 /// (e.g., "typename T") has been parsed. Typename specifies whether
541 /// the keyword "typename" was used to declare the type parameter
542 /// (otherwise, "class" was used), and KeyLoc is the location of the
543 /// "class" or "typename" keyword. ParamName is the name of the
544 /// parameter (NULL indicates an unnamed template parameter) and
545 /// ParamNameLoc is the location of the parameter name (if any).
546 /// If the type parameter has a default argument, it will be added
547 /// later via ActOnTypeParameterDefault.
ActOnTypeParameter(Scope * S,bool Typename,SourceLocation EllipsisLoc,SourceLocation KeyLoc,IdentifierInfo * ParamName,SourceLocation ParamNameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedType DefaultArg)548 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
549 SourceLocation EllipsisLoc,
550 SourceLocation KeyLoc,
551 IdentifierInfo *ParamName,
552 SourceLocation ParamNameLoc,
553 unsigned Depth, unsigned Position,
554 SourceLocation EqualLoc,
555 ParsedType DefaultArg) {
556 assert(S->isTemplateParamScope() &&
557 "Template type parameter not in template parameter scope!");
558 bool Invalid = false;
559
560 SourceLocation Loc = ParamNameLoc;
561 if (!ParamName)
562 Loc = KeyLoc;
563
564 bool IsParameterPack = EllipsisLoc.isValid();
565 TemplateTypeParmDecl *Param
566 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
567 KeyLoc, Loc, Depth, Position, ParamName,
568 Typename, IsParameterPack);
569 Param->setAccess(AS_public);
570 if (Invalid)
571 Param->setInvalidDecl();
572
573 if (ParamName) {
574 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
575
576 // Add the template parameter into the current scope.
577 S->AddDecl(Param);
578 IdResolver.AddDecl(Param);
579 }
580
581 // C++0x [temp.param]p9:
582 // A default template-argument may be specified for any kind of
583 // template-parameter that is not a template parameter pack.
584 if (DefaultArg && IsParameterPack) {
585 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
586 DefaultArg = ParsedType();
587 }
588
589 // Handle the default argument, if provided.
590 if (DefaultArg) {
591 TypeSourceInfo *DefaultTInfo;
592 GetTypeFromParser(DefaultArg, &DefaultTInfo);
593
594 assert(DefaultTInfo && "expected source information for type");
595
596 // Check for unexpanded parameter packs.
597 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
598 UPPC_DefaultArgument))
599 return Param;
600
601 // Check the template argument itself.
602 if (CheckTemplateArgument(Param, DefaultTInfo)) {
603 Param->setInvalidDecl();
604 return Param;
605 }
606
607 Param->setDefaultArgument(DefaultTInfo);
608 }
609
610 return Param;
611 }
612
613 /// \brief Check that the type of a non-type template parameter is
614 /// well-formed.
615 ///
616 /// \returns the (possibly-promoted) parameter type if valid;
617 /// otherwise, produces a diagnostic and returns a NULL type.
618 QualType
CheckNonTypeTemplateParameterType(QualType T,SourceLocation Loc)619 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
620 // We don't allow variably-modified types as the type of non-type template
621 // parameters.
622 if (T->isVariablyModifiedType()) {
623 Diag(Loc, diag::err_variably_modified_nontype_template_param)
624 << T;
625 return QualType();
626 }
627
628 // C++ [temp.param]p4:
629 //
630 // A non-type template-parameter shall have one of the following
631 // (optionally cv-qualified) types:
632 //
633 // -- integral or enumeration type,
634 if (T->isIntegralOrEnumerationType() ||
635 // -- pointer to object or pointer to function,
636 T->isPointerType() ||
637 // -- reference to object or reference to function,
638 T->isReferenceType() ||
639 // -- pointer to member,
640 T->isMemberPointerType() ||
641 // -- std::nullptr_t.
642 T->isNullPtrType() ||
643 // If T is a dependent type, we can't do the check now, so we
644 // assume that it is well-formed.
645 T->isDependentType()) {
646 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
647 // are ignored when determining its type.
648 return T.getUnqualifiedType();
649 }
650
651 // C++ [temp.param]p8:
652 //
653 // A non-type template-parameter of type "array of T" or
654 // "function returning T" is adjusted to be of type "pointer to
655 // T" or "pointer to function returning T", respectively.
656 else if (T->isArrayType() || T->isFunctionType())
657 return Context.getDecayedType(T);
658
659 Diag(Loc, diag::err_template_nontype_parm_bad_type)
660 << T;
661
662 return QualType();
663 }
664
ActOnNonTypeTemplateParameter(Scope * S,Declarator & D,unsigned Depth,unsigned Position,SourceLocation EqualLoc,Expr * Default)665 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
666 unsigned Depth,
667 unsigned Position,
668 SourceLocation EqualLoc,
669 Expr *Default) {
670 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
671 QualType T = TInfo->getType();
672
673 assert(S->isTemplateParamScope() &&
674 "Non-type template parameter not in template parameter scope!");
675 bool Invalid = false;
676
677 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
678 if (T.isNull()) {
679 T = Context.IntTy; // Recover with an 'int' type.
680 Invalid = true;
681 }
682
683 IdentifierInfo *ParamName = D.getIdentifier();
684 bool IsParameterPack = D.hasEllipsis();
685 NonTypeTemplateParmDecl *Param
686 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
687 D.getLocStart(),
688 D.getIdentifierLoc(),
689 Depth, Position, ParamName, T,
690 IsParameterPack, TInfo);
691 Param->setAccess(AS_public);
692
693 if (Invalid)
694 Param->setInvalidDecl();
695
696 if (ParamName) {
697 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
698 ParamName);
699
700 // Add the template parameter into the current scope.
701 S->AddDecl(Param);
702 IdResolver.AddDecl(Param);
703 }
704
705 // C++0x [temp.param]p9:
706 // A default template-argument may be specified for any kind of
707 // template-parameter that is not a template parameter pack.
708 if (Default && IsParameterPack) {
709 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
710 Default = nullptr;
711 }
712
713 // Check the well-formedness of the default template argument, if provided.
714 if (Default) {
715 // Check for unexpanded parameter packs.
716 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
717 return Param;
718
719 TemplateArgument Converted;
720 ExprResult DefaultRes =
721 CheckTemplateArgument(Param, Param->getType(), Default, Converted);
722 if (DefaultRes.isInvalid()) {
723 Param->setInvalidDecl();
724 return Param;
725 }
726 Default = DefaultRes.get();
727
728 Param->setDefaultArgument(Default);
729 }
730
731 return Param;
732 }
733
734 /// ActOnTemplateTemplateParameter - Called when a C++ template template
735 /// parameter (e.g. T in template <template \<typename> class T> class array)
736 /// has been parsed. S is the current scope.
ActOnTemplateTemplateParameter(Scope * S,SourceLocation TmpLoc,TemplateParameterList * Params,SourceLocation EllipsisLoc,IdentifierInfo * Name,SourceLocation NameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedTemplateArgument Default)737 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
738 SourceLocation TmpLoc,
739 TemplateParameterList *Params,
740 SourceLocation EllipsisLoc,
741 IdentifierInfo *Name,
742 SourceLocation NameLoc,
743 unsigned Depth,
744 unsigned Position,
745 SourceLocation EqualLoc,
746 ParsedTemplateArgument Default) {
747 assert(S->isTemplateParamScope() &&
748 "Template template parameter not in template parameter scope!");
749
750 // Construct the parameter object.
751 bool IsParameterPack = EllipsisLoc.isValid();
752 TemplateTemplateParmDecl *Param =
753 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
754 NameLoc.isInvalid()? TmpLoc : NameLoc,
755 Depth, Position, IsParameterPack,
756 Name, Params);
757 Param->setAccess(AS_public);
758
759 // If the template template parameter has a name, then link the identifier
760 // into the scope and lookup mechanisms.
761 if (Name) {
762 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
763
764 S->AddDecl(Param);
765 IdResolver.AddDecl(Param);
766 }
767
768 if (Params->size() == 0) {
769 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
770 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
771 Param->setInvalidDecl();
772 }
773
774 // C++0x [temp.param]p9:
775 // A default template-argument may be specified for any kind of
776 // template-parameter that is not a template parameter pack.
777 if (IsParameterPack && !Default.isInvalid()) {
778 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
779 Default = ParsedTemplateArgument();
780 }
781
782 if (!Default.isInvalid()) {
783 // Check only that we have a template template argument. We don't want to
784 // try to check well-formedness now, because our template template parameter
785 // might have dependent types in its template parameters, which we wouldn't
786 // be able to match now.
787 //
788 // If none of the template template parameter's template arguments mention
789 // other template parameters, we could actually perform more checking here.
790 // However, it isn't worth doing.
791 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
792 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
793 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_class_template)
794 << DefaultArg.getSourceRange();
795 return Param;
796 }
797
798 // Check for unexpanded parameter packs.
799 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
800 DefaultArg.getArgument().getAsTemplate(),
801 UPPC_DefaultArgument))
802 return Param;
803
804 Param->setDefaultArgument(Context, DefaultArg);
805 }
806
807 return Param;
808 }
809
810 /// ActOnTemplateParameterList - Builds a TemplateParameterList that
811 /// contains the template parameters in Params/NumParams.
812 TemplateParameterList *
ActOnTemplateParameterList(unsigned Depth,SourceLocation ExportLoc,SourceLocation TemplateLoc,SourceLocation LAngleLoc,Decl ** Params,unsigned NumParams,SourceLocation RAngleLoc)813 Sema::ActOnTemplateParameterList(unsigned Depth,
814 SourceLocation ExportLoc,
815 SourceLocation TemplateLoc,
816 SourceLocation LAngleLoc,
817 Decl **Params, unsigned NumParams,
818 SourceLocation RAngleLoc) {
819 if (ExportLoc.isValid())
820 Diag(ExportLoc, diag::warn_template_export_unsupported);
821
822 return TemplateParameterList::Create(Context, TemplateLoc, LAngleLoc,
823 (NamedDecl**)Params, NumParams,
824 RAngleLoc);
825 }
826
SetNestedNameSpecifier(TagDecl * T,const CXXScopeSpec & SS)827 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
828 if (SS.isSet())
829 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
830 }
831
832 DeclResult
CheckClassTemplate(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,TemplateParameterList * TemplateParams,AccessSpecifier AS,SourceLocation ModulePrivateLoc,SourceLocation FriendLoc,unsigned NumOuterTemplateParamLists,TemplateParameterList ** OuterTemplateParamLists,SkipBodyInfo * SkipBody)833 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
834 SourceLocation KWLoc, CXXScopeSpec &SS,
835 IdentifierInfo *Name, SourceLocation NameLoc,
836 AttributeList *Attr,
837 TemplateParameterList *TemplateParams,
838 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
839 SourceLocation FriendLoc,
840 unsigned NumOuterTemplateParamLists,
841 TemplateParameterList** OuterTemplateParamLists,
842 SkipBodyInfo *SkipBody) {
843 assert(TemplateParams && TemplateParams->size() > 0 &&
844 "No template parameters");
845 assert(TUK != TUK_Reference && "Can only declare or define class templates");
846 bool Invalid = false;
847
848 // Check that we can declare a template here.
849 if (CheckTemplateDeclScope(S, TemplateParams))
850 return true;
851
852 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
853 assert(Kind != TTK_Enum && "can't build template of enumerated type");
854
855 // There is no such thing as an unnamed class template.
856 if (!Name) {
857 Diag(KWLoc, diag::err_template_unnamed_class);
858 return true;
859 }
860
861 // Find any previous declaration with this name. For a friend with no
862 // scope explicitly specified, we only look for tag declarations (per
863 // C++11 [basic.lookup.elab]p2).
864 DeclContext *SemanticContext;
865 LookupResult Previous(*this, Name, NameLoc,
866 (SS.isEmpty() && TUK == TUK_Friend)
867 ? LookupTagName : LookupOrdinaryName,
868 ForRedeclaration);
869 if (SS.isNotEmpty() && !SS.isInvalid()) {
870 SemanticContext = computeDeclContext(SS, true);
871 if (!SemanticContext) {
872 // FIXME: Horrible, horrible hack! We can't currently represent this
873 // in the AST, and historically we have just ignored such friend
874 // class templates, so don't complain here.
875 Diag(NameLoc, TUK == TUK_Friend
876 ? diag::warn_template_qualified_friend_ignored
877 : diag::err_template_qualified_declarator_no_match)
878 << SS.getScopeRep() << SS.getRange();
879 return TUK != TUK_Friend;
880 }
881
882 if (RequireCompleteDeclContext(SS, SemanticContext))
883 return true;
884
885 // If we're adding a template to a dependent context, we may need to
886 // rebuilding some of the types used within the template parameter list,
887 // now that we know what the current instantiation is.
888 if (SemanticContext->isDependentContext()) {
889 ContextRAII SavedContext(*this, SemanticContext);
890 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
891 Invalid = true;
892 } else if (TUK != TUK_Friend && TUK != TUK_Reference)
893 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
894
895 LookupQualifiedName(Previous, SemanticContext);
896 } else {
897 SemanticContext = CurContext;
898
899 // C++14 [class.mem]p14:
900 // If T is the name of a class, then each of the following shall have a
901 // name different from T:
902 // -- every member template of class T
903 if (TUK != TUK_Friend &&
904 DiagnoseClassNameShadow(SemanticContext,
905 DeclarationNameInfo(Name, NameLoc)))
906 return true;
907
908 LookupName(Previous, S);
909 }
910
911 if (Previous.isAmbiguous())
912 return true;
913
914 NamedDecl *PrevDecl = nullptr;
915 if (Previous.begin() != Previous.end())
916 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
917
918 // If there is a previous declaration with the same name, check
919 // whether this is a valid redeclaration.
920 ClassTemplateDecl *PrevClassTemplate
921 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
922
923 // We may have found the injected-class-name of a class template,
924 // class template partial specialization, or class template specialization.
925 // In these cases, grab the template that is being defined or specialized.
926 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
927 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
928 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
929 PrevClassTemplate
930 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
931 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
932 PrevClassTemplate
933 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
934 ->getSpecializedTemplate();
935 }
936 }
937
938 if (TUK == TUK_Friend) {
939 // C++ [namespace.memdef]p3:
940 // [...] When looking for a prior declaration of a class or a function
941 // declared as a friend, and when the name of the friend class or
942 // function is neither a qualified name nor a template-id, scopes outside
943 // the innermost enclosing namespace scope are not considered.
944 if (!SS.isSet()) {
945 DeclContext *OutermostContext = CurContext;
946 while (!OutermostContext->isFileContext())
947 OutermostContext = OutermostContext->getLookupParent();
948
949 if (PrevDecl &&
950 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
951 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
952 SemanticContext = PrevDecl->getDeclContext();
953 } else {
954 // Declarations in outer scopes don't matter. However, the outermost
955 // context we computed is the semantic context for our new
956 // declaration.
957 PrevDecl = PrevClassTemplate = nullptr;
958 SemanticContext = OutermostContext;
959
960 // Check that the chosen semantic context doesn't already contain a
961 // declaration of this name as a non-tag type.
962 Previous.clear(LookupOrdinaryName);
963 DeclContext *LookupContext = SemanticContext;
964 while (LookupContext->isTransparentContext())
965 LookupContext = LookupContext->getLookupParent();
966 LookupQualifiedName(Previous, LookupContext);
967
968 if (Previous.isAmbiguous())
969 return true;
970
971 if (Previous.begin() != Previous.end())
972 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
973 }
974 }
975 } else if (PrevDecl &&
976 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
977 S, SS.isValid()))
978 PrevDecl = PrevClassTemplate = nullptr;
979
980 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
981 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
982 if (SS.isEmpty() &&
983 !(PrevClassTemplate &&
984 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
985 SemanticContext->getRedeclContext()))) {
986 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
987 Diag(Shadow->getTargetDecl()->getLocation(),
988 diag::note_using_decl_target);
989 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
990 // Recover by ignoring the old declaration.
991 PrevDecl = PrevClassTemplate = nullptr;
992 }
993 }
994
995 if (PrevClassTemplate) {
996 // Ensure that the template parameter lists are compatible. Skip this check
997 // for a friend in a dependent context: the template parameter list itself
998 // could be dependent.
999 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1000 !TemplateParameterListsAreEqual(TemplateParams,
1001 PrevClassTemplate->getTemplateParameters(),
1002 /*Complain=*/true,
1003 TPL_TemplateMatch))
1004 return true;
1005
1006 // C++ [temp.class]p4:
1007 // In a redeclaration, partial specialization, explicit
1008 // specialization or explicit instantiation of a class template,
1009 // the class-key shall agree in kind with the original class
1010 // template declaration (7.1.5.3).
1011 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
1012 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
1013 TUK == TUK_Definition, KWLoc, Name)) {
1014 Diag(KWLoc, diag::err_use_with_wrong_tag)
1015 << Name
1016 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1017 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1018 Kind = PrevRecordDecl->getTagKind();
1019 }
1020
1021 // Check for redefinition of this class template.
1022 if (TUK == TUK_Definition) {
1023 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1024 // If we have a prior definition that is not visible, treat this as
1025 // simply making that previous definition visible.
1026 NamedDecl *Hidden = nullptr;
1027 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
1028 SkipBody->ShouldSkip = true;
1029 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
1030 assert(Tmpl && "original definition of a class template is not a "
1031 "class template?");
1032 makeMergedDefinitionVisible(Hidden, KWLoc);
1033 makeMergedDefinitionVisible(Tmpl, KWLoc);
1034 return Def;
1035 }
1036
1037 Diag(NameLoc, diag::err_redefinition) << Name;
1038 Diag(Def->getLocation(), diag::note_previous_definition);
1039 // FIXME: Would it make sense to try to "forget" the previous
1040 // definition, as part of error recovery?
1041 return true;
1042 }
1043 }
1044 } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
1045 // Maybe we will complain about the shadowed template parameter.
1046 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1047 // Just pretend that we didn't see the previous declaration.
1048 PrevDecl = nullptr;
1049 } else if (PrevDecl) {
1050 // C++ [temp]p5:
1051 // A class template shall not have the same name as any other
1052 // template, class, function, object, enumeration, enumerator,
1053 // namespace, or type in the same scope (3.3), except as specified
1054 // in (14.5.4).
1055 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1056 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1057 return true;
1058 }
1059
1060 // Check the template parameter list of this declaration, possibly
1061 // merging in the template parameter list from the previous class
1062 // template declaration. Skip this check for a friend in a dependent
1063 // context, because the template parameter list might be dependent.
1064 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1065 CheckTemplateParameterList(
1066 TemplateParams,
1067 PrevClassTemplate ? PrevClassTemplate->getTemplateParameters()
1068 : nullptr,
1069 (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1070 SemanticContext->isDependentContext())
1071 ? TPC_ClassTemplateMember
1072 : TUK == TUK_Friend ? TPC_FriendClassTemplate
1073 : TPC_ClassTemplate))
1074 Invalid = true;
1075
1076 if (SS.isSet()) {
1077 // If the name of the template was qualified, we must be defining the
1078 // template out-of-line.
1079 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1080 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1081 : diag::err_member_decl_does_not_match)
1082 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1083 Invalid = true;
1084 }
1085 }
1086
1087 CXXRecordDecl *NewClass =
1088 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1089 PrevClassTemplate?
1090 PrevClassTemplate->getTemplatedDecl() : nullptr,
1091 /*DelayTypeCreation=*/true);
1092 SetNestedNameSpecifier(NewClass, SS);
1093 if (NumOuterTemplateParamLists > 0)
1094 NewClass->setTemplateParameterListsInfo(
1095 Context, llvm::makeArrayRef(OuterTemplateParamLists,
1096 NumOuterTemplateParamLists));
1097
1098 // Add alignment attributes if necessary; these attributes are checked when
1099 // the ASTContext lays out the structure.
1100 if (TUK == TUK_Definition) {
1101 AddAlignmentAttributesForRecord(NewClass);
1102 AddMsStructLayoutForRecord(NewClass);
1103 }
1104
1105 ClassTemplateDecl *NewTemplate
1106 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1107 DeclarationName(Name), TemplateParams,
1108 NewClass, PrevClassTemplate);
1109 NewClass->setDescribedClassTemplate(NewTemplate);
1110
1111 if (ModulePrivateLoc.isValid())
1112 NewTemplate->setModulePrivate();
1113
1114 // Build the type for the class template declaration now.
1115 QualType T = NewTemplate->getInjectedClassNameSpecialization();
1116 T = Context.getInjectedClassNameType(NewClass, T);
1117 assert(T->isDependentType() && "Class template type is not dependent?");
1118 (void)T;
1119
1120 // If we are providing an explicit specialization of a member that is a
1121 // class template, make a note of that.
1122 if (PrevClassTemplate &&
1123 PrevClassTemplate->getInstantiatedFromMemberTemplate())
1124 PrevClassTemplate->setMemberSpecialization();
1125
1126 // Set the access specifier.
1127 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1128 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1129
1130 // Set the lexical context of these templates
1131 NewClass->setLexicalDeclContext(CurContext);
1132 NewTemplate->setLexicalDeclContext(CurContext);
1133
1134 if (TUK == TUK_Definition)
1135 NewClass->startDefinition();
1136
1137 if (Attr)
1138 ProcessDeclAttributeList(S, NewClass, Attr);
1139
1140 if (PrevClassTemplate)
1141 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1142
1143 AddPushedVisibilityAttribute(NewClass);
1144
1145 if (TUK != TUK_Friend) {
1146 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
1147 Scope *Outer = S;
1148 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
1149 Outer = Outer->getParent();
1150 PushOnScopeChains(NewTemplate, Outer);
1151 } else {
1152 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1153 NewTemplate->setAccess(PrevClassTemplate->getAccess());
1154 NewClass->setAccess(PrevClassTemplate->getAccess());
1155 }
1156
1157 NewTemplate->setObjectOfFriendDecl();
1158
1159 // Friend templates are visible in fairly strange ways.
1160 if (!CurContext->isDependentContext()) {
1161 DeclContext *DC = SemanticContext->getRedeclContext();
1162 DC->makeDeclVisibleInContext(NewTemplate);
1163 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1164 PushOnScopeChains(NewTemplate, EnclosingScope,
1165 /* AddToContext = */ false);
1166 }
1167
1168 FriendDecl *Friend = FriendDecl::Create(
1169 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
1170 Friend->setAccess(AS_public);
1171 CurContext->addDecl(Friend);
1172 }
1173
1174 if (Invalid) {
1175 NewTemplate->setInvalidDecl();
1176 NewClass->setInvalidDecl();
1177 }
1178
1179 ActOnDocumentableDecl(NewTemplate);
1180
1181 return NewTemplate;
1182 }
1183
1184 /// \brief Diagnose the presence of a default template argument on a
1185 /// template parameter, which is ill-formed in certain contexts.
1186 ///
1187 /// \returns true if the default template argument should be dropped.
DiagnoseDefaultTemplateArgument(Sema & S,Sema::TemplateParamListContext TPC,SourceLocation ParamLoc,SourceRange DefArgRange)1188 static bool DiagnoseDefaultTemplateArgument(Sema &S,
1189 Sema::TemplateParamListContext TPC,
1190 SourceLocation ParamLoc,
1191 SourceRange DefArgRange) {
1192 switch (TPC) {
1193 case Sema::TPC_ClassTemplate:
1194 case Sema::TPC_VarTemplate:
1195 case Sema::TPC_TypeAliasTemplate:
1196 return false;
1197
1198 case Sema::TPC_FunctionTemplate:
1199 case Sema::TPC_FriendFunctionTemplateDefinition:
1200 // C++ [temp.param]p9:
1201 // A default template-argument shall not be specified in a
1202 // function template declaration or a function template
1203 // definition [...]
1204 // If a friend function template declaration specifies a default
1205 // template-argument, that declaration shall be a definition and shall be
1206 // the only declaration of the function template in the translation unit.
1207 // (C++98/03 doesn't have this wording; see DR226).
1208 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
1209 diag::warn_cxx98_compat_template_parameter_default_in_function_template
1210 : diag::ext_template_parameter_default_in_function_template)
1211 << DefArgRange;
1212 return false;
1213
1214 case Sema::TPC_ClassTemplateMember:
1215 // C++0x [temp.param]p9:
1216 // A default template-argument shall not be specified in the
1217 // template-parameter-lists of the definition of a member of a
1218 // class template that appears outside of the member's class.
1219 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1220 << DefArgRange;
1221 return true;
1222
1223 case Sema::TPC_FriendClassTemplate:
1224 case Sema::TPC_FriendFunctionTemplate:
1225 // C++ [temp.param]p9:
1226 // A default template-argument shall not be specified in a
1227 // friend template declaration.
1228 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1229 << DefArgRange;
1230 return true;
1231
1232 // FIXME: C++0x [temp.param]p9 allows default template-arguments
1233 // for friend function templates if there is only a single
1234 // declaration (and it is a definition). Strange!
1235 }
1236
1237 llvm_unreachable("Invalid TemplateParamListContext!");
1238 }
1239
1240 /// \brief Check for unexpanded parameter packs within the template parameters
1241 /// of a template template parameter, recursively.
DiagnoseUnexpandedParameterPacks(Sema & S,TemplateTemplateParmDecl * TTP)1242 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1243 TemplateTemplateParmDecl *TTP) {
1244 // A template template parameter which is a parameter pack is also a pack
1245 // expansion.
1246 if (TTP->isParameterPack())
1247 return false;
1248
1249 TemplateParameterList *Params = TTP->getTemplateParameters();
1250 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1251 NamedDecl *P = Params->getParam(I);
1252 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1253 if (!NTTP->isParameterPack() &&
1254 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1255 NTTP->getTypeSourceInfo(),
1256 Sema::UPPC_NonTypeTemplateParameterType))
1257 return true;
1258
1259 continue;
1260 }
1261
1262 if (TemplateTemplateParmDecl *InnerTTP
1263 = dyn_cast<TemplateTemplateParmDecl>(P))
1264 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1265 return true;
1266 }
1267
1268 return false;
1269 }
1270
1271 /// \brief Checks the validity of a template parameter list, possibly
1272 /// considering the template parameter list from a previous
1273 /// declaration.
1274 ///
1275 /// If an "old" template parameter list is provided, it must be
1276 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
1277 /// template parameter list.
1278 ///
1279 /// \param NewParams Template parameter list for a new template
1280 /// declaration. This template parameter list will be updated with any
1281 /// default arguments that are carried through from the previous
1282 /// template parameter list.
1283 ///
1284 /// \param OldParams If provided, template parameter list from a
1285 /// previous declaration of the same template. Default template
1286 /// arguments will be merged from the old template parameter list to
1287 /// the new template parameter list.
1288 ///
1289 /// \param TPC Describes the context in which we are checking the given
1290 /// template parameter list.
1291 ///
1292 /// \returns true if an error occurred, false otherwise.
CheckTemplateParameterList(TemplateParameterList * NewParams,TemplateParameterList * OldParams,TemplateParamListContext TPC)1293 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1294 TemplateParameterList *OldParams,
1295 TemplateParamListContext TPC) {
1296 bool Invalid = false;
1297
1298 // C++ [temp.param]p10:
1299 // The set of default template-arguments available for use with a
1300 // template declaration or definition is obtained by merging the
1301 // default arguments from the definition (if in scope) and all
1302 // declarations in scope in the same way default function
1303 // arguments are (8.3.6).
1304 bool SawDefaultArgument = false;
1305 SourceLocation PreviousDefaultArgLoc;
1306
1307 // Dummy initialization to avoid warnings.
1308 TemplateParameterList::iterator OldParam = NewParams->end();
1309 if (OldParams)
1310 OldParam = OldParams->begin();
1311
1312 bool RemoveDefaultArguments = false;
1313 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1314 NewParamEnd = NewParams->end();
1315 NewParam != NewParamEnd; ++NewParam) {
1316 // Variables used to diagnose redundant default arguments
1317 bool RedundantDefaultArg = false;
1318 SourceLocation OldDefaultLoc;
1319 SourceLocation NewDefaultLoc;
1320
1321 // Variable used to diagnose missing default arguments
1322 bool MissingDefaultArg = false;
1323
1324 // Variable used to diagnose non-final parameter packs
1325 bool SawParameterPack = false;
1326
1327 if (TemplateTypeParmDecl *NewTypeParm
1328 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1329 // Check the presence of a default argument here.
1330 if (NewTypeParm->hasDefaultArgument() &&
1331 DiagnoseDefaultTemplateArgument(*this, TPC,
1332 NewTypeParm->getLocation(),
1333 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1334 .getSourceRange()))
1335 NewTypeParm->removeDefaultArgument();
1336
1337 // Merge default arguments for template type parameters.
1338 TemplateTypeParmDecl *OldTypeParm
1339 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
1340 if (NewTypeParm->isParameterPack()) {
1341 assert(!NewTypeParm->hasDefaultArgument() &&
1342 "Parameter packs can't have a default argument!");
1343 SawParameterPack = true;
1344 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
1345 NewTypeParm->hasDefaultArgument()) {
1346 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1347 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1348 SawDefaultArgument = true;
1349 RedundantDefaultArg = true;
1350 PreviousDefaultArgLoc = NewDefaultLoc;
1351 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1352 // Merge the default argument from the old declaration to the
1353 // new declaration.
1354 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
1355 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1356 } else if (NewTypeParm->hasDefaultArgument()) {
1357 SawDefaultArgument = true;
1358 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1359 } else if (SawDefaultArgument)
1360 MissingDefaultArg = true;
1361 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1362 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1363 // Check for unexpanded parameter packs.
1364 if (!NewNonTypeParm->isParameterPack() &&
1365 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1366 NewNonTypeParm->getTypeSourceInfo(),
1367 UPPC_NonTypeTemplateParameterType)) {
1368 Invalid = true;
1369 continue;
1370 }
1371
1372 // Check the presence of a default argument here.
1373 if (NewNonTypeParm->hasDefaultArgument() &&
1374 DiagnoseDefaultTemplateArgument(*this, TPC,
1375 NewNonTypeParm->getLocation(),
1376 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1377 NewNonTypeParm->removeDefaultArgument();
1378 }
1379
1380 // Merge default arguments for non-type template parameters
1381 NonTypeTemplateParmDecl *OldNonTypeParm
1382 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
1383 if (NewNonTypeParm->isParameterPack()) {
1384 assert(!NewNonTypeParm->hasDefaultArgument() &&
1385 "Parameter packs can't have a default argument!");
1386 if (!NewNonTypeParm->isPackExpansion())
1387 SawParameterPack = true;
1388 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
1389 NewNonTypeParm->hasDefaultArgument()) {
1390 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1391 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1392 SawDefaultArgument = true;
1393 RedundantDefaultArg = true;
1394 PreviousDefaultArgLoc = NewDefaultLoc;
1395 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1396 // Merge the default argument from the old declaration to the
1397 // new declaration.
1398 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
1399 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1400 } else if (NewNonTypeParm->hasDefaultArgument()) {
1401 SawDefaultArgument = true;
1402 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1403 } else if (SawDefaultArgument)
1404 MissingDefaultArg = true;
1405 } else {
1406 TemplateTemplateParmDecl *NewTemplateParm
1407 = cast<TemplateTemplateParmDecl>(*NewParam);
1408
1409 // Check for unexpanded parameter packs, recursively.
1410 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1411 Invalid = true;
1412 continue;
1413 }
1414
1415 // Check the presence of a default argument here.
1416 if (NewTemplateParm->hasDefaultArgument() &&
1417 DiagnoseDefaultTemplateArgument(*this, TPC,
1418 NewTemplateParm->getLocation(),
1419 NewTemplateParm->getDefaultArgument().getSourceRange()))
1420 NewTemplateParm->removeDefaultArgument();
1421
1422 // Merge default arguments for template template parameters
1423 TemplateTemplateParmDecl *OldTemplateParm
1424 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
1425 if (NewTemplateParm->isParameterPack()) {
1426 assert(!NewTemplateParm->hasDefaultArgument() &&
1427 "Parameter packs can't have a default argument!");
1428 if (!NewTemplateParm->isPackExpansion())
1429 SawParameterPack = true;
1430 } else if (OldTemplateParm &&
1431 hasVisibleDefaultArgument(OldTemplateParm) &&
1432 NewTemplateParm->hasDefaultArgument()) {
1433 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1434 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1435 SawDefaultArgument = true;
1436 RedundantDefaultArg = true;
1437 PreviousDefaultArgLoc = NewDefaultLoc;
1438 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1439 // Merge the default argument from the old declaration to the
1440 // new declaration.
1441 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
1442 PreviousDefaultArgLoc
1443 = OldTemplateParm->getDefaultArgument().getLocation();
1444 } else if (NewTemplateParm->hasDefaultArgument()) {
1445 SawDefaultArgument = true;
1446 PreviousDefaultArgLoc
1447 = NewTemplateParm->getDefaultArgument().getLocation();
1448 } else if (SawDefaultArgument)
1449 MissingDefaultArg = true;
1450 }
1451
1452 // C++11 [temp.param]p11:
1453 // If a template parameter of a primary class template or alias template
1454 // is a template parameter pack, it shall be the last template parameter.
1455 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1456 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
1457 TPC == TPC_TypeAliasTemplate)) {
1458 Diag((*NewParam)->getLocation(),
1459 diag::err_template_param_pack_must_be_last_template_parameter);
1460 Invalid = true;
1461 }
1462
1463 if (RedundantDefaultArg) {
1464 // C++ [temp.param]p12:
1465 // A template-parameter shall not be given default arguments
1466 // by two different declarations in the same scope.
1467 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1468 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1469 Invalid = true;
1470 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1471 // C++ [temp.param]p11:
1472 // If a template-parameter of a class template has a default
1473 // template-argument, each subsequent template-parameter shall either
1474 // have a default template-argument supplied or be a template parameter
1475 // pack.
1476 Diag((*NewParam)->getLocation(),
1477 diag::err_template_param_default_arg_missing);
1478 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1479 Invalid = true;
1480 RemoveDefaultArguments = true;
1481 }
1482
1483 // If we have an old template parameter list that we're merging
1484 // in, move on to the next parameter.
1485 if (OldParams)
1486 ++OldParam;
1487 }
1488
1489 // We were missing some default arguments at the end of the list, so remove
1490 // all of the default arguments.
1491 if (RemoveDefaultArguments) {
1492 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1493 NewParamEnd = NewParams->end();
1494 NewParam != NewParamEnd; ++NewParam) {
1495 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1496 TTP->removeDefaultArgument();
1497 else if (NonTypeTemplateParmDecl *NTTP
1498 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1499 NTTP->removeDefaultArgument();
1500 else
1501 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1502 }
1503 }
1504
1505 return Invalid;
1506 }
1507
1508 namespace {
1509
1510 /// A class which looks for a use of a certain level of template
1511 /// parameter.
