1 //===-- tsan_rtl_thread.cc ------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "sanitizer_common/sanitizer_placement_new.h"
15 #include "tsan_rtl.h"
16 #include "tsan_mman.h"
17 #include "tsan_platform.h"
18 #include "tsan_report.h"
19 #include "tsan_sync.h"
20
21 namespace __tsan {
22
23 // ThreadContext implementation.
24
ThreadContext(int tid)25 ThreadContext::ThreadContext(int tid)
26 : ThreadContextBase(tid)
27 , thr()
28 , sync()
29 , epoch0()
30 , epoch1() {
31 }
32
33 #ifndef SANITIZER_GO
~ThreadContext()34 ThreadContext::~ThreadContext() {
35 }
36 #endif
37
OnDead()38 void ThreadContext::OnDead() {
39 CHECK_EQ(sync.size(), 0);
40 }
41
OnJoined(void * arg)42 void ThreadContext::OnJoined(void *arg) {
43 ThreadState *caller_thr = static_cast<ThreadState *>(arg);
44 AcquireImpl(caller_thr, 0, &sync);
45 sync.Reset(&caller_thr->clock_cache);
46 }
47
48 struct OnCreatedArgs {
49 ThreadState *thr;
50 uptr pc;
51 };
52
OnCreated(void * arg)53 void ThreadContext::OnCreated(void *arg) {
54 thr = 0;
55 if (tid == 0)
56 return;
57 OnCreatedArgs *args = static_cast<OnCreatedArgs *>(arg);
58 if (!args->thr) // GCD workers don't have a parent thread.
59 return;
60 args->thr->fast_state.IncrementEpoch();
61 // Can't increment epoch w/o writing to the trace as well.
62 TraceAddEvent(args->thr, args->thr->fast_state, EventTypeMop, 0);
63 ReleaseImpl(args->thr, 0, &sync);
64 creation_stack_id = CurrentStackId(args->thr, args->pc);
65 if (reuse_count == 0)
66 StatInc(args->thr, StatThreadMaxTid);
67 }
68
OnReset()69 void ThreadContext::OnReset() {
70 CHECK_EQ(sync.size(), 0);
71 FlushUnneededShadowMemory(GetThreadTrace(tid), TraceSize() * sizeof(Event));
72 //!!! FlushUnneededShadowMemory(GetThreadTraceHeader(tid), sizeof(Trace));
73 }
74
OnDetached(void * arg)75 void ThreadContext::OnDetached(void *arg) {
76 ThreadState *thr1 = static_cast<ThreadState*>(arg);
77 sync.Reset(&thr1->clock_cache);
78 }
79
80 struct OnStartedArgs {
81 ThreadState *thr;
82 uptr stk_addr;
83 uptr stk_size;
84 uptr tls_addr;
85 uptr tls_size;
86 };
87
OnStarted(void * arg)88 void ThreadContext::OnStarted(void *arg) {
89 OnStartedArgs *args = static_cast<OnStartedArgs*>(arg);
90 thr = args->thr;
91 // RoundUp so that one trace part does not contain events
92 // from different threads.
93 epoch0 = RoundUp(epoch1 + 1, kTracePartSize);
94 epoch1 = (u64)-1;
95 new(thr) ThreadState(ctx, tid, unique_id, epoch0, reuse_count,
96 args->stk_addr, args->stk_size, args->tls_addr, args->tls_size);
97 #ifndef SANITIZER_GO
98 thr->shadow_stack = &ThreadTrace(thr->tid)->shadow_stack[0];
99 thr->shadow_stack_pos = thr->shadow_stack;
100 thr->shadow_stack_end = thr->shadow_stack + kShadowStackSize;
101 #else
102 // Setup dynamic shadow stack.
103 const int kInitStackSize = 8;
104 thr->shadow_stack = (uptr*)internal_alloc(MBlockShadowStack,
105 kInitStackSize * sizeof(uptr));
106 thr->shadow_stack_pos = thr->shadow_stack;
107 thr->shadow_stack_end = thr->shadow_stack + kInitStackSize;
108 #endif
109 #ifndef SANITIZER_GO
110 AllocatorThreadStart(thr);
111 #endif
112 if (common_flags()->detect_deadlocks) {
113 thr->dd_pt = ctx->dd->CreatePhysicalThread();
114 thr->dd_lt = ctx->dd->CreateLogicalThread(unique_id);
115 }
116 thr->fast_state.SetHistorySize(flags()->history_size);
117 // Commit switch to the new part of the trace.
