1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #ifndef EIGEN_INCOMPLETE_LUT_H
11 #define EIGEN_INCOMPLETE_LUT_H
12
13
14 namespace Eigen {
15
16 namespace internal {
17
18 /** \internal
19 * Compute a quick-sort split of a vector
20 * On output, the vector row is permuted such that its elements satisfy
21 * abs(row(i)) >= abs(row(ncut)) if i<ncut
22 * abs(row(i)) <= abs(row(ncut)) if i>ncut
23 * \param row The vector of values
24 * \param ind The array of index for the elements in @p row
25 * \param ncut The number of largest elements to keep
26 **/
27 template <typename VectorV, typename VectorI, typename Index>
QuickSplit(VectorV & row,VectorI & ind,Index ncut)28 Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
29 {
30 typedef typename VectorV::RealScalar RealScalar;
31 using std::swap;
32 using std::abs;
33 Index mid;
34 Index n = row.size(); /* length of the vector */
35 Index first, last ;
36
37 ncut--; /* to fit the zero-based indices */
38 first = 0;
39 last = n-1;
40 if (ncut < first || ncut > last ) return 0;
41
42 do {
43 mid = first;
44 RealScalar abskey = abs(row(mid));
45 for (Index j = first + 1; j <= last; j++) {
46 if ( abs(row(j)) > abskey) {
47 ++mid;
48 swap(row(mid), row(j));
49 swap(ind(mid), ind(j));
50 }
51 }
52 /* Interchange for the pivot element */
53 swap(row(mid), row(first));
54 swap(ind(mid), ind(first));
55
56 if (mid > ncut) last = mid - 1;
57 else if (mid < ncut ) first = mid + 1;
58 } while (mid != ncut );
59
60 return 0; /* mid is equal to ncut */
61 }
62
63 }// end namespace internal
64
65 /** \ingroup IterativeLinearSolvers_Module
66 * \class IncompleteLUT
67 * \brief Incomplete LU factorization with dual-threshold strategy
68 *
69 * During the numerical factorization, two dropping rules are used :
70 * 1) any element whose magnitude is less than some tolerance is dropped.
71 * This tolerance is obtained by multiplying the input tolerance @p droptol
72 * by the average magnitude of all the original elements in the current row.
73 * 2) After the elimination of the row, only the @p fill largest elements in
74 * the L part and the @p fill largest elements in the U part are kept
75 * (in addition to the diagonal element ). Note that @p fill is computed from
76 * the input parameter @p fillfactor which is used the ratio to control the fill_in
77 * relatively to the initial number of nonzero elements.
78 *
79 * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
80 * and when @p fill=n/2 with @p droptol being different to zero.
81 *
82 * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
83 * Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
84 *
85 * NOTE : The following implementation is derived from the ILUT implementation
86 * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
87 * released under the terms of the GNU LGPL:
88 * http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
89 * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
90 * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
91 * http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
92 * alternatively, on GMANE:
93 * http://comments.gmane.org/gmane.comp.lib.eigen/3302
94 */
95 template <typename _Scalar>
96 class IncompleteLUT : internal::noncopyable
97 {
98 typedef _Scalar Scalar;
99 typedef typename NumTraits<Scalar>::Real RealScalar;
100 typedef Matrix<Scalar,Dynamic,1> Vector;
101 typedef SparseMatrix<Scalar,RowMajor> FactorType;
102 typedef SparseMatrix<Scalar,ColMajor> PermutType;
103 typedef typename FactorType::Index Index;
104
105 public:
106 typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
107
IncompleteLUT()108 IncompleteLUT()
109 : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
110 m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
111 {}
112
113 template<typename MatrixType>
114 IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
m_droptol(droptol)115 : m_droptol(droptol),m_fillfactor(fillfactor),
116 m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
117 {
118 eigen_assert(fillfactor != 0);
119 compute(mat);
120 }
121
rows()122 Index rows() const { return m_lu.rows(); }
123
cols()124 Index cols() const { return m_lu.cols(); }
125
126 /** \brief Reports whether previous computation was successful.
127 *
128 * \returns \c Success if computation was succesful,
129 * \c NumericalIssue if the matrix.appears to be negative.