1512 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1513 typedef RecursiveASTVisitor<DependencyChecker> super;
1514
1515 unsigned Depth;
1516 bool Match;
1517 SourceLocation MatchLoc;
1518
DependencyChecker__anonce82d6730111::DependencyChecker1519 DependencyChecker(unsigned Depth) : Depth(Depth), Match(false) {}
1520
DependencyChecker__anonce82d6730111::DependencyChecker1521 DependencyChecker(TemplateParameterList *Params) : Match(false) {
1522 NamedDecl *ND = Params->getParam(0);
1523 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1524 Depth = PD->getDepth();
1525 } else if (NonTypeTemplateParmDecl *PD =
1526 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1527 Depth = PD->getDepth();
1528 } else {
1529 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1530 }
1531 }
1532
Matches__anonce82d6730111::DependencyChecker1533 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
1534 if (ParmDepth >= Depth) {
1535 Match = true;
1536 MatchLoc = Loc;
1537 return true;
1538 }
1539 return false;
1540 }
1541
VisitTemplateTypeParmTypeLoc__anonce82d6730111::DependencyChecker1542 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
1543 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
1544 }
1545
VisitTemplateTypeParmType__anonce82d6730111::DependencyChecker1546 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1547 return !Matches(T->getDepth());
1548 }
1549
TraverseTemplateName__anonce82d6730111::DependencyChecker1550 bool TraverseTemplateName(TemplateName N) {
1551 if (TemplateTemplateParmDecl *PD =
1552 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1553 if (Matches(PD->getDepth()))
1554 return false;
1555 return super::TraverseTemplateName(N);
1556 }
1557
VisitDeclRefExpr__anonce82d6730111::DependencyChecker1558 bool VisitDeclRefExpr(DeclRefExpr *E) {
1559 if (NonTypeTemplateParmDecl *PD =
1560 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
1561 if (Matches(PD->getDepth(), E->getExprLoc()))
1562 return false;
1563 return super::VisitDeclRefExpr(E);
1564 }
1565
VisitSubstTemplateTypeParmType__anonce82d6730111::DependencyChecker1566 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
1567 return TraverseType(T->getReplacementType());
1568 }
1569
1570 bool
VisitSubstTemplateTypeParmPackType__anonce82d6730111::DependencyChecker1571 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
1572 return TraverseTemplateArgument(T->getArgumentPack());
1573 }
1574
TraverseInjectedClassNameType__anonce82d6730111::DependencyChecker1575 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1576 return TraverseType(T->getInjectedSpecializationType());
1577 }
1578 };
1579 }
1580
1581 /// Determines whether a given type depends on the given parameter
1582 /// list.
1583 static bool
DependsOnTemplateParameters(QualType T,TemplateParameterList * Params)1584 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1585 DependencyChecker Checker(Params);
1586 Checker.TraverseType(T);
1587 return Checker.Match;
1588 }
1589
1590 // Find the source range corresponding to the named type in the given
1591 // nested-name-specifier, if any.
getRangeOfTypeInNestedNameSpecifier(ASTContext & Context,QualType T,const CXXScopeSpec & SS)1592 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1593 QualType T,
1594 const CXXScopeSpec &SS) {
1595 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1596 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1597 if (const Type *CurType = NNS->getAsType()) {
1598 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1599 return NNSLoc.getTypeLoc().getSourceRange();
1600 } else
1601 break;
1602
1603 NNSLoc = NNSLoc.getPrefix();
1604 }
1605
1606 return SourceRange();
1607 }
1608
1609 /// \brief Match the given template parameter lists to the given scope
1610 /// specifier, returning the template parameter list that applies to the
1611 /// name.
1612 ///
1613 /// \param DeclStartLoc the start of the declaration that has a scope
1614 /// specifier or a template parameter list.
1615 ///
1616 /// \param DeclLoc The location of the declaration itself.
1617 ///
1618 /// \param SS the scope specifier that will be matched to the given template
1619 /// parameter lists. This scope specifier precedes a qualified name that is
1620 /// being declared.
1621 ///
1622 /// \param TemplateId The template-id following the scope specifier, if there
1623 /// is one. Used to check for a missing 'template<>'.
1624 ///
1625 /// \param ParamLists the template parameter lists, from the outermost to the
1626 /// innermost template parameter lists.
1627 ///
1628 /// \param IsFriend Whether to apply the slightly different rules for
1629 /// matching template parameters to scope specifiers in friend
1630 /// declarations.
1631 ///
1632 /// \param IsExplicitSpecialization will be set true if the entity being
1633 /// declared is an explicit specialization, false otherwise.
1634 ///
1635 /// \returns the template parameter list, if any, that corresponds to the
1636 /// name that is preceded by the scope specifier @p SS. This template
1637 /// parameter list may have template parameters (if we're declaring a
1638 /// template) or may have no template parameters (if we're declaring a
1639 /// template specialization), or may be NULL (if what we're declaring isn't
1640 /// itself a template).
MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,SourceLocation DeclLoc,const CXXScopeSpec & SS,TemplateIdAnnotation * TemplateId,ArrayRef<TemplateParameterList * > ParamLists,bool IsFriend,bool & IsExplicitSpecialization,bool & Invalid)1641 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
1642 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
1643 TemplateIdAnnotation *TemplateId,
1644 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
1645 bool &IsExplicitSpecialization, bool &Invalid) {
1646 IsExplicitSpecialization = false;
1647 Invalid = false;
1648
1649 // The sequence of nested types to which we will match up the template
1650 // parameter lists. We first build this list by starting with the type named
1651 // by the nested-name-specifier and walking out until we run out of types.
1652 SmallVector<QualType, 4> NestedTypes;
1653 QualType T;
1654 if (SS.getScopeRep()) {
1655 if (CXXRecordDecl *Record
1656 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1657 T = Context.getTypeDeclType(Record);
1658 else
1659 T = QualType(SS.getScopeRep()->getAsType(), 0);
1660 }
1661
1662 // If we found an explicit specialization that prevents us from needing
1663 // 'template<>' headers, this will be set to the location of that
1664 // explicit specialization.
1665 SourceLocation ExplicitSpecLoc;
1666
1667 while (!T.isNull()) {
1668 NestedTypes.push_back(T);
1669
1670 // Retrieve the parent of a record type.
1671 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1672 // If this type is an explicit specialization, we're done.
1673 if (ClassTemplateSpecializationDecl *Spec
1674 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1675 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1676 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1677 ExplicitSpecLoc = Spec->getLocation();
1678 break;
1679 }
1680 } else if (Record->getTemplateSpecializationKind()
1681 == TSK_ExplicitSpecialization) {
1682 ExplicitSpecLoc = Record->getLocation();
1683 break;
1684 }
1685
1686 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1687 T = Context.getTypeDeclType(Parent);
1688 else
1689 T = QualType();
1690 continue;
1691 }
1692
1693 if (const TemplateSpecializationType *TST
1694 = T->getAs<TemplateSpecializationType>()) {
1695 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1696 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1697 T = Context.getTypeDeclType(Parent);
1698 else
1699 T = QualType();
1700 continue;
1701 }
1702 }
1703
1704 // Look one step prior in a dependent template specialization type.
1705 if (const DependentTemplateSpecializationType *DependentTST
1706 = T->getAs<DependentTemplateSpecializationType>()) {
1707 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1708 T = QualType(NNS->getAsType(), 0);
1709 else
1710 T = QualType();
1711 continue;
1712 }
1713
1714 // Look one step prior in a dependent name type.
1715 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1716 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1717 T = QualType(NNS->getAsType(), 0);
1718 else
1719 T = QualType();
1720 continue;
1721 }
1722
1723 // Retrieve the parent of an enumeration type.
1724 if (const EnumType *EnumT = T->getAs<EnumType>()) {
1725 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1726 // check here.
1727 EnumDecl *Enum = EnumT->getDecl();
1728
1729 // Get to the parent type.
1730 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1731 T = Context.getTypeDeclType(Parent);
1732 else
1733 T = QualType();
1734 continue;
1735 }
1736
1737 T = QualType();
1738 }
1739 // Reverse the nested types list, since we want to traverse from the outermost
1740 // to the innermost while checking template-parameter-lists.
1741 std::reverse(NestedTypes.begin(), NestedTypes.end());
1742
1743 // C++0x [temp.expl.spec]p17:
1744 // A member or a member template may be nested within many
1745 // enclosing class templates. In an explicit specialization for
1746 // such a member, the member declaration shall be preceded by a
1747 // template<> for each enclosing class template that is
1748 // explicitly specialized.
1749 bool SawNonEmptyTemplateParameterList = false;
1750
1751 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
1752 if (SawNonEmptyTemplateParameterList) {
1753 Diag(DeclLoc, diag::err_specialize_member_of_template)
1754 << !Recovery << Range;
1755 Invalid = true;
1756 IsExplicitSpecialization = false;
1757 return true;
1758 }
1759
1760 return false;
1761 };
1762
1763 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
1764 // Check that we can have an explicit specialization here.
1765 if (CheckExplicitSpecialization(Range, true))
1766 return true;
1767
1768 // We don't have a template header, but we should.
1769 SourceLocation ExpectedTemplateLoc;
1770 if (!ParamLists.empty())
1771 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1772 else
1773 ExpectedTemplateLoc = DeclStartLoc;
1774
1775 Diag(DeclLoc, diag::err_template_spec_needs_header)
1776 << Range
1777 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1778 return false;
1779 };
1780
1781 unsigned ParamIdx = 0;
1782 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1783 ++TypeIdx) {
1784 T = NestedTypes[TypeIdx];
1785
1786 // Whether we expect a 'template<>' header.
1787 bool NeedEmptyTemplateHeader = false;
1788
1789 // Whether we expect a template header with parameters.
1790 bool NeedNonemptyTemplateHeader = false;
1791
1792 // For a dependent type, the set of template parameters that we
1793 // expect to see.
1794 TemplateParameterList *ExpectedTemplateParams = nullptr;
1795
1796 // C++0x [temp.expl.spec]p15:
1797 // A member or a member template may be nested within many enclosing
1798 // class templates. In an explicit specialization for such a member, the
1799 // member declaration shall be preceded by a template<> for each
1800 // enclosing class template that is explicitly specialized.
1801 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1802 if (ClassTemplatePartialSpecializationDecl *Partial
1803 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1804 ExpectedTemplateParams = Partial->getTemplateParameters();
1805 NeedNonemptyTemplateHeader = true;
1806 } else if (Record->isDependentType()) {
1807 if (Record->getDescribedClassTemplate()) {
1808 ExpectedTemplateParams = Record->getDescribedClassTemplate()
1809 ->getTemplateParameters();
1810 NeedNonemptyTemplateHeader = true;
1811 }
1812 } else if (ClassTemplateSpecializationDecl *Spec
1813 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1814 // C++0x [temp.expl.spec]p4:
1815 // Members of an explicitly specialized class template are defined
1816 // in the same manner as members of normal classes, and not using
1817 // the template<> syntax.
1818 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1819 NeedEmptyTemplateHeader = true;
1820 else
1821 continue;
1822 } else if (Record->getTemplateSpecializationKind()) {
1823 if (Record->getTemplateSpecializationKind()
1824 != TSK_ExplicitSpecialization &&
1825 TypeIdx == NumTypes - 1)
1826 IsExplicitSpecialization = true;
1827
1828 continue;
1829 }
1830 } else if (const TemplateSpecializationType *TST
1831 = T->getAs<TemplateSpecializationType>()) {
1832 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1833 ExpectedTemplateParams = Template->getTemplateParameters();
1834 NeedNonemptyTemplateHeader = true;
1835 }
1836 } else if (T->getAs<DependentTemplateSpecializationType>()) {
1837 // FIXME: We actually could/should check the template arguments here
1838 // against the corresponding template parameter list.
1839 NeedNonemptyTemplateHeader = false;
1840 }
1841
1842 // C++ [temp.expl.spec]p16:
1843 // In an explicit specialization declaration for a member of a class
1844 // template or a member template that ap- pears in namespace scope, the
1845 // member template and some of its enclosing class templates may remain
1846 // unspecialized, except that the declaration shall not explicitly
1847 // specialize a class member template if its en- closing class templates
1848 // are not explicitly specialized as well.
1849 if (ParamIdx < ParamLists.size()) {
1850 if (ParamLists[ParamIdx]->size() == 0) {
1851 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
1852 false))
1853 return nullptr;
1854 } else
1855 SawNonEmptyTemplateParameterList = true;
1856 }
1857
1858 if (NeedEmptyTemplateHeader) {
1859 // If we're on the last of the types, and we need a 'template<>' header
1860 // here, then it's an explicit specialization.
1861 if (TypeIdx == NumTypes - 1)
1862 IsExplicitSpecialization = true;
1863
1864 if (ParamIdx < ParamLists.size()) {
1865 if (ParamLists[ParamIdx]->size() > 0) {
1866 // The header has template parameters when it shouldn't. Complain.
1867 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1868 diag::err_template_param_list_matches_nontemplate)
1869 << T
1870 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1871 ParamLists[ParamIdx]->getRAngleLoc())
1872 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1873 Invalid = true;
1874 return nullptr;
1875 }
1876
1877 // Consume this template header.
1878 ++ParamIdx;
1879 continue;
1880 }
1881
1882 if (!IsFriend)
1883 if (DiagnoseMissingExplicitSpecialization(
1884 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
1885 return nullptr;
1886
1887 continue;
1888 }
1889
1890 if (NeedNonemptyTemplateHeader) {
1891 // In friend declarations we can have template-ids which don't
1892 // depend on the corresponding template parameter lists. But
1893 // assume that empty parameter lists are supposed to match this
1894 // template-id.
1895 if (IsFriend && T->isDependentType()) {
1896 if (ParamIdx < ParamLists.size() &&
1897 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1898 ExpectedTemplateParams = nullptr;
1899 else
1900 continue;
1901 }
1902
1903 if (ParamIdx < ParamLists.size()) {
1904 // Check the template parameter list, if we can.
1905 if (ExpectedTemplateParams &&
1906 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1907 ExpectedTemplateParams,
1908 true, TPL_TemplateMatch))
1909 Invalid = true;
1910
1911 if (!Invalid &&
1912 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
1913 TPC_ClassTemplateMember))
1914 Invalid = true;
1915
1916 ++ParamIdx;
1917 continue;
1918 }
1919
1920 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1921 << T
1922 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1923 Invalid = true;
1924 continue;
1925 }
1926 }
1927
1928 // If there were at least as many template-ids as there were template
1929 // parameter lists, then there are no template parameter lists remaining for
1930 // the declaration itself.
1931 if (ParamIdx >= ParamLists.size()) {
1932 if (TemplateId && !IsFriend) {
1933 // We don't have a template header for the declaration itself, but we
1934 // should.
1935 IsExplicitSpecialization = true;
1936 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
1937 TemplateId->RAngleLoc));
1938
1939 // Fabricate an empty template parameter list for the invented header.
1940 return TemplateParameterList::Create(Context, SourceLocation(),
1941 SourceLocation(), nullptr, 0,
1942 SourceLocation());
1943 }
1944
1945 return nullptr;
1946 }
1947
1948 // If there were too many template parameter lists, complain about that now.
1949 if (ParamIdx < ParamLists.size() - 1) {
1950 bool HasAnyExplicitSpecHeader = false;
1951 bool AllExplicitSpecHeaders = true;
1952 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
1953 if (ParamLists[I]->size() == 0)
1954 HasAnyExplicitSpecHeader = true;
1955 else
1956 AllExplicitSpecHeaders = false;
1957 }
1958
1959 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1960 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
1961 : diag::err_template_spec_extra_headers)
1962 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1963 ParamLists[ParamLists.size() - 2]->getRAngleLoc());
1964
1965 // If there was a specialization somewhere, such that 'template<>' is
1966 // not required, and there were any 'template<>' headers, note where the
1967 // specialization occurred.
1968 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1969 Diag(ExplicitSpecLoc,
1970 diag::note_explicit_template_spec_does_not_need_header)
1971 << NestedTypes.back();
1972
1973 // We have a template parameter list with no corresponding scope, which
1974 // means that the resulting template declaration can't be instantiated
1975 // properly (we'll end up with dependent nodes when we shouldn't).
1976 if (!AllExplicitSpecHeaders)
1977 Invalid = true;
1978 }
1979
1980 // C++ [temp.expl.spec]p16:
1981 // In an explicit specialization declaration for a member of a class
1982 // template or a member template that ap- pears in namespace scope, the
1983 // member template and some of its enclosing class templates may remain
1984 // unspecialized, except that the declaration shall not explicitly
1985 // specialize a class member template if its en- closing class templates
1986 // are not explicitly specialized as well.
1987 if (ParamLists.back()->size() == 0 &&
1988 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
1989 false))
1990 return nullptr;
1991
1992 // Return the last template parameter list, which corresponds to the
1993 // entity being declared.
1994 return ParamLists.back();
1995 }
1996
NoteAllFoundTemplates(TemplateName Name)1997 void Sema::NoteAllFoundTemplates(TemplateName Name) {
1998 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
1999 Diag(Template->getLocation(), diag::note_template_declared_here)
2000 << (isa<FunctionTemplateDecl>(Template)
2001 ? 0
2002 : isa<ClassTemplateDecl>(Template)
2003 ? 1
2004 : isa<VarTemplateDecl>(Template)
2005 ? 2
2006 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
2007 << Template->getDeclName();
2008 return;
2009 }
2010
2011 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
2012 for (OverloadedTemplateStorage::iterator I = OST->begin(),
2013 IEnd = OST->end();
2014 I != IEnd; ++I)
2015 Diag((*I)->getLocation(), diag::note_template_declared_here)
2016 << 0 << (*I)->getDeclName();
2017
2018 return;
2019 }
2020 }
2021
2022 static QualType
checkBuiltinTemplateIdType(Sema & SemaRef,BuiltinTemplateDecl * BTD,const SmallVectorImpl<TemplateArgument> & Converted,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)2023 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
2024 const SmallVectorImpl<TemplateArgument> &Converted,
2025 SourceLocation TemplateLoc,
2026 TemplateArgumentListInfo &TemplateArgs) {
2027 ASTContext &Context = SemaRef.getASTContext();
2028 switch (BTD->getBuiltinTemplateKind()) {
2029 case BTK__make_integer_seq:
2030 // Specializations of __make_integer_seq<S, T, N> are treated like
2031 // S<T, 0, ..., N-1>.
2032
2033 // C++14 [inteseq.intseq]p1:
2034 // T shall be an integer type.
2035 if (!Converted[1].getAsType()->isIntegralType(Context)) {
2036 SemaRef.Diag(TemplateArgs[1].getLocation(),
2037 diag::err_integer_sequence_integral_element_type);
2038 return QualType();
2039 }
2040
2041 // C++14 [inteseq.make]p1:
2042 // If N is negative the program is ill-formed.
2043 TemplateArgument NumArgsArg = Converted[2];
2044 llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
2045 if (NumArgs < 0) {
2046 SemaRef.Diag(TemplateArgs[2].getLocation(),
2047 diag::err_integer_sequence_negative_length);
2048 return QualType();
2049 }
2050
2051 QualType ArgTy = NumArgsArg.getIntegralType();
2052 TemplateArgumentListInfo SyntheticTemplateArgs;
2053 // The type argument gets reused as the first template argument in the
2054 // synthetic template argument list.
2055 SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
2056 // Expand N into 0 ... N-1.
2057 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
2058 I < NumArgs; ++I) {
2059 TemplateArgument TA(Context, I, ArgTy);
2060 Expr *E = SemaRef.BuildExpressionFromIntegralTemplateArgument(
2061 TA, TemplateArgs[2].getLocation())
2062 .getAs<Expr>();
2063 SyntheticTemplateArgs.addArgument(
2064 TemplateArgumentLoc(TemplateArgument(E), E));
2065 }
2066 // The first template argument will be reused as the template decl that
2067 // our synthetic template arguments will be applied to.
2068 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
2069 TemplateLoc, SyntheticTemplateArgs);
2070 }
2071 llvm_unreachable("unexpected BuiltinTemplateDecl!");
2072 }
2073
CheckTemplateIdType(TemplateName Name,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)2074 QualType Sema::CheckTemplateIdType(TemplateName Name,
2075 SourceLocation TemplateLoc,
2076 TemplateArgumentListInfo &TemplateArgs) {
2077 DependentTemplateName *DTN
2078 = Name.getUnderlying().getAsDependentTemplateName();
2079 if (DTN && DTN->isIdentifier())
2080 // When building a template-id where the template-name is dependent,
2081 // assume the template is a type template. Either our assumption is
2082 // correct, or the code is ill-formed and will be diagnosed when the
2083 // dependent name is substituted.
2084 return Context.getDependentTemplateSpecializationType(ETK_None,
2085 DTN->getQualifier(),
2086 DTN->getIdentifier(),
2087 TemplateArgs);
2088
2089 TemplateDecl *Template = Name.getAsTemplateDecl();
2090 if (!Template || isa<FunctionTemplateDecl>(Template) ||
2091 isa<VarTemplateDecl>(Template)) {
2092 // We might have a substituted template template parameter pack. If so,
2093 // build a template specialization type for it.
2094 if (Name.getAsSubstTemplateTemplateParmPack())
2095 return Context.getTemplateSpecializationType(Name, TemplateArgs);
2096
2097 Diag(TemplateLoc, diag::err_template_id_not_a_type)
2098 << Name;
2099 NoteAllFoundTemplates(Name);
2100 return QualType();
2101 }
2102
2103 // Check that the template argument list is well-formed for this
2104 // template.
2105 SmallVector<TemplateArgument, 4> Converted;
2106 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
2107 false, Converted))
2108 return QualType();
2109
2110 QualType CanonType;
2111
2112 bool InstantiationDependent = false;
2113 if (TypeAliasTemplateDecl *AliasTemplate =
2114 dyn_cast<TypeAliasTemplateDecl>(Template)) {
2115 // Find the canonical type for this type alias template specialization.
2116 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
2117 if (Pattern->isInvalidDecl())
2118 return QualType();
2119
2120 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2121 Converted.data(), Converted.size());
2122
2123 // Only substitute for the innermost template argument list.
2124 MultiLevelTemplateArgumentList TemplateArgLists;
2125 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
2126 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
2127 for (unsigned I = 0; I < Depth; ++I)
2128 TemplateArgLists.addOuterTemplateArguments(None);
2129
2130 LocalInstantiationScope Scope(*this);
2131 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2132 if (Inst.isInvalid())
2133 return QualType();
2134
2135 CanonType = SubstType(Pattern->getUnderlyingType(),
2136 TemplateArgLists, AliasTemplate->getLocation(),
2137 AliasTemplate->getDeclName());
2138 if (CanonType.isNull())
2139 return QualType();
2140 } else if (Name.isDependent() ||
2141 TemplateSpecializationType::anyDependentTemplateArguments(
2142 TemplateArgs, InstantiationDependent)) {
2143 // This class template specialization is a dependent
2144 // type. Therefore, its canonical type is another class template
2145 // specialization type that contains all of the converted
2146 // arguments in canonical form. This ensures that, e.g., A<T> and
2147 // A<T, T> have identical types when A is declared as:
2148 //
2149 // template<typename T, typename U = T> struct A;
2150 TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2151 CanonType = Context.getTemplateSpecializationType(CanonName,
2152 Converted.data(),
2153 Converted.size());
2154
2155 // FIXME: CanonType is not actually the canonical type, and unfortunately
2156 // it is a TemplateSpecializationType that we will never use again.
2157 // In the future, we need to teach getTemplateSpecializationType to only
2158 // build the canonical type and return that to us.
2159 CanonType = Context.getCanonicalType(CanonType);
2160
2161 // This might work out to be a current instantiation, in which
2162 // case the canonical type needs to be the InjectedClassNameType.
2163 //
2164 // TODO: in theory this could be a simple hashtable lookup; most
2165 // changes to CurContext don't change the set of current
2166 // instantiations.
2167 if (isa<ClassTemplateDecl>(Template)) {
2168 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2169 // If we get out to a namespace, we're done.
2170 if (Ctx->isFileContext()) break;
2171
2172 // If this isn't a record, keep looking.
2173 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2174 if (!Record) continue;
2175
2176 // Look for one of the two cases with InjectedClassNameTypes
2177 // and check whether it's the same template.
2178 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2179 !Record->getDescribedClassTemplate())
2180 continue;
2181
2182 // Fetch the injected class name type and check whether its
2183 // injected type is equal to the type we just built.
2184 QualType ICNT = Context.getTypeDeclType(Record);
2185 QualType Injected = cast<InjectedClassNameType>(ICNT)
2186 ->getInjectedSpecializationType();
2187
2188 if (CanonType != Injected->getCanonicalTypeInternal())
2189 continue;
2190
2191 // If so, the canonical type of this TST is the injected
2192 // class name type of the record we just found.
2193 assert(ICNT.isCanonical());
2194 CanonType = ICNT;
2195 break;
2196 }
2197 }
2198 } else if (ClassTemplateDecl *ClassTemplate
2199 = dyn_cast<ClassTemplateDecl>(Template)) {
2200 // Find the class template specialization declaration that
2201 // corresponds to these arguments.
2202 void *InsertPos = nullptr;
2203 ClassTemplateSpecializationDecl *Decl
2204 = ClassTemplate->findSpecialization(Converted, InsertPos);
2205 if (!Decl) {
2206 // This is the first time we have referenced this class template
2207 // specialization. Create the canonical declaration and add it to
2208 // the set of specializations.
2209 Decl = ClassTemplateSpecializationDecl::Create(Context,
2210 ClassTemplate->getTemplatedDecl()->getTagKind(),
2211 ClassTemplate->getDeclContext(),
2212 ClassTemplate->getTemplatedDecl()->getLocStart(),
2213 ClassTemplate->getLocation(),
2214 ClassTemplate,
2215 Converted.data(),
2216 Converted.size(), nullptr);
2217 ClassTemplate->AddSpecialization(Decl, InsertPos);
2218 if (ClassTemplate->isOutOfLine())
2219 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2220 }
2221
2222 // Diagnose uses of this specialization.
2223 (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
2224
2225 CanonType = Context.getTypeDeclType(Decl);
2226 assert(isa<RecordType>(CanonType) &&
2227 "type of non-dependent specialization is not a RecordType");
2228 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
2229 CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
2230 TemplateArgs);
2231 }
2232
2233 // Build the fully-sugared type for this class template
2234 // specialization, which refers back to the class template
2235 // specialization we created or found.
2236 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2237 }
2238
2239 TypeResult
ActOnTemplateIdType(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,bool IsCtorOrDtorName)2240 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2241 TemplateTy TemplateD, SourceLocation TemplateLoc,
2242 SourceLocation LAngleLoc,
2243 ASTTemplateArgsPtr TemplateArgsIn,
2244 SourceLocation RAngleLoc,
2245 bool IsCtorOrDtorName) {
2246 if (SS.isInvalid())
2247 return true;
2248
2249 TemplateName Template = TemplateD.get();
2250
2251 // Translate the parser's template argument list in our AST format.
2252 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2253 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2254
2255 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2256 QualType T
2257 = Context.getDependentTemplateSpecializationType(ETK_None,
2258 DTN->getQualifier(),
2259 DTN->getIdentifier(),
2260 TemplateArgs);
2261 // Build type-source information.
2262 TypeLocBuilder TLB;
2263 DependentTemplateSpecializationTypeLoc SpecTL
2264 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2265 SpecTL.setElaboratedKeywordLoc(SourceLocation());
2266 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2267 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2268 SpecTL.setTemplateNameLoc(TemplateLoc);
2269 SpecTL.setLAngleLoc(LAngleLoc);
2270 SpecTL.setRAngleLoc(RAngleLoc);
2271 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2272 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2273 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2274 }
2275
2276 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2277
2278 if (Result.isNull())
2279 return true;
2280
2281 // Build type-source information.
2282 TypeLocBuilder TLB;
2283 TemplateSpecializationTypeLoc SpecTL
2284 = TLB.push<TemplateSpecializationTypeLoc>(Result);
2285 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2286 SpecTL.setTemplateNameLoc(TemplateLoc);
2287 SpecTL.setLAngleLoc(LAngleLoc);
2288 SpecTL.setRAngleLoc(RAngleLoc);
2289 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2290 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2291
2292 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2293 // constructor or destructor name (in such a case, the scope specifier
2294 // will be attached to the enclosing Decl or Expr node).
2295 if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2296 // Create an elaborated-type-specifier containing the nested-name-specifier.
2297 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2298 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2299 ElabTL.setElaboratedKeywordLoc(SourceLocation());
2300 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2301 }
2302
2303 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2304 }
2305
ActOnTagTemplateIdType(TagUseKind TUK,TypeSpecifierType TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)2306 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2307 TypeSpecifierType TagSpec,
2308 SourceLocation TagLoc,
2309 CXXScopeSpec &SS,
2310 SourceLocation TemplateKWLoc,
2311 TemplateTy TemplateD,
2312 SourceLocation TemplateLoc,
2313 SourceLocation LAngleLoc,
2314 ASTTemplateArgsPtr TemplateArgsIn,
2315 SourceLocation RAngleLoc) {
2316 TemplateName Template = TemplateD.get();
2317
2318 // Translate the parser's template argument list in our AST format.
2319 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2320 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2321
2322 // Determine the tag kind
2323 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2324 ElaboratedTypeKeyword Keyword
2325 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2326
2327 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2328 QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2329 DTN->getQualifier(),
2330 DTN->getIdentifier(),
2331 TemplateArgs);
2332
2333 // Build type-source information.
2334 TypeLocBuilder TLB;
2335 DependentTemplateSpecializationTypeLoc SpecTL
2336 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2337 SpecTL.setElaboratedKeywordLoc(TagLoc);
2338 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2339 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2340 SpecTL.setTemplateNameLoc(TemplateLoc);
2341 SpecTL.setLAngleLoc(LAngleLoc);
2342 SpecTL.setRAngleLoc(RAngleLoc);
2343 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2344 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2345 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2346 }
2347
2348 if (TypeAliasTemplateDecl *TAT =
2349 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2350 // C++0x [dcl.type.elab]p2:
2351 // If the identifier resolves to a typedef-name or the simple-template-id
2352 // resolves to an alias template specialization, the
2353 // elaborated-type-specifier is ill-formed.
2354 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2355 Diag(TAT->getLocation(), diag::note_declared_at);
2356 }
2357
2358 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2359 if (Result.isNull())
2360 return TypeResult(true);
2361
2362 // Check the tag kind
2363 if (const RecordType *RT = Result->getAs<RecordType>()) {
2364 RecordDecl *D = RT->getDecl();
2365
2366 IdentifierInfo *Id = D->getIdentifier();
2367 assert(Id && "templated class must have an identifier");
2368
2369 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2370 TagLoc, Id)) {
2371 Diag(TagLoc, diag::err_use_with_wrong_tag)
2372 << Result
2373 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2374 Diag(D->getLocation(), diag::note_previous_use);
2375 }
2376 }
2377
2378 // Provide source-location information for the template specialization.
2379 TypeLocBuilder TLB;
2380 TemplateSpecializationTypeLoc SpecTL
2381 = TLB.push<TemplateSpecializationTypeLoc>(Result);
2382 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2383 SpecTL.setTemplateNameLoc(TemplateLoc);
2384 SpecTL.setLAngleLoc(LAngleLoc);
2385 SpecTL.setRAngleLoc(RAngleLoc);
2386 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2387 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2388
2389 // Construct an elaborated type containing the nested-name-specifier (if any)
2390 // and tag keyword.
2391 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2392 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2393 ElabTL.setElaboratedKeywordLoc(TagLoc);
2394 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2395 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2396 }
2397
2398 static bool CheckTemplatePartialSpecializationArgs(
2399 Sema &S, SourceLocation NameLoc, TemplateParameterList *TemplateParams,
2400 unsigned ExplicitArgs, SmallVectorImpl<TemplateArgument> &TemplateArgs);
2401
2402 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
2403 NamedDecl *PrevDecl,
2404 SourceLocation Loc,
2405 bool IsPartialSpecialization);
2406
2407 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
2408
isTemplateArgumentTemplateParameter(const TemplateArgument & Arg,unsigned Depth,unsigned Index)2409 static bool isTemplateArgumentTemplateParameter(
2410 const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
2411 switch (Arg.getKind()) {
2412 case TemplateArgument::Null:
2413 case TemplateArgument::NullPtr:
2414 case TemplateArgument::Integral:
2415 case TemplateArgument::Declaration:
2416 case TemplateArgument::Pack:
2417 case TemplateArgument::TemplateExpansion:
2418 return false;
2419
2420 case TemplateArgument::Type: {
2421 QualType Type = Arg.getAsType();
2422 const TemplateTypeParmType *TPT =
2423 Arg.getAsType()->getAs<TemplateTypeParmType>();
2424 return TPT && !Type.hasQualifiers() &&
2425 TPT->getDepth() == Depth && TPT->getIndex() == Index;
2426 }
2427
2428 case TemplateArgument::Expression: {
2429 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
2430 if (!DRE || !DRE->getDecl())
2431 return false;
2432 const NonTypeTemplateParmDecl *NTTP =
2433 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
2434 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
2435 }
2436
2437 case TemplateArgument::Template:
2438 const TemplateTemplateParmDecl *TTP =
2439 dyn_cast_or_null<TemplateTemplateParmDecl>(
2440 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
2441 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
2442 }
2443 llvm_unreachable("unexpected kind of template argument");
2444 }
2445
isSameAsPrimaryTemplate(TemplateParameterList * Params,ArrayRef<TemplateArgument> Args)2446 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
2447 ArrayRef<TemplateArgument> Args) {
2448 if (Params->size() != Args.size())
2449 return false;
2450
2451 unsigned Depth = Params->getDepth();
2452
2453 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2454 TemplateArgument Arg = Args[I];
2455
2456 // If the parameter is a pack expansion, the argument must be a pack
2457 // whose only element is a pack expansion.
2458 if (Params->getParam(I)->isParameterPack()) {
2459 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
2460 !Arg.pack_begin()->isPackExpansion())
2461 return false;
2462 Arg = Arg.pack_begin()->getPackExpansionPattern();
2463 }
2464
2465 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
2466 return false;
2467 }
2468
2469 return true;
2470 }
2471
2472 /// Convert the parser's template argument list representation into our form.
2473 static TemplateArgumentListInfo
makeTemplateArgumentListInfo(Sema & S,TemplateIdAnnotation & TemplateId)2474 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
2475 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
2476 TemplateId.RAngleLoc);
2477 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
2478 TemplateId.NumArgs);
2479 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
2480 return TemplateArgs;
2481 }
2482
ActOnVarTemplateSpecialization(Scope * S,Declarator & D,TypeSourceInfo * DI,SourceLocation TemplateKWLoc,TemplateParameterList * TemplateParams,StorageClass SC,bool IsPartialSpecialization)2483 DeclResult Sema::ActOnVarTemplateSpecialization(
2484 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
2485 TemplateParameterList *TemplateParams, StorageClass SC,
2486 bool IsPartialSpecialization) {
2487 // D must be variable template id.
2488 assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
2489 "Variable template specialization is declared with a template it.");
2490
2491 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2492 TemplateArgumentListInfo TemplateArgs =
2493 makeTemplateArgumentListInfo(*this, *TemplateId);
2494 SourceLocation TemplateNameLoc = D.getIdentifierLoc();
2495 SourceLocation LAngleLoc = TemplateId->LAngleLoc;
2496 SourceLocation RAngleLoc = TemplateId->RAngleLoc;
2497
2498 TemplateName Name = TemplateId->Template.get();
2499
2500 // The template-id must name a variable template.
2501 VarTemplateDecl *VarTemplate =
2502 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
2503 if (!VarTemplate) {
2504 NamedDecl *FnTemplate;
2505 if (auto *OTS = Name.getAsOverloadedTemplate())
2506 FnTemplate = *OTS->begin();
2507 else
2508 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
2509 if (FnTemplate)
2510 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
2511 << FnTemplate->getDeclName();
2512 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
2513 << IsPartialSpecialization;
2514 }
2515
2516 // Check for unexpanded parameter packs in any of the template arguments.
2517 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2518 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
2519 UPPC_PartialSpecialization))
2520 return true;
2521
2522 // Check that the template argument list is well-formed for this
2523 // template.