118 // TraceAddEvent will reset stack0/mset0 in the new part for us.
119 TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
120
121 thr->fast_synch_epoch = epoch0;
122 AcquireImpl(thr, 0, &sync);
123 StatInc(thr, StatSyncAcquire);
124 sync.Reset(&thr->clock_cache);
125 thr->is_inited = true;
126 DPrintf("#%d: ThreadStart epoch=%zu stk_addr=%zx stk_size=%zx "
127 "tls_addr=%zx tls_size=%zx\n",
128 tid, (uptr)epoch0, args->stk_addr, args->stk_size,
129 args->tls_addr, args->tls_size);
130 }
131
OnFinished()132 void ThreadContext::OnFinished() {
133 if (!detached) {
134 thr->fast_state.IncrementEpoch();
135 // Can't increment epoch w/o writing to the trace as well.
136 TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
137 ReleaseImpl(thr, 0, &sync);
138 }
139 epoch1 = thr->fast_state.epoch();
140
141 if (common_flags()->detect_deadlocks) {
142 ctx->dd->DestroyPhysicalThread(thr->dd_pt);
143 ctx->dd->DestroyLogicalThread(thr->dd_lt);
144 }
145 ctx->clock_alloc.FlushCache(&thr->clock_cache);
146 ctx->metamap.OnThreadIdle(thr);
147 #ifndef SANITIZER_GO
148 AllocatorThreadFinish(thr);
149 #endif
150 thr->~ThreadState();
151 #if TSAN_COLLECT_STATS
152 StatAggregate(ctx->stat, thr->stat);
153 #endif
154 thr = 0;
155 }
156
157 #ifndef SANITIZER_GO
158 struct ThreadLeak {
159 ThreadContext *tctx;
160 int count;
161 };
162
MaybeReportThreadLeak(ThreadContextBase * tctx_base,void * arg)163 static void MaybeReportThreadLeak(ThreadContextBase *tctx_base, void *arg) {
164 Vector<ThreadLeak> &leaks = *(Vector<ThreadLeak>*)arg;
165 ThreadContext *tctx = static_cast<ThreadContext*>(tctx_base);
166 if (tctx->detached || tctx->status != ThreadStatusFinished)
167 return;
168 for (uptr i = 0; i < leaks.Size(); i++) {
169 if (leaks[i].tctx->creation_stack_id == tctx->creation_stack_id) {
170 leaks[i].count++;
171 return;
172 }
173 }
174 ThreadLeak leak = {tctx, 1};
175 leaks.PushBack(leak);
176 }
177 #endif
178
179 #ifndef SANITIZER_GO
ReportIgnoresEnabled(ThreadContext * tctx,IgnoreSet * set)180 static void ReportIgnoresEnabled(ThreadContext *tctx, IgnoreSet *set) {
181 if (tctx->tid == 0) {
182 Printf("ThreadSanitizer: main thread finished with ignores enabled\n");
183 } else {
184 Printf("ThreadSanitizer: thread T%d %s finished with ignores enabled,"
185 " created at:\n", tctx->tid, tctx->name);
186 PrintStack(SymbolizeStackId(tctx->creation_stack_id));
187 }
188 Printf(" One of the following ignores was not ended"
189 " (in order of probability)\n");
190 for (uptr i = 0; i < set->Size(); i++) {
191 Printf(" Ignore was enabled at:\n");
192 PrintStack(SymbolizeStackId(set->At(i)));
193 }
194 Die();
195 }
196
ThreadCheckIgnore(ThreadState * thr)197 static void ThreadCheckIgnore(ThreadState *thr) {
198 if (ctx->after_multithreaded_fork)
199 return;
200 if (thr->ignore_reads_and_writes)
201 ReportIgnoresEnabled(thr->tctx, &thr->mop_ignore_set);
202 if (thr->ignore_sync)
203 ReportIgnoresEnabled(thr->tctx, &thr->sync_ignore_set);
204 }
205 #else
ThreadCheckIgnore(ThreadState * thr)206 static void ThreadCheckIgnore(ThreadState *thr) {}
207 #endif
208
ThreadFinalize(ThreadState * thr)209 void ThreadFinalize(ThreadState *thr) {
210 ThreadCheckIgnore(thr);
211 #ifndef SANITIZER_GO
212 if (!flags()->report_thread_leaks)
213 return;
214 ThreadRegistryLock l(ctx->thread_registry);
215 Vector<ThreadLeak> leaks(MBlockScopedBuf);
216 ctx->thread_registry->RunCallbackForEachThreadLocked(
217 MaybeReportThreadLeak, &leaks);
218 for (uptr i = 0; i < leaks.Size(); i++) {
219 ScopedReport rep(ReportTypeThreadLeak);
220 rep.AddThread(leaks[i].tctx, true);
221 rep.SetCount(leaks[i].count);
222 OutputReport(thr, rep);
223 }
224 #endif
225 }
226
ThreadCount(ThreadState * thr)227 int ThreadCount(ThreadState *thr) {
228 uptr result;
229 ctx->thread_registry->GetNumberOfThreads(0, 0, &result);
230 return (int)result;
231 }
232
ThreadCreate(ThreadState * thr,uptr pc,uptr uid,bool detached)233 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached) {
234 StatInc(thr, StatThreadCreate);
235 OnCreatedArgs args = { thr, pc };
236 u32 parent_tid = thr ? thr->tid : kInvalidTid; // No parent for GCD workers.