130 */
info()131 ComputationInfo info() const
132 {
133 eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
134 return m_info;
135 }
136
137 template<typename MatrixType>
138 void analyzePattern(const MatrixType& amat);
139
140 template<typename MatrixType>
141 void factorize(const MatrixType& amat);
142
143 /**
144 * Compute an incomplete LU factorization with dual threshold on the matrix mat
145 * No pivoting is done in this version
146 *
147 **/
148 template<typename MatrixType>
compute(const MatrixType & amat)149 IncompleteLUT<Scalar>& compute(const MatrixType& amat)
150 {
151 analyzePattern(amat);
152 factorize(amat);
153 return *this;
154 }
155
156 void setDroptol(const RealScalar& droptol);
157 void setFillfactor(int fillfactor);
158
159 template<typename Rhs, typename Dest>
_solve(const Rhs & b,Dest & x)160 void _solve(const Rhs& b, Dest& x) const
161 {
162 x = m_Pinv * b;
163 x = m_lu.template triangularView<UnitLower>().solve(x);
164 x = m_lu.template triangularView<Upper>().solve(x);
165 x = m_P * x;
166 }
167
168 template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs>
solve(const MatrixBase<Rhs> & b)169 solve(const MatrixBase<Rhs>& b) const
170 {
171 eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
172 eigen_assert(cols()==b.rows()
173 && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
174 return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
175 }
176
177 protected:
178
179 /** keeps off-diagonal entries; drops diagonal entries */
180 struct keep_diag {
operatorkeep_diag181 inline bool operator() (const Index& row, const Index& col, const Scalar&) const
182 {
183 return row!=col;
184 }
185 };
186
187 protected:
188
189 FactorType m_lu;
190 RealScalar m_droptol;
191 int m_fillfactor;
192 bool m_analysisIsOk;
193 bool m_factorizationIsOk;
194 bool m_isInitialized;
195 ComputationInfo m_info;
196 PermutationMatrix<Dynamic,Dynamic,Index> m_P; // Fill-reducing permutation
197 PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // Inverse permutation
198 };
199
200 /**
201 * Set control parameter droptol
202 * \param droptol Drop any element whose magnitude is less than this tolerance
203 **/
204 template<typename Scalar>
setDroptol(const RealScalar & droptol)205 void IncompleteLUT<Scalar>::setDroptol(const RealScalar& droptol)
206 {
207 this->m_droptol = droptol;
208 }
209
210 /**
211 * Set control parameter fillfactor
212 * \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row.
213 **/
214 template<typename Scalar>
setFillfactor(int fillfactor)215 void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
216 {
217 this->m_fillfactor = fillfactor;
218 }
219
220 template <typename Scalar>
221 template<typename _MatrixType>
analyzePattern(const _MatrixType & amat)222 void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
223 {
224 // Compute the Fill-reducing permutation
225 SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
226 SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
227 // Symmetrize the pattern
228 // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
229 // on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
230 SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
231 AtA.prune(keep_diag());
232 internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); // Then compute the AMD ordering...
233
234 m_Pinv = m_P.inverse(); // ... and the inverse permutation
235
236 m_analysisIsOk = true;
237 m_factorizationIsOk = false;
238 m_isInitialized = false;
239 }
240
241 template <typename Scalar>
242 template<typename _MatrixType>
factorize(const _MatrixType & amat)243 void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
244 {
245 using std::sqrt;
246 using std::swap;
247 using std::abs;
248
249 eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
250 Index n = amat.cols(); // Size of the matrix
251 m_lu.resize(n,n);
252 // Declare Working vectors and variables
253 Vector u(n) ; // real values of the row -- maximum size is n --
254 VectorXi ju(n); // column position of the values in u -- maximum size is n
255 VectorXi jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
256
257 // Apply the fill-reducing permutation
258 eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
259 SparseMatrix<Scalar,RowMajor, Index> mat;
260 mat = amat.twistedBy(m_Pinv);
261
262 // Initialization
263 jr.fill(-1);
264 ju.fill(0);
265 u.fill(0);
266
267 // number of largest elements to keep in each row:
268 Index fill_in = static_cast<Index> (amat.nonZeros()*m_fillfactor)/n+1;
269 if (fill_in > n) fill_in = n;
270
271 // number of largest nonzero elements to keep in the L and the U part of the current row:
272 Index nnzL = fill_in/2;
273 Index nnzU = nnzL;
274 m_lu.reserve(n * (nnzL + nnzU + 1));
275
276 // global loop over the rows of the sparse matrix
277 for (Index ii = 0; ii < n; ii++)
278 {
279 // 1 - copy the lower and the upper part of the row i of mat in the working vector u