2524 SmallVector<TemplateArgument, 4> Converted;
2525 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
2526 false, Converted))
2527 return true;
2528
2529 // Find the variable template (partial) specialization declaration that
2530 // corresponds to these arguments.
2531 if (IsPartialSpecialization) {
2532 if (CheckTemplatePartialSpecializationArgs(
2533 *this, TemplateNameLoc, VarTemplate->getTemplateParameters(),
2534 TemplateArgs.size(), Converted))
2535 return true;
2536
2537 bool InstantiationDependent;
2538 if (!Name.isDependent() &&
2539 !TemplateSpecializationType::anyDependentTemplateArguments(
2540 TemplateArgs.getArgumentArray(), TemplateArgs.size(),
2541 InstantiationDependent)) {
2542 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
2543 << VarTemplate->getDeclName();
2544 IsPartialSpecialization = false;
2545 }
2546
2547 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
2548 Converted)) {
2549 // C++ [temp.class.spec]p9b3:
2550 //
2551 // -- The argument list of the specialization shall not be identical
2552 // to the implicit argument list of the primary template.
2553 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
2554 << /*variable template*/ 1
2555 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
2556 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
2557 // FIXME: Recover from this by treating the declaration as a redeclaration
2558 // of the primary template.
2559 return true;
2560 }
2561 }
2562
2563 void *InsertPos = nullptr;
2564 VarTemplateSpecializationDecl *PrevDecl = nullptr;
2565
2566 if (IsPartialSpecialization)
2567 // FIXME: Template parameter list matters too
2568 PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos);
2569 else
2570 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
2571
2572 VarTemplateSpecializationDecl *Specialization = nullptr;
2573
2574 // Check whether we can declare a variable template specialization in
2575 // the current scope.
2576 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
2577 TemplateNameLoc,
2578 IsPartialSpecialization))
2579 return true;
2580
2581 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2582 // Since the only prior variable template specialization with these
2583 // arguments was referenced but not declared, reuse that
2584 // declaration node as our own, updating its source location and
2585 // the list of outer template parameters to reflect our new declaration.
2586 Specialization = PrevDecl;
2587 Specialization->setLocation(TemplateNameLoc);
2588 PrevDecl = nullptr;
2589 } else if (IsPartialSpecialization) {
2590 // Create a new class template partial specialization declaration node.
2591 VarTemplatePartialSpecializationDecl *PrevPartial =
2592 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
2593 VarTemplatePartialSpecializationDecl *Partial =
2594 VarTemplatePartialSpecializationDecl::Create(
2595 Context, VarTemplate->getDeclContext(), TemplateKWLoc,
2596 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
2597 Converted.data(), Converted.size(), TemplateArgs);
2598
2599 if (!PrevPartial)
2600 VarTemplate->AddPartialSpecialization(Partial, InsertPos);
2601 Specialization = Partial;
2602
2603 // If we are providing an explicit specialization of a member variable
2604 // template specialization, make a note of that.
2605 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
2606 PrevPartial->setMemberSpecialization();
2607
2608 // Check that all of the template parameters of the variable template
2609 // partial specialization are deducible from the template
2610 // arguments. If not, this variable template partial specialization
2611 // will never be used.
2612 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
2613 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
2614 TemplateParams->getDepth(), DeducibleParams);
2615
2616 if (!DeducibleParams.all()) {
2617 unsigned NumNonDeducible =
2618 DeducibleParams.size() - DeducibleParams.count();
2619 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2620 << /*variable template*/ 1 << (NumNonDeducible > 1)
2621 << SourceRange(TemplateNameLoc, RAngleLoc);
2622 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2623 if (!DeducibleParams[I]) {
2624 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2625 if (Param->getDeclName())
2626 Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2627 << Param->getDeclName();
2628 else
2629 Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2630 << "(anonymous)";
2631 }
2632 }
2633 }
2634 } else {
2635 // Create a new class template specialization declaration node for
2636 // this explicit specialization or friend declaration.
2637 Specialization = VarTemplateSpecializationDecl::Create(
2638 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
2639 VarTemplate, DI->getType(), DI, SC, Converted.data(), Converted.size());
2640 Specialization->setTemplateArgsInfo(TemplateArgs);
2641
2642 if (!PrevDecl)
2643 VarTemplate->AddSpecialization(Specialization, InsertPos);
2644 }
2645
2646 // C++ [temp.expl.spec]p6:
2647 // If a template, a member template or the member of a class template is
2648 // explicitly specialized then that specialization shall be declared
2649 // before the first use of that specialization that would cause an implicit
2650 // instantiation to take place, in every translation unit in which such a
2651 // use occurs; no diagnostic is required.
2652 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
2653 bool Okay = false;
2654 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
2655 // Is there any previous explicit specialization declaration?
2656 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
2657 Okay = true;
2658 break;
2659 }
2660 }
2661
2662 if (!Okay) {
2663 SourceRange Range(TemplateNameLoc, RAngleLoc);
2664 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
2665 << Name << Range;
2666
2667 Diag(PrevDecl->getPointOfInstantiation(),
2668 diag::note_instantiation_required_here)
2669 << (PrevDecl->getTemplateSpecializationKind() !=
2670 TSK_ImplicitInstantiation);
2671 return true;
2672 }
2673 }
2674
2675 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
2676 Specialization->setLexicalDeclContext(CurContext);
2677
2678 // Add the specialization into its lexical context, so that it can
2679 // be seen when iterating through the list of declarations in that
2680 // context. However, specializations are not found by name lookup.
2681 CurContext->addDecl(Specialization);
2682
2683 // Note that this is an explicit specialization.
2684 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2685
2686 if (PrevDecl) {
2687 // Check that this isn't a redefinition of this specialization,
2688 // merging with previous declarations.
2689 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
2690 ForRedeclaration);
2691 PrevSpec.addDecl(PrevDecl);
2692 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
2693 } else if (Specialization->isStaticDataMember() &&
2694 Specialization->isOutOfLine()) {
2695 Specialization->setAccess(VarTemplate->getAccess());
2696 }
2697
2698 // Link instantiations of static data members back to the template from
2699 // which they were instantiated.
2700 if (Specialization->isStaticDataMember())
2701 Specialization->setInstantiationOfStaticDataMember(
2702 VarTemplate->getTemplatedDecl(),
2703 Specialization->getSpecializationKind());
2704
2705 return Specialization;
2706 }
2707
2708 namespace {
2709 /// \brief A partial specialization whose template arguments have matched
2710 /// a given template-id.
2711 struct PartialSpecMatchResult {
2712 VarTemplatePartialSpecializationDecl *Partial;
2713 TemplateArgumentList *Args;
2714 };
2715 }
2716
2717 DeclResult
CheckVarTemplateId(VarTemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation TemplateNameLoc,const TemplateArgumentListInfo & TemplateArgs)2718 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
2719 SourceLocation TemplateNameLoc,
2720 const TemplateArgumentListInfo &TemplateArgs) {
2721 assert(Template && "A variable template id without template?");
2722
2723 // Check that the template argument list is well-formed for this template.
2724 SmallVector<TemplateArgument, 4> Converted;
2725 if (CheckTemplateArgumentList(
2726 Template, TemplateNameLoc,
2727 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
2728 Converted))
2729 return true;
2730
2731 // Find the variable template specialization declaration that
2732 // corresponds to these arguments.
2733 void *InsertPos = nullptr;
2734 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
2735 Converted, InsertPos))
2736 // If we already have a variable template specialization, return it.
2737 return Spec;
2738
2739 // This is the first time we have referenced this variable template
2740 // specialization. Create the canonical declaration and add it to
2741 // the set of specializations, based on the closest partial specialization
2742 // that it represents. That is,
2743 VarDecl *InstantiationPattern = Template->getTemplatedDecl();
2744 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2745 Converted.data(), Converted.size());
2746 TemplateArgumentList *InstantiationArgs = &TemplateArgList;
2747 bool AmbiguousPartialSpec = false;
2748 typedef PartialSpecMatchResult MatchResult;
2749 SmallVector<MatchResult, 4> Matched;
2750 SourceLocation PointOfInstantiation = TemplateNameLoc;
2751 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
2752 /*ForTakingAddress=*/false);
2753
2754 // 1. Attempt to find the closest partial specialization that this
2755 // specializes, if any.
2756 // If any of the template arguments is dependent, then this is probably
2757 // a placeholder for an incomplete declarative context; which must be
2758 // complete by instantiation time. Thus, do not search through the partial
2759 // specializations yet.
2760 // TODO: Unify with InstantiateClassTemplateSpecialization()?
2761 // Perhaps better after unification of DeduceTemplateArguments() and
2762 // getMoreSpecializedPartialSpecialization().
2763 bool InstantiationDependent = false;
2764 if (!TemplateSpecializationType::anyDependentTemplateArguments(
2765 TemplateArgs, InstantiationDependent)) {
2766
2767 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
2768 Template->getPartialSpecializations(PartialSpecs);
2769
2770 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
2771 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
2772 TemplateDeductionInfo Info(FailedCandidates.getLocation());
2773
2774 if (TemplateDeductionResult Result =
2775 DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
2776 // Store the failed-deduction information for use in diagnostics, later.
2777 // TODO: Actually use the failed-deduction info?
2778 FailedCandidates.addCandidate()
2779 .set(Partial, MakeDeductionFailureInfo(Context, Result, Info));
2780 (void)Result;
2781 } else {
2782 Matched.push_back(PartialSpecMatchResult());
2783 Matched.back().Partial = Partial;
2784 Matched.back().Args = Info.take();
2785 }
2786 }
2787
2788 if (Matched.size() >= 1) {
2789 SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
2790 if (Matched.size() == 1) {
2791 // -- If exactly one matching specialization is found, the
2792 // instantiation is generated from that specialization.
2793 // We don't need to do anything for this.
2794 } else {
2795 // -- If more than one matching specialization is found, the
2796 // partial order rules (14.5.4.2) are used to determine
2797 // whether one of the specializations is more specialized
2798 // than the others. If none of the specializations is more
2799 // specialized than all of the other matching
2800 // specializations, then the use of the variable template is
2801 // ambiguous and the program is ill-formed.
2802 for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
2803 PEnd = Matched.end();
2804 P != PEnd; ++P) {
2805 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
2806 PointOfInstantiation) ==
2807 P->Partial)
2808 Best = P;
2809 }
2810
2811 // Determine if the best partial specialization is more specialized than
2812 // the others.
2813 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2814 PEnd = Matched.end();
2815 P != PEnd; ++P) {
2816 if (P != Best && getMoreSpecializedPartialSpecialization(
2817 P->Partial, Best->Partial,
2818 PointOfInstantiation) != Best->Partial) {
2819 AmbiguousPartialSpec = true;
2820 break;
2821 }
2822 }
2823 }
2824
2825 // Instantiate using the best variable template partial specialization.
2826 InstantiationPattern = Best->Partial;
2827 InstantiationArgs = Best->Args;
2828 } else {
2829 // -- If no match is found, the instantiation is generated
2830 // from the primary template.
2831 // InstantiationPattern = Template->getTemplatedDecl();
2832 }
2833 }
2834
2835 // 2. Create the canonical declaration.
2836 // Note that we do not instantiate the variable just yet, since
2837 // instantiation is handled in DoMarkVarDeclReferenced().
2838 // FIXME: LateAttrs et al.?
2839 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
2840 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
2841 Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
2842 if (!Decl)
2843 return true;
2844
2845 if (AmbiguousPartialSpec) {
2846 // Partial ordering did not produce a clear winner. Complain.
2847 Decl->setInvalidDecl();
2848 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
2849 << Decl;
2850
2851 // Print the matching partial specializations.
2852 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2853 PEnd = Matched.end();
2854 P != PEnd; ++P)
2855 Diag(P->Partial->getLocation(), diag::note_partial_spec_match)
2856 << getTemplateArgumentBindingsText(
2857 P->Partial->getTemplateParameters(), *P->Args);
2858 return true;
2859 }
2860
2861 if (VarTemplatePartialSpecializationDecl *D =
2862 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
2863 Decl->setInstantiationOf(D, InstantiationArgs);
2864
2865 assert(Decl && "No variable template specialization?");
2866 return Decl;
2867 }
2868
2869 ExprResult
CheckVarTemplateId(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,VarTemplateDecl * Template,SourceLocation TemplateLoc,const TemplateArgumentListInfo * TemplateArgs)2870 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
2871 const DeclarationNameInfo &NameInfo,
2872 VarTemplateDecl *Template, SourceLocation TemplateLoc,
2873 const TemplateArgumentListInfo *TemplateArgs) {
2874
2875 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
2876 *TemplateArgs);
2877 if (Decl.isInvalid())
2878 return ExprError();
2879
2880 VarDecl *Var = cast<VarDecl>(Decl.get());
2881 if (!Var->getTemplateSpecializationKind())
2882 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
2883 NameInfo.getLoc());
2884
2885 // Build an ordinary singleton decl ref.
2886 return BuildDeclarationNameExpr(SS, NameInfo, Var,
2887 /*FoundD=*/nullptr, TemplateArgs);
2888 }
2889
BuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)2890 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2891 SourceLocation TemplateKWLoc,
2892 LookupResult &R,
2893 bool RequiresADL,
2894 const TemplateArgumentListInfo *TemplateArgs) {
2895 // FIXME: Can we do any checking at this point? I guess we could check the
2896 // template arguments that we have against the template name, if the template
2897 // name refers to a single template. That's not a terribly common case,
2898 // though.
2899 // foo<int> could identify a single function unambiguously
2900 // This approach does NOT work, since f<int>(1);
2901 // gets resolved prior to resorting to overload resolution
2902 // i.e., template<class T> void f(double);
2903 // vs template<class T, class U> void f(U);
2904
2905 // These should be filtered out by our callers.
2906 assert(!R.empty() && "empty lookup results when building templateid");
2907 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2908
2909 // In C++1y, check variable template ids.
2910 bool InstantiationDependent;
2911 if (R.getAsSingle<VarTemplateDecl>() &&
2912 !TemplateSpecializationType::anyDependentTemplateArguments(
2913 *TemplateArgs, InstantiationDependent)) {
2914 return CheckVarTemplateId(SS, R.getLookupNameInfo(),
2915 R.getAsSingle<VarTemplateDecl>(),
2916 TemplateKWLoc, TemplateArgs);
2917 }
2918
2919 // We don't want lookup warnings at this point.
2920 R.suppressDiagnostics();
2921
2922 UnresolvedLookupExpr *ULE
2923 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2924 SS.getWithLocInContext(Context),
2925 TemplateKWLoc,
2926 R.getLookupNameInfo(),
2927 RequiresADL, TemplateArgs,
2928 R.begin(), R.end());
2929
2930 return ULE;
2931 }
2932
2933 // We actually only call this from template instantiation.
2934 ExprResult
BuildQualifiedTemplateIdExpr(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)2935 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2936 SourceLocation TemplateKWLoc,
2937 const DeclarationNameInfo &NameInfo,
2938 const TemplateArgumentListInfo *TemplateArgs) {
2939
2940 assert(TemplateArgs || TemplateKWLoc.isValid());
2941 DeclContext *DC;
2942 if (!(DC = computeDeclContext(SS, false)) ||
2943 DC->isDependentContext() ||
2944 RequireCompleteDeclContext(SS, DC))
2945 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2946
2947 bool MemberOfUnknownSpecialization;
2948 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2949 LookupTemplateName(R, (Scope*)nullptr, SS, QualType(), /*Entering*/ false,
2950 MemberOfUnknownSpecialization);
2951
2952 if (R.isAmbiguous())
2953 return ExprError();
2954
2955 if (R.empty()) {
2956 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
2957 << NameInfo.getName() << SS.getRange();
2958 return ExprError();
2959 }
2960
2961 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
2962 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
2963 << SS.getScopeRep()
2964 << NameInfo.getName().getAsString() << SS.getRange();
2965 Diag(Temp->getLocation(), diag::note_referenced_class_template);
2966 return ExprError();
2967 }
2968
2969 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
2970 }
2971
2972 /// \brief Form a dependent template name.
2973 ///
2974 /// This action forms a dependent template name given the template
2975 /// name and its (presumably dependent) scope specifier. For
2976 /// example, given "MetaFun::template apply", the scope specifier \p
2977 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
2978 /// of the "template" keyword, and "apply" is the \p Name.
ActOnDependentTemplateName(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Name,ParsedType ObjectType,bool EnteringContext,TemplateTy & Result)2979 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
2980 CXXScopeSpec &SS,
2981 SourceLocation TemplateKWLoc,
2982 UnqualifiedId &Name,
2983 ParsedType ObjectType,
2984 bool EnteringContext,
2985 TemplateTy &Result) {
2986 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
2987 Diag(TemplateKWLoc,
2988 getLangOpts().CPlusPlus11 ?
2989 diag::warn_cxx98_compat_template_outside_of_template :
2990 diag::ext_template_outside_of_template)
2991 << FixItHint::CreateRemoval(TemplateKWLoc);
2992
2993 DeclContext *LookupCtx = nullptr;
2994 if (SS.isSet())
2995 LookupCtx = computeDeclContext(SS, EnteringContext);
2996 if (!LookupCtx && ObjectType)
2997 LookupCtx = computeDeclContext(ObjectType.get());
2998 if (LookupCtx) {
2999 // C++0x [temp.names]p5:
3000 // If a name prefixed by the keyword template is not the name of
3001 // a template, the program is ill-formed. [Note: the keyword
3002 // template may not be applied to non-template members of class
3003 // templates. -end note ] [ Note: as is the case with the
3004 // typename prefix, the template prefix is allowed in cases
3005 // where it is not strictly necessary; i.e., when the
3006 // nested-name-specifier or the expression on the left of the ->
3007 // or . is not dependent on a template-parameter, or the use
3008 // does not appear in the scope of a template. -end note]
3009 //
3010 // Note: C++03 was more strict here, because it banned the use of
3011 // the "template" keyword prior to a template-name that was not a
3012 // dependent name. C++ DR468 relaxed this requirement (the
3013 // "template" keyword is now permitted). We follow the C++0x
3014 // rules, even in C++03 mode with a warning, retroactively applying the DR.
3015 bool MemberOfUnknownSpecialization;
3016 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
3017 ObjectType, EnteringContext, Result,
3018 MemberOfUnknownSpecialization);
3019 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
3020 isa<CXXRecordDecl>(LookupCtx) &&
3021 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
3022 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
3023 // This is a dependent template. Handle it below.
3024 } else if (TNK == TNK_Non_template) {
3025 Diag(Name.getLocStart(),
3026 diag::err_template_kw_refers_to_non_template)
3027 << GetNameFromUnqualifiedId(Name).getName()
3028 << Name.getSourceRange()
3029 << TemplateKWLoc;
3030 return TNK_Non_template;
3031 } else {
3032 // We found something; return it.
3033 return TNK;
3034 }
3035 }
3036
3037 NestedNameSpecifier *Qualifier = SS.getScopeRep();
3038
3039 switch (Name.getKind()) {
3040 case UnqualifiedId::IK_Identifier:
3041 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
3042 Name.Identifier));
3043 return TNK_Dependent_template_name;
3044
3045 case UnqualifiedId::IK_OperatorFunctionId:
3046 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
3047 Name.OperatorFunctionId.Operator));
3048 return TNK_Function_template;
3049
3050 case UnqualifiedId::IK_LiteralOperatorId:
3051 llvm_unreachable("literal operator id cannot have a dependent scope");
3052
3053 default:
3054 break;
3055 }
3056
3057 Diag(Name.getLocStart(),
3058 diag::err_template_kw_refers_to_non_template)
3059 << GetNameFromUnqualifiedId(Name).getName()
3060 << Name.getSourceRange()
3061 << TemplateKWLoc;
3062 return TNK_Non_template;
3063 }
3064
CheckTemplateTypeArgument(TemplateTypeParmDecl * Param,TemplateArgumentLoc & AL,SmallVectorImpl<TemplateArgument> & Converted)3065 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
3066 TemplateArgumentLoc &AL,
3067 SmallVectorImpl<TemplateArgument> &Converted) {
3068 const TemplateArgument &Arg = AL.getArgument();
3069 QualType ArgType;
3070 TypeSourceInfo *TSI = nullptr;
3071
3072 // Check template type parameter.
3073 switch(Arg.getKind()) {
3074 case TemplateArgument::Type:
3075 // C++ [temp.arg.type]p1:
3076 // A template-argument for a template-parameter which is a
3077 // type shall be a type-id.
3078 ArgType = Arg.getAsType();
3079 TSI = AL.getTypeSourceInfo();
3080 break;
3081 case TemplateArgument::Template: {
3082 // We have a template type parameter but the template argument
3083 // is a template without any arguments.
3084 SourceRange SR = AL.getSourceRange();
3085 TemplateName Name = Arg.getAsTemplate();
3086 Diag(SR.getBegin(), diag::err_template_missing_args)
3087 << Name << SR;
3088 if (TemplateDecl *Decl = Name.getAsTemplateDecl())
3089 Diag(Decl->getLocation(), diag::note_template_decl_here);
3090
3091 return true;
3092 }
3093 case TemplateArgument::Expression: {
3094 // We have a template type parameter but the template argument is an
3095 // expression; see if maybe it is missing the "typename" keyword.
3096 CXXScopeSpec SS;
3097 DeclarationNameInfo NameInfo;
3098
3099 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
3100 SS.Adopt(ArgExpr->getQualifierLoc());
3101 NameInfo = ArgExpr->getNameInfo();
3102 } else if (DependentScopeDeclRefExpr *ArgExpr =
3103 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
3104 SS.Adopt(ArgExpr->getQualifierLoc());
3105 NameInfo = ArgExpr->getNameInfo();
3106 } else if (CXXDependentScopeMemberExpr *ArgExpr =
3107 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
3108 if (ArgExpr->isImplicitAccess()) {
3109 SS.Adopt(ArgExpr->getQualifierLoc());
3110 NameInfo = ArgExpr->getMemberNameInfo();
3111 }
3112 }
3113
3114 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
3115 LookupResult Result(*this, NameInfo, LookupOrdinaryName);
3116 LookupParsedName(Result, CurScope, &SS);
3117
3118 if (Result.getAsSingle<TypeDecl>() ||
3119 Result.getResultKind() ==
3120 LookupResult::NotFoundInCurrentInstantiation) {
3121 // Suggest that the user add 'typename' before the NNS.
3122 SourceLocation Loc = AL.getSourceRange().getBegin();
3123 Diag(Loc, getLangOpts().MSVCCompat
3124 ? diag::ext_ms_template_type_arg_missing_typename
3125 : diag::err_template_arg_must_be_type_suggest)
3126 << FixItHint::CreateInsertion(Loc, "typename ");
3127 Diag(Param->getLocation(), diag::note_template_param_here);
3128
3129 // Recover by synthesizing a type using the location information that we
3130 // already have.
3131 ArgType =
3132 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
3133 TypeLocBuilder TLB;
3134 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
3135 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
3136 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3137 TL.setNameLoc(NameInfo.getLoc());
3138 TSI = TLB.getTypeSourceInfo(Context, ArgType);
3139
3140 // Overwrite our input TemplateArgumentLoc so that we can recover
3141 // properly.
3142 AL = TemplateArgumentLoc(TemplateArgument(ArgType),
3143 TemplateArgumentLocInfo(TSI));
3144
3145 break;
3146 }
3147 }
3148 // fallthrough
3149 }
3150 default: {
3151 // We have a template type parameter but the template argument
3152 // is not a type.
3153 SourceRange SR = AL.getSourceRange();
3154 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
3155 Diag(Param->getLocation(), diag::note_template_param_here);
3156
3157 return true;
3158 }
3159 }
3160
3161 if (CheckTemplateArgument(Param, TSI))
3162 return true;
3163
3164 // Add the converted template type argument.
3165 ArgType = Context.getCanonicalType(ArgType);
3166
3167 // Objective-C ARC:
3168 // If an explicitly-specified template argument type is a lifetime type
3169 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
3170 if (getLangOpts().ObjCAutoRefCount &&
3171 ArgType->isObjCLifetimeType() &&
3172 !ArgType.getObjCLifetime()) {
3173 Qualifiers Qs;
3174 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
3175 ArgType = Context.getQualifiedType(ArgType, Qs);
3176 }
3177
3178 Converted.push_back(TemplateArgument(ArgType));
3179 return false;
3180 }
3181
3182 /// \brief Substitute template arguments into the default template argument for
3183 /// the given template type parameter.
3184 ///
3185 /// \param SemaRef the semantic analysis object for which we are performing
3186 /// the substitution.
3187 ///
3188 /// \param Template the template that we are synthesizing template arguments
3189 /// for.
3190 ///
3191 /// \param TemplateLoc the location of the template name that started the
3192 /// template-id we are checking.
3193 ///
3194 /// \param RAngleLoc the location of the right angle bracket ('>') that
3195 /// terminates the template-id.
3196 ///
3197 /// \param Param the template template parameter whose default we are
3198 /// substituting into.
3199 ///
3200 /// \param Converted the list of template arguments provided for template
3201 /// parameters that precede \p Param in the template parameter list.
3202 /// \returns the substituted template argument, or NULL if an error occurred.
3203 static TypeSourceInfo *
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTypeParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)3204 SubstDefaultTemplateArgument(Sema &SemaRef,
3205 TemplateDecl *Template,
3206 SourceLocation TemplateLoc,
3207 SourceLocation RAngleLoc,
3208 TemplateTypeParmDecl *Param,
3209 SmallVectorImpl<TemplateArgument> &Converted) {
3210 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
3211
3212 // If the argument type is dependent, instantiate it now based
3213 // on the previously-computed template arguments.
3214 if (ArgType->getType()->isDependentType()) {
3215 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3216 Template, Converted,
3217 SourceRange(TemplateLoc, RAngleLoc));
3218 if (Inst.isInvalid())
3219 return nullptr;
3220
3221 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3222 Converted.data(), Converted.size());
3223
3224 // Only substitute for the innermost template argument list.
3225 MultiLevelTemplateArgumentList TemplateArgLists;
3226 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3227 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3228 TemplateArgLists.addOuterTemplateArguments(None);
3229
3230 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3231 ArgType =
3232 SemaRef.SubstType(ArgType, TemplateArgLists,
3233 Param->getDefaultArgumentLoc(), Param->getDeclName());
3234 }
3235
3236 return ArgType;
3237 }
3238
3239 /// \brief Substitute template arguments into the default template argument for
3240 /// the given non-type template parameter.
3241 ///
3242 /// \param SemaRef the semantic analysis object for which we are performing
3243 /// the substitution.
3244 ///
3245 /// \param Template the template that we are synthesizing template arguments
3246 /// for.
3247 ///
3248 /// \param TemplateLoc the location of the template name that started the
3249 /// template-id we are checking.
3250 ///
3251 /// \param RAngleLoc the location of the right angle bracket ('>') that
3252 /// terminates the template-id.
3253 ///
3254 /// \param Param the non-type template parameter whose default we are
3255 /// substituting into.
3256 ///
3257 /// \param Converted the list of template arguments provided for template
3258 /// parameters that precede \p Param in the template parameter list.
3259 ///
3260 /// \returns the substituted template argument, or NULL if an error occurred.
3261 static ExprResult
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,NonTypeTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)3262 SubstDefaultTemplateArgument(Sema &SemaRef,
3263 TemplateDecl *Template,
3264 SourceLocation TemplateLoc,
3265 SourceLocation RAngleLoc,
3266 NonTypeTemplateParmDecl *Param,
3267 SmallVectorImpl<TemplateArgument> &Converted) {
3268 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3269 Template, Converted,
3270 SourceRange(TemplateLoc, RAngleLoc));
3271 if (Inst.isInvalid())
3272 return ExprError();
3273
3274 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3275 Converted.data(), Converted.size());
3276
3277 // Only substitute for the innermost template argument list.
3278 MultiLevelTemplateArgumentList TemplateArgLists;
3279 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3280 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3281 TemplateArgLists.addOuterTemplateArguments(None);
3282
3283 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3284 EnterExpressionEvaluationContext ConstantEvaluated(SemaRef,
3285 Sema::ConstantEvaluated);
3286 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
3287 }
3288
3289 /// \brief Substitute template arguments into the default template argument for
3290 /// the given template template parameter.
3291 ///
3292 /// \param SemaRef the semantic analysis object for which we are performing
3293 /// the substitution.
3294 ///
3295 /// \param Template the template that we are synthesizing template arguments
3296 /// for.
3297 ///
3298 /// \param TemplateLoc the location of the template name that started the
3299 /// template-id we are checking.
3300 ///
3301 /// \param RAngleLoc the location of the right angle bracket ('>') that
3302 /// terminates the template-id.
3303 ///
3304 /// \param Param the template template parameter whose default we are
3305 /// substituting into.
3306 ///
3307 /// \param Converted the list of template arguments provided for template
3308 /// parameters that precede \p Param in the template parameter list.
3309 ///
3310 /// \param QualifierLoc Will be set to the nested-name-specifier (with
3311 /// source-location information) that precedes the template name.
3312 ///
3313 /// \returns the substituted template argument, or NULL if an error occurred.
3314 static TemplateName
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted,NestedNameSpecifierLoc & QualifierLoc)3315 SubstDefaultTemplateArgument(Sema &SemaRef,
3316 TemplateDecl *Template,
3317 SourceLocation TemplateLoc,
3318 SourceLocation RAngleLoc,
3319 TemplateTemplateParmDecl *Param,
3320 SmallVectorImpl<TemplateArgument> &Converted,
3321 NestedNameSpecifierLoc &QualifierLoc) {
3322 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Template, Converted,
3323 SourceRange(TemplateLoc, RAngleLoc));
3324 if (Inst.isInvalid())
3325 return TemplateName();
3326
3327 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3328 Converted.data(), Converted.size());
3329
3330 // Only substitute for the innermost template argument list.
3331 MultiLevelTemplateArgumentList TemplateArgLists;
3332 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3333 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3334 TemplateArgLists.addOuterTemplateArguments(None);
3335
3336 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3337 // Substitute into the nested-name-specifier first,
3338 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
3339 if (QualifierLoc) {
3340 QualifierLoc =
3341 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
3342 if (!QualifierLoc)
3343 return TemplateName();
3344 }
3345
3346 return SemaRef.SubstTemplateName(
3347 QualifierLoc,
3348 Param->getDefaultArgument().getArgument().getAsTemplate(),
3349 Param->getDefaultArgument().getTemplateNameLoc(),
3350 TemplateArgLists);
3351 }
3352
3353 /// \brief If the given template parameter has a default template
3354 /// argument, substitute into that default template argument and
3355 /// return the corresponding template argument.
3356 TemplateArgumentLoc
SubstDefaultTemplateArgumentIfAvailable(TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,Decl * Param,SmallVectorImpl<TemplateArgument> & Converted,bool & HasDefaultArg)3357 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
3358 SourceLocation TemplateLoc,
3359 SourceLocation RAngleLoc,
3360 Decl *Param,
3361 SmallVectorImpl<TemplateArgument>
3362 &Converted,
3363 bool &HasDefaultArg) {
3364 HasDefaultArg = false;
3365
3366 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
3367 if (!hasVisibleDefaultArgument(TypeParm))
3368 return TemplateArgumentLoc();
3369
3370 HasDefaultArg = true;
3371 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
3372 TemplateLoc,
3373 RAngleLoc,
3374 TypeParm,
3375 Converted);
3376 if (DI)
3377 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
3378
3379 return TemplateArgumentLoc();
3380 }
3381
3382 if (NonTypeTemplateParmDecl *NonTypeParm
3383 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3384 if (!hasVisibleDefaultArgument(NonTypeParm))
3385 return TemplateArgumentLoc();
3386
3387 HasDefaultArg = true;
3388 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
3389 TemplateLoc,
3390 RAngleLoc,
3391 NonTypeParm,
3392 Converted);
3393 if (Arg.isInvalid())
3394 return TemplateArgumentLoc();
3395
3396 Expr *ArgE = Arg.getAs<Expr>();
3397 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
3398 }
3399
3400 TemplateTemplateParmDecl *TempTempParm
3401 = cast<TemplateTemplateParmDecl>(Param);
3402 if (!hasVisibleDefaultArgument(TempTempParm))
3403 return TemplateArgumentLoc();
3404
3405 HasDefaultArg = true;
3406 NestedNameSpecifierLoc QualifierLoc;
3407 TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
3408 TemplateLoc,
3409 RAngleLoc,
3410 TempTempParm,
3411 Converted,
3412 QualifierLoc);
3413 if (TName.isNull())
3414 return TemplateArgumentLoc();
3415
3416 return TemplateArgumentLoc(TemplateArgument(TName),
3417 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
3418 TempTempParm->getDefaultArgument().getTemplateNameLoc());
3419 }
3420
3421 /// \brief Check that the given template argument corresponds to the given
3422 /// template parameter.
3423 ///
3424 /// \param Param The template parameter against which the argument will be
3425 /// checked.
3426 ///
3427 /// \param Arg The template argument, which may be updated due to conversions.
3428 ///
3429 /// \param Template The template in which the template argument resides.
3430 ///
3431 /// \param TemplateLoc The location of the template name for the template
3432 /// whose argument list we're matching.
3433 ///
3434 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
3435 /// the template argument list.
3436 ///
3437 /// \param ArgumentPackIndex The index into the argument pack where this
3438 /// argument will be placed. Only valid if the parameter is a parameter pack.
3439 ///
3440 /// \param Converted The checked, converted argument will be added to the
3441 /// end of this small vector.
3442 ///
3443 /// \param CTAK Describes how we arrived at this particular template argument:
3444 /// explicitly written, deduced, etc.
3445 ///
3446 /// \returns true on error, false otherwise.
CheckTemplateArgument(NamedDecl * Param,TemplateArgumentLoc & Arg,NamedDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,unsigned ArgumentPackIndex,SmallVectorImpl<TemplateArgument> & Converted,CheckTemplateArgumentKind CTAK)3447 bool Sema::CheckTemplateArgument(NamedDecl *Param,
3448 TemplateArgumentLoc &Arg,
3449 NamedDecl *Template,
3450 SourceLocation TemplateLoc,
3451 SourceLocation RAngleLoc,
3452 unsigned ArgumentPackIndex,
3453 SmallVectorImpl<TemplateArgument> &Converted,
3454 CheckTemplateArgumentKind CTAK) {
3455 // Check template type parameters.
3456 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
3457 return CheckTemplateTypeArgument(TTP, Arg, Converted);
3458
3459 // Check non-type template parameters.
3460 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3461 // Do substitution on the type of the non-type template parameter
3462 // with the template arguments we've seen thus far. But if the
3463 // template has a dependent context then we cannot substitute yet.
3464 QualType NTTPType = NTTP->getType();
3465 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
3466 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
3467
3468 if (NTTPType->isDependentType() &&
3469 !isa<TemplateTemplateParmDecl>(Template) &&
3470 !Template->getDeclContext()->isDependentContext()) {
3471 // Do substitution on the type of the non-type template parameter.
3472 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3473 NTTP, Converted,
3474 SourceRange(TemplateLoc, RAngleLoc));
3475 if (Inst.isInvalid())
3476 return true;
3477
3478 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3479 Converted.data(), Converted.size());
3480 NTTPType = SubstType(NTTPType,
3481 MultiLevelTemplateArgumentList(TemplateArgs),
3482 NTTP->getLocation(),
3483 NTTP->getDeclName());
3484 // If that worked, check the non-type template parameter type
3485 // for validity.