237 int tid =
238 ctx->thread_registry->CreateThread(uid, detached, parent_tid, &args);
239 DPrintf("#%d: ThreadCreate tid=%d uid=%zu\n", parent_tid, tid, uid);
240 StatSet(thr, StatThreadMaxAlive, ctx->thread_registry->GetMaxAliveThreads());
241 return tid;
242 }
243
ThreadStart(ThreadState * thr,int tid,uptr os_id)244 void ThreadStart(ThreadState *thr, int tid, uptr os_id) {
245 uptr stk_addr = 0;
246 uptr stk_size = 0;
247 uptr tls_addr = 0;
248 uptr tls_size = 0;
249 #ifndef SANITIZER_GO
250 GetThreadStackAndTls(tid == 0, &stk_addr, &stk_size, &tls_addr, &tls_size);
251
252 if (tid) {
253 if (stk_addr && stk_size)
254 MemoryRangeImitateWrite(thr, /*pc=*/ 1, stk_addr, stk_size);
255
256 if (tls_addr && tls_size) {
257 // Check that the thr object is in tls;
258 const uptr thr_beg = (uptr)thr;
259 const uptr thr_end = (uptr)thr + sizeof(*thr);
260 CHECK_GE(thr_beg, tls_addr);
261 CHECK_LE(thr_beg, tls_addr + tls_size);
262 CHECK_GE(thr_end, tls_addr);
263 CHECK_LE(thr_end, tls_addr + tls_size);
264 // Since the thr object is huge, skip it.
265 MemoryRangeImitateWrite(thr, /*pc=*/ 2, tls_addr, thr_beg - tls_addr);
266 MemoryRangeImitateWrite(thr, /*pc=*/ 2,
267 thr_end, tls_addr + tls_size - thr_end);
268 }
269 }
270 #endif
271
272 ThreadRegistry *tr = ctx->thread_registry;
273 OnStartedArgs args = { thr, stk_addr, stk_size, tls_addr, tls_size };
274 tr->StartThread(tid, os_id, &args);
275
276 tr->Lock();
277 thr->tctx = (ThreadContext*)tr->GetThreadLocked(tid);
278 tr->Unlock();
279
280 #ifndef SANITIZER_GO
281 if (ctx->after_multithreaded_fork) {
282 thr->ignore_interceptors++;
283 ThreadIgnoreBegin(thr, 0);
284 ThreadIgnoreSyncBegin(thr, 0);
285 }
286 #endif
287 }
288
ThreadFinish(ThreadState * thr)289 void ThreadFinish(ThreadState *thr) {
290 ThreadCheckIgnore(thr);
291 StatInc(thr, StatThreadFinish);
292 if (thr->stk_addr && thr->stk_size)
293 DontNeedShadowFor(thr->stk_addr, thr->stk_size);
294 if (thr->tls_addr && thr->tls_size)
295 DontNeedShadowFor(thr->tls_addr, thr->tls_size);
296 thr->is_dead = true;
297 ctx->thread_registry->FinishThread(thr->tid);
298 }
299
FindThreadByUid(ThreadContextBase * tctx,void * arg)300 static bool FindThreadByUid(ThreadContextBase *tctx, void *arg) {
301 uptr uid = (uptr)arg;
302 if (tctx->user_id == uid && tctx->status != ThreadStatusInvalid) {
303 tctx->user_id = 0;
304 return true;
305 }
306 return false;
307 }
308
ThreadTid(ThreadState * thr,uptr pc,uptr uid)309 int ThreadTid(ThreadState *thr, uptr pc, uptr uid) {
310 int res = ctx->thread_registry->FindThread(FindThreadByUid, (void*)uid);
311 DPrintf("#%d: ThreadTid uid=%zu tid=%d\n", thr->tid, uid, res);
312 return res;
313 }
314
ThreadJoin(ThreadState * thr,uptr pc,int tid)315 void ThreadJoin(ThreadState *thr, uptr pc, int tid) {
316 CHECK_GT(tid, 0);
317 CHECK_LT(tid, kMaxTid);
318 DPrintf("#%d: ThreadJoin tid=%d\n", thr->tid, tid);
319 ctx->thread_registry->JoinThread(tid, thr);
320 }
321
ThreadDetach(ThreadState * thr,uptr pc,int tid)322 void ThreadDetach(ThreadState *thr, uptr pc, int tid) {