280
281 Index sizeu = 1; // number of nonzero elements in the upper part of the current row
282 Index sizel = 0; // number of nonzero elements in the lower part of the current row
283 ju(ii) = ii;
284 u(ii) = 0;
285 jr(ii) = ii;
286 RealScalar rownorm = 0;
287
288 typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
289 for (; j_it; ++j_it)
290 {
291 Index k = j_it.index();
292 if (k < ii)
293 {
294 // copy the lower part
295 ju(sizel) = k;
296 u(sizel) = j_it.value();
297 jr(k) = sizel;
298 ++sizel;
299 }
300 else if (k == ii)
301 {
302 u(ii) = j_it.value();
303 }
304 else
305 {
306 // copy the upper part
307 Index jpos = ii + sizeu;
308 ju(jpos) = k;
309 u(jpos) = j_it.value();
310 jr(k) = jpos;
311 ++sizeu;
312 }
313 rownorm += numext::abs2(j_it.value());
314 }
315
316 // 2 - detect possible zero row
317 if(rownorm==0)
318 {
319 m_info = NumericalIssue;
320 return;
321 }
322 // Take the 2-norm of the current row as a relative tolerance
323 rownorm = sqrt(rownorm);
324
325 // 3 - eliminate the previous nonzero rows
326 Index jj = 0;
327 Index len = 0;
328 while (jj < sizel)
329 {
330 // In order to eliminate in the correct order,
331 // we must select first the smallest column index among ju(jj:sizel)
332 Index k;
333 Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
334 k += jj;
335 if (minrow != ju(jj))
336 {
337 // swap the two locations
338 Index j = ju(jj);
339 swap(ju(jj), ju(k));
340 jr(minrow) = jj; jr(j) = k;
341 swap(u(jj), u(k));
342 }
343 // Reset this location
344 jr(minrow) = -1;
345
346 // Start elimination
347 typename FactorType::InnerIterator ki_it(m_lu, minrow);
348 while (ki_it && ki_it.index() < minrow) ++ki_it;
349 eigen_internal_assert(ki_it && ki_it.col()==minrow);
350 Scalar fact = u(jj) / ki_it.value();
351
352 // drop too small elements
353 if(abs(fact) <= m_droptol)
354 {
355 jj++;
356 continue;
357 }
358
359 // linear combination of the current row ii and the row minrow
360 ++ki_it;
361 for (; ki_it; ++ki_it)
362 {
363 Scalar prod = fact * ki_it.value();
364 Index j = ki_it.index();
365 Index jpos = jr(j);
366 if (jpos == -1) // fill-in element
367 {
368 Index newpos;
369 if (j >= ii) // dealing with the upper part
370 {
371 newpos = ii + sizeu;
372 sizeu++;
373 eigen_internal_assert(sizeu<=n);
374 }
375 else // dealing with the lower part
376 {
377 newpos = sizel;
378 sizel++;
379 eigen_internal_assert(sizel<=ii);
380 }
381 ju(newpos) = j;
382 u(newpos) = -prod;
383 jr(j) = newpos;
384 }
385 else
386 u(jpos) -= prod;
387 }
388 // store the pivot element
389 u(len) = fact;
390 ju(len) = minrow;
391 ++len;
392
393 jj++;
394 } // end of the elimination on the row ii
395
396 // reset the upper part of the pointer jr to zero
397 for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
398
399 // 4 - partially sort and insert the elements in the m_lu matrix
400
401 // sort the L-part of the row
402 sizel = len;
403 len = (std::min)(sizel, nnzL);
404 typename Vector::SegmentReturnType ul(u.segment(0, sizel));
405 typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
406 internal::QuickSplit(ul, jul, len);
407
408 // store the largest m_fill elements of the L part
409 m_lu.startVec(ii);
410 for(Index k = 0; k < len; k++)
411 m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
412
413 // store the diagonal element
414 // apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
415 if (u(ii) == Scalar(0))
416 u(ii) = sqrt(m_droptol) * rownorm;
417 m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
418
419 // sort the U-part of the row
420 // apply the dropping rule first
421 len = 0;
422 for(Index k = 1; k < sizeu; k++)
423 {
424 if(abs(u(ii+k)) > m_droptol * rownorm )
425 {
426 ++len;
427 u(ii + len) = u(ii + k);
428 ju(ii + len) = ju(ii + k);
429 }
430 }
431 sizeu = len + 1; // +1 to take into account the diagonal element
432 len = (std::min)(sizeu, nnzU);
433 typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
434 typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
435 internal::QuickSplit(uu, juu, len);
436
437 // store the largest elements of the U part
438 for(Index k = ii + 1; k < ii + len; k++)
439 m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
440 }
441
442 m_lu.finalize();
443 m_lu.makeCompressed();
444
445 m_factorizationIsOk = true;
446 m_isInitialized = m_factorizationIsOk;
447 m_info = Success;
448 }
449
450 namespace internal {
451
452 template<typename _MatrixType, typename Rhs>
453 struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
454 : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs>
455 {
456 typedef IncompleteLUT<_MatrixType> Dec;
457 EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
458
459 template<typename Dest> void evalTo(Dest& dst) const
460 {
461 dec()._solve(rhs(),dst);
462 }
463 };
464
465 } // end namespace internal
466
467 } // end namespace Eigen
468
469 #endif // EIGEN_INCOMPLETE_LUT_H
470