3486 if (!NTTPType.isNull())
3487 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
3488 NTTP->getLocation());
3489 if (NTTPType.isNull())
3490 return true;
3491 }
3492
3493 switch (Arg.getArgument().getKind()) {
3494 case TemplateArgument::Null:
3495 llvm_unreachable("Should never see a NULL template argument here");
3496
3497 case TemplateArgument::Expression: {
3498 TemplateArgument Result;
3499 ExprResult Res =
3500 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
3501 Result, CTAK);
3502 if (Res.isInvalid())
3503 return true;
3504
3505 // If the resulting expression is new, then use it in place of the
3506 // old expression in the template argument.
3507 if (Res.get() != Arg.getArgument().getAsExpr()) {
3508 TemplateArgument TA(Res.get());
3509 Arg = TemplateArgumentLoc(TA, Res.get());
3510 }
3511
3512 Converted.push_back(Result);
3513 break;
3514 }
3515
3516 case TemplateArgument::Declaration:
3517 case TemplateArgument::Integral:
3518 case TemplateArgument::NullPtr:
3519 // We've already checked this template argument, so just copy
3520 // it to the list of converted arguments.
3521 Converted.push_back(Arg.getArgument());
3522 break;
3523
3524 case TemplateArgument::Template:
3525 case TemplateArgument::TemplateExpansion:
3526 // We were given a template template argument. It may not be ill-formed;
3527 // see below.
3528 if (DependentTemplateName *DTN
3529 = Arg.getArgument().getAsTemplateOrTemplatePattern()
3530 .getAsDependentTemplateName()) {
3531 // We have a template argument such as \c T::template X, which we
3532 // parsed as a template template argument. However, since we now
3533 // know that we need a non-type template argument, convert this
3534 // template name into an expression.
3535
3536 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
3537 Arg.getTemplateNameLoc());
3538
3539 CXXScopeSpec SS;
3540 SS.Adopt(Arg.getTemplateQualifierLoc());
3541 // FIXME: the template-template arg was a DependentTemplateName,
3542 // so it was provided with a template keyword. However, its source
3543 // location is not stored in the template argument structure.
3544 SourceLocation TemplateKWLoc;
3545 ExprResult E = DependentScopeDeclRefExpr::Create(
3546 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
3547 nullptr);
3548
3549 // If we parsed the template argument as a pack expansion, create a
3550 // pack expansion expression.
3551 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
3552 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
3553 if (E.isInvalid())
3554 return true;
3555 }
3556
3557 TemplateArgument Result;
3558 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
3559 if (E.isInvalid())
3560 return true;
3561
3562 Converted.push_back(Result);
3563 break;
3564 }
3565
3566 // We have a template argument that actually does refer to a class
3567 // template, alias template, or template template parameter, and
3568 // therefore cannot be a non-type template argument.
3569 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
3570 << Arg.getSourceRange();
3571
3572 Diag(Param->getLocation(), diag::note_template_param_here);
3573 return true;
3574
3575 case TemplateArgument::Type: {
3576 // We have a non-type template parameter but the template
3577 // argument is a type.
3578
3579 // C++ [temp.arg]p2:
3580 // In a template-argument, an ambiguity between a type-id and
3581 // an expression is resolved to a type-id, regardless of the
3582 // form of the corresponding template-parameter.
3583 //
3584 // We warn specifically about this case, since it can be rather
3585 // confusing for users.
3586 QualType T = Arg.getArgument().getAsType();
3587 SourceRange SR = Arg.getSourceRange();
3588 if (T->isFunctionType())
3589 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
3590 else
3591 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
3592 Diag(Param->getLocation(), diag::note_template_param_here);
3593 return true;
3594 }
3595
3596 case TemplateArgument::Pack:
3597 llvm_unreachable("Caller must expand template argument packs");
3598 }
3599
3600 return false;
3601 }
3602
3603
3604 // Check template template parameters.
3605 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
3606
3607 // Substitute into the template parameter list of the template
3608 // template parameter, since previously-supplied template arguments
3609 // may appear within the template template parameter.
3610 {
3611 // Set up a template instantiation context.
3612 LocalInstantiationScope Scope(*this);
3613 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3614 TempParm, Converted,
3615 SourceRange(TemplateLoc, RAngleLoc));
3616 if (Inst.isInvalid())
3617 return true;
3618
3619 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3620 Converted.data(), Converted.size());
3621 TempParm = cast_or_null<TemplateTemplateParmDecl>(
3622 SubstDecl(TempParm, CurContext,
3623 MultiLevelTemplateArgumentList(TemplateArgs)));
3624 if (!TempParm)
3625 return true;
3626 }
3627
3628 switch (Arg.getArgument().getKind()) {
3629 case TemplateArgument::Null:
3630 llvm_unreachable("Should never see a NULL template argument here");
3631
3632 case TemplateArgument::Template:
3633 case TemplateArgument::TemplateExpansion:
3634 if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
3635 return true;
3636
3637 Converted.push_back(Arg.getArgument());
3638 break;
3639
3640 case TemplateArgument::Expression:
3641 case TemplateArgument::Type:
3642 // We have a template template parameter but the template
3643 // argument does not refer to a template.
3644 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
3645 << getLangOpts().CPlusPlus11;
3646 return true;
3647
3648 case TemplateArgument::Declaration:
3649 llvm_unreachable("Declaration argument with template template parameter");
3650 case TemplateArgument::Integral:
3651 llvm_unreachable("Integral argument with template template parameter");
3652 case TemplateArgument::NullPtr:
3653 llvm_unreachable("Null pointer argument with template template parameter");
3654
3655 case TemplateArgument::Pack:
3656 llvm_unreachable("Caller must expand template argument packs");
3657 }
3658
3659 return false;
3660 }
3661
3662 /// \brief Diagnose an arity mismatch in the
diagnoseArityMismatch(Sema & S,TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)3663 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
3664 SourceLocation TemplateLoc,
3665 TemplateArgumentListInfo &TemplateArgs) {
3666 TemplateParameterList *Params = Template->getTemplateParameters();
3667 unsigned NumParams = Params->size();
3668 unsigned NumArgs = TemplateArgs.size();
3669
3670 SourceRange Range;
3671 if (NumArgs > NumParams)
3672 Range = SourceRange(TemplateArgs[NumParams].getLocation(),
3673 TemplateArgs.getRAngleLoc());
3674 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3675 << (NumArgs > NumParams)
3676 << (isa<ClassTemplateDecl>(Template)? 0 :
3677 isa<FunctionTemplateDecl>(Template)? 1 :
3678 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3679 << Template << Range;
3680 S.Diag(Template->getLocation(), diag::note_template_decl_here)
3681 << Params->getSourceRange();
3682 return true;
3683 }
3684
3685 /// \brief Check whether the template parameter is a pack expansion, and if so,
3686 /// determine the number of parameters produced by that expansion. For instance:
3687 ///
3688 /// \code
3689 /// template<typename ...Ts> struct A {
3690 /// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
3691 /// };
3692 /// \endcode
3693 ///
3694 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
3695 /// is not a pack expansion, so returns an empty Optional.
getExpandedPackSize(NamedDecl * Param)3696 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
3697 if (NonTypeTemplateParmDecl *NTTP
3698 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3699 if (NTTP->isExpandedParameterPack())
3700 return NTTP->getNumExpansionTypes();
3701 }
3702
3703 if (TemplateTemplateParmDecl *TTP
3704 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3705 if (TTP->isExpandedParameterPack())
3706 return TTP->getNumExpansionTemplateParameters();
3707 }
3708
3709 return None;
3710 }
3711
3712 /// Diagnose a missing template argument.
3713 template<typename TemplateParmDecl>
diagnoseMissingArgument(Sema & S,SourceLocation Loc,TemplateDecl * TD,const TemplateParmDecl * D,TemplateArgumentListInfo & Args)3714 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
3715 TemplateDecl *TD,
3716 const TemplateParmDecl *D,
3717 TemplateArgumentListInfo &Args) {
3718 // Dig out the most recent declaration of the template parameter; there may be
3719 // declarations of the template that are more recent than TD.
3720 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
3721 ->getTemplateParameters()
3722 ->getParam(D->getIndex()));
3723
3724 // If there's a default argument that's not visible, diagnose that we're
3725 // missing a module import.
3726 llvm::SmallVector<Module*, 8> Modules;
3727 if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) {
3728 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
3729 D->getDefaultArgumentLoc(), Modules,
3730 Sema::MissingImportKind::DefaultArgument,
3731 /*Recover*/ true);
3732 return true;
3733 }
3734
3735 // FIXME: If there's a more recent default argument that *is* visible,
3736 // diagnose that it was declared too late.
3737
3738 return diagnoseArityMismatch(S, TD, Loc, Args);
3739 }
3740
3741 /// \brief Check that the given template argument list is well-formed
3742 /// for specializing the given template.
CheckTemplateArgumentList(TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs,bool PartialTemplateArgs,SmallVectorImpl<TemplateArgument> & Converted)3743 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
3744 SourceLocation TemplateLoc,
3745 TemplateArgumentListInfo &TemplateArgs,
3746 bool PartialTemplateArgs,
3747 SmallVectorImpl<TemplateArgument> &Converted) {
3748 // Make a copy of the template arguments for processing. Only make the
3749 // changes at the end when successful in matching the arguments to the
3750 // template.
3751 TemplateArgumentListInfo NewArgs = TemplateArgs;
3752
3753 TemplateParameterList *Params = Template->getTemplateParameters();
3754
3755 SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
3756
3757 // C++ [temp.arg]p1:
3758 // [...] The type and form of each template-argument specified in
3759 // a template-id shall match the type and form specified for the
3760 // corresponding parameter declared by the template in its
3761 // template-parameter-list.
3762 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3763 SmallVector<TemplateArgument, 2> ArgumentPack;
3764 unsigned ArgIdx = 0, NumArgs = NewArgs.size();
3765 LocalInstantiationScope InstScope(*this, true);
3766 for (TemplateParameterList::iterator Param = Params->begin(),
3767 ParamEnd = Params->end();
3768 Param != ParamEnd; /* increment in loop */) {
3769 // If we have an expanded parameter pack, make sure we don't have too
3770 // many arguments.
3771 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
3772 if (*Expansions == ArgumentPack.size()) {
3773 // We're done with this parameter pack. Pack up its arguments and add
3774 // them to the list.
3775 Converted.push_back(
3776 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
3777 ArgumentPack.clear();
3778
3779 // This argument is assigned to the next parameter.
3780 ++Param;
3781 continue;
3782 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
3783 // Not enough arguments for this parameter pack.
3784 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3785 << false
3786 << (isa<ClassTemplateDecl>(Template)? 0 :
3787 isa<FunctionTemplateDecl>(Template)? 1 :
3788 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3789 << Template;
3790 Diag(Template->getLocation(), diag::note_template_decl_here)
3791 << Params->getSourceRange();
3792 return true;
3793 }
3794 }
3795
3796 if (ArgIdx < NumArgs) {
3797 // Check the template argument we were given.
3798 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
3799 TemplateLoc, RAngleLoc,
3800 ArgumentPack.size(), Converted))
3801 return true;
3802
3803 bool PackExpansionIntoNonPack =
3804 NewArgs[ArgIdx].getArgument().isPackExpansion() &&
3805 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
3806 if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) {
3807 // Core issue 1430: we have a pack expansion as an argument to an
3808 // alias template, and it's not part of a parameter pack. This
3809 // can't be canonicalized, so reject it now.
3810 Diag(NewArgs[ArgIdx].getLocation(),
3811 diag::err_alias_template_expansion_into_fixed_list)
3812 << NewArgs[ArgIdx].getSourceRange();
3813 Diag((*Param)->getLocation(), diag::note_template_param_here);
3814 return true;
3815 }
3816
3817 // We're now done with this argument.
3818 ++ArgIdx;
3819
3820 if ((*Param)->isTemplateParameterPack()) {
3821 // The template parameter was a template parameter pack, so take the
3822 // deduced argument and place it on the argument pack. Note that we
3823 // stay on the same template parameter so that we can deduce more
3824 // arguments.
3825 ArgumentPack.push_back(Converted.pop_back_val());
3826 } else {
3827 // Move to the next template parameter.
3828 ++Param;
3829 }
3830
3831 // If we just saw a pack expansion into a non-pack, then directly convert
3832 // the remaining arguments, because we don't know what parameters they'll
3833 // match up with.
3834 if (PackExpansionIntoNonPack) {
3835 if (!ArgumentPack.empty()) {
3836 // If we were part way through filling in an expanded parameter pack,
3837 // fall back to just producing individual arguments.
3838 Converted.insert(Converted.end(),
3839 ArgumentPack.begin(), ArgumentPack.end());
3840 ArgumentPack.clear();
3841 }
3842
3843 while (ArgIdx < NumArgs) {
3844 Converted.push_back(NewArgs[ArgIdx].getArgument());
3845 ++ArgIdx;
3846 }
3847
3848 return false;
3849 }
3850
3851 continue;
3852 }
3853
3854 // If we're checking a partial template argument list, we're done.
3855 if (PartialTemplateArgs) {
3856 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3857 Converted.push_back(
3858 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
3859
3860 return false;
3861 }
3862
3863 // If we have a template parameter pack with no more corresponding
3864 // arguments, just break out now and we'll fill in the argument pack below.
3865 if ((*Param)->isTemplateParameterPack()) {
3866 assert(!getExpandedPackSize(*Param) &&
3867 "Should have dealt with this already");
3868
3869 // A non-expanded parameter pack before the end of the parameter list
3870 // only occurs for an ill-formed template parameter list, unless we've
3871 // got a partial argument list for a function template, so just bail out.
3872 if (Param + 1 != ParamEnd)
3873 return true;
3874
3875 Converted.push_back(
3876 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
3877 ArgumentPack.clear();
3878
3879 ++Param;
3880 continue;
3881 }
3882
3883 // Check whether we have a default argument.
3884 TemplateArgumentLoc Arg;
3885
3886 // Retrieve the default template argument from the template
3887 // parameter. For each kind of template parameter, we substitute the
3888 // template arguments provided thus far and any "outer" template arguments
3889 // (when the template parameter was part of a nested template) into
3890 // the default argument.
3891 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3892 if (!hasVisibleDefaultArgument(TTP))
3893 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
3894 NewArgs);
3895
3896 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3897 Template,
3898 TemplateLoc,
3899 RAngleLoc,
3900 TTP,
3901 Converted);
3902 if (!ArgType)
3903 return true;
3904
3905 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3906 ArgType);
3907 } else if (NonTypeTemplateParmDecl *NTTP
3908 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3909 if (!hasVisibleDefaultArgument(NTTP))
3910 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
3911 NewArgs);
3912
3913 ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3914 TemplateLoc,
3915 RAngleLoc,
3916 NTTP,
3917 Converted);
3918 if (E.isInvalid())
3919 return true;
3920
3921 Expr *Ex = E.getAs<Expr>();
3922 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3923 } else {
3924 TemplateTemplateParmDecl *TempParm
3925 = cast<TemplateTemplateParmDecl>(*Param);
3926
3927 if (!hasVisibleDefaultArgument(TempParm))
3928 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
3929 NewArgs);
3930
3931 NestedNameSpecifierLoc QualifierLoc;
3932 TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3933 TemplateLoc,
3934 RAngleLoc,
3935 TempParm,
3936 Converted,
3937 QualifierLoc);
3938 if (Name.isNull())
3939 return true;
3940
3941 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3942 TempParm->getDefaultArgument().getTemplateNameLoc());
3943 }
3944
3945 // Introduce an instantiation record that describes where we are using
3946 // the default template argument.
3947 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
3948 SourceRange(TemplateLoc, RAngleLoc));
3949 if (Inst.isInvalid())
3950 return true;
3951
3952 // Check the default template argument.
3953 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3954 RAngleLoc, 0, Converted))
3955 return true;
3956
3957 // Core issue 150 (assumed resolution): if this is a template template
3958 // parameter, keep track of the default template arguments from the
3959 // template definition.
3960 if (isTemplateTemplateParameter)
3961 NewArgs.addArgument(Arg);
3962
3963 // Move to the next template parameter and argument.
3964 ++Param;
3965 ++ArgIdx;
3966 }
3967
3968 // If we're performing a partial argument substitution, allow any trailing
3969 // pack expansions; they might be empty. This can happen even if
3970 // PartialTemplateArgs is false (the list of arguments is complete but
3971 // still dependent).
3972 if (ArgIdx < NumArgs && CurrentInstantiationScope &&
3973 CurrentInstantiationScope->getPartiallySubstitutedPack()) {
3974 while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
3975 Converted.push_back(NewArgs[ArgIdx++].getArgument());
3976 }
3977
3978 // If we have any leftover arguments, then there were too many arguments.
3979 // Complain and fail.
3980 if (ArgIdx < NumArgs)
3981 return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
3982
3983 // No problems found with the new argument list, propagate changes back
3984 // to caller.
3985 TemplateArgs = std::move(NewArgs);
3986
3987 return false;
3988 }
3989
3990 namespace {
3991 class UnnamedLocalNoLinkageFinder
3992 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
3993 {
3994 Sema &S;
3995 SourceRange SR;
3996
3997 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
3998
3999 public:
UnnamedLocalNoLinkageFinder(Sema & S,SourceRange SR)4000 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
4001
Visit(QualType T)4002 bool Visit(QualType T) {
4003 return inherited::Visit(T.getTypePtr());
4004 }
4005
4006 #define TYPE(Class, Parent) \
4007 bool Visit##Class##Type(const Class##Type *);
4008 #define ABSTRACT_TYPE(Class, Parent) \
4009 bool Visit##Class##Type(const Class##Type *) { return false; }
4010 #define NON_CANONICAL_TYPE(Class, Parent) \
4011 bool Visit##Class##Type(const Class##Type *) { return false; }
4012 #include "clang/AST/TypeNodes.def"
4013
4014 bool VisitTagDecl(const TagDecl *Tag);
4015 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
4016 };
4017 }
4018
VisitBuiltinType(const BuiltinType *)4019 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
4020 return false;
4021 }
4022
VisitComplexType(const ComplexType * T)4023 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
4024 return Visit(T->getElementType());
4025 }
4026
VisitPointerType(const PointerType * T)4027 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
4028 return Visit(T->getPointeeType());
4029 }
4030
VisitBlockPointerType(const BlockPointerType * T)4031 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
4032 const BlockPointerType* T) {
4033 return Visit(T->getPointeeType());
4034 }
4035
VisitLValueReferenceType(const LValueReferenceType * T)4036 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
4037 const LValueReferenceType* T) {
4038 return Visit(T->getPointeeType());
4039 }
4040
VisitRValueReferenceType(const RValueReferenceType * T)4041 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
4042 const RValueReferenceType* T) {
4043 return Visit(T->getPointeeType());
4044 }
4045
VisitMemberPointerType(const MemberPointerType * T)4046 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
4047 const MemberPointerType* T) {
4048 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
4049 }
4050
VisitConstantArrayType(const ConstantArrayType * T)4051 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
4052 const ConstantArrayType* T) {
4053 return Visit(T->getElementType());
4054 }
4055
VisitIncompleteArrayType(const IncompleteArrayType * T)4056 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
4057 const IncompleteArrayType* T) {
4058 return Visit(T->getElementType());
4059 }
4060
VisitVariableArrayType(const VariableArrayType * T)4061 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
4062 const VariableArrayType* T) {
4063 return Visit(T->getElementType());
4064 }
4065
VisitDependentSizedArrayType(const DependentSizedArrayType * T)4066 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
4067 const DependentSizedArrayType* T) {
4068 return Visit(T->getElementType());
4069 }
4070
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)4071 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
4072 const DependentSizedExtVectorType* T) {
4073 return Visit(T->getElementType());
4074 }
4075
VisitVectorType(const VectorType * T)4076 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
4077 return Visit(T->getElementType());
4078 }
4079
VisitExtVectorType(const ExtVectorType * T)4080 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
4081 return Visit(T->getElementType());
4082 }
4083
VisitFunctionProtoType(const FunctionProtoType * T)4084 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
4085 const FunctionProtoType* T) {
4086 for (const auto &A : T->param_types()) {
4087 if (Visit(A))
4088 return true;
4089 }
4090
4091 return Visit(T->getReturnType());
4092 }
4093
VisitFunctionNoProtoType(const FunctionNoProtoType * T)4094 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
4095 const FunctionNoProtoType* T) {
4096 return Visit(T->getReturnType());
4097 }
4098
VisitUnresolvedUsingType(const UnresolvedUsingType *)4099 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
4100 const UnresolvedUsingType*) {
4101 return false;
4102 }
4103
VisitTypeOfExprType(const TypeOfExprType *)4104 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
4105 return false;
4106 }
4107
VisitTypeOfType(const TypeOfType * T)4108 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
4109 return Visit(T->getUnderlyingType());
4110 }
4111
VisitDecltypeType(const DecltypeType *)4112 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
4113 return false;
4114 }
4115
VisitUnaryTransformType(const UnaryTransformType *)4116 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
4117 const UnaryTransformType*) {
4118 return false;
4119 }
4120
VisitAutoType(const AutoType * T)4121 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
4122 return Visit(T->getDeducedType());
4123 }
4124
VisitRecordType(const RecordType * T)4125 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
4126 return VisitTagDecl(T->getDecl());
4127 }
4128
VisitEnumType(const EnumType * T)4129 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
4130 return VisitTagDecl(T->getDecl());
4131 }
4132
VisitTemplateTypeParmType(const TemplateTypeParmType *)4133 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
4134 const TemplateTypeParmType*) {
4135 return false;
4136 }
4137
VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *)4138 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
4139 const SubstTemplateTypeParmPackType *) {
4140 return false;
4141 }
4142
VisitTemplateSpecializationType(const TemplateSpecializationType *)4143 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
4144 const TemplateSpecializationType*) {
4145 return false;
4146 }
4147
VisitInjectedClassNameType(const InjectedClassNameType * T)4148 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
4149 const InjectedClassNameType* T) {
4150 return VisitTagDecl(T->getDecl());
4151 }
4152
VisitDependentNameType(const DependentNameType * T)4153 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
4154 const DependentNameType* T) {
4155 return VisitNestedNameSpecifier(T->getQualifier());
4156 }
4157
VisitDependentTemplateSpecializationType(const DependentTemplateSpecializationType * T)4158 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
4159 const DependentTemplateSpecializationType* T) {
4160 return VisitNestedNameSpecifier(T->getQualifier());
4161 }
4162
VisitPackExpansionType(const PackExpansionType * T)4163 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
4164 const PackExpansionType* T) {
4165 return Visit(T->getPattern());
4166 }
4167
VisitObjCObjectType(const ObjCObjectType *)4168 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
4169 return false;
4170 }
4171
VisitObjCInterfaceType(const ObjCInterfaceType *)4172 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
4173 const ObjCInterfaceType *) {
4174 return false;
4175 }
4176
VisitObjCObjectPointerType(const ObjCObjectPointerType *)4177 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
4178 const ObjCObjectPointerType *) {
4179 return false;
4180 }
4181
VisitAtomicType(const AtomicType * T)4182 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
4183 return Visit(T->getValueType());
4184 }
4185
VisitTagDecl(const TagDecl * Tag)4186 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
4187 if (Tag->getDeclContext()->isFunctionOrMethod()) {
4188 S.Diag(SR.getBegin(),
4189 S.getLangOpts().CPlusPlus11 ?
4190 diag::warn_cxx98_compat_template_arg_local_type :
4191 diag::ext_template_arg_local_type)
4192 << S.Context.getTypeDeclType(Tag) << SR;
4193 return true;
4194 }
4195
4196 if (!Tag->hasNameForLinkage()) {
4197 S.Diag(SR.getBegin(),
4198 S.getLangOpts().CPlusPlus11 ?
4199 diag::warn_cxx98_compat_template_arg_unnamed_type :
4200 diag::ext_template_arg_unnamed_type) << SR;
4201 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
4202 return true;
4203 }
4204
4205 return false;
4206 }
4207
VisitNestedNameSpecifier(NestedNameSpecifier * NNS)4208 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
4209 NestedNameSpecifier *NNS) {
4210 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
4211 return true;
4212
4213 switch (NNS->getKind()) {
4214 case NestedNameSpecifier::Identifier:
4215 case NestedNameSpecifier::Namespace:
4216 case NestedNameSpecifier::NamespaceAlias:
4217 case NestedNameSpecifier::Global:
4218 case NestedNameSpecifier::Super:
4219 return false;
4220
4221 case NestedNameSpecifier::TypeSpec:
4222 case NestedNameSpecifier::TypeSpecWithTemplate:
4223 return Visit(QualType(NNS->getAsType(), 0));
4224 }
4225 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4226 }
4227
4228
4229 /// \brief Check a template argument against its corresponding
4230 /// template type parameter.
4231 ///
4232 /// This routine implements the semantics of C++ [temp.arg.type]. It
4233 /// returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTypeParmDecl * Param,TypeSourceInfo * ArgInfo)4234 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
4235 TypeSourceInfo *ArgInfo) {
4236 assert(ArgInfo && "invalid TypeSourceInfo");
4237 QualType Arg = ArgInfo->getType();
4238 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
4239
4240 if (Arg->isVariablyModifiedType()) {
4241 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
4242 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
4243 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
4244 }
4245
4246 // C++03 [temp.arg.type]p2:
4247 // A local type, a type with no linkage, an unnamed type or a type
4248 // compounded from any of these types shall not be used as a
4249 // template-argument for a template type-parameter.
4250 //
4251 // C++11 allows these, and even in C++03 we allow them as an extension with
4252 // a warning.
4253 bool NeedsCheck;
4254 if (LangOpts.CPlusPlus11)
4255 NeedsCheck =
4256 !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_unnamed_type,
4257 SR.getBegin()) ||
4258 !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_local_type,
4259 SR.getBegin());
4260 else
4261 NeedsCheck = Arg->hasUnnamedOrLocalType();
4262
4263 if (NeedsCheck) {
4264 UnnamedLocalNoLinkageFinder Finder(*this, SR);
4265 (void)Finder.Visit(Context.getCanonicalType(Arg));
4266 }
4267
4268 return false;
4269 }
4270
4271 enum NullPointerValueKind {
4272 NPV_NotNullPointer,
4273 NPV_NullPointer,
4274 NPV_Error
4275 };
4276
4277 /// \brief Determine whether the given template argument is a null pointer
4278 /// value of the appropriate type.
4279 static NullPointerValueKind
isNullPointerValueTemplateArgument(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg)4280 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
4281 QualType ParamType, Expr *Arg) {
4282 if (Arg->isValueDependent() || Arg->isTypeDependent())
4283 return NPV_NotNullPointer;
4284
4285 if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
4286 llvm_unreachable(
4287 "Incomplete parameter type in isNullPointerValueTemplateArgument!");
4288
4289 if (!S.getLangOpts().CPlusPlus11)
4290 return NPV_NotNullPointer;
4291
4292 // Determine whether we have a constant expression.
4293 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
4294 if (ArgRV.isInvalid())
4295 return NPV_Error;
4296 Arg = ArgRV.get();
4297
4298 Expr::EvalResult EvalResult;
4299 SmallVector<PartialDiagnosticAt, 8> Notes;
4300 EvalResult.Diag = &Notes;
4301 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
4302 EvalResult.HasSideEffects) {
4303 SourceLocation DiagLoc = Arg->getExprLoc();
4304
4305 // If our only note is the usual "invalid subexpression" note, just point
4306 // the caret at its location rather than producing an essentially
4307 // redundant note.
4308 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
4309 diag::note_invalid_subexpr_in_const_expr) {
4310 DiagLoc = Notes[0].first;
4311 Notes.clear();
4312 }
4313
4314 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
4315 << Arg->getType() << Arg->getSourceRange();
4316 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
4317 S.Diag(Notes[I].first, Notes[I].second);
4318
4319 S.Diag(Param->getLocation(), diag::note_template_param_here);
4320 return NPV_Error;
4321 }
4322
4323 // C++11 [temp.arg.nontype]p1:
4324 // - an address constant expression of type std::nullptr_t
4325 if (Arg->getType()->isNullPtrType())
4326 return NPV_NullPointer;
4327
4328 // - a constant expression that evaluates to a null pointer value (4.10); or
4329 // - a constant expression that evaluates to a null member pointer value
4330 // (4.11); or
4331 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
4332 (EvalResult.Val.isMemberPointer() &&
4333 !EvalResult.Val.getMemberPointerDecl())) {
4334 // If our expression has an appropriate type, we've succeeded.
4335 bool ObjCLifetimeConversion;
4336 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
4337 S.IsQualificationConversion(Arg->getType(), ParamType, false,
4338 ObjCLifetimeConversion))
4339 return NPV_NullPointer;
4340
4341 // The types didn't match, but we know we got a null pointer; complain,
4342 // then recover as if the types were correct.
4343 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
4344 << Arg->getType() << ParamType << Arg->getSourceRange();
4345 S.Diag(Param->getLocation(), diag::note_template_param_here);
4346 return NPV_NullPointer;
4347 }
4348
4349 // If we don't have a null pointer value, but we do have a NULL pointer
4350 // constant, suggest a cast to the appropriate type.
4351 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
4352 std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
4353 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
4354 << ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
4355 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()),
4356 ")");
4357 S.Diag(Param->getLocation(), diag::note_template_param_here);
4358 return NPV_NullPointer;
4359 }
4360
4361 // FIXME: If we ever want to support general, address-constant expressions
4362 // as non-type template arguments, we should return the ExprResult here to
4363 // be interpreted by the caller.
4364 return NPV_NotNullPointer;
4365 }
4366
4367 /// \brief Checks whether the given template argument is compatible with its
4368 /// template parameter.
CheckTemplateArgumentIsCompatibleWithParameter(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,Expr * Arg,QualType ArgType)4369 static bool CheckTemplateArgumentIsCompatibleWithParameter(
4370 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
4371 Expr *Arg, QualType ArgType) {
4372 bool ObjCLifetimeConversion;
4373 if (ParamType->isPointerType() &&
4374 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
4375 S.IsQualificationConversion(ArgType, ParamType, false,
4376 ObjCLifetimeConversion)) {
4377 // For pointer-to-object types, qualification conversions are
4378 // permitted.
4379 } else {
4380 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
4381 if (!ParamRef->getPointeeType()->isFunctionType()) {
4382 // C++ [temp.arg.nontype]p5b3:
4383 // For a non-type template-parameter of type reference to
4384 // object, no conversions apply. The type referred to by the
4385 // reference may be more cv-qualified than the (otherwise
4386 // identical) type of the template- argument. The
4387 // template-parameter is bound directly to the
4388 // template-argument, which shall be an lvalue.
4389
4390 // FIXME: Other qualifiers?
4391 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
4392 unsigned ArgQuals = ArgType.getCVRQualifiers();
4393
4394 if ((ParamQuals | ArgQuals) != ParamQuals) {
4395 S.Diag(Arg->getLocStart(),
4396 diag::err_template_arg_ref_bind_ignores_quals)
4397 << ParamType << Arg->getType() << Arg->getSourceRange();
4398 S.Diag(Param->getLocation(), diag::note_template_param_here);
4399 return true;
4400 }
4401 }
4402 }
4403
4404 // At this point, the template argument refers to an object or
4405 // function with external linkage. We now need to check whether the
4406 // argument and parameter types are compatible.
4407 if (!S.Context.hasSameUnqualifiedType(ArgType,
4408 ParamType.getNonReferenceType())) {
4409 // We can't perform this conversion or binding.
4410 if (ParamType->isReferenceType())
4411 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
4412 << ParamType << ArgIn->getType() << Arg->getSourceRange();
4413 else
4414 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4415 << ArgIn->getType() << ParamType << Arg->getSourceRange();
4416 S.Diag(Param->getLocation(), diag::note_template_param_here);
4417 return true;
4418 }
4419 }
4420
4421 return false;
4422 }
4423
4424 /// \brief Checks whether the given template argument is the address
4425 /// of an object or function according to C++ [temp.arg.nontype]p1.
4426 static bool
CheckTemplateArgumentAddressOfObjectOrFunction(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,TemplateArgument & Converted)4427 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
4428 NonTypeTemplateParmDecl *Param,
4429 QualType ParamType,
4430 Expr *ArgIn,
4431 TemplateArgument &Converted) {
4432 bool Invalid = false;
4433 Expr *Arg = ArgIn;
4434 QualType ArgType = Arg->getType();
4435
4436 bool AddressTaken = false;
4437 SourceLocation AddrOpLoc;
4438 if (S.getLangOpts().MicrosoftExt) {
4439 // Microsoft Visual C++ strips all casts, allows an arbitrary number of
4440 // dereference and address-of operators.
4441 Arg = Arg->IgnoreParenCasts();
4442
4443 bool ExtWarnMSTemplateArg = false;
4444 UnaryOperatorKind FirstOpKind;
4445 SourceLocation FirstOpLoc;
4446 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4447 UnaryOperatorKind UnOpKind = UnOp->getOpcode();
4448 if (UnOpKind == UO_Deref)
4449 ExtWarnMSTemplateArg = true;
4450 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
4451 Arg = UnOp->getSubExpr()->IgnoreParenCasts();
4452 if (!AddrOpLoc.isValid()) {
4453 FirstOpKind = UnOpKind;
4454 FirstOpLoc = UnOp->getOperatorLoc();
4455 }
4456 } else
4457 break;
4458 }
4459 if (FirstOpLoc.isValid()) {
4460 if (ExtWarnMSTemplateArg)
4461 S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
4462 << ArgIn->getSourceRange();
4463
4464 if (FirstOpKind == UO_AddrOf)
4465 AddressTaken = true;
4466 else if (Arg->getType()->isPointerType()) {
4467 // We cannot let pointers get dereferenced here, that is obviously not a
4468 // constant expression.
4469 assert(FirstOpKind == UO_Deref);
4470 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4471 << Arg->getSourceRange();
4472 }
4473 }
4474 } else {
4475 // See through any implicit casts we added to fix the type.
4476 Arg = Arg->IgnoreImpCasts();
4477
4478 // C++ [temp.arg.nontype]p1:
4479 //
4480 // A template-argument for a non-type, non-template
4481 // template-parameter shall be one of: [...]
4482 //
4483 // -- the address of an object or function with external
4484 // linkage, including function templates and function
4485 // template-ids but excluding non-static class members,
4486 // expressed as & id-expression where the & is optional if
4487 // the name refers to a function or array, or if the
4488 // corresponding template-parameter is a reference; or
4489
4490 // In C++98/03 mode, give an extension warning on any extra parentheses.
4491 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4492 bool ExtraParens = false;
4493 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4494 if (!Invalid && !ExtraParens) {
4495 S.Diag(Arg->getLocStart(),
4496 S.getLangOpts().CPlusPlus11
4497 ? diag::warn_cxx98_compat_template_arg_extra_parens
4498 : diag::ext_template_arg_extra_parens)
4499 << Arg->getSourceRange();
4500 ExtraParens = true;
4501 }
4502
4503 Arg = Parens->getSubExpr();
4504 }
4505
4506 while (SubstNonTypeTemplateParmExpr *subst =
4507 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4508 Arg = subst->getReplacement()->IgnoreImpCasts();
4509
4510 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4511 if (UnOp->getOpcode() == UO_AddrOf) {
4512 Arg = UnOp->getSubExpr();
4513 AddressTaken = true;
4514 AddrOpLoc = UnOp->getOperatorLoc();
4515 }
4516 }
4517
4518 while (SubstNonTypeTemplateParmExpr *subst =
4519 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4520 Arg = subst->getReplacement()->IgnoreImpCasts();
4521 }
4522
4523 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
4524 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
4525
4526 // If our parameter has pointer type, check for a null template value.