323 CHECK_GT(tid, 0);
324 CHECK_LT(tid, kMaxTid);
325 ctx->thread_registry->DetachThread(tid, thr);
326 }
327
ThreadSetName(ThreadState * thr,const char * name)328 void ThreadSetName(ThreadState *thr, const char *name) {
329 ctx->thread_registry->SetThreadName(thr->tid, name);
330 }
331
MemoryAccessRange(ThreadState * thr,uptr pc,uptr addr,uptr size,bool is_write)332 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
333 uptr size, bool is_write) {
334 if (size == 0)
335 return;
336
337 u64 *shadow_mem = (u64*)MemToShadow(addr);
338 DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n",
339 thr->tid, (void*)pc, (void*)addr,
340 (int)size, is_write);
341
342 #if SANITIZER_DEBUG
343 if (!IsAppMem(addr)) {
344 Printf("Access to non app mem %zx\n", addr);
345 DCHECK(IsAppMem(addr));
346 }
347 if (!IsAppMem(addr + size - 1)) {
348 Printf("Access to non app mem %zx\n", addr + size - 1);
349 DCHECK(IsAppMem(addr + size - 1));
350 }
351 if (!IsShadowMem((uptr)shadow_mem)) {
352 Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
353 DCHECK(IsShadowMem((uptr)shadow_mem));
354 }
355 if (!IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1))) {
356 Printf("Bad shadow addr %p (%zx)\n",
357 shadow_mem + size * kShadowCnt / 8 - 1, addr + size - 1);
358 DCHECK(IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1)));
359 }
360 #endif
361
362 StatInc(thr, StatMopRange);
363
364 if (*shadow_mem == kShadowRodata) {
365 // Access to .rodata section, no races here.
366 // Measurements show that it can be 10-20% of all memory accesses.
367 StatInc(thr, StatMopRangeRodata);
368 return;
369 }
370
371 FastState fast_state = thr->fast_state;
372 if (fast_state.GetIgnoreBit())
373 return;
374
375 fast_state.IncrementEpoch();
376 thr->fast_state = fast_state;
377 TraceAddEvent(thr, fast_state, EventTypeMop, pc);
378
379 bool unaligned = (addr % kShadowCell) != 0;
380
381 // Handle unaligned beginning, if any.
382 for (; addr % kShadowCell && size; addr++, size--) {
383 int const kAccessSizeLog = 0;
384 Shadow cur(fast_state);
385 cur.SetWrite(is_write);
386 cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
387 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
388 shadow_mem, cur);
389 }
390 if (unaligned)
391 shadow_mem += kShadowCnt;
392 // Handle middle part, if any.
393 for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
394 int const kAccessSizeLog = 3;
395 Shadow cur(fast_state);
396 cur.SetWrite(is_write);
397 cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
398 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
399 shadow_mem, cur);
400 shadow_mem += kShadowCnt;
401 }
402 // Handle ending, if any.
403 for (; size; addr++, size--) {
404 int const kAccessSizeLog = 0;
405 Shadow cur(fast_state);
406 cur.SetWrite(is_write);
407 cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
408 MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false,
409 shadow_mem, cur);
410 }
411 }
412
413 } // namespace __tsan
414