1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #include "sparse.h"
11 #include <Eigen/SparseCore>
12
13 template<typename Solver, typename Rhs, typename DenseMat, typename DenseRhs>
check_sparse_solving(Solver & solver,const typename Solver::MatrixType & A,const Rhs & b,const DenseMat & dA,const DenseRhs & db)14 void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const DenseMat& dA, const DenseRhs& db)
15 {
16 typedef typename Solver::MatrixType Mat;
17 typedef typename Mat::Scalar Scalar;
18
19 DenseRhs refX = dA.lu().solve(db);
20 {
21 Rhs x(b.rows(), b.cols());
22 Rhs oldb = b;
23
24 solver.compute(A);
25 if (solver.info() != Success)
26 {
27 std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n";
28 exit(0);
29 return;
30 }
31 x = solver.solve(b);
32 if (solver.info() != Success)
33 {
34 std::cerr << "sparse solver testing: solving failed\n";
35 return;
36 }
37 VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
38
39 VERIFY(x.isApprox(refX,test_precision<Scalar>()));
40 x.setZero();
41 // test the analyze/factorize API
42 solver.analyzePattern(A);
43 solver.factorize(A);
44 if (solver.info() != Success)
45 {
46 std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n";
47 exit(0);
48 return;
49 }
50 x = solver.solve(b);
51 if (solver.info() != Success)
52 {
53 std::cerr << "sparse solver testing: solving failed\n";
54 return;
55 }
56 VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
57
58 VERIFY(x.isApprox(refX,test_precision<Scalar>()));
59 }
60
61 // test dense Block as the result and rhs:
62 {
63 DenseRhs x(db.rows(), db.cols());
64 DenseRhs oldb(db);
65 x.setZero();
66 x.block(0,0,x.rows(),x.cols()) = solver.solve(db.block(0,0,db.rows(),db.cols()));
67 VERIFY(oldb.isApprox(db) && "sparse solver testing: the rhs should not be modified!");
68 VERIFY(x.isApprox(refX,test_precision<Scalar>()));
69 }
70 }
71
72 template<typename Solver, typename Rhs>
check_sparse_solving_real_cases(Solver & solver,const typename Solver::MatrixType & A,const Rhs & b,const Rhs & refX)73 void check_sparse_solving_real_cases(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const Rhs& refX)
74 {
75 typedef typename Solver::MatrixType Mat;
76 typedef typename Mat::Scalar Scalar;
77 typedef typename Mat::RealScalar RealScalar;
78
79 Rhs x(b.rows(), b.cols());
80
81 solver.compute(A);
82 if (solver.info() != Success)
83 {
84 std::cerr << "sparse solver testing: factorization failed (check_sparse_solving_real_cases)\n";
85 exit(0);
86 return;
87 }
88 x = solver.solve(b);
89 if (solver.info() != Success)
90 {
91 std::cerr << "sparse solver testing: solving failed\n";
92 return;
93 }
94
95 RealScalar res_error;
96 // Compute the norm of the relative error
97 if(refX.size() != 0)
98 res_error = (refX - x).norm()/refX.norm();
99 else
100 {
101 // Compute the relative residual norm
102 res_error = (b - A * x).norm()/b.norm();
103 }
104 if (res_error > test_precision<Scalar>() ){
105 std::cerr << "Test " << g_test_stack.back() << " failed in "EI_PP_MAKE_STRING(__FILE__)
106 << " (" << EI_PP_MAKE_STRING(__LINE__) << ")" << std::endl << std::endl;
107 abort();
108 }
109
110 }
111 template<typename Solver, typename DenseMat>
check_sparse_determinant(Solver & solver,const typename Solver::MatrixType & A,const DenseMat & dA)112 void check_sparse_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
113 {
114 typedef typename Solver::MatrixType Mat;
115 typedef typename Mat::Scalar Scalar;
116
117 solver.compute(A);
118 if (solver.