4527 if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
4528 NullPointerValueKind NPV;
4529 // dllimport'd entities aren't constant but are available inside of template
4530 // arguments.
4531 if (Entity && Entity->hasAttr<DLLImportAttr>())
4532 NPV = NPV_NotNullPointer;
4533 else
4534 NPV = isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn);
4535 switch (NPV) {
4536 case NPV_NullPointer:
4537 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4538 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
4539 /*isNullPtr=*/true);
4540 return false;
4541
4542 case NPV_Error:
4543 return true;
4544
4545 case NPV_NotNullPointer:
4546 break;
4547 }
4548 }
4549
4550 // Stop checking the precise nature of the argument if it is value dependent,
4551 // it should be checked when instantiated.
4552 if (Arg->isValueDependent()) {
4553 Converted = TemplateArgument(ArgIn);
4554 return false;
4555 }
4556
4557 if (isa<CXXUuidofExpr>(Arg)) {
4558 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
4559 ArgIn, Arg, ArgType))
4560 return true;
4561
4562 Converted = TemplateArgument(ArgIn);
4563 return false;
4564 }
4565
4566 if (!DRE) {
4567 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4568 << Arg->getSourceRange();
4569 S.Diag(Param->getLocation(), diag::note_template_param_here);
4570 return true;
4571 }
4572
4573 // Cannot refer to non-static data members
4574 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
4575 S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
4576 << Entity << Arg->getSourceRange();
4577 S.Diag(Param->getLocation(), diag::note_template_param_here);
4578 return true;
4579 }
4580
4581 // Cannot refer to non-static member functions
4582 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
4583 if (!Method->isStatic()) {
4584 S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
4585 << Method << Arg->getSourceRange();
4586 S.Diag(Param->getLocation(), diag::note_template_param_here);
4587 return true;
4588 }
4589 }
4590
4591 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
4592 VarDecl *Var = dyn_cast<VarDecl>(Entity);
4593
4594 // A non-type template argument must refer to an object or function.
4595 if (!Func && !Var) {
4596 // We found something, but we don't know specifically what it is.
4597 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
4598 << Arg->getSourceRange();
4599 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4600 return true;
4601 }
4602
4603 // Address / reference template args must have external linkage in C++98.
4604 if (Entity->getFormalLinkage() == InternalLinkage) {
4605 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
4606 diag::warn_cxx98_compat_template_arg_object_internal :
4607 diag::ext_template_arg_object_internal)
4608 << !Func << Entity << Arg->getSourceRange();
4609 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4610 << !Func;
4611 } else if (!Entity->hasLinkage()) {
4612 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
4613 << !Func << Entity << Arg->getSourceRange();
4614 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4615 << !Func;
4616 return true;
4617 }
4618
4619 if (Func) {
4620 // If the template parameter has pointer type, the function decays.
4621 if (ParamType->isPointerType() && !AddressTaken)
4622 ArgType = S.Context.getPointerType(Func->getType());
4623 else if (AddressTaken && ParamType->isReferenceType()) {
4624 // If we originally had an address-of operator, but the
4625 // parameter has reference type, complain and (if things look
4626 // like they will work) drop the address-of operator.
4627 if (!S.Context.hasSameUnqualifiedType(Func->getType(),
4628 ParamType.getNonReferenceType())) {
4629 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4630 << ParamType;
4631 S.Diag(Param->getLocation(), diag::note_template_param_here);
4632 return true;
4633 }
4634
4635 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4636 << ParamType
4637 << FixItHint::CreateRemoval(AddrOpLoc);
4638 S.Diag(Param->getLocation(), diag::note_template_param_here);
4639
4640 ArgType = Func->getType();
4641 }
4642 } else {
4643 // A value of reference type is not an object.
4644 if (Var->getType()->isReferenceType()) {
4645 S.Diag(Arg->getLocStart(),
4646 diag::err_template_arg_reference_var)
4647 << Var->getType() << Arg->getSourceRange();
4648 S.Diag(Param->getLocation(), diag::note_template_param_here);
4649 return true;
4650 }
4651
4652 // A template argument must have static storage duration.
4653 if (Var->getTLSKind()) {
4654 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
4655 << Arg->getSourceRange();
4656 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
4657 return true;
4658 }
4659
4660 // If the template parameter has pointer type, we must have taken
4661 // the address of this object.
4662 if (ParamType->isReferenceType()) {
4663 if (AddressTaken) {
4664 // If we originally had an address-of operator, but the
4665 // parameter has reference type, complain and (if things look
4666 // like they will work) drop the address-of operator.
4667 if (!S.Context.hasSameUnqualifiedType(Var->getType(),
4668 ParamType.getNonReferenceType())) {
4669 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4670 << ParamType;
4671 S.Diag(Param->getLocation(), diag::note_template_param_here);
4672 return true;
4673 }
4674
4675 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4676 << ParamType
4677 << FixItHint::CreateRemoval(AddrOpLoc);
4678 S.Diag(Param->getLocation(), diag::note_template_param_here);
4679
4680 ArgType = Var->getType();
4681 }
4682 } else if (!AddressTaken && ParamType->isPointerType()) {
4683 if (Var->getType()->isArrayType()) {
4684 // Array-to-pointer decay.
4685 ArgType = S.Context.getArrayDecayedType(Var->getType());
4686 } else {
4687 // If the template parameter has pointer type but the address of
4688 // this object was not taken, complain and (possibly) recover by
4689 // taking the address of the entity.
4690 ArgType = S.Context.getPointerType(Var->getType());
4691 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
4692 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4693 << ParamType;
4694 S.Diag(Param->getLocation(), diag::note_template_param_here);
4695 return true;
4696 }
4697
4698 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4699 << ParamType
4700 << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
4701
4702 S.Diag(Param->getLocation(), diag::note_template_param_here);
4703 }
4704 }
4705 }
4706
4707 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
4708 Arg, ArgType))
4709 return true;
4710
4711 // Create the template argument.
4712 Converted =
4713 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
4714 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
4715 return false;
4716 }
4717
4718 /// \brief Checks whether the given template argument is a pointer to
4719 /// member constant according to C++ [temp.arg.nontype]p1.
CheckTemplateArgumentPointerToMember(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * & ResultArg,TemplateArgument & Converted)4720 static bool CheckTemplateArgumentPointerToMember(Sema &S,
4721 NonTypeTemplateParmDecl *Param,
4722 QualType ParamType,
4723 Expr *&ResultArg,
4724 TemplateArgument &Converted) {
4725 bool Invalid = false;
4726
4727 // Check for a null pointer value.
4728 Expr *Arg = ResultArg;
4729 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4730 case NPV_Error:
4731 return true;
4732 case NPV_NullPointer:
4733 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4734 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
4735 /*isNullPtr*/true);
4736 return false;
4737 case NPV_NotNullPointer:
4738 break;
4739 }
4740
4741 bool ObjCLifetimeConversion;
4742 if (S.IsQualificationConversion(Arg->getType(),
4743 ParamType.getNonReferenceType(),
4744 false, ObjCLifetimeConversion)) {
4745 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
4746 Arg->getValueKind()).get();
4747 ResultArg = Arg;
4748 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
4749 ParamType.getNonReferenceType())) {
4750 // We can't perform this conversion.
4751 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4752 << Arg->getType() << ParamType << Arg->getSourceRange();
4753 S.Diag(Param->getLocation(), diag::note_template_param_here);
4754 return true;
4755 }
4756
4757 // See through any implicit casts we added to fix the type.
4758 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
4759 Arg = Cast->getSubExpr();
4760
4761 // C++ [temp.arg.nontype]p1:
4762 //
4763 // A template-argument for a non-type, non-template
4764 // template-parameter shall be one of: [...]
4765 //
4766 // -- a pointer to member expressed as described in 5.3.1.
4767 DeclRefExpr *DRE = nullptr;
4768
4769 // In C++98/03 mode, give an extension warning on any extra parentheses.
4770 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4771 bool ExtraParens = false;
4772 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4773 if (!Invalid && !ExtraParens) {
4774 S.Diag(Arg->getLocStart(),
4775 S.getLangOpts().CPlusPlus11 ?
4776 diag::warn_cxx98_compat_template_arg_extra_parens :
4777 diag::ext_template_arg_extra_parens)
4778 << Arg->getSourceRange();
4779 ExtraParens = true;
4780 }
4781
4782 Arg = Parens->getSubExpr();
4783 }
4784
4785 while (SubstNonTypeTemplateParmExpr *subst =
4786 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4787 Arg = subst->getReplacement()->IgnoreImpCasts();
4788
4789 // A pointer-to-member constant written &Class::member.
4790 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4791 if (UnOp->getOpcode() == UO_AddrOf) {
4792 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
4793 if (DRE && !DRE->getQualifier())
4794 DRE = nullptr;
4795 }
4796 }
4797 // A constant of pointer-to-member type.
4798 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
4799 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
4800 if (VD->getType()->isMemberPointerType()) {
4801 if (isa<NonTypeTemplateParmDecl>(VD)) {
4802 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4803 Converted = TemplateArgument(Arg);
4804 } else {
4805 VD = cast<ValueDecl>(VD->getCanonicalDecl());
4806 Converted = TemplateArgument(VD, ParamType);
4807 }
4808 return Invalid;
4809 }
4810 }
4811 }
4812
4813 DRE = nullptr;
4814 }
4815
4816 if (!DRE)
4817 return S.Diag(Arg->getLocStart(),
4818 diag::err_template_arg_not_pointer_to_member_form)
4819 << Arg->getSourceRange();
4820
4821 if (isa<FieldDecl>(DRE->getDecl()) ||
4822 isa<IndirectFieldDecl>(DRE->getDecl()) ||
4823 isa<CXXMethodDecl>(DRE->getDecl())) {
4824 assert((isa<FieldDecl>(DRE->getDecl()) ||
4825 isa<IndirectFieldDecl>(DRE->getDecl()) ||
4826 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
4827 "Only non-static member pointers can make it here");
4828
4829 // Okay: this is the address of a non-static member, and therefore
4830 // a member pointer constant.
4831 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4832 Converted = TemplateArgument(Arg);
4833 } else {
4834 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
4835 Converted = TemplateArgument(D, ParamType);
4836 }
4837 return Invalid;
4838 }
4839
4840 // We found something else, but we don't know specifically what it is.
4841 S.Diag(Arg->getLocStart(),
4842 diag::err_template_arg_not_pointer_to_member_form)
4843 << Arg->getSourceRange();
4844 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4845 return true;
4846 }
4847
4848 /// \brief Check a template argument against its corresponding
4849 /// non-type template parameter.
4850 ///
4851 /// This routine implements the semantics of C++ [temp.arg.nontype].
4852 /// If an error occurred, it returns ExprError(); otherwise, it
4853 /// returns the converted template argument. \p ParamType is the
4854 /// type of the non-type template parameter after it has been instantiated.
CheckTemplateArgument(NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg,TemplateArgument & Converted,CheckTemplateArgumentKind CTAK)4855 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
4856 QualType ParamType, Expr *Arg,
4857 TemplateArgument &Converted,
4858 CheckTemplateArgumentKind CTAK) {
4859 SourceLocation StartLoc = Arg->getLocStart();
4860
4861 // If either the parameter has a dependent type or the argument is
4862 // type-dependent, there's nothing we can check now.
4863 if (ParamType->isDependentType() || Arg->isTypeDependent()) {
4864 // FIXME: Produce a cloned, canonical expression?
4865 Converted = TemplateArgument(Arg);
4866 return Arg;
4867 }
4868
4869 // We should have already dropped all cv-qualifiers by now.
4870 assert(!ParamType.hasQualifiers() &&
4871 "non-type template parameter type cannot be qualified");
4872
4873 if (CTAK == CTAK_Deduced &&
4874 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4875 // C++ [temp.deduct.type]p17:
4876 // If, in the declaration of a function template with a non-type
4877 // template-parameter, the non-type template-parameter is used
4878 // in an expression in the function parameter-list and, if the
4879 // corresponding template-argument is deduced, the
4880 // template-argument type shall match the type of the
4881 // template-parameter exactly, except that a template-argument
4882 // deduced from an array bound may be of any integral type.
4883 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4884 << Arg->getType().getUnqualifiedType()
4885 << ParamType.getUnqualifiedType();
4886 Diag(Param->getLocation(), diag::note_template_param_here);
4887 return ExprError();
4888 }
4889
4890 if (getLangOpts().CPlusPlus1z) {
4891 // FIXME: We can do some limited checking for a value-dependent but not
4892 // type-dependent argument.
4893 if (Arg->isValueDependent()) {
4894 Converted = TemplateArgument(Arg);
4895 return Arg;
4896 }
4897
4898 // C++1z [temp.arg.nontype]p1:
4899 // A template-argument for a non-type template parameter shall be
4900 // a converted constant expression of the type of the template-parameter.
4901 APValue Value;
4902 ExprResult ArgResult = CheckConvertedConstantExpression(
4903 Arg, ParamType, Value, CCEK_TemplateArg);
4904 if (ArgResult.isInvalid())
4905 return ExprError();
4906
4907 QualType CanonParamType = Context.getCanonicalType(ParamType);
4908
4909 // Convert the APValue to a TemplateArgument.
4910 switch (Value.getKind()) {
4911 case APValue::Uninitialized:
4912 assert(ParamType->isNullPtrType());
4913 Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
4914 break;
4915 case APValue::Int:
4916 assert(ParamType->isIntegralOrEnumerationType());
4917 Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
4918 break;
4919 case APValue::MemberPointer: {
4920 assert(ParamType->isMemberPointerType());
4921
4922 // FIXME: We need TemplateArgument representation and mangling for these.
4923 if (!Value.getMemberPointerPath().empty()) {
4924 Diag(Arg->getLocStart(),
4925 diag::err_template_arg_member_ptr_base_derived_not_supported)
4926 << Value.getMemberPointerDecl() << ParamType
4927 << Arg->getSourceRange();
4928 return ExprError();
4929 }
4930
4931 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
4932 Converted = VD ? TemplateArgument(VD, CanonParamType)
4933 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
4934 break;
4935 }
4936 case APValue::LValue: {
4937 // For a non-type template-parameter of pointer or reference type,
4938 // the value of the constant expression shall not refer to
4939 assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
4940 ParamType->isNullPtrType());
4941 // -- a temporary object
4942 // -- a string literal
4943 // -- the result of a typeid expression, or
4944 // -- a predefind __func__ variable
4945 if (auto *E = Value.getLValueBase().dyn_cast<const Expr*>()) {
4946 if (isa<CXXUuidofExpr>(E)) {
4947 Converted = TemplateArgument(const_cast<Expr*>(E));
4948 break;
4949 }
4950 Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4951 << Arg->getSourceRange();
4952 return ExprError();
4953 }
4954 auto *VD = const_cast<ValueDecl *>(
4955 Value.getLValueBase().dyn_cast<const ValueDecl *>());
4956 // -- a subobject
4957 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
4958 VD && VD->getType()->isArrayType() &&
4959 Value.getLValuePath()[0].ArrayIndex == 0 &&
4960 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
4961 // Per defect report (no number yet):
4962 // ... other than a pointer to the first element of a complete array
4963 // object.
4964 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
4965 Value.isLValueOnePastTheEnd()) {
4966 Diag(StartLoc, diag::err_non_type_template_arg_subobject)
4967 << Value.getAsString(Context, ParamType);
4968 return ExprError();
4969 }
4970 assert((VD || !ParamType->isReferenceType()) &&
4971 "null reference should not be a constant expression");
4972 assert((!VD || !ParamType->isNullPtrType()) &&
4973 "non-null value of type nullptr_t?");
4974 Converted = VD ? TemplateArgument(VD, CanonParamType)
4975 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
4976 break;
4977 }
4978 case APValue::AddrLabelDiff:
4979 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
4980 case APValue::Float:
4981 case APValue::ComplexInt:
4982 case APValue::ComplexFloat:
4983 case APValue::Vector:
4984 case APValue::Array:
4985 case APValue::Struct:
4986 case APValue::Union:
4987 llvm_unreachable("invalid kind for template argument");
4988 }
4989
4990 return ArgResult.get();
4991 }
4992
4993 // C++ [temp.arg.nontype]p5:
4994 // The following conversions are performed on each expression used
4995 // as a non-type template-argument. If a non-type
4996 // template-argument cannot be converted to the type of the
4997 // corresponding template-parameter then the program is
4998 // ill-formed.
4999 if (ParamType->isIntegralOrEnumerationType()) {
5000 // C++11:
5001 // -- for a non-type template-parameter of integral or
5002 // enumeration type, conversions permitted in a converted
5003 // constant expression are applied.
5004 //
5005 // C++98:
5006 // -- for a non-type template-parameter of integral or
5007 // enumeration type, integral promotions (4.5) and integral
5008 // conversions (4.7) are applied.
5009
5010 if (getLangOpts().CPlusPlus11) {
5011 // We can't check arbitrary value-dependent arguments.
5012 // FIXME: If there's no viable conversion to the template parameter type,
5013 // we should be able to diagnose that prior to instantiation.
5014 if (Arg->isValueDependent()) {
5015 Converted = TemplateArgument(Arg);
5016 return Arg;
5017 }
5018
5019 // C++ [temp.arg.nontype]p1:
5020 // A template-argument for a non-type, non-template template-parameter
5021 // shall be one of:
5022 //
5023 // -- for a non-type template-parameter of integral or enumeration
5024 // type, a converted constant expression of the type of the
5025 // template-parameter; or
5026 llvm::APSInt Value;
5027 ExprResult ArgResult =
5028 CheckConvertedConstantExpression(Arg, ParamType, Value,
5029 CCEK_TemplateArg);
5030 if (ArgResult.isInvalid())
5031 return ExprError();
5032
5033 // Widen the argument value to sizeof(parameter type). This is almost
5034 // always a no-op, except when the parameter type is bool. In
5035 // that case, this may extend the argument from 1 bit to 8 bits.
5036 QualType IntegerType = ParamType;
5037 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
5038 IntegerType = Enum->getDecl()->getIntegerType();
5039 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
5040
5041 Converted = TemplateArgument(Context, Value,
5042 Context.getCanonicalType(ParamType));
5043 return ArgResult;
5044 }
5045
5046 ExprResult ArgResult = DefaultLvalueConversion(Arg);
5047 if (ArgResult.isInvalid())
5048 return ExprError();
5049 Arg = ArgResult.get();
5050
5051 QualType ArgType = Arg->getType();
5052
5053 // C++ [temp.arg.nontype]p1:
5054 // A template-argument for a non-type, non-template
5055 // template-parameter shall be one of:
5056 //
5057 // -- an integral constant-expression of integral or enumeration
5058 // type; or
5059 // -- the name of a non-type template-parameter; or
5060 SourceLocation NonConstantLoc;
5061 llvm::APSInt Value;
5062 if (!ArgType->isIntegralOrEnumerationType()) {
5063 Diag(Arg->getLocStart(),
5064 diag::err_template_arg_not_integral_or_enumeral)
5065 << ArgType << Arg->getSourceRange();
5066 Diag(Param->getLocation(), diag::note_template_param_here);
5067 return ExprError();
5068 } else if (!Arg->isValueDependent()) {
5069 class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
5070 QualType T;
5071
5072 public:
5073 TmplArgICEDiagnoser(QualType T) : T(T) { }
5074
5075 void diagnoseNotICE(Sema &S, SourceLocation Loc,
5076 SourceRange SR) override {
5077 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
5078 }
5079 } Diagnoser(ArgType);
5080
5081 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
5082 false).get();
5083 if (!Arg)
5084 return ExprError();
5085 }
5086
5087 // From here on out, all we care about is the unqualified form
5088 // of the argument type.
5089 ArgType = ArgType.getUnqualifiedType();
5090
5091 // Try to convert the argument to the parameter's type.
5092 if (Context.hasSameType(ParamType, ArgType)) {
5093 // Okay: no conversion necessary
5094 } else if (ParamType->isBooleanType()) {
5095 // This is an integral-to-boolean conversion.
5096 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
5097 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
5098 !ParamType->isEnumeralType()) {
5099 // This is an integral promotion or conversion.
5100 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
5101 } else {
5102 // We can't perform this conversion.
5103 Diag(Arg->getLocStart(),
5104 diag::err_template_arg_not_convertible)
5105 << Arg->getType() << ParamType << Arg->getSourceRange();
5106 Diag(Param->getLocation(), diag::note_template_param_here);
5107 return ExprError();
5108 }
5109
5110 // Add the value of this argument to the list of converted
5111 // arguments. We use the bitwidth and signedness of the template
5112 // parameter.
5113 if (Arg->isValueDependent()) {
5114 // The argument is value-dependent. Create a new
5115 // TemplateArgument with the converted expression.
5116 Converted = TemplateArgument(Arg);
5117 return Arg;
5118 }
5119
5120 QualType IntegerType = Context.getCanonicalType(ParamType);
5121 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
5122 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
5123
5124 if (ParamType->isBooleanType()) {
5125 // Value must be zero or one.
5126 Value = Value != 0;
5127 unsigned AllowedBits = Context.getTypeSize(IntegerType);
5128 if (Value.getBitWidth() != AllowedBits)
5129 Value = Value.extOrTrunc(AllowedBits);
5130 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
5131 } else {
5132 llvm::APSInt OldValue = Value;
5133
5134 // Coerce the template argument's value to the value it will have
5135 // based on the template parameter's type.
5136 unsigned AllowedBits = Context.getTypeSize(IntegerType);
5137 if (Value.getBitWidth() != AllowedBits)
5138 Value = Value.extOrTrunc(AllowedBits);
5139 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
5140
5141 // Complain if an unsigned parameter received a negative value.
5142 if (IntegerType->isUnsignedIntegerOrEnumerationType()
5143 && (OldValue.isSigned() && OldValue.isNegative())) {
5144 Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
5145 << OldValue.toString(10) << Value.toString(10) << Param->getType()
5146 << Arg->getSourceRange();
5147 Diag(Param->getLocation(), diag::note_template_param_here);
5148 }
5149
5150 // Complain if we overflowed the template parameter's type.
5151 unsigned RequiredBits;
5152 if (IntegerType->isUnsignedIntegerOrEnumerationType())
5153 RequiredBits = OldValue.getActiveBits();
5154 else if (OldValue.isUnsigned())
5155 RequiredBits = OldValue.getActiveBits() + 1;
5156 else
5157 RequiredBits = OldValue.getMinSignedBits();
5158 if (RequiredBits > AllowedBits) {
5159 Diag(Arg->getLocStart(),
5160 diag::warn_template_arg_too_large)
5161 << OldValue.toString(10) << Value.toString(10) << Param->getType()
5162 << Arg->getSourceRange();
5163 Diag(Param->getLocation(), diag::note_template_param_here);
5164 }
5165 }
5166
5167 Converted = TemplateArgument(Context, Value,
5168 ParamType->isEnumeralType()
5169 ? Context.getCanonicalType(ParamType)
5170 : IntegerType);
5171 return Arg;
5172 }
5173
5174 QualType ArgType = Arg->getType();
5175 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
5176
5177 // Handle pointer-to-function, reference-to-function, and
5178 // pointer-to-member-function all in (roughly) the same way.
5179 if (// -- For a non-type template-parameter of type pointer to
5180 // function, only the function-to-pointer conversion (4.3) is
5181 // applied. If the template-argument represents a set of
5182 // overloaded functions (or a pointer to such), the matching
5183 // function is selected from the set (13.4).
5184 (ParamType->isPointerType() &&
5185 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
5186 // -- For a non-type template-parameter of type reference to
5187 // function, no conversions apply. If the template-argument
5188 // represents a set of overloaded functions, the matching
5189 // function is selected from the set (13.4).
5190 (ParamType->isReferenceType() &&
5191 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
5192 // -- For a non-type template-parameter of type pointer to
5193 // member function, no conversions apply. If the
5194 // template-argument represents a set of overloaded member
5195 // functions, the matching member function is selected from
5196 // the set (13.4).
5197 (ParamType->isMemberPointerType() &&
5198 ParamType->getAs<MemberPointerType>()->getPointeeType()
5199 ->isFunctionType())) {
5200
5201 if (Arg->getType() == Context.OverloadTy) {
5202 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
5203 true,
5204 FoundResult)) {
5205 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
5206 return ExprError();
5207
5208 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
5209 ArgType = Arg->getType();
5210 } else
5211 return ExprError();
5212 }
5213
5214 if (!ParamType->isMemberPointerType()) {
5215 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5216 ParamType,
5217 Arg, Converted))
5218 return ExprError();
5219 return Arg;
5220 }
5221
5222 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
5223 Converted))
5224 return ExprError();
5225 return Arg;
5226 }
5227
5228 if (ParamType->isPointerType()) {
5229 // -- for a non-type template-parameter of type pointer to
5230 // object, qualification conversions (4.4) and the
5231 // array-to-pointer conversion (4.2) are applied.
5232 // C++0x also allows a value of std::nullptr_t.
5233 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
5234 "Only object pointers allowed here");
5235
5236 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5237 ParamType,
5238 Arg, Converted))
5239 return ExprError();
5240 return Arg;
5241 }
5242
5243 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
5244 // -- For a non-type template-parameter of type reference to
5245 // object, no conversions apply. The type referred to by the
5246 // reference may be more cv-qualified than the (otherwise
5247 // identical) type of the template-argument. The
5248 // template-parameter is bound directly to the
5249 // template-argument, which must be an lvalue.
5250 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
5251 "Only object references allowed here");
5252
5253 if (Arg->getType() == Context.OverloadTy) {
5254 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
5255 ParamRefType->getPointeeType(),
5256 true,
5257 FoundResult)) {
5258 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
5259 return ExprError();
5260
5261 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
5262 ArgType = Arg->getType();
5263 } else
5264 return ExprError();
5265 }
5266
5267 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5268 ParamType,
5269 Arg, Converted))
5270 return ExprError();
5271 return Arg;
5272 }
5273
5274 // Deal with parameters of type std::nullptr_t.
5275 if (ParamType->isNullPtrType()) {
5276 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
5277 Converted = TemplateArgument(Arg);
5278 return Arg;
5279 }
5280
5281 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
5282 case NPV_NotNullPointer:
5283 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
5284 << Arg->getType() << ParamType;
5285 Diag(Param->getLocation(), diag::note_template_param_here);
5286 return ExprError();
5287
5288 case NPV_Error:
5289 return ExprError();
5290
5291 case NPV_NullPointer:
5292 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
5293 Converted = TemplateArgument(Context.getCanonicalType(ParamType),
5294 /*isNullPtr*/true);
5295 return Arg;
5296 }
5297 }
5298
5299 // -- For a non-type template-parameter of type pointer to data
5300 // member, qualification conversions (4.4) are applied.
5301 assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
5302
5303 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
5304 Converted))
5305 return ExprError();
5306 return Arg;
5307 }
5308
5309 /// \brief Check a template argument against its corresponding
5310 /// template template parameter.
5311 ///
5312 /// This routine implements the semantics of C++ [temp.arg.template].
5313 /// It returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTemplateParmDecl * Param,TemplateArgumentLoc & Arg,unsigned ArgumentPackIndex)5314 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
5315 TemplateArgumentLoc &Arg,
5316 unsigned ArgumentPackIndex) {
5317 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
5318 TemplateDecl *Template = Name.getAsTemplateDecl();
5319 if (!Template) {
5320 // Any dependent template name is fine.
5321 assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
5322 return false;
5323 }
5324
5325 // C++0x [temp.arg.template]p1:
5326 // A template-argument for a template template-parameter shall be
5327 // the name of a class template or an alias template, expressed as an
5328 // id-expression. When the template-argument names a class template, only
5329 // primary class templates are considered when matching the
5330 // template template argument with the corresponding parameter;
5331 // partial specializations are not considered even if their
5332 // parameter lists match that of the template template parameter.
5333 //
5334 // Note that we also allow template template parameters here, which
5335 // will happen when we are dealing with, e.g., class template
5336 // partial specializations.
5337 if (!isa<ClassTemplateDecl>(Template) &&
5338 !isa<TemplateTemplateParmDecl>(Template) &&
5339 !isa<TypeAliasTemplateDecl>(Template)) {
5340 assert(isa<FunctionTemplateDecl>(Template) &&
5341 "Only function templates are possible here");
5342 Diag(Arg.getLocation(), diag::err_template_arg_not_class_template);
5343 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
5344 << Template;
5345 }
5346
5347 TemplateParameterList *Params = Param->getTemplateParameters();
5348 if (Param->isExpandedParameterPack())
5349 Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
5350
5351 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
5352 Params,
5353 true,
5354 TPL_TemplateTemplateArgumentMatch,
5355 Arg.getLocation());
5356 }
5357
5358 /// \brief Given a non-type template argument that refers to a
5359 /// declaration and the type of its corresponding non-type template
5360 /// parameter, produce an expression that properly refers to that
5361 /// declaration.
5362 ExprResult
BuildExpressionFromDeclTemplateArgument(const TemplateArgument & Arg,QualType ParamType,SourceLocation Loc)5363 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
5364 QualType ParamType,
5365 SourceLocation Loc) {
5366 // C++ [temp.param]p8:
5367 //
5368 // A non-type template-parameter of type "array of T" or
5369 // "function returning T" is adjusted to be of type "pointer to
5370 // T" or "pointer to function returning T", respectively.
5371 if (ParamType->isArrayType())
5372 ParamType = Context.getArrayDecayedType(ParamType);
5373 else if (ParamType->isFunctionType())
5374 ParamType = Context.getPointerType(ParamType);
5375
5376 // For a NULL non-type template argument, return nullptr casted to the
5377 // parameter's type.
5378 if (Arg.getKind() == TemplateArgument::NullPtr) {
5379 return ImpCastExprToType(
5380 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
5381 ParamType,
5382 ParamType->getAs<MemberPointerType>()
5383 ? CK_NullToMemberPointer
5384 : CK_NullToPointer);
5385 }
5386 assert(Arg.getKind() == TemplateArgument::Declaration &&
5387 "Only declaration template arguments permitted here");
5388
5389 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
5390
5391 if (VD->getDeclContext()->isRecord() &&
5392 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
5393 isa<IndirectFieldDecl>(VD))) {
5394 // If the value is a class member, we might have a pointer-to-member.
5395 // Determine whether the non-type template template parameter is of
5396 // pointer-to-member type. If so, we need to build an appropriate
5397 // expression for a pointer-to-member, since a "normal" DeclRefExpr
5398 // would refer to the member itself.
5399 if (ParamType->isMemberPointerType()) {
5400 QualType ClassType
5401 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
5402 NestedNameSpecifier *Qualifier
5403 = NestedNameSpecifier::Create(Context, nullptr, false,
5404 ClassType.getTypePtr());
5405 CXXScopeSpec SS;
5406 SS.MakeTrivial(Context, Qualifier, Loc);
5407
5408 // The actual value-ness of this is unimportant, but for
5409 // internal consistency's sake, references to instance methods
5410 // are r-values.
5411 ExprValueKind VK = VK_LValue;
5412 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
5413 VK = VK_RValue;
5414
5415 ExprResult RefExpr = BuildDeclRefExpr(VD,
5416 VD->getType().getNonReferenceType(),
5417 VK,
5418 Loc,
5419 &SS);
5420 if (RefExpr.isInvalid())
5421 return ExprError();
5422
5423 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5424
5425 // We might need to perform a trailing qualification conversion, since
5426 // the element type on the parameter could be more qualified than the
5427 // element type in the expression we constructed.
5428 bool ObjCLifetimeConversion;
5429 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
5430 ParamType.getUnqualifiedType(), false,
5431 ObjCLifetimeConversion))
5432 RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp);
5433
5434 assert(!RefExpr.isInvalid() &&
5435 Context.hasSameType(((Expr*) RefExpr.get())->getType(),
5436 ParamType.getUnqualifiedType()));
5437 return RefExpr;
5438 }
5439 }
5440
5441 QualType T = VD->getType().getNonReferenceType();
5442
5443 if (ParamType->isPointerType()) {
5444 // When the non-type template parameter is a pointer, take the
5445 // address of the declaration.
5446 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
5447 if (RefExpr.isInvalid())
5448 return ExprError();
5449
5450 if (T->isFunctionType() || T->isArrayType()) {
5451 // Decay functions and arrays.
5452 RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
5453 if (RefExpr.isInvalid())
5454 return ExprError();
5455
5456 return RefExpr;
5457 }
5458
5459 // Take the address of everything else
5460 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5461 }
5462
5463 ExprValueKind VK = VK_RValue;
5464
5465 // If the non-type template parameter has reference type, qualify the
5466 // resulting declaration reference with the extra qualifiers on the
5467 // type that the reference refers to.
5468 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
5469 VK = VK_LValue;
5470 T = Context.getQualifiedType(T,
5471 TargetRef->getPointeeType().getQualifiers());
5472 } else if (isa<FunctionDecl>(VD)) {
5473 // References to functions are always lvalues.
5474 VK = VK_LValue;
5475 }
5476
5477 return BuildDeclRefExpr(VD, T, VK, Loc);
5478 }
5479
5480 /// \brief Construct a new expression that refers to the given
5481 /// integral template argument with the given source-location
5482 /// information.
5483 ///
5484 /// This routine takes care of the mapping from an integral template
5485 /// argument (which may have any integral type) to the appropriate
5486 /// literal value.
5487 ExprResult
BuildExpressionFromIntegralTemplateArgument(const TemplateArgument & Arg,SourceLocation Loc)5488 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
5489 SourceLocation Loc) {
5490 assert(Arg.getKind() == TemplateArgument::Integral &&
5491 "Operation is only valid for integral template arguments");
5492 QualType OrigT = Arg.getIntegralType();
5493
5494 // If this is an enum type that we're instantiating, we need to use an integer
5495 // type the same size as the enumerator. We don't want to build an
5496 // IntegerLiteral with enum type. The integer type of an enum type can be of
5497 // any integral type with C++11 enum classes, make sure we create the right
5498 // type of literal for it.
5499 QualType T = OrigT;
5500 if (const EnumType *ET = OrigT->getAs<EnumType>())
5501 T = ET->getDecl()->getIntegerType();
5502
5503 Expr *E;
5504 if (T->isAnyCharacterType()) {
5505 CharacterLiteral::CharacterKind Kind;
5506 if (T->isWideCharType())
5507 Kind = CharacterLiteral::Wide;
5508 else if (T->isChar16Type())
5509 Kind = CharacterLiteral::UTF16;
5510 else if (T->isChar32Type())
5511 Kind = CharacterLiteral::UTF32;
5512 else
5513 Kind = CharacterLiteral::Ascii;
5514
5515 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
5516 Kind, T, Loc);
5517 } else if (T->isBooleanType()) {
5518 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
5519 T, Loc);
5520 } else if (T->isNullPtrType()) {
5521 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
5522 } else {
5523 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
5524 }
5525
5526 if (OrigT->isEnumeralType()) {
5527 // FIXME: This is a hack. We need a better way to handle substituted
5528 // non-type template parameters.
5529 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
5530 nullptr,
5531 Context.getTrivialTypeSourceInfo(OrigT, Loc),
5532 Loc, Loc);
5533 }
5534
5535 return E;
5536 }
5537
5538 /// \brief Match two template parameters within template parameter lists.
MatchTemplateParameterKind(Sema & S,NamedDecl * New,NamedDecl * Old,bool Complain,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5539 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
5540 bool Complain,
5541 Sema::TemplateParameterListEqualKind Kind,
5542 SourceLocation TemplateArgLoc) {
5543 // Check the actual kind (type, non-type, template).
5544 if (Old->getKind() != New->getKind()) {
5545 if (Complain) {
5546 unsigned NextDiag = diag::err_template_param_different_kind;
5547 if (TemplateArgLoc.isValid()) {
5548 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5549 NextDiag = diag::note_template_param_different_kind;
5550 }
5551 S.Diag(New->getLocation(), NextDiag)
5552 << (Kind != Sema::TPL_TemplateMatch);
5553 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
5554 << (Kind != Sema::TPL_TemplateMatch);
5555 }
5556
5557 return false;
5558 }
5559
5560 // Check that both are parameter packs are neither are parameter packs.
5561 // However, if we are matching a template template argument to a
5562 // template template parameter, the template template parameter can have
5563 // a parameter pack where the template template argument does not.
5564 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
5565 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5566 Old->isTemplateParameterPack())) {
5567 if (Complain) {
5568 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
5569 if (TemplateArgLoc.isValid()) {
5570 S.Diag(TemplateArgLoc,
5571 diag::err_template_arg_template_params_mismatch);
5572 NextDiag = diag::note_template_parameter_pack_non_pack;
5573 }
5574
5575 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
5576 : isa<NonTypeTemplateParmDecl>(New)? 1
5577 : 2;
5578 S.Diag(New->getLocation(), NextDiag)
5579 << ParamKind << New->isParameterPack();
5580 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
5581 << ParamKind << Old->isParameterPack();
5582 }
5583
5584 return false;
5585 }
5586
5587 // For non-type template parameters, check the type of the parameter.
5588 if (NonTypeTemplateParmDecl *OldNTTP
5589 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
5590 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
5591
5592 // If we are matching a template template argument to a template
5593 // template parameter and one of the non-type template parameter types
5594 // is dependent, then we must wait until template instantiation time
5595 // to actually compare the arguments.
5596 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5597 (OldNTTP->getType()->isDependentType() ||
5598 NewNTTP->getType()->isDependentType()))
5599 return true;
5600
5601 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
5602 if (Complain) {
5603 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
5604 if (TemplateArgLoc.isValid()) {
5605 S.Diag(TemplateArgLoc,
5606 diag::err_template_arg_template_params_mismatch);
5607 NextDiag = diag::note_template_nontype_parm_different_type;
5608 }
5609 S.Diag(NewNTTP->getLocation(), NextDiag)
5610 << NewNTTP->getType()
5611 << (Kind != Sema::TPL_TemplateMatch);
5612 S.Diag(OldNTTP->getLocation(),
5613 diag::note_template_nontype_parm_prev_declaration)
5614 << OldNTTP->getType();
5615 }
5616
5617 return false;
5618 }
5619
5620 return true;
5621 }
5622
5623 // For template template parameters, check the template parameter types.
5624 // The template parameter lists of template template
5625 // parameters must agree.
5626 if (TemplateTemplateParmDecl *OldTTP
5627 = dyn_cast<TemplateTemplateParmDecl>(Old)) {
5628 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
5629 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
5630 OldTTP->getTemplateParameters(),
5631 Complain,
5632 (Kind == Sema::TPL_TemplateMatch
5633 ? Sema::TPL_TemplateTemplateParmMatch
5634 : Kind),
5635 TemplateArgLoc);
5636 }
5637
5638 return true;
5639 }
5640
5641 /// \brief Diagnose a known arity mismatch when comparing template argument
5642 /// lists.
5643 static
DiagnoseTemplateParameterListArityMismatch(Sema & S,TemplateParameterList * New,TemplateParameterList * Old,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5644 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
5645 TemplateParameterList *New,
5646 TemplateParameterList *Old,
5647 Sema::TemplateParameterListEqualKind Kind,
5648 SourceLocation TemplateArgLoc) {
5649 unsigned NextDiag = diag::err_template_param_list_different_arity;
5650 if (TemplateArgLoc.isValid()) {
5651 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5652 NextDiag = diag::note_template_param_list_different_arity;
5653 }
5654 S.Diag(New->getTemplateLoc(), NextDiag)
5655 << (New->size() > Old->size())
5656 << (Kind != Sema::TPL_TemplateMatch)
5657 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
5658 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
5659 << (Kind != Sema::TPL_TemplateMatch)
5660 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
5661 }
5662
5663 /// \brief Determine whether the given template parameter lists are
5664 /// equivalent.
5665 ///
5666 /// \param New The new template parameter list, typically written in the
5667 /// source code as part of a new template declaration.
5668 ///
5669 /// \param Old The old template parameter list, typically found via
5670 /// name lookup of the template declared with this template parameter
5671 /// list.
5672 ///
5673 /// \param Complain If true, this routine will produce a diagnostic if
5674 /// the template parameter lists are not equivalent.
5675 ///
5676 /// \param Kind describes how we are to match the template parameter lists.
5677 ///
5678 /// \param TemplateArgLoc If this source location is valid, then we
5679 /// are actually checking the template parameter list of a template
5680 /// argument (New) against the template parameter list of its
5681 /// corresponding template template parameter (Old). We produce
5682 /// slightly different diagnostics in this scenario.
5683 ///
5684 /// \returns True if the template parameter lists are equal, false
5685 /// otherwise.
5686 bool
TemplateParameterListsAreEqual(TemplateParameterList * New,TemplateParameterList * Old,bool Complain,TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5687 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
5688 TemplateParameterList *Old,
5689 bool Complain,
5690 TemplateParameterListEqualKind Kind,
5691 SourceLocation TemplateArgLoc) {
5692 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
5693 if (Complain)
5694 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5695 TemplateArgLoc);
5696
5697 return false;
5698 }
5699
5700 // C++0x [temp.arg.template]p3:
5701 // A template-argument matches a template template-parameter (call it P)
5702 // when each of the template parameters in the template-parameter-list of
5703 // the template-argument's corresponding class template or alias template
5704 // (call it A) matches the corresponding template parameter in the
5705 // template-parameter-list of P. [...]
5706 TemplateParameterList::iterator NewParm = New->begin();
5707 TemplateParameterList::iterator NewParmEnd = New->end();
5708 for (TemplateParameterList::iterator OldParm = Old->begin(),
5709 OldParmEnd = Old->end();
5710 OldParm != OldParmEnd; ++OldParm) {
5711 if (Kind != TPL_TemplateTemplateArgumentMatch ||
5712 !(*OldParm)->isTemplateParameterPack()) {
5713 if (NewParm == NewParmEnd) {
5714 if (Complain)
5715 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5716 TemplateArgLoc);
5717
5718 return false;
5719 }
5720
5721 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5722 Kind, TemplateArgLoc))
5723 return false;
5724
5725 ++NewParm;
5726 continue;
5727 }
5728
5729 // C++0x [temp.arg.template]p3:
5730 // [...] When P's template- parameter-list contains a template parameter
5731 // pack (14.5.3), the template parameter pack will match zero or more
5732 // template parameters or template parameter packs in the
5733 // template-parameter-list of A with the same type and form as the
5734 // template parameter pack in P (ignoring whether those template
5735 // parameters are template parameter packs).
5736 for (; NewParm != NewParmEnd; ++NewParm) {
5737 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5738 Kind, TemplateArgLoc))
5739 return false;
5740 }
5741 }
5742
5743 // Make sure we exhausted all of the arguments.
5744 if (NewParm != NewParmEnd) {
5745 if (Complain)
5746 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5747 TemplateArgLoc);
5748
5749 return false;
5750 }
5751
5752 return true;
5753 }
5754
5755 /// \brief Check whether a template can be declared within this scope.
5756 ///
5757 /// If the template declaration is valid in this scope, returns
5758 /// false. Otherwise, issues a diagnostic and returns true.
5759 bool
CheckTemplateDeclScope(Scope * S,TemplateParameterList * TemplateParams)5760 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
5761 if (!S)
5762 return false;
5763
5764 // Find the nearest enclosing declaration scope.
5765 while ((S->getFlags() & Scope::DeclScope) == 0 ||
5766 (S->getFlags() & Scope::TemplateParamScope) != 0)
5767 S = S->getParent();
5768
5769 // C++ [temp]p4:
5770 // A template [...] shall not have C linkage.
5771 DeclContext *Ctx = S->getEntity();
5772 if (Ctx && Ctx->isExternCContext())
5773 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
5774 << TemplateParams->getSourceRange();
5775
5776 while (Ctx && isa<LinkageSpecDecl>(Ctx))
5777 Ctx = Ctx->getParent();
5778
5779 // C++ [temp]p2:
5780 // A template-declaration can appear only as a namespace scope or
5781 // class scope declaration.
5782 if (Ctx) {
5783 if (Ctx->isFileContext())
5784 return false;
5785 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
5786 // C++ [temp.mem]p2:
5787 // A local class shall not have member templates.
5788 if (RD->isLocalClass())
5789 return Diag(TemplateParams->getTemplateLoc(),
5790 diag::err_template_inside_local_class)
5791 << TemplateParams->getSourceRange();
5792 else
5793 return false;
5794 }
5795 }
5796
5797 return Diag(TemplateParams->getTemplateLoc(),
5798 diag::err_template_outside_namespace_or_class_scope)
5799 << TemplateParams->getSourceRange();
5800 }
5801
5802 /// \brief Determine what kind of template specialization the given declaration
5803 /// is.
getTemplateSpecializationKind(Decl * D)5804 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
5805 if (!D)
5806 return TSK_Undeclared;
5807
5808 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
5809 return Record->getTemplateSpecializationKind();
5810 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
5811 return Function->getTemplateSpecializationKind();
5812 if (VarDecl *Var = dyn_cast<VarDecl>(D))
5813 return Var->getTemplateSpecializationKind();
5814
5815 return TSK_Undeclared;
5816 }
5817
5818 /// \brief Check whether a specialization is well-formed in the current
5819 /// context.
5820 ///
5821 /// This routine determines whether a template specialization can be declared
5822 /// in the current context (C++ [temp.expl.spec]p2).
5823 ///
5824 /// \param S the semantic analysis object for which this check is being
5825 /// performed.
5826 ///
5827 /// \param Specialized the entity being specialized or instantiated, which
5828 /// may be a kind of template (class template, function template, etc.) or
5829 /// a member of a class template (member function, static data member,
5830 /// member class).
5831 ///
5832 /// \param PrevDecl the previous declaration of this entity, if any.
5833 ///
5834 /// \param Loc the location of the explicit specialization or instantiation of
5835 /// this entity.
5836 ///
5837 /// \param IsPartialSpecialization whether this is a partial specialization of
5838 /// a class template.
5839 ///
5840 /// \returns true if there was an error that we cannot recover from, false
5841 /// otherwise.
CheckTemplateSpecializationScope(Sema & S,NamedDecl * Specialized,NamedDecl * PrevDecl,SourceLocation Loc,bool IsPartialSpecialization)5842 static bool CheckTemplateSpecializationScope(Sema &S,
5843 NamedDecl *Specialized,
5844 NamedDecl *PrevDecl,
5845 SourceLocation Loc,
5846 bool IsPartialSpecialization) {
5847 // Keep these "kind" numbers in sync with the %select statements in the
5848 // various diagnostics emitted by this routine.
5849 int EntityKind = 0;
5850 if (isa<ClassTemplateDecl>(Specialized))
5851 EntityKind = IsPartialSpecialization? 1 : 0;
5852 else if (isa<VarTemplateDecl>(Specialized))
5853 EntityKind = IsPartialSpecialization ? 3 : 2;
5854 else if (isa<FunctionTemplateDecl>(Specialized))
5855 EntityKind = 4;
5856 else if (isa<CXXMethodDecl>(Specialized))
5857 EntityKind = 5;
5858 else if (isa<VarDecl>(Specialized))
5859 EntityKind = 6;
5860 else if (isa<RecordDecl>(Specialized))
5861 EntityKind = 7;
5862 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
5863 EntityKind = 8;
5864 else {
5865 S.Diag(Loc, diag::err_template_spec_unknown_kind)
5866 << S.getLangOpts().CPlusPlus11;
5867 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5868 return true;
5869 }
5870
5871 // C++ [temp.expl.spec]p2:
5872 // An explicit specialization shall be declared in the namespace
5873 // of which the template is a member, or, for member templates, in
5874 // the namespace of which the enclosing class or enclosing class
5875 // template is a member. An explicit specialization of a member
5876 // function, member class or static data member of a class
5877 // template shall be declared in the namespace of which the class
5878 // template is a member. Such a declaration may also be a
5879 // definition. If the declaration is not a definition, the
5880 // specialization may be defined later in the name- space in which
5881 // the explicit specialization was declared, or in a namespace
5882 // that encloses the one in which the explicit specialization was
5883 // declared.
5884 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5885 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
5886 << Specialized;
5887 return true;
5888 }
5889
5890 if (S.CurContext->isRecord() && !IsPartialSpecialization) {
5891 if (S.getLangOpts().MicrosoftExt) {
5892 // Do not warn for class scope explicit specialization during
5893 // instantiation, warning was already emitted during pattern
5894 // semantic analysis.
5895 if (!S.ActiveTemplateInstantiations.size())
5896 S.Diag(Loc, diag::ext_function_specialization_in_class)
5897 << Specialized;
5898 } else {
5899 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5900 << Specialized;
5901 return true;
5902 }
5903 }
5904
5905 if (S.CurContext->isRecord() &&
5906 !S.CurContext->Equals(Specialized->getDeclContext())) {
5907 // Make sure that we're specializing in the right record context.
5908 // Otherwise, things can go horribly wrong.
5909 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5910 << Specialized;
5911 return true;
5912 }
5913
5914 // C++ [temp.class.spec]p6:
5915 // A class template partial specialization may be declared or redeclared
5916 // in any namespace scope in which its definition may be defined (14.5.1
5917 // and 14.5.2).
5918 DeclContext *SpecializedContext
5919 = Specialized->getDeclContext()->getEnclosingNamespaceContext();
5920 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
5921
5922 // Make sure that this redeclaration (or definition) occurs in an enclosing
5923 // namespace.
5924 // Note that HandleDeclarator() performs this check for explicit
5925 // specializations of function templates, static data members, and member
5926 // functions, so we skip the check here for those kinds of entities.
5927 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
5928 // Should we refactor that check, so that it occurs later?
5929 if (!DC->Encloses(SpecializedContext) &&
5930 !(isa<FunctionTemplateDecl>(Specialized) ||
5931 isa<FunctionDecl>(Specialized) ||
5932 isa<VarTemplateDecl>(Specialized) ||
5933 isa<VarDecl>(Specialized))) {
5934 if (isa<TranslationUnitDecl>(SpecializedContext))
5935 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
5936 << EntityKind << Specialized;
5937 else if (isa<NamespaceDecl>(SpecializedContext)) {
5938 int Diag = diag::err_template_spec_redecl_out_of_scope;
5939 if (S.getLangOpts().MicrosoftExt)
5940 Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
5941 S.Diag(Loc, Diag) << EntityKind << Specialized
5942 << cast<NamedDecl>(SpecializedContext);
5943 } else
5944 llvm_unreachable("unexpected namespace context for specialization");
5945
5946 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5947 } else if ((!PrevDecl ||
5948 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
5949 getTemplateSpecializationKind(PrevDecl) ==
5950 TSK_ImplicitInstantiation)) {
5951 // C++ [temp.exp.spec]p2:
5952 // An explicit specialization shall be declared in the namespace of which
5953 // the template is a member, or, for member templates, in the namespace
5954 // of which the enclosing class or enclosing class template is a member.
5955 // An explicit specialization of a member function, member class or
5956 // static data member of a class template shall be declared in the
5957 // namespace of which the class template is a member.
5958 //
5959 // C++11 [temp.expl.spec]p2:
5960 // An explicit specialization shall be declared in a namespace enclosing
5961 // the specialized template.
5962 // C++11 [temp.explicit]p3:
5963 // An explicit instantiation shall appear in an enclosing namespace of its
5964 // template.
5965 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
5966 bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
5967 if (isa<TranslationUnitDecl>(SpecializedContext)) {
5968 assert(!IsCPlusPlus11Extension &&
5969 "DC encloses TU but isn't in enclosing namespace set");
5970 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
5971 << EntityKind << Specialized;
5972 } else if (isa<NamespaceDecl>(SpecializedContext)) {
5973 int Diag;
5974 if (!IsCPlusPlus11Extension)
5975 Diag = diag::err_template_spec_decl_out_of_scope;
5976 else if (!S.getLangOpts().CPlusPlus11)
5977 Diag = diag::ext_template_spec_decl_out_of_scope;
5978 else
5979 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
5980 S.Diag(Loc, Diag)
5981 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
5982 }
5983
5984 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5985 }
5986 }
5987
5988 return false;
5989 }
5990
findTemplateParameter(unsigned Depth,Expr * E)5991 static SourceRange findTemplateParameter(unsigned Depth, Expr *E) {
5992 if (!E->isInstantiationDependent())
5993 return SourceLocation();
5994 DependencyChecker Checker(Depth);
5995 Checker.TraverseStmt(E);
5996 if (Checker.Match && Checker.MatchLoc.isInvalid())
5997 return E->getSourceRange();
5998 return Checker.MatchLoc;
5999 }
6000
findTemplateParameter(unsigned Depth,TypeLoc TL)6001 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
6002 if (!TL.getType()->isDependentType())
6003 return SourceLocation();
6004 DependencyChecker Checker(Depth);
6005 Checker.TraverseTypeLoc(TL);
6006 if (Checker.Match && Checker.MatchLoc.isInvalid())
6007 return TL.getSourceRange();
6008 return Checker.MatchLoc;
6009 }
6010
6011 /// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
6012 /// that checks non-type template partial specialization arguments.
CheckNonTypeTemplatePartialSpecializationArgs(Sema & S,SourceLocation TemplateNameLoc,NonTypeTemplateParmDecl * Param,const TemplateArgument * Args,unsigned NumArgs,bool IsDefaultArgument)6013 static bool CheckNonTypeTemplatePartialSpecializationArgs(
6014 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
6015 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
6016 for (unsigned I = 0; I != NumArgs; ++I) {
6017 if (Args[I].getKind() == TemplateArgument::Pack) {
6018 if (CheckNonTypeTemplatePartialSpecializationArgs(
6019 S, TemplateNameLoc, Param, Args[I].pack_begin(),
6020 Args[I].pack_size(), IsDefaultArgument))
6021 return true;
6022
6023 continue;
6024 }
6025
6026 if (Args[I].getKind() != TemplateArgument::Expression)
6027 continue;
6028
6029 Expr *ArgExpr = Args[I].getAsExpr();
6030
6031 // We can have a pack expansion of any of the bullets below.
6032 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
6033 ArgExpr = Expansion->getPattern();
6034
6035 // Strip off any implicit casts we added as part of type checking.
6036 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
6037 ArgExpr = ICE->getSubExpr();
6038
6039 // C++ [temp.class.spec]p8:
6040 // A non-type argument is non-specialized if it is the name of a
6041 // non-type parameter. All other non-type arguments are
6042 // specialized.
6043 //
6044 // Below, we check the two conditions that only apply to
6045 // specialized non-type arguments, so skip any non-specialized
6046 // arguments.
6047 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
6048 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
6049 continue;
6050
6051 // C++ [temp.class.spec]p9:
6052 // Within the argument list of a class template partial
6053 // specialization, the following restrictions apply:
6054 // -- A partially specialized non-type argument expression
6055 // shall not involve a template parameter of the partial
6056 // specialization except when the argument expression is a
6057 // simple identifier.
6058 SourceRange ParamUseRange =
6059 findTemplateParameter(Param->getDepth(), ArgExpr);
6060 if (ParamUseRange.isValid()) {
6061 if (IsDefaultArgument) {
6062 S.Diag(TemplateNameLoc,
6063 diag::err_dependent_non_type_arg_in_partial_spec);
6064 S.Diag(ParamUseRange.getBegin(),
6065 diag::note_dependent_non_type_default_arg_in_partial_spec)
6066 << ParamUseRange;
6067 } else {
6068 S.Diag(ParamUseRange.getBegin(),
6069 diag::err_dependent_non_type_arg_in_partial_spec)
6070 << ParamUseRange;
6071 }
6072 return true;
6073 }
6074
6075 // -- The type of a template parameter corresponding to a
6076 // specialized non-type argument shall not be dependent on a
6077 // parameter of the specialization.
6078 //
6079 // FIXME: We need to delay this check until instantiation in some cases:
6080 //
6081 // template<template<typename> class X> struct A {
6082 // template<typename T, X<T> N> struct B;
6083 // template<typename T> struct B<T, 0>;
6084 // };
6085 // template<typename> using X = int;
6086 // A<X>::B<int, 0> b;
6087 ParamUseRange = findTemplateParameter(
6088 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
6089 if (ParamUseRange.isValid()) {
6090 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(),
6091 diag::err_dependent_typed_non_type_arg_in_partial_spec)
6092 << Param->getType() << ParamUseRange;
6093 S.Diag(Param->getLocation(), diag::note_template_param_here)
6094 << (IsDefaultArgument ? ParamUseRange : SourceRange());
6095 return true;
6096 }
6097 }
6098
6099 return false;
6100 }
6101
6102 /// \brief Check the non-type template arguments of a class template
6103 /// partial specialization according to C++ [temp.class.spec]p9.
6104 ///
6105 /// \param TemplateNameLoc the location of the template name.
6106 /// \param TemplateParams the template parameters of the primary class
6107 /// template.
6108 /// \param NumExplicit the number of explicitly-specified template arguments.
6109 /// \param TemplateArgs the template arguments of the class template
6110 /// partial specialization.
6111 ///
6112 /// \returns \c true if there was an error, \c false otherwise.
CheckTemplatePartialSpecializationArgs(Sema & S,SourceLocation TemplateNameLoc,TemplateParameterList * TemplateParams,unsigned NumExplicit,SmallVectorImpl<TemplateArgument> & TemplateArgs)6113 static bool CheckTemplatePartialSpecializationArgs(
6114 Sema &S, SourceLocation TemplateNameLoc,
6115 TemplateParameterList *TemplateParams, unsigned NumExplicit,
6116 SmallVectorImpl<TemplateArgument> &TemplateArgs) {
6117 const TemplateArgument *ArgList = TemplateArgs.data();
6118
6119 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
6120 NonTypeTemplateParmDecl *Param
6121 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
6122 if (!Param)
6123 continue;
6124
6125 if (CheckNonTypeTemplatePartialSpecializationArgs(
6126 S, TemplateNameLoc, Param, &ArgList[I], 1, I >= NumExplicit))
6127 return true;
6128 }
6129
6130 return false;
6131 }
6132
6133 DeclResult
ActOnClassTemplateSpecialization(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,SourceLocation ModulePrivateLoc,TemplateIdAnnotation & TemplateId,AttributeList * Attr,MultiTemplateParamsArg TemplateParameterLists,SkipBodyInfo * SkipBody)6134 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
6135 TagUseKind TUK,
6136 SourceLocation KWLoc,
6137 SourceLocation ModulePrivateLoc,
6138 TemplateIdAnnotation &TemplateId,
6139 AttributeList *Attr,
6140 MultiTemplateParamsArg
6141 TemplateParameterLists,
6142 SkipBodyInfo *SkipBody) {
6143 assert(TUK != TUK_Reference && "References are not specializations");
6144
6145 CXXScopeSpec &SS = TemplateId.SS;
6146
6147 // NOTE: KWLoc is the location of the tag keyword. This will instead
6148 // store the location of the outermost template keyword in the declaration.
6149 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
6150 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
6151 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
6152 SourceLocation LAngleLoc = TemplateId.LAngleLoc;
6153 SourceLocation RAngleLoc = TemplateId.RAngleLoc;
6154
6155 // Find the class template we're specializing
6156 TemplateName Name = TemplateId.Template.get();
6157 ClassTemplateDecl *ClassTemplate
6158 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
6159
6160 if (!ClassTemplate) {
6161 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
6162 << (Name.getAsTemplateDecl() &&
6163 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
6164 return true;
6165 }
6166
6167 bool isExplicitSpecialization = false;
6168 bool isPartialSpecialization = false;
6169
6170 // Check the validity of the template headers that introduce this
6171 // template.
6172 // FIXME: We probably shouldn't complain about these headers for
6173 // friend declarations.
6174 bool Invalid = false;
6175 TemplateParameterList *TemplateParams =
6176 MatchTemplateParametersToScopeSpecifier(
6177 KWLoc, TemplateNameLoc, SS, &TemplateId,
6178 TemplateParameterLists, TUK == TUK_Friend, isExplicitSpecialization,
6179 Invalid);
6180 if (Invalid)
6181 return true;
6182
6183 if (TemplateParams && TemplateParams->size() > 0) {
6184 isPartialSpecialization = true;
6185
6186 if (TUK == TUK_Friend) {
6187 Diag(KWLoc, diag::err_partial_specialization_friend)
6188 << SourceRange(LAngleLoc, RAngleLoc);
6189 return true;
6190 }
6191
6192 // C++ [temp.class.spec]p10:
6193 // The template parameter list of a specialization shall not
6194 // contain default template argument values.
6195 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
6196 Decl *Param = TemplateParams->getParam(I);
6197 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
6198 if (TTP->hasDefaultArgument()) {
6199 Diag(TTP->getDefaultArgumentLoc(),
6200 diag::err_default_arg_in_partial_spec);
6201 TTP->removeDefaultArgument();
6202 }
6203 } else if (NonTypeTemplateParmDecl *NTTP
6204 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
6205 if (Expr *DefArg = NTTP->getDefaultArgument()) {
6206 Diag(NTTP->getDefaultArgumentLoc(),
6207 diag::err_default_arg_in_partial_spec)
6208 << DefArg->getSourceRange();
6209 NTTP->removeDefaultArgument();
6210 }
6211 } else {
6212 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
6213 if (TTP->hasDefaultArgument()) {
6214 Diag(TTP->getDefaultArgument().getLocation(),
6215 diag::err_default_arg_in_partial_spec)
6216 << TTP->getDefaultArgument().getSourceRange();
6217 TTP->removeDefaultArgument();
6218 }
6219 }
6220 }
6221 } else if (TemplateParams) {
6222 if (TUK == TUK_Friend)
6223 Diag(KWLoc, diag::err_template_spec_friend)
6224 << FixItHint::CreateRemoval(
6225 SourceRange(TemplateParams->getTemplateLoc(),
6226 TemplateParams->getRAngleLoc()))
6227 << SourceRange(LAngleLoc, RAngleLoc);
6228 else
6229 isExplicitSpecialization = true;
6230 } else {
6231 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
6232 }
6233
6234 // Check that the specialization uses the same tag kind as the
6235 // original template.
6236 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6237 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
6238 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6239 Kind, TUK == TUK_Definition, KWLoc,
6240 ClassTemplate->getIdentifier())) {
6241 Diag(KWLoc, diag::err_use_with_wrong_tag)
6242 << ClassTemplate
6243 << FixItHint::CreateReplacement(KWLoc,
6244 ClassTemplate->getTemplatedDecl()->getKindName());
6245 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6246 diag::note_previous_use);
6247 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6248 }
6249
6250 // Translate the parser's template argument list in our AST format.
6251 TemplateArgumentListInfo TemplateArgs =
6252 makeTemplateArgumentListInfo(*this, TemplateId);
6253
6254 // Check for unexpanded parameter packs in any of the template arguments.
6255 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6256 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
6257 UPPC_PartialSpecialization))
6258 return true;
6259
6260 // Check that the template argument list is well-formed for this
6261 // template.
6262 SmallVector<TemplateArgument, 4> Converted;
6263 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6264 TemplateArgs, false, Converted))
6265 return true;
6266
6267 // Find the class template (partial) specialization declaration that
6268 // corresponds to these arguments.
6269 if (isPartialSpecialization) {
6270 if (CheckTemplatePartialSpecializationArgs(
6271 *this, TemplateNameLoc, ClassTemplate->getTemplateParameters(),
6272 TemplateArgs.size(), Converted))
6273 return true;
6274
6275 bool InstantiationDependent;
6276 if (!Name.isDependent() &&
6277 !TemplateSpecializationType::anyDependentTemplateArguments(
6278 TemplateArgs.getArgumentArray(),
6279 TemplateArgs.size(),
6280 InstantiationDependent)) {
6281 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
6282 << ClassTemplate->getDeclName();
6283 isPartialSpecialization = false;
6284 }
6285 }
6286
6287 void *InsertPos = nullptr;
6288 ClassTemplateSpecializationDecl *PrevDecl = nullptr;
6289
6290 if (isPartialSpecialization)
6291 // FIXME: Template parameter list matters, too
6292 PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos);
6293 else
6294 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
6295
6296 ClassTemplateSpecializationDecl *Specialization = nullptr;
6297
6298 // Check whether we can declare a class template specialization in
6299 // the current scope.
6300 if (TUK != TUK_Friend &&
6301 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
6302 TemplateNameLoc,
6303 isPartialSpecialization))
6304 return true;
6305
6306 // The canonical type
6307 QualType CanonType;
6308 if (isPartialSpecialization) {
6309 // Build the canonical type that describes the converted template
6310 // arguments of the class template partial specialization.
6311 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
6312 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
6313 Converted.data(),
6314 Converted.size());
6315
6316 if (Context.hasSameType(CanonType,
6317 ClassTemplate->getInjectedClassNameSpecialization())) {
6318 // C++ [temp.class.spec]p9b3:
6319 //
6320 // -- The argument list of the specialization shall not be identical
6321 // to the implicit argument list of the primary template.
6322 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
6323 << /*class template*/0 << (TUK == TUK_Definition)
6324 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
6325 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
6326 ClassTemplate->getIdentifier(),
6327 TemplateNameLoc,
6328 Attr,
6329 TemplateParams,
6330 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
6331 /*FriendLoc*/SourceLocation(),
6332 TemplateParameterLists.size() - 1,
6333 TemplateParameterLists.data());
6334 }
6335
6336 // Create a new class template partial specialization declaration node.
6337 ClassTemplatePartialSpecializationDecl *PrevPartial
6338 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
6339 ClassTemplatePartialSpecializationDecl *Partial
6340 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
6341 ClassTemplate->getDeclContext(),
6342 KWLoc, TemplateNameLoc,
6343 TemplateParams,
6344 ClassTemplate,
6345 Converted.data(),
6346 Converted.size(),
6347 TemplateArgs,
6348 CanonType,
6349 PrevPartial);
6350 SetNestedNameSpecifier(Partial, SS);
6351 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
6352 Partial->setTemplateParameterListsInfo(
6353 Context, TemplateParameterLists.drop_back(1));
6354 }
6355
6356 if (!PrevPartial)
6357 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
6358 Specialization = Partial;
6359
6360 // If we are providing an explicit specialization of a member class
6361 // template specialization, make a note of that.
6362 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
6363 PrevPartial->setMemberSpecialization();
6364
6365 // Check that all of the template parameters of the class template
6366 // partial specialization are deducible from the template
6367 // arguments. If not, this class template partial specialization
6368 // will never be used.
6369 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
6370 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
6371 TemplateParams->getDepth(),
6372 DeducibleParams);
6373
6374 if (!DeducibleParams.all()) {
6375 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
6376 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
6377 << /*class template*/0 << (NumNonDeducible > 1)
6378 << SourceRange(TemplateNameLoc, RAngleLoc);
6379 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
6380 if (!DeducibleParams[I]) {
6381 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
6382 if (Param->getDeclName())
6383 Diag(Param->getLocation(),
6384 diag::note_partial_spec_unused_parameter)
6385 << Param->getDeclName();
6386 else
6387 Diag(Param->getLocation(),
6388 diag::note_partial_spec_unused_parameter)
6389 << "(anonymous)";
6390 }
6391 }
6392 }
6393 } else {
6394 // Create a new class template specialization declaration node for
6395 // this explicit specialization or friend declaration.
6396 Specialization
6397 = ClassTemplateSpecializationDecl::Create(Context, Kind,
6398 ClassTemplate->getDeclContext(),
6399 KWLoc, TemplateNameLoc,
6400 ClassTemplate,
6401 Converted.data(),
6402 Converted.size(),
6403 PrevDecl);
6404 SetNestedNameSpecifier(Specialization, SS);
6405 if (TemplateParameterLists.size() > 0) {
6406 Specialization->setTemplateParameterListsInfo(Context,
6407 TemplateParameterLists);
6408 }
6409
6410 if (!PrevDecl)
6411 ClassTemplate->AddSpecialization(Specialization, InsertPos);
6412
6413 if (CurContext->isDependentContext()) {
6414 // -fms-extensions permits specialization of nested classes without
6415 // fully specializing the outer class(es).
6416 assert(getLangOpts().MicrosoftExt &&
6417 "Only possible with -fms-extensions!");
6418 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
6419 CanonType = Context.getTemplateSpecializationType(
6420 CanonTemplate, Converted.data(), Converted.size());
6421 } else {
6422 CanonType = Context.getTypeDeclType(Specialization);
6423 }
6424 }
6425
6426 // C++ [temp.expl.spec]p6:
6427 // If a template, a member template or the member of a class template is
6428 // explicitly specialized then that specialization shall be declared
6429 // before the first use of that specialization that would cause an implicit
6430 // instantiation to take place, in every translation unit in which such a
6431 // use occurs; no diagnostic is required.
6432 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
6433 bool Okay = false;
6434 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6435 // Is there any previous explicit specialization declaration?
6436 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6437 Okay = true;
6438 break;
6439 }
6440 }
6441
6442 if (!Okay) {
6443 SourceRange Range(TemplateNameLoc, RAngleLoc);
6444 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
6445 << Context.getTypeDeclType(Specialization) << Range;
6446
6447 Diag(PrevDecl->getPointOfInstantiation(),
6448 diag::note_instantiation_required_here)
6449 << (PrevDecl->getTemplateSpecializationKind()
6450 != TSK_ImplicitInstantiation);
6451 return true;
6452 }
6453 }
6454
6455 // If this is not a friend, note that this is an explicit specialization.
6456 if (TUK != TUK_Friend)
6457 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
6458
6459 // Check that this isn't a redefinition of this specialization.
6460 if (TUK == TUK_Definition) {
6461 RecordDecl *Def = Specialization->getDefinition();
6462 NamedDecl *Hidden = nullptr;
6463 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
6464 SkipBody->ShouldSkip = true;
6465 makeMergedDefinitionVisible(Hidden, KWLoc);
6466 // From here on out, treat this as just a redeclaration.
6467 TUK = TUK_Declaration;
6468 } else if (Def) {
6469 SourceRange Range(TemplateNameLoc, RAngleLoc);
6470 Diag(TemplateNameLoc, diag::err_redefinition)
6471 << Context.getTypeDeclType(Specialization) << Range;
6472 Diag(Def->getLocation(), diag::note_previous_definition);
6473 Specialization->setInvalidDecl();
6474 return true;
6475 }
6476 }
6477
6478 if (Attr)
6479 ProcessDeclAttributeList(S, Specialization, Attr);
6480
6481 // Add alignment attributes if necessary; these attributes are checked when
6482 // the ASTContext lays out the structure.
6483 if (TUK == TUK_Definition) {
6484 AddAlignmentAttributesForRecord(Specialization);
6485 AddMsStructLayoutForRecord(Specialization);
6486 }
6487
6488 if (ModulePrivateLoc.isValid())
6489 Diag(Specialization->getLocation(), diag::err_module_private_specialization)
6490 << (isPartialSpecialization? 1 : 0)
6491 << FixItHint::CreateRemoval(ModulePrivateLoc);
6492
6493 // Build the fully-sugared type for this class template
6494 // specialization as the user wrote in the specialization
6495 // itself. This means that we'll pretty-print the type retrieved
6496 // from the specialization's declaration the way that the user
6497 // actually wrote the specialization, rather than formatting the
6498 // name based on the "canonical" representation used to store the
6499 // template arguments in the specialization.
6500 TypeSourceInfo *WrittenTy
6501 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6502 TemplateArgs, CanonType);
6503 if (TUK != TUK_Friend) {
6504 Specialization->setTypeAsWritten(WrittenTy);
6505 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
6506 }
6507
6508 // C++ [temp.expl.spec]p9:
6509 // A template explicit specialization is in the scope of the
6510 // namespace in which the template was defined.
6511 //
6512 // We actually implement this paragraph where we set the semantic
6513 // context (in the creation of the ClassTemplateSpecializationDecl),
6514 // but we also maintain the lexical context where the actual
6515 // definition occurs.
6516 Specialization->setLexicalDeclContext(CurContext);
6517
6518 // We may be starting the definition of this specialization.
6519 if (TUK == TUK_Definition)
6520 Specialization->startDefinition();
6521
6522 if (TUK == TUK_Friend) {
6523 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
6524 TemplateNameLoc,
6525 WrittenTy,
6526 /*FIXME:*/KWLoc);
6527 Friend->setAccess(AS_public);
6528 CurContext->addDecl(Friend);
6529 } else {
6530 // Add the specialization into its lexical context, so that it can
6531 // be seen when iterating through the list of declarations in that
6532 // context. However, specializations are not found by name lookup.
6533 CurContext->addDecl(Specialization);
6534 }
6535 return Specialization;
6536 }
6537
ActOnTemplateDeclarator(Scope * S,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)6538 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
6539 MultiTemplateParamsArg TemplateParameterLists,
6540 Declarator &D) {
6541 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
6542 ActOnDocumentableDecl(NewDecl);
6543 return NewDecl;
6544 }
6545
6546 /// \brief Strips various properties off an implicit instantiation
6547 /// that has just been explicitly specialized.
StripImplicitInstantiation(NamedDecl * D)6548 static void StripImplicitInstantiation(NamedDecl *D) {
6549 D->dropAttr<DLLImportAttr>();
6550 D->dropAttr<DLLExportAttr>();
6551
6552 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
6553 FD->setInlineSpecified(false);
6554 }
6555
6556 /// \brief Compute the diagnostic location for an explicit instantiation
6557 // declaration or definition.
DiagLocForExplicitInstantiation(NamedDecl * D,SourceLocation PointOfInstantiation)6558 static SourceLocation DiagLocForExplicitInstantiation(
6559 NamedDecl* D, SourceLocation PointOfInstantiation) {
6560 // Explicit instantiations following a specialization have no effect and
6561 // hence no PointOfInstantiation. In that case, walk decl backwards
6562 // until a valid name loc is found.
6563 SourceLocation PrevDiagLoc = PointOfInstantiation;
6564 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
6565 Prev = Prev->getPreviousDecl()) {
6566 PrevDiagLoc = Prev->getLocation();
6567 }
6568 assert(PrevDiagLoc.isValid() &&
6569 "Explicit instantiation without point of instantiation?");
6570 return PrevDiagLoc;
6571 }
6572
6573 /// \brief Diagnose cases where we have an explicit template specialization
6574 /// before/after an explicit template instantiation, producing diagnostics
6575 /// for those cases where they are required and determining whether the
6576 /// new specialization/instantiation will have any effect.
6577 ///
6578 /// \param NewLoc the location of the new explicit specialization or
6579 /// instantiation.
6580 ///
6581 /// \param NewTSK the kind of the new explicit specialization or instantiation.
6582 ///
6583 /// \param PrevDecl the previous declaration of the entity.
6584 ///
6585 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
6586 ///
6587 /// \param PrevPointOfInstantiation if valid, indicates where the previus
6588 /// declaration was instantiated (either implicitly or explicitly).
6589 ///
6590 /// \param HasNoEffect will be set to true to indicate that the new
6591 /// specialization or instantiation has no effect and should be ignored.
6592 ///
6593 /// \returns true if there was an error that should prevent the introduction of
6594 /// the new declaration into the AST, false otherwise.
6595 bool
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,TemplateSpecializationKind NewTSK,NamedDecl * PrevDecl,TemplateSpecializationKind PrevTSK,SourceLocation PrevPointOfInstantiation,bool & HasNoEffect)6596 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
6597 TemplateSpecializationKind NewTSK,
6598 NamedDecl *PrevDecl,
6599 TemplateSpecializationKind PrevTSK,
6600 SourceLocation PrevPointOfInstantiation,
6601 bool &HasNoEffect) {
6602 HasNoEffect = false;
6603
6604 switch (NewTSK) {
6605 case TSK_Undeclared:
6606 case TSK_ImplicitInstantiation:
6607 assert(
6608 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
6609 "previous declaration must be implicit!");
6610 return false;
6611
6612 case TSK_ExplicitSpecialization:
6613 switch (PrevTSK) {
6614 case TSK_Undeclared:
6615 case TSK_ExplicitSpecialization:
6616 // Okay, we're just specializing something that is either already
6617 // explicitly specialized or has merely been mentioned without any
6618 // instantiation.
6619 return false;
6620
6621 case TSK_ImplicitInstantiation:
6622 if (PrevPointOfInstantiation.isInvalid()) {
6623 // The declaration itself has not actually been instantiated, so it is
6624 // still okay to specialize it.
6625 StripImplicitInstantiation(PrevDecl);
6626 return false;
6627 }
6628 // Fall through
6629
6630 case TSK_ExplicitInstantiationDeclaration:
6631 case TSK_ExplicitInstantiationDefinition:
6632 assert((PrevTSK == TSK_ImplicitInstantiation ||
6633 PrevPointOfInstantiation.isValid()) &&
6634 "Explicit instantiation without point of instantiation?");
6635
6636 // C++ [temp.expl.spec]p6:
6637 // If a template, a member template or the member of a class template
6638 // is explicitly specialized then that specialization shall be declared
6639 // before the first use of that specialization that would cause an
6640 // implicit instantiation to take place, in every translation unit in
6641 // which such a use occurs; no diagnostic is required.
6642 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6643 // Is there any previous explicit specialization declaration?
6644 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
6645 return false;
6646 }
6647
6648 Diag(NewLoc, diag::err_specialization_after_instantiation)
6649 << PrevDecl;
6650 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
6651 << (PrevTSK != TSK_ImplicitInstantiation);
6652
6653 return true;
6654 }
6655
6656 case TSK_ExplicitInstantiationDeclaration:
6657 switch (PrevTSK) {
6658 case TSK_ExplicitInstantiationDeclaration:
6659 // This explicit instantiation declaration is redundant (that's okay).
6660 HasNoEffect = true;
6661 return false;
6662
6663 case TSK_Undeclared:
6664 case TSK_ImplicitInstantiation:
6665 // We're explicitly instantiating something that may have already been
6666 // implicitly instantiated; that's fine.
6667 return false;
6668
6669 case TSK_ExplicitSpecialization:
6670 // C++0x [temp.explicit]p4:
6671 // For a given set of template parameters, if an explicit instantiation
6672 // of a template appears after a declaration of an explicit
6673 // specialization for that template, the explicit instantiation has no
6674 // effect.
6675 HasNoEffect = true;
6676 return false;
6677
6678 case TSK_ExplicitInstantiationDefinition:
6679 // C++0x [temp.explicit]p10:
6680 // If an entity is the subject of both an explicit instantiation
6681 // declaration and an explicit instantiation definition in the same
6682 // translation unit, the definition shall follow the declaration.
6683 Diag(NewLoc,
6684 diag::err_explicit_instantiation_declaration_after_definition);
6685
6686 // Explicit instantiations following a specialization have no effect and
6687 // hence no PrevPointOfInstantiation. In that case, walk decl backwards
6688 // until a valid name loc is found.
6689 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6690 diag::note_explicit_instantiation_definition_here);
6691 HasNoEffect = true;
6692 return false;
6693 }
6694
6695 case TSK_ExplicitInstantiationDefinition:
6696 switch (PrevTSK) {
6697 case TSK_Undeclared:
6698 case TSK_ImplicitInstantiation:
6699 // We're explicitly instantiating something that may have already been
6700 // implicitly instantiated; that's fine.
6701 return false;
6702
6703 case TSK_ExplicitSpecialization:
6704 // C++ DR 259, C++0x [temp.explicit]p4:
6705 // For a given set of template parameters, if an explicit
6706 // instantiation of a template appears after a declaration of
6707 // an explicit specialization for that template, the explicit
6708 // instantiation has no effect.
6709 //
6710 // In C++98/03 mode, we only give an extension warning here, because it
6711 // is not harmful to try to explicitly instantiate something that
6712 // has been explicitly specialized.
6713 Diag(NewLoc, getLangOpts().CPlusPlus11 ?
6714 diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
6715 diag::ext_explicit_instantiation_after_specialization)
6716 << PrevDecl;
6717 Diag(PrevDecl->getLocation(),
6718 diag::note_previous_template_specialization);
6719 HasNoEffect = true;
6720 return false;
6721
6722 case TSK_ExplicitInstantiationDeclaration:
6723 // We're explicity instantiating a definition for something for which we
6724 // were previously asked to suppress instantiations. That's fine.
6725
6726 // C++0x [temp.explicit]p4:
6727 // For a given set of template parameters, if an explicit instantiation
6728 // of a template appears after a declaration of an explicit
6729 // specialization for that template, the explicit instantiation has no
6730 // effect.
6731 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6732 // Is there any previous explicit specialization declaration?
6733 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6734 HasNoEffect = true;
6735 break;
6736 }
6737 }
6738
6739 return false;
6740
6741 case TSK_ExplicitInstantiationDefinition:
6742 // C++0x [temp.spec]p5:
6743 // For a given template and a given set of template-arguments,
6744 // - an explicit instantiation definition shall appear at most once
6745 // in a program,
6746
6747 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
6748 Diag(NewLoc, (getLangOpts().MSVCCompat)
6749 ? diag::ext_explicit_instantiation_duplicate
6750 : diag::err_explicit_instantiation_duplicate)
6751 << PrevDecl;
6752 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6753 diag::note_previous_explicit_instantiation);
6754 HasNoEffect = true;
6755 return false;
6756 }
6757 }
6758
6759 llvm_unreachable("Missing specialization/instantiation case?");
6760 }
6761
6762 /// \brief Perform semantic analysis for the given dependent function
6763 /// template specialization.
6764 ///
6765 /// The only possible way to get a dependent function template specialization
6766 /// is with a friend declaration, like so:
6767 ///
6768 /// \code
6769 /// template \<class T> void foo(T);
6770 /// template \<class T> class A {
6771 /// friend void foo<>(T);
6772 /// };
6773 /// \endcode
6774 ///
6775 /// There really isn't any useful analysis we can do here, so we
6776 /// just store the information.
6777 bool
CheckDependentFunctionTemplateSpecialization(FunctionDecl * FD,const TemplateArgumentListInfo & ExplicitTemplateArgs,LookupResult & Previous)6778 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
6779 const TemplateArgumentListInfo &ExplicitTemplateArgs,
6780 LookupResult &Previous) {
6781 // Remove anything from Previous that isn't a function template in
6782 // the correct context.
6783 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6784 LookupResult::Filter F = Previous.makeFilter();
6785 while (F.hasNext()) {
6786 NamedDecl *D = F.next()->getUnderlyingDecl();
6787 if (!isa<FunctionTemplateDecl>(D) ||
6788 !FDLookupContext->InEnclosingNamespaceSetOf(
6789 D->getDeclContext()->getRedeclContext()))
6790 F.erase();
6791 }
6792 F.done();
6793
6794 // Should this be diagnosed here?
6795 if (Previous.empty()) return true;
6796
6797 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
6798 ExplicitTemplateArgs);
6799 return false;
6800 }
6801
6802 /// \brief Perform semantic analysis for the given function template
6803 /// specialization.
6804 ///
6805 /// This routine performs all of the semantic analysis required for an
6806 /// explicit function template specialization. On successful completion,
6807 /// the function declaration \p FD will become a function template
6808 /// specialization.
6809 ///
6810 /// \param FD the function declaration, which will be updated to become a
6811 /// function template specialization.
6812 ///
6813 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
6814 /// if any. Note that this may be valid info even when 0 arguments are
6815 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
6816 /// as it anyway contains info on the angle brackets locations.
6817 ///
6818 /// \param Previous the set of declarations that may be specialized by
6819 /// this function specialization.
CheckFunctionTemplateSpecialization(FunctionDecl * FD,TemplateArgumentListInfo * ExplicitTemplateArgs,LookupResult & Previous)6820 bool Sema::CheckFunctionTemplateSpecialization(
6821 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
6822 LookupResult &Previous) {
6823 // The set of function template specializations that could match this
6824 // explicit function template specialization.
6825 UnresolvedSet<8> Candidates;
6826 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
6827 /*ForTakingAddress=*/false);
6828
6829 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
6830 ConvertedTemplateArgs;
6831
6832 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6833 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6834 I != E; ++I) {
6835 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
6836 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
6837 // Only consider templates found within the same semantic lookup scope as
6838 // FD.
6839 if (!FDLookupContext->InEnclosingNamespaceSetOf(
6840 Ovl->getDeclContext()->getRedeclContext()))
6841 continue;
6842
6843 // When matching a constexpr member function template specialization
6844 // against the primary template, we don't yet know whether the
6845 // specialization has an implicit 'const' (because we don't know whether
6846 // it will be a static member function until we know which template it
6847 // specializes), so adjust it now assuming it specializes this template.
6848 QualType FT = FD->getType();
6849 if (FD->isConstexpr()) {
6850 CXXMethodDecl *OldMD =
6851 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
6852 if (OldMD && OldMD->isConst()) {
6853 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
6854 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6855 EPI.TypeQuals |= Qualifiers::Const;
6856 FT = Context.getFunctionType(FPT->getReturnType(),
6857 FPT->getParamTypes(), EPI);
6858 }
6859 }
6860
6861 TemplateArgumentListInfo Args;
6862 if (ExplicitTemplateArgs)
6863 Args = *ExplicitTemplateArgs;
6864
6865 // C++ [temp.expl.spec]p11:
6866 // A trailing template-argument can be left unspecified in the
6867 // template-id naming an explicit function template specialization
6868 // provided it can be deduced from the function argument type.
6869 // Perform template argument deduction to determine whether we may be
6870 // specializing this template.
6871 // FIXME: It is somewhat wasteful to build
6872 TemplateDeductionInfo Info(FailedCandidates.getLocation());
6873 FunctionDecl *Specialization = nullptr;
6874 if (TemplateDeductionResult TDK = DeduceTemplateArguments(
6875 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
6876 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, Info)) {
6877 // Template argument deduction failed; record why it failed, so
6878 // that we can provide nifty diagnostics.
6879 FailedCandidates.addCandidate()
6880 .set(FunTmpl->getTemplatedDecl(),
6881 MakeDeductionFailureInfo(Context, TDK, Info));
6882 (void)TDK;
6883 continue;
6884 }
6885
6886 // Record this candidate.
6887 if (ExplicitTemplateArgs)
6888 ConvertedTemplateArgs[Specialization] = std::move(Args);
6889 Candidates.addDecl(Specialization, I.getAccess());
6890 }
6891 }
6892
6893 // Find the most specialized function template.
6894 UnresolvedSetIterator Result = getMostSpecialized(
6895 Candidates.begin(), Candidates.end(), FailedCandidates,
6896 FD->getLocation(),
6897 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
6898 PDiag(diag::err_function_template_spec_ambiguous)
6899 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
6900 PDiag(diag::note_function_template_spec_matched));
6901
6902 if (Result == Candidates.end())
6903 return true;
6904
6905 // Ignore access information; it doesn't figure into redeclaration checking.
6906 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6907
6908 FunctionTemplateSpecializationInfo *SpecInfo
6909 = Specialization->getTemplateSpecializationInfo();
6910 assert(SpecInfo && "Function template specialization info missing?");
6911
6912 // Note: do not overwrite location info if previous template
6913 // specialization kind was explicit.
6914 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
6915 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
6916 Specialization->setLocation(FD->getLocation());
6917 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
6918 // function can differ from the template declaration with respect to
6919 // the constexpr specifier.
6920 Specialization->setConstexpr(FD->isConstexpr());
6921 }
6922
6923 // FIXME: Check if the prior specialization has a point of instantiation.
6924 // If so, we have run afoul of .
6925
6926 // If this is a friend declaration, then we're not really declaring
6927 // an explicit specialization.
6928 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
6929
6930 // Check the scope of this explicit specialization.
6931 if (!isFriend &&
6932 CheckTemplateSpecializationScope(*this,
6933 Specialization->getPrimaryTemplate(),
6934 Specialization, FD->getLocation(),
6935 false))
6936 return true;
6937
6938 // C++ [temp.expl.spec]p6:
6939 // If a template, a member template or the member of a class template is
6940 // explicitly specialized then that specialization shall be declared
6941 // before the first use of that specialization that would cause an implicit
6942 // instantiation to take place, in every translation unit in which such a
6943 // use occurs; no diagnostic is required.
6944 bool HasNoEffect = false;
6945 if (!isFriend &&
6946 CheckSpecializationInstantiationRedecl(FD->getLocation(),
6947 TSK_ExplicitSpecialization,
6948 Specialization,
6949 SpecInfo->getTemplateSpecializationKind(),
6950 SpecInfo->getPointOfInstantiation(),
6951 HasNoEffect))
6952 return true;
6953
6954 // Mark the prior declaration as an explicit specialization, so that later
6955 // clients know that this is an explicit specialization.
6956 if (!isFriend) {
6957 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
6958 MarkUnusedFileScopedDecl(Specialization);
6959 }
6960
6961 // Turn the given function declaration into a function template
6962 // specialization, with the template arguments from the previous
6963 // specialization.
6964 // Take copies of (semantic and syntactic) template argument lists.
6965 const TemplateArgumentList* TemplArgs = new (Context)
6966 TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
6967 FD->setFunctionTemplateSpecialization(
6968 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
6969 SpecInfo->getTemplateSpecializationKind(),
6970 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
6971
6972 // The "previous declaration" for this function template specialization is
6973 // the prior function template specialization.
6974 Previous.clear();
6975 Previous.addDecl(Specialization);
6976 return false;
6977 }
6978
6979 /// \brief Perform semantic analysis for the given non-template member
6980 /// specialization.
6981 ///
6982 /// This routine performs all of the semantic analysis required for an
6983 /// explicit member function specialization. On successful completion,
6984 /// the function declaration \p FD will become a member function
6985 /// specialization.
6986 ///
6987 /// \param Member the member declaration, which will be updated to become a
6988 /// specialization.
6989 ///
6990 /// \param Previous the set of declarations, one of which may be specialized
6991 /// by this function specialization; the set will be modified to contain the
6992 /// redeclared member.
6993 bool
CheckMemberSpecialization(NamedDecl * Member,LookupResult & Previous)6994 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
6995 assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
6996
6997 // Try to find the member we are instantiating.
6998 NamedDecl *Instantiation = nullptr;
6999 NamedDecl *InstantiatedFrom = nullptr;
7000 MemberSpecializationInfo *MSInfo = nullptr;
7001
7002 if (Previous.empty()) {
7003 // Nowhere to look anyway.
7004 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
7005 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7006 I != E; ++I) {
7007 NamedDecl *D = (*I)->getUnderlyingDecl();
7008 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
7009 QualType Adjusted = Function->getType();
7010 if (!hasExplicitCallingConv(Adjusted))
7011 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
7012 if (Context.hasSameType(Adjusted, Method->getType())) {
7013 Instantiation = Method;
7014 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
7015 MSInfo = Method->getMemberSpecializationInfo();
7016 break;
7017 }
7018 }
7019 }
7020 } else if (isa<VarDecl>(Member)) {
7021 VarDecl *PrevVar;
7022 if (Previous.isSingleResult() &&
7023 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
7024 if (PrevVar->isStaticDataMember()) {
7025 Instantiation = PrevVar;
7026 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
7027 MSInfo = PrevVar->getMemberSpecializationInfo();
7028 }
7029 } else if (isa<RecordDecl>(Member)) {
7030 CXXRecordDecl *PrevRecord;
7031 if (Previous.isSingleResult() &&
7032 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
7033 Instantiation = PrevRecord;
7034 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
7035 MSInfo = PrevRecord->getMemberSpecializationInfo();
7036 }
7037 } else if (isa<EnumDecl>(Member)) {
7038 EnumDecl *PrevEnum;
7039 if (Previous.isSingleResult() &&
7040 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
7041 Instantiation = PrevEnum;
7042 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
7043 MSInfo = PrevEnum->getMemberSpecializationInfo();
7044 }
7045 }
7046
7047 if (!Instantiation) {
7048 // There is no previous declaration that matches. Since member
7049 // specializations are always out-of-line, the caller will complain about
7050 // this mismatch later.
7051 return false;
7052 }
7053
7054 // If this is a friend, just bail out here before we start turning
7055 // things into explicit specializations.
7056 if (Member->getFriendObjectKind() != Decl::FOK_None) {
7057 // Preserve instantiation information.
7058 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
7059 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
7060 cast<CXXMethodDecl>(InstantiatedFrom),
7061 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
7062 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
7063 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
7064 cast<CXXRecordDecl>(InstantiatedFrom),
7065 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
7066 }
7067
7068 Previous.clear();
7069 Previous.addDecl(Instantiation);
7070 return false;
7071 }
7072
7073 // Make sure that this is a specialization of a member.
7074 if (!InstantiatedFrom) {
7075 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
7076 << Member;
7077 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
7078 return true;
7079 }
7080
7081 // C++ [temp.expl.spec]p6:
7082 // If a template, a member template or the member of a class template is
7083 // explicitly specialized then that specialization shall be declared
7084 // before the first use of that specialization that would cause an implicit
7085 // instantiation to take place, in every translation unit in which such a
7086 // use occurs; no diagnostic is required.
7087 assert(MSInfo && "Member specialization info missing?");
7088
7089 bool HasNoEffect = false;
7090 if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
7091 TSK_ExplicitSpecialization,
7092 Instantiation,
7093 MSInfo->getTemplateSpecializationKind(),
7094 MSInfo->getPointOfInstantiation(),
7095 HasNoEffect))
7096 return true;
7097
7098 // Check the scope of this explicit specialization.
7099 if (CheckTemplateSpecializationScope(*this,
7100 InstantiatedFrom,
7101 Instantiation, Member->getLocation(),
7102 false))
7103 return true;
7104
7105 // Note that this is an explicit instantiation of a member.
7106 // the original declaration to note that it is an explicit specialization
7107 // (if it was previously an implicit instantiation). This latter step
7108 // makes bookkeeping easier.
7109 if (isa<FunctionDecl>(Member)) {
7110 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
7111 if (InstantiationFunction->getTemplateSpecializationKind() ==
7112 TSK_ImplicitInstantiation) {
7113 InstantiationFunction->setTemplateSpecializationKind(
7114 TSK_ExplicitSpecialization);
7115 InstantiationFunction->setLocation(Member->getLocation());
7116 }
7117
7118 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
7119 cast<CXXMethodDecl>(InstantiatedFrom),
7120 TSK_ExplicitSpecialization);
7121 MarkUnusedFileScopedDecl(InstantiationFunction);
7122 } else if (isa<VarDecl>(Member)) {
7123 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
7124 if (InstantiationVar->getTemplateSpecializationKind() ==
7125 TSK_ImplicitInstantiation) {
7126 InstantiationVar->setTemplateSpecializationKind(
7127 TSK_ExplicitSpecialization);
7128 InstantiationVar->setLocation(Member->getLocation());
7129 }
7130
7131 cast<VarDecl>(Member)->setInstantiationOfStaticDataMember(
7132 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
7133 MarkUnusedFileScopedDecl(InstantiationVar);
7134 } else if (isa<CXXRecordDecl>(Member)) {
7135 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
7136 if (InstantiationClass->getTemplateSpecializationKind() ==
7137 TSK_ImplicitInstantiation) {
7138 InstantiationClass->setTemplateSpecializationKind(
7139 TSK_ExplicitSpecialization);
7140 InstantiationClass->setLocation(Member->getLocation());
7141 }
7142
7143 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
7144 cast<CXXRecordDecl>(InstantiatedFrom),
7145 TSK_ExplicitSpecialization);
7146 } else {
7147 assert(isa<EnumDecl>(Member) && "Only member enums remain");
7148 EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
7149 if (InstantiationEnum->getTemplateSpecializationKind() ==
7150 TSK_ImplicitInstantiation) {
7151 InstantiationEnum->setTemplateSpecializationKind(
7152 TSK_ExplicitSpecialization);
7153 InstantiationEnum->setLocation(Member->getLocation());
7154 }
7155
7156 cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
7157 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
7158 }
7159
7160 // Save the caller the trouble of having to figure out which declaration
7161 // this specialization matches.
7162 Previous.clear();
7163 Previous.addDecl(Instantiation);
7164 return false;
7165 }
7166
7167 /// \brief Check the scope of an explicit instantiation.
7168 ///
7169 /// \returns true if a serious error occurs, false otherwise.
CheckExplicitInstantiationScope(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName)7170 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
7171 SourceLocation InstLoc,
7172 bool WasQualifiedName) {
7173 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
7174 DeclContext *CurContext = S.CurContext->getRedeclContext();
7175
7176 if (CurContext->isRecord()) {
7177 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
7178 << D;
7179 return true;
7180 }
7181
7182 // C++11 [temp.explicit]p3:
7183 // An explicit instantiation shall appear in an enclosing namespace of its
7184 // template. If the name declared in the explicit instantiation is an
7185 // unqualified name, the explicit instantiation shall appear in the
7186 // namespace where its template is declared or, if that namespace is inline
7187 // (7.3.1), any namespace from its enclosing namespace set.
7188 //
7189 // This is DR275, which we do not retroactively apply to C++98/03.
7190 if (WasQualifiedName) {
7191 if (CurContext->Encloses(OrigContext))
7192 return false;
7193 } else {
7194 if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
7195 return false;
7196 }
7197
7198 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
7199 if (WasQualifiedName)
7200 S.Diag(InstLoc,
7201 S.getLangOpts().CPlusPlus11?
7202 diag::err_explicit_instantiation_out_of_scope :
7203 diag::warn_explicit_instantiation_out_of_scope_0x)
7204 << D << NS;
7205 else
7206 S.Diag(InstLoc,
7207 S.getLangOpts().CPlusPlus11?
7208 diag::err_explicit_instantiation_unqualified_wrong_namespace :
7209 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
7210 << D << NS;
7211 } else
7212 S.Diag(InstLoc,
7213 S.getLangOpts().CPlusPlus11?
7214 diag::err_explicit_instantiation_must_be_global :
7215 diag::warn_explicit_instantiation_must_be_global_0x)
7216 << D;
7217 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
7218 return false;
7219 }
7220
7221 /// \brief Determine whether the given scope specifier has a template-id in it.
ScopeSpecifierHasTemplateId(const CXXScopeSpec & SS)7222 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
7223 if (!SS.isSet())
7224 return false;
7225
7226 // C++11 [temp.explicit]p3:
7227 // If the explicit instantiation is for a member function, a member class
7228 // or a static data member of a class template specialization, the name of
7229 // the class template specialization in the qualified-id for the member
7230 // name shall be a simple-template-id.
7231 //
7232 // C++98 has the same restriction, just worded differently.
7233 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
7234 NNS = NNS->getPrefix())
7235 if (const Type *T = NNS->getAsType())
7236 if (isa<TemplateSpecializationType>(T))
7237 return true;
7238
7239 return false;
7240 }
7241
7242 // Explicit instantiation of a class template specialization
7243 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,const CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,AttributeList * Attr)7244 Sema::ActOnExplicitInstantiation(Scope *S,
7245 SourceLocation ExternLoc,
7246 SourceLocation TemplateLoc,
7247 unsigned TagSpec,
7248 SourceLocation KWLoc,
7249 const CXXScopeSpec &SS,
7250 TemplateTy TemplateD,
7251 SourceLocation TemplateNameLoc,
7252 SourceLocation LAngleLoc,
7253 ASTTemplateArgsPtr TemplateArgsIn,
7254 SourceLocation RAngleLoc,
7255 AttributeList *Attr) {
7256 // Find the class template we're specializing
7257 TemplateName Name = TemplateD.get();
7258 TemplateDecl *TD = Name.getAsTemplateDecl();
7259 // Check that the specialization uses the same tag kind as the
7260 // original template.
7261 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7262 assert(Kind != TTK_Enum &&
7263 "Invalid enum tag in class template explicit instantiation!");
7264
7265 if (isa<TypeAliasTemplateDecl>(TD)) {
7266 Diag(KWLoc, diag::err_tag_reference_non_tag) << Kind;
7267 Diag(TD->getTemplatedDecl()->getLocation(),
7268 diag::note_previous_use);
7269 return true;
7270 }
7271
7272 ClassTemplateDecl *ClassTemplate = cast<ClassTemplateDecl>(TD);
7273
7274 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
7275 Kind, /*isDefinition*/false, KWLoc,
7276 ClassTemplate->getIdentifier())) {
7277 Diag(KWLoc, diag::err_use_with_wrong_tag)
7278 << ClassTemplate
7279 << FixItHint::CreateReplacement(KWLoc,
7280 ClassTemplate->getTemplatedDecl()->getKindName());
7281 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
7282 diag::note_previous_use);
7283 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
7284 }
7285
7286 // C++0x [temp.explicit]p2:
7287 // There are two forms of explicit instantiation: an explicit instantiation
7288 // definition and an explicit instantiation declaration. An explicit
7289 // instantiation declaration begins with the extern keyword. [...]
7290 TemplateSpecializationKind TSK = ExternLoc.isInvalid()
7291 ? TSK_ExplicitInstantiationDefinition
7292 : TSK_ExplicitInstantiationDeclaration;
7293
7294 if (TSK == TSK_ExplicitInstantiationDeclaration) {
7295 // Check for dllexport class template instantiation declarations.
7296 for (AttributeList *A = Attr; A; A = A->getNext()) {
7297 if (A->getKind() == AttributeList::AT_DLLExport) {
7298 Diag(ExternLoc,
7299 diag::warn_attribute_dllexport_explicit_instantiation_decl);
7300 Diag(A->getLoc(), diag::note_attribute);
7301 break;
7302 }
7303 }
7304
7305 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
7306 Diag(ExternLoc,
7307 diag::warn_attribute_dllexport_explicit_instantiation_decl);
7308 Diag(A->getLocation(), diag::note_attribute);
7309 }
7310 }
7311
7312 // Translate the parser's template argument list in our AST format.
7313 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
7314 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
7315
7316 // Check that the template argument list is well-formed for this
7317 // template.
7318 SmallVector<TemplateArgument, 4> Converted;
7319 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
7320 TemplateArgs, false, Converted))
7321 return true;
7322
7323 // Find the class template specialization declaration that
7324 // corresponds to these arguments.
7325 void *InsertPos = nullptr;
7326 ClassTemplateSpecializationDecl *PrevDecl
7327 = ClassTemplate->findSpecialization(Converted, InsertPos);
7328
7329 TemplateSpecializationKind PrevDecl_TSK
7330 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
7331
7332 // C++0x [temp.explicit]p2:
7333 // [...] An explicit instantiation shall appear in an enclosing
7334 // namespace of its template. [...]
7335 //
7336 // This is C++ DR 275.
7337 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
7338 SS.isSet()))
7339 return true;
7340
7341 ClassTemplateSpecializationDecl *Specialization = nullptr;
7342
7343 bool HasNoEffect = false;
7344 if (PrevDecl) {
7345 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
7346 PrevDecl, PrevDecl_TSK,
7347 PrevDecl->getPointOfInstantiation(),
7348 HasNoEffect))
7349 return PrevDecl;
7350
7351 // Even though HasNoEffect == true means that this explicit instantiation
7352 // has no effect on semantics, we go on to put its syntax in the AST.
7353
7354 if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
7355 PrevDecl_TSK == TSK_Undeclared) {
7356 // Since the only prior class template specialization with these
7357 // arguments was referenced but not declared, reuse that
7358 // declaration node as our own, updating the source location
7359 // for the template name to reflect our new declaration.
7360 // (Other source locations will be updated later.)
7361 Specialization = PrevDecl;
7362 Specialization->setLocation(TemplateNameLoc);
7363 PrevDecl = nullptr;
7364 }
7365 }
7366
7367 if (!Specialization) {
7368 // Create a new class template specialization declaration node for
7369 // this explicit specialization.
7370 Specialization
7371 = ClassTemplateSpecializationDecl::Create(Context, Kind,
7372 ClassTemplate->getDeclContext(),
7373 KWLoc, TemplateNameLoc,
7374 ClassTemplate,
7375 Converted.data(),
7376 Converted.size(),
7377 PrevDecl);
7378 SetNestedNameSpecifier(Specialization, SS);
7379
7380 if (!HasNoEffect && !PrevDecl) {
7381 // Insert the new specialization.
7382 ClassTemplate->AddSpecialization(Specialization, InsertPos);
7383 }
7384 }
7385
7386 // Build the fully-sugared type for this explicit instantiation as
7387 // the user wrote in the explicit instantiation itself. This means
7388 // that we'll pretty-print the type retrieved from the
7389 // specialization's declaration the way that the user actually wrote
7390 // the explicit instantiation, rather than formatting the name based
7391 // on the "canonical" representation used to store the template
7392 // arguments in the specialization.
7393 TypeSourceInfo *WrittenTy
7394 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
7395 TemplateArgs,
7396 Context.getTypeDeclType(Specialization));
7397 Specialization->setTypeAsWritten(WrittenTy);
7398
7399 // Set source locations for keywords.
7400 Specialization->setExternLoc(ExternLoc);
7401 Specialization->setTemplateKeywordLoc(TemplateLoc);
7402 Specialization->setRBraceLoc(SourceLocation());
7403
7404 if (Attr)
7405 ProcessDeclAttributeList(S, Specialization, Attr);
7406
7407 // Add the explicit instantiation into its lexical context. However,
7408 // since explicit instantiations are never found by name lookup, we
7409 // just put it into the declaration context directly.
7410 Specialization->setLexicalDeclContext(CurContext);
7411 CurContext->addDecl(Specialization);
7412
7413 // Syntax is now OK, so return if it has no other effect on semantics.
7414 if (HasNoEffect) {
7415 // Set the template specialization kind.
7416 Specialization->setTemplateSpecializationKind(TSK);
7417 return Specialization;
7418 }
7419
7420 // C++ [temp.explicit]p3:
7421 // A definition of a class template or class member template
7422 // shall be in scope at the point of the explicit instantiation of
7423 // the class template or class member template.
7424 //
7425 // This check comes when we actually try to perform the
7426 // instantiation.
7427 ClassTemplateSpecializationDecl *Def
7428 = cast_or_null<ClassTemplateSpecializationDecl>(
7429 Specialization->getDefinition());
7430 if (!Def)
7431 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
7432 else if (TSK == TSK_ExplicitInstantiationDefinition) {
7433 MarkVTableUsed(TemplateNameLoc, Specialization, true);
7434 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
7435 }
7436
7437 // Instantiate the members of this class template specialization.
7438 Def = cast_or_null<ClassTemplateSpecializationDecl>(
7439 Specialization->getDefinition());
7440 if (Def) {
7441 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
7442
7443 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
7444 // TSK_ExplicitInstantiationDefinition
7445 if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
7446 TSK == TSK_ExplicitInstantiationDefinition) {
7447 // FIXME: Need to notify the ASTMutationListener that we did this.
7448 Def->setTemplateSpecializationKind(TSK);
7449
7450 if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
7451 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
7452 // In the MS ABI, an explicit instantiation definition can add a dll
7453 // attribute to a template with a previous instantiation declaration.
7454 // MinGW doesn't allow this.
7455 auto *A = cast<InheritableAttr>(
7456 getDLLAttr(Specialization)->clone(getASTContext()));
7457 A->setInherited(true);
7458 Def->addAttr(A);
7459 checkClassLevelDLLAttribute(Def);
7460
7461 // Propagate attribute to base class templates.
7462 for (auto &B : Def->bases()) {
7463 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
7464 B.getType()->getAsCXXRecordDecl()))
7465 propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getLocStart());
7466 }
7467 }
7468 }
7469
7470 // Set the template specialization kind. Make sure it is set before
7471 // instantiating the members which will trigger ASTConsumer callbacks.
7472 Specialization->setTemplateSpecializationKind(TSK);
7473 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
7474 } else {
7475
7476 // Set the template specialization kind.
7477 Specialization->setTemplateSpecializationKind(TSK);
7478 }
7479
7480 return Specialization;
7481 }
7482
7483 // Explicit instantiation of a member class of a class template.
7484 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr)7485 Sema::ActOnExplicitInstantiation(Scope *S,
7486 SourceLocation ExternLoc,
7487 SourceLocation TemplateLoc,
7488 unsigned TagSpec,
7489 SourceLocation KWLoc,
7490 CXXScopeSpec &SS,
7491 IdentifierInfo *Name,
7492 SourceLocation NameLoc,
7493 AttributeList *Attr) {
7494
7495 bool Owned = false;
7496 bool IsDependent = false;
7497 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
7498 KWLoc, SS, Name, NameLoc, Attr, AS_none,
7499 /*ModulePrivateLoc=*/SourceLocation(),
7500 MultiTemplateParamsArg(), Owned, IsDependent,
7501 SourceLocation(), false, TypeResult(),
7502 /*IsTypeSpecifier*/false);
7503 assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
7504
7505 if (!TagD)
7506 return true;
7507
7508 TagDecl *Tag = cast<TagDecl>(TagD);
7509 assert(!Tag->isEnum() && "shouldn't see enumerations here");
7510
7511 if (Tag->isInvalidDecl())
7512 return true;
7513
7514 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
7515 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
7516 if (!Pattern) {
7517 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
7518 << Context.getTypeDeclType(Record);
7519 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
7520 return true;
7521 }
7522
7523 // C++0x [temp.explicit]p2:
7524 // If the explicit instantiation is for a class or member class, the
7525 // elaborated-type-specifier in the declaration shall include a
7526 // simple-template-id.
7527 //
7528 // C++98 has the same restriction, just worded differently.
7529 if (!ScopeSpecifierHasTemplateId(SS))
7530 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
7531 << Record << SS.getRange();
7532
7533 // C++0x [temp.explicit]p2:
7534 // There are two forms of explicit instantiation: an explicit instantiation
7535 // definition and an explicit instantiation declaration. An explicit
7536 // instantiation declaration begins with the extern keyword. [...]
7537 TemplateSpecializationKind TSK
7538 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7539 : TSK_ExplicitInstantiationDeclaration;
7540
7541 // C++0x [temp.explicit]p2:
7542 // [...] An explicit instantiation shall appear in an enclosing
7543 // namespace of its template. [...]
7544 //
7545 // This is C++ DR 275.
7546 CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
7547
7548 // Verify that it is okay to explicitly instantiate here.
7549 CXXRecordDecl *PrevDecl
7550 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
7551 if (!PrevDecl && Record->getDefinition())
7552 PrevDecl = Record;
7553 if (PrevDecl) {
7554 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
7555 bool HasNoEffect = false;
7556 assert(MSInfo && "No member specialization information?");
7557 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
7558 PrevDecl,
7559 MSInfo->getTemplateSpecializationKind(),
7560 MSInfo->getPointOfInstantiation(),
7561 HasNoEffect))
7562 return true;
7563 if (HasNoEffect)
7564 return TagD;
7565 }
7566
7567 CXXRecordDecl *RecordDef
7568 = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7569 if (!RecordDef) {
7570 // C++ [temp.explicit]p3:
7571 // A definition of a member class of a class template shall be in scope
7572 // at the point of an explicit instantiation of the member class.
7573 CXXRecordDecl *Def
7574 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
7575 if (!Def) {
7576 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
7577 << 0 << Record->getDeclName() << Record->getDeclContext();
7578 Diag(Pattern->getLocation(), diag::note_forward_declaration)
7579 << Pattern;
7580 return true;
7581 } else {
7582 if (InstantiateClass(NameLoc, Record, Def,
7583 getTemplateInstantiationArgs(Record),
7584 TSK))
7585 return true;
7586
7587 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7588 if (!RecordDef)
7589 return true;
7590 }
7591 }
7592
7593 // Instantiate all of the members of the class.
7594 InstantiateClassMembers(NameLoc, RecordDef,
7595 getTemplateInstantiationArgs(Record), TSK);
7596
7597 if (TSK == TSK_ExplicitInstantiationDefinition)
7598 MarkVTableUsed(NameLoc, RecordDef, true);
7599
7600 // FIXME: We don't have any representation for explicit instantiations of
7601 // member classes. Such a representation is not needed for compilation, but it
7602 // should be available for clients that want to see all of the declarations in
7603 // the source code.
7604 return TagD;
7605 }
7606
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,Declarator & D)7607 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
7608 SourceLocation ExternLoc,
7609 SourceLocation TemplateLoc,
7610 Declarator &D) {
7611 // Explicit instantiations always require a name.
7612 // TODO: check if/when DNInfo should replace Name.
7613 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7614 DeclarationName Name = NameInfo.getName();
7615 if (!Name) {
7616 if (!D.isInvalidType())
7617 Diag(D.getDeclSpec().getLocStart(),
7618 diag::err_explicit_instantiation_requires_name)
7619 << D.getDeclSpec().getSourceRange()
7620 << D.getSourceRange();
7621
7622 return true;
7623 }
7624
7625 // The scope passed in may not be a decl scope. Zip up the scope tree until
7626 // we find one that is.
7627 while ((S->getFlags() & Scope::DeclScope) == 0 ||
7628 (S->getFlags() & Scope::TemplateParamScope) != 0)
7629 S = S->getParent();
7630
7631 // Determine the type of the declaration.
7632 TypeSourceInfo *T = GetTypeForDeclarator(D, S);
7633 QualType R = T->getType();
7634 if (R.isNull())
7635 return true;
7636
7637 // C++ [dcl.stc]p1:
7638 // A storage-class-specifier shall not be specified in [...] an explicit
7639 // instantiation (14.7.2) directive.
7640 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
7641 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
7642 << Name;
7643 return true;
7644 } else if (D.getDeclSpec().getStorageClassSpec()
7645 != DeclSpec::SCS_unspecified) {
7646 // Complain about then remove the storage class specifier.
7647 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
7648 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7649
7650 D.getMutableDeclSpec().ClearStorageClassSpecs();
7651 }
7652
7653 // C++0x [temp.explicit]p1:
7654 // [...] An explicit instantiation of a function template shall not use the
7655 // inline or constexpr specifiers.
7656 // Presumably, this also applies to member functions of class templates as
7657 // well.
7658 if (D.getDeclSpec().isInlineSpecified())
7659 Diag(D.getDeclSpec().getInlineSpecLoc(),
7660 getLangOpts().CPlusPlus11 ?
7661 diag::err_explicit_instantiation_inline :
7662 diag::warn_explicit_instantiation_inline_0x)
7663 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7664 if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
7665 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
7666 // not already specified.
7667 Diag(D.getDeclSpec().getConstexprSpecLoc(),
7668 diag::err_explicit_instantiation_constexpr);
7669
7670 // C++0x [temp.explicit]p2:
7671 // There are two forms of explicit instantiation: an explicit instantiation
7672 // definition and an explicit instantiation declaration. An explicit
7673 // instantiation declaration begins with the extern keyword. [...]
7674 TemplateSpecializationKind TSK
7675 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7676 : TSK_ExplicitInstantiationDeclaration;
7677
7678 LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
7679 LookupParsedName(Previous, S, &D.getCXXScopeSpec());
7680
7681 if (!R->isFunctionType()) {
7682 // C++ [temp.explicit]p1:
7683 // A [...] static data member of a class template can be explicitly
7684 // instantiated from the member definition associated with its class
7685 // template.
7686 // C++1y [temp.explicit]p1:
7687 // A [...] variable [...] template specialization can be explicitly
7688 // instantiated from its template.
7689 if (Previous.isAmbiguous())
7690 return true;
7691
7692 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
7693 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
7694
7695 if (!PrevTemplate) {
7696 if (!Prev || !Prev->isStaticDataMember()) {
7697 // We expect to see a data data member here.
7698 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
7699 << Name;
7700 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7701 P != PEnd; ++P)
7702 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
7703 return true;
7704 }
7705
7706 if (!Prev->getInstantiatedFromStaticDataMember()) {
7707 // FIXME: Check for explicit specialization?
7708 Diag(D.getIdentifierLoc(),
7709 diag::err_explicit_instantiation_data_member_not_instantiated)
7710 << Prev;
7711 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
7712 // FIXME: Can we provide a note showing where this was declared?
7713 return true;
7714 }
7715 } else {
7716 // Explicitly instantiate a variable template.
7717
7718 // C++1y [dcl.spec.auto]p6:
7719 // ... A program that uses auto or decltype(auto) in a context not
7720 // explicitly allowed in this section is ill-formed.
7721 //
7722 // This includes auto-typed variable template instantiations.
7723 if (R->isUndeducedType()) {
7724 Diag(T->getTypeLoc().getLocStart(),
7725 diag::err_auto_not_allowed_var_inst);
7726 return true;
7727 }
7728
7729 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
7730 // C++1y [temp.explicit]p3:
7731 // If the explicit instantiation is for a variable, the unqualified-id
7732 // in the declaration shall be a template-id.
7733 Diag(D.getIdentifierLoc(),
7734 diag::err_explicit_instantiation_without_template_id)
7735 << PrevTemplate;
7736 Diag(PrevTemplate->getLocation(),
7737 diag::note_explicit_instantiation_here);
7738 return true;
7739 }
7740
7741 // Translate the parser's template argument list into our AST format.
7742 TemplateArgumentListInfo TemplateArgs =
7743 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
7744
7745 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
7746 D.getIdentifierLoc(), TemplateArgs);
7747 if (Res.isInvalid())
7748 return true;
7749
7750 // Ignore access control bits, we don't need them for redeclaration
7751 // checking.
7752 Prev = cast<VarDecl>(Res.get());
7753 }
7754
7755 // C++0x [temp.explicit]p2:
7756 // If the explicit instantiation is for a member function, a member class
7757 // or a static data member of a class template specialization, the name of
7758 // the class template specialization in the qualified-id for the member
7759 // name shall be a simple-template-id.
7760 //
7761 // C++98 has the same restriction, just worded differently.
7762 //
7763 // This does not apply to variable template specializations, where the
7764 // template-id is in the unqualified-id instead.
7765 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
7766 Diag(D.getIdentifierLoc(),
7767 diag::ext_explicit_instantiation_without_qualified_id)
7768 << Prev << D.getCXXScopeSpec().getRange();
7769
7770 // Check the scope of this explicit instantiation.
7771 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
7772
7773 // Verify that it is okay to explicitly instantiate here.
7774 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
7775 SourceLocation POI = Prev->getPointOfInstantiation();
7776 bool HasNoEffect = false;
7777 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
7778 PrevTSK, POI, HasNoEffect))
7779 return true;
7780
7781 if (!HasNoEffect) {
7782 // Instantiate static data member or variable template.
7783
7784 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7785 if (PrevTemplate) {
7786 // Merge attributes.
7787 if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
7788 ProcessDeclAttributeList(S, Prev, Attr);
7789 }
7790 if (TSK == TSK_ExplicitInstantiationDefinition)
7791 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
7792 }
7793
7794 // Check the new variable specialization against the parsed input.
7795 if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
7796 Diag(T->getTypeLoc().getLocStart(),
7797 diag::err_invalid_var_template_spec_type)
7798 << 0 << PrevTemplate << R << Prev->getType();
7799 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
7800 << 2 << PrevTemplate->getDeclName();
7801 return true;
7802 }
7803
7804 // FIXME: Create an ExplicitInstantiation node?
7805 return (Decl*) nullptr;
7806 }
7807
7808 // If the declarator is a template-id, translate the parser's template
7809 // argument list into our AST format.
7810 bool HasExplicitTemplateArgs = false;
7811 TemplateArgumentListInfo TemplateArgs;
7812 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7813 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
7814 HasExplicitTemplateArgs = true;
7815 }
7816
7817 // C++ [temp.explicit]p1:
7818 // A [...] function [...] can be explicitly instantiated from its template.
7819 // A member function [...] of a class template can be explicitly
7820 // instantiated from the member definition associated with its class
7821 // template.
7822 UnresolvedSet<8> Matches;
7823 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
7824 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7825 P != PEnd; ++P) {
7826 NamedDecl *Prev = *P;
7827 if (!HasExplicitTemplateArgs) {
7828 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
7829 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType());
7830 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
7831 Matches.clear();
7832
7833 Matches.addDecl(Method, P.getAccess());
7834 if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
7835 break;
7836 }
7837 }
7838 }
7839
7840 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
7841 if (!FunTmpl)
7842 continue;
7843
7844 TemplateDeductionInfo Info(FailedCandidates.getLocation());
7845 FunctionDecl *Specialization = nullptr;
7846 if (TemplateDeductionResult TDK
7847 = DeduceTemplateArguments(FunTmpl,
7848 (HasExplicitTemplateArgs ? &TemplateArgs
7849 : nullptr),
7850 R, Specialization, Info)) {
7851 // Keep track of almost-matches.
7852 FailedCandidates.addCandidate()
7853 .set(FunTmpl->getTemplatedDecl(),
7854 MakeDeductionFailureInfo(Context, TDK, Info));
7855 (void)TDK;
7856 continue;
7857 }
7858
7859 Matches.addDecl(Specialization, P.getAccess());
7860 }
7861
7862 // Find the most specialized function template specialization.
7863 UnresolvedSetIterator Result = getMostSpecialized(
7864 Matches.begin(), Matches.end(), FailedCandidates,
7865 D.getIdentifierLoc(),
7866 PDiag(diag::err_explicit_instantiation_not_known) << Name,
7867 PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
7868 PDiag(diag::note_explicit_instantiation_candidate));
7869
7870 if (Result == Matches.end())
7871 return true;
7872
7873 // Ignore access control bits, we don't need them for redeclaration checking.
7874 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
7875
7876 // C++11 [except.spec]p4
7877 // In an explicit instantiation an exception-specification may be specified,
7878 // but is not required.
7879 // If an exception-specification is specified in an explicit instantiation
7880 // directive, it shall be compatible with the exception-specifications of
7881 // other declarations of that function.
7882 if (auto *FPT = R->getAs<FunctionProtoType>())
7883 if (FPT->hasExceptionSpec()) {
7884 unsigned DiagID =
7885 diag::err_mismatched_exception_spec_explicit_instantiation;
7886 if (getLangOpts().MicrosoftExt)
7887 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
7888 bool Result = CheckEquivalentExceptionSpec(
7889 PDiag(DiagID) << Specialization->getType(),
7890 PDiag(diag::note_explicit_instantiation_here),
7891 Specialization->getType()->getAs<FunctionProtoType>(),
7892 Specialization->getLocation(), FPT, D.getLocStart());
7893 // In Microsoft mode, mismatching exception specifications just cause a
7894 // warning.
7895 if (!getLangOpts().MicrosoftExt && Result)
7896 return true;
7897 }
7898
7899 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
7900 Diag(D.getIdentifierLoc(),
7901 diag::err_explicit_instantiation_member_function_not_instantiated)
7902 << Specialization
7903 << (Specialization->getTemplateSpecializationKind() ==
7904 TSK_ExplicitSpecialization);
7905 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
7906 return true;
7907 }
7908
7909 FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
7910 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
7911 PrevDecl = Specialization;
7912
7913 if (PrevDecl) {
7914 bool HasNoEffect = false;
7915 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
7916 PrevDecl,
7917 PrevDecl->getTemplateSpecializationKind(),
7918 PrevDecl->getPointOfInstantiation(),
7919 HasNoEffect))
7920 return true;
7921
7922 // FIXME: We may still want to build some representation of this
7923 // explicit specialization.
7924 if (HasNoEffect)
7925 return (Decl*) nullptr;
7926 }
7927
7928 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7929 AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
7930 if (Attr)
7931 ProcessDeclAttributeList(S, Specialization, Attr);
7932
7933 if (Specialization->isDefined()) {
7934 // Let the ASTConsumer know that this function has been explicitly
7935 // instantiated now, and its linkage might have changed.
7936 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
7937 } else if (TSK == TSK_ExplicitInstantiationDefinition)
7938 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
7939
7940 // C++0x [temp.explicit]p2:
7941 // If the explicit instantiation is for a member function, a member class
7942 // or a static data member of a class template specialization, the name of
7943 // the class template specialization in the qualified-id for the member
7944 // name shall be a simple-template-id.
7945 //
7946 // C++98 has the same restriction, just worded differently.
7947 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
7948 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
7949 D.getCXXScopeSpec().isSet() &&
7950 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
7951 Diag(D.getIdentifierLoc(),
7952 diag::ext_explicit_instantiation_without_qualified_id)
7953 << Specialization << D.getCXXScopeSpec().getRange();
7954
7955 CheckExplicitInstantiationScope(*this,
7956 FunTmpl? (NamedDecl *)FunTmpl
7957 : Specialization->getInstantiatedFromMemberFunction(),
7958 D.getIdentifierLoc(),
7959 D.getCXXScopeSpec().isSet());
7960
7961 // FIXME: Create some kind of ExplicitInstantiationDecl here.
7962 return (Decl*) nullptr;
7963 }
7964
7965 TypeResult
ActOnDependentTag(Scope * S,unsigned TagSpec,TagUseKind TUK,const CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation TagLoc,SourceLocation NameLoc)7966 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7967 const CXXScopeSpec &SS, IdentifierInfo *Name,
7968 SourceLocation TagLoc, SourceLocation NameLoc) {
7969 // This has to hold, because SS is expected to be defined.
7970 assert(Name && "Expected a name in a dependent tag");
7971
7972 NestedNameSpecifier *NNS = SS.getScopeRep();
7973 if (!NNS)
7974 return true;
7975
7976 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7977
7978 if (TUK == TUK_Declaration || TUK == TUK_Definition) {
7979 Diag(NameLoc, diag::err_dependent_tag_decl)
7980 << (TUK == TUK_Definition) << Kind << SS.getRange();
7981 return true;
7982 }
7983
7984 // Create the resulting type.
7985 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7986 QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
7987
7988 // Create type-source location information for this type.
7989 TypeLocBuilder TLB;
7990 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
7991 TL.setElaboratedKeywordLoc(TagLoc);
7992 TL.setQualifierLoc(SS.getWithLocInContext(Context));
7993 TL.setNameLoc(NameLoc);
7994 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
7995 }
7996
7997 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,const IdentifierInfo & II,SourceLocation IdLoc)7998 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7999 const CXXScopeSpec &SS, const IdentifierInfo &II,
8000 SourceLocation IdLoc) {
8001 if (SS.isInvalid())
8002 return true;
8003
8004 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
8005 Diag(TypenameLoc,
8006 getLangOpts().CPlusPlus11 ?
8007 diag::warn_cxx98_compat_typename_outside_of_template :
8008 diag::ext_typename_outside_of_template)
8009 << FixItHint::CreateRemoval(TypenameLoc);
8010
8011 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8012 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
8013 TypenameLoc, QualifierLoc, II, IdLoc);
8014 if (T.isNull())
8015 return true;
8016
8017 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8018 if (isa<DependentNameType>(T)) {
8019 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
8020 TL.setElaboratedKeywordLoc(TypenameLoc);
8021 TL.setQualifierLoc(QualifierLoc);
8022 TL.setNameLoc(IdLoc);
8023 } else {
8024 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
8025 TL.setElaboratedKeywordLoc(TypenameLoc);
8026 TL.setQualifierLoc(QualifierLoc);
8027 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
8028 }
8029
8030 return CreateParsedType(T, TSI);
8031 }
8032
8033 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateIn,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)8034 Sema::ActOnTypenameType(Scope *S,
8035 SourceLocation TypenameLoc,
8036 const CXXScopeSpec &SS,
8037 SourceLocation TemplateKWLoc,
8038 TemplateTy TemplateIn,
8039 SourceLocation TemplateNameLoc,
8040 SourceLocation LAngleLoc,
8041 ASTTemplateArgsPtr TemplateArgsIn,
8042 SourceLocation RAngleLoc) {
8043 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
8044 Diag(TypenameLoc,
8045 getLangOpts().CPlusPlus11 ?
8046 diag::warn_cxx98_compat_typename_outside_of_template :
8047 diag::ext_typename_outside_of_template)
8048 << FixItHint::CreateRemoval(TypenameLoc);
8049
8050 // Translate the parser's template argument list in our AST format.
8051 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
8052 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
8053
8054 TemplateName Template = TemplateIn.get();
8055 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
8056 // Construct a dependent template specialization type.
8057 assert(DTN && "dependent template has non-dependent name?");
8058 assert(DTN->getQualifier() == SS.getScopeRep());
8059 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
8060 DTN->getQualifier(),
8061 DTN->getIdentifier(),
8062 TemplateArgs);
8063
8064 // Create source-location information for this type.
8065 TypeLocBuilder Builder;
8066 DependentTemplateSpecializationTypeLoc SpecTL
8067 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
8068 SpecTL.setElaboratedKeywordLoc(TypenameLoc);
8069 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
8070 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
8071 SpecTL.setTemplateNameLoc(TemplateNameLoc);
8072 SpecTL.setLAngleLoc(LAngleLoc);
8073 SpecTL.setRAngleLoc(RAngleLoc);
8074 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8075 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
8076 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
8077 }
8078
8079 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
8080 if (T.isNull())
8081 return true;
8082
8083 // Provide source-location information for the template specialization type.
8084 TypeLocBuilder Builder;
8085 TemplateSpecializationTypeLoc SpecTL
8086 = Builder.push<TemplateSpecializationTypeLoc>(T);
8087 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
8088 SpecTL.setTemplateNameLoc(TemplateNameLoc);
8089 SpecTL.setLAngleLoc(LAngleLoc);
8090 SpecTL.setRAngleLoc(RAngleLoc);
8091 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8092 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
8093
8094 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
8095 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
8096 TL.setElaboratedKeywordLoc(TypenameLoc);
8097 TL.setQualifierLoc(SS.getWithLocInContext(Context));
8098
8099 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
8100 return CreateParsedType(T, TSI);
8101 }
8102
8103
8104 /// Determine whether this failed name lookup should be treated as being
8105 /// disabled by a usage of std::enable_if.
isEnableIf(NestedNameSpecifierLoc NNS,const IdentifierInfo & II,SourceRange & CondRange)8106 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
8107 SourceRange &CondRange) {
8108 // We must be looking for a ::type...
8109 if (!II.isStr("type"))
8110 return false;
8111
8112 // ... within an explicitly-written template specialization...
8113 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
8114 return false;
8115 TypeLoc EnableIfTy = NNS.getTypeLoc();
8116 TemplateSpecializationTypeLoc EnableIfTSTLoc =
8117 EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
8118 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
8119 return false;
8120 const TemplateSpecializationType *EnableIfTST =
8121 cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr());
8122
8123 // ... which names a complete class template declaration...
8124 const TemplateDecl *EnableIfDecl =
8125 EnableIfTST->getTemplateName().getAsTemplateDecl();
8126 if (!EnableIfDecl || EnableIfTST->isIncompleteType())
8127 return false;
8128
8129 // ... called "enable_if".
8130 const IdentifierInfo *EnableIfII =
8131 EnableIfDecl->getDeclName().getAsIdentifierInfo();
8132 if (!EnableIfII || !EnableIfII->isStr("enable_if"))
8133 return false;
8134
8135 // Assume the first template argument is the condition.
8136 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
8137 return true;
8138 }
8139
8140 /// \brief Build the type that describes a C++ typename specifier,
8141 /// e.g., "typename T::type".
8142 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc)8143 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
8144 SourceLocation KeywordLoc,
8145 NestedNameSpecifierLoc QualifierLoc,
8146 const IdentifierInfo &II,
8147 SourceLocation IILoc) {
8148 CXXScopeSpec SS;
8149 SS.Adopt(QualifierLoc);
8150
8151 DeclContext *Ctx = computeDeclContext(SS);
8152 if (!Ctx) {
8153 // If the nested-name-specifier is dependent and couldn't be
8154 // resolved to a type, build a typename type.
8155 assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
8156 return Context.getDependentNameType(Keyword,
8157 QualifierLoc.getNestedNameSpecifier(),
8158 &II);
8159 }
8160
8161 // If the nested-name-specifier refers to the current instantiation,
8162 // the "typename" keyword itself is superfluous. In C++03, the
8163 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
8164 // allows such extraneous "typename" keywords, and we retroactively
8165 // apply this DR to C++03 code with only a warning. In any case we continue.
8166
8167 if (RequireCompleteDeclContext(SS, Ctx))
8168 return QualType();
8169
8170 DeclarationName Name(&II);
8171 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
8172 LookupQualifiedName(Result, Ctx, SS);
8173 unsigned DiagID = 0;
8174 Decl *Referenced = nullptr;
8175 switch (Result.getResultKind()) {
8176 case LookupResult::NotFound: {
8177 // If we're looking up 'type' within a template named 'enable_if', produce
8178 // a more specific diagnostic.
8179 SourceRange CondRange;
8180 if (isEnableIf(QualifierLoc, II, CondRange)) {
8181 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
8182 << Ctx << CondRange;
8183 return QualType();
8184 }
8185
8186 DiagID = diag::err_typename_nested_not_found;
8187 break;
8188 }
8189
8190 case LookupResult::FoundUnresolvedValue: {
8191 // We found a using declaration that is a value. Most likely, the using
8192 // declaration itself is meant to have the 'typename' keyword.
8193 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
8194 IILoc);
8195 Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
8196 << Name << Ctx << FullRange;
8197 if (UnresolvedUsingValueDecl *Using
8198 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
8199 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
8200 Diag(Loc, diag::note_using_value_decl_missing_typename)
8201 << FixItHint::CreateInsertion(Loc, "typename ");
8202 }
8203 }
8204 // Fall through to create a dependent typename type, from which we can recover
8205 // better.
8206
8207 case LookupResult::NotFoundInCurrentInstantiation:
8208 // Okay, it's a member of an unknown instantiation.
8209 return Context.getDependentNameType(Keyword,
8210 QualifierLoc.getNestedNameSpecifier(),
8211 &II);
8212
8213 case LookupResult::Found:
8214 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
8215 // We found a type. Build an ElaboratedType, since the
8216 // typename-specifier was just sugar.
8217 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
8218 return Context.getElaboratedType(ETK_Typename,
8219 QualifierLoc.getNestedNameSpecifier(),
8220 Context.getTypeDeclType(Type));
8221 }
8222
8223 DiagID = diag::err_typename_nested_not_type;
8224 Referenced = Result.getFoundDecl();
8225 break;
8226
8227 case LookupResult::FoundOverloaded:
8228 DiagID = diag::err_typename_nested_not_type;
8229 Referenced = *Result.begin();
8230 break;
8231
8232 case LookupResult::Ambiguous:
8233 return QualType();
8234 }
8235
8236 // If we get here, it's because name lookup did not find a
8237 // type. Emit an appropriate diagnostic and return an error.
8238 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
8239 IILoc);
8240 Diag(IILoc, DiagID) << FullRange << Name << Ctx;
8241 if (Referenced)
8242 Diag(Referenced->getLocation(), diag::note_typename_refers_here)
8243 << Name;
8244 return QualType();
8245 }
8246
8247 namespace {
8248 // See Sema::RebuildTypeInCurrentInstantiation
8249 class CurrentInstantiationRebuilder
8250 : public TreeTransform<CurrentInstantiationRebuilder> {
8251 SourceLocation Loc;
8252 DeclarationName Entity;
8253
8254 public:
8255 typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
8256
CurrentInstantiationRebuilder(Sema & SemaRef,SourceLocation Loc,DeclarationName Entity)8257 CurrentInstantiationRebuilder(Sema &SemaRef,
8258 SourceLocation Loc,
8259 DeclarationName Entity)
8260 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
8261 Loc(Loc), Entity(Entity) { }
8262
8263 /// \brief Determine whether the given type \p T has already been
8264 /// transformed.
8265 ///
8266 /// For the purposes of type reconstruction, a type has already been
8267 /// transformed if it is NULL or if it is not dependent.
AlreadyTransformed(QualType T)8268 bool AlreadyTransformed(QualType T) {
8269 return T.isNull() || !T->isDependentType();
8270 }
8271
8272 /// \brief Returns the location of the entity whose type is being
8273 /// rebuilt.
getBaseLocation()8274 SourceLocation getBaseLocation() { return Loc; }
8275
8276 /// \brief Returns the name of the entity whose type is being rebuilt.
getBaseEntity()8277 DeclarationName getBaseEntity() { return Entity; }
8278
8279 /// \brief Sets the "base" location and entity when that
8280 /// information is known based on another transformation.
setBase(SourceLocation Loc,DeclarationName Entity)8281 void setBase(SourceLocation Loc, DeclarationName Entity) {
8282 this->Loc = Loc;
8283 this->Entity = Entity;
8284 }
8285
TransformLambdaExpr(LambdaExpr * E)8286 ExprResult TransformLambdaExpr(LambdaExpr *E) {
8287 // Lambdas never need to be transformed.
8288 return E;
8289 }
8290 };
8291 }
8292
8293 /// \brief Rebuilds a type within the context of the current instantiation.
8294 ///
8295 /// The type \p T is part of the type of an out-of-line member definition of
8296 /// a class template (or class template partial specialization) that was parsed
8297 /// and constructed before we entered the scope of the class template (or
8298 /// partial specialization thereof). This routine will rebuild that type now
8299 /// that we have entered the declarator's scope, which may produce different
8300 /// canonical types, e.g.,
8301 ///
8302 /// \code
8303 /// template<typename T>
8304 /// struct X {
8305 /// typedef T* pointer;
8306 /// pointer data();
8307 /// };
8308 ///
8309 /// template<typename T>
8310 /// typename X<T>::pointer X<T>::data() { ... }
8311 /// \endcode
8312 ///
8313 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
8314 /// since we do not know that we can look into X<T> when we parsed the type.
8315 /// This function will rebuild the type, performing the lookup of "pointer"
8316 /// in X<T> and returning an ElaboratedType whose canonical type is the same
8317 /// as the canonical type of T*, allowing the return types of the out-of-line
8318 /// definition and the declaration to match.
RebuildTypeInCurrentInstantiation(TypeSourceInfo * T,SourceLocation Loc,DeclarationName Name)8319 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
8320 SourceLocation Loc,
8321 DeclarationName Name) {
8322 if (!T || !T->getType()->isDependentType())
8323 return T;
8324
8325 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
8326 return Rebuilder.TransformType(T);
8327 }
8328
RebuildExprInCurrentInstantiation(Expr * E)8329 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
8330 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
8331 DeclarationName());
8332 return Rebuilder.TransformExpr(E);
8333 }
8334
RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec & SS)8335 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
8336 if (SS.isInvalid())
8337 return true;
8338
8339 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8340 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
8341 DeclarationName());
8342 NestedNameSpecifierLoc Rebuilt
8343 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
8344 if (!Rebuilt)
8345 return true;
8346
8347 SS.Adopt(Rebuilt);
8348 return false;
8349 }
8350
8351 /// \brief Rebuild the template parameters now that we know we're in a current
8352 /// instantiation.
RebuildTemplateParamsInCurrentInstantiation(TemplateParameterList * Params)8353 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
8354 TemplateParameterList *Params) {
8355 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
8356 Decl *Param = Params->getParam(I);
8357
8358 // There is nothing to rebuild in a type parameter.
8359 if (isa<TemplateTypeParmDecl>(Param))
8360 continue;
8361
8362 // Rebuild the template parameter list of a template template parameter.
8363 if (TemplateTemplateParmDecl *TTP
8364 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
8365 if (RebuildTemplateParamsInCurrentInstantiation(
8366 TTP->getTemplateParameters()))
8367 return true;
8368
8369 continue;
8370 }
8371
8372 // Rebuild the type of a non-type template parameter.
8373 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
8374 TypeSourceInfo *NewTSI
8375 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
8376 NTTP->getLocation(),
8377 NTTP->getDeclName());
8378 if (!NewTSI)
8379 return true;
8380
8381 if (NewTSI != NTTP->getTypeSourceInfo()) {
8382 NTTP->setTypeSourceInfo(NewTSI);
8383 NTTP->setType(NewTSI->getType());
8384 }
8385 }
8386
8387 return false;
8388 }
8389
8390 /// \brief Produces a formatted string that describes the binding of
8391 /// template parameters to template arguments.
8392 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgumentList & Args)8393 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
8394 const TemplateArgumentList &Args) {
8395 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
8396 }
8397
8398 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgument * Args,unsigned NumArgs)8399 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
8400 const TemplateArgument *Args,
8401 unsigned NumArgs) {
8402 SmallString<128> Str;
8403 llvm::raw_svector_ostream Out(Str);
8404
8405 if (!Params || Params->size() == 0 || NumArgs == 0)
8406 return std::string();
8407
8408 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
8409 if (I >= NumArgs)
8410 break;
8411
8412 if (I == 0)
8413 Out << "[with ";
8414 else
8415 Out << ", ";
8416
8417 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
8418 Out << Id->getName();
8419 } else {
8420 Out << '$' << I;
8421 }
8422
8423 Out << " = ";
8424 Args[I].print(getPrintingPolicy(), Out);
8425 }
8426
8427 Out << ']';
8428 return Out.str();
8429 }
8430
MarkAsLateParsedTemplate(FunctionDecl * FD,Decl * FnD,CachedTokens & Toks)8431 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
8432 CachedTokens &Toks) {
8433 if (!FD)
8434 return;
8435
8436 LateParsedTemplate *LPT = new LateParsedTemplate;
8437
8438 // Take tokens to avoid allocations
8439 LPT->Toks.swap(Toks);
8440 LPT->D = FnD;
8441 LateParsedTemplateMap.insert(std::make_pair(FD, LPT));
8442
8443 FD->setLateTemplateParsed(true);
8444 }
8445
UnmarkAsLateParsedTemplate(FunctionDecl * FD)8446 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
8447 if (!FD)
8448 return;
8449 FD->setLateTemplateParsed(false);
8450 }
8451
IsInsideALocalClassWithinATemplateFunction()8452 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
8453 DeclContext *DC = CurContext;
8454
8455 while (DC) {
8456 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
8457 const FunctionDecl *FD = RD->isLocalClass();
8458 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
8459 } else if (DC->isTranslationUnit() || DC->isNamespace())
8460 return false;
8461
8462 DC = DC->getParent();
8463 }
8464 return false;
8465 }
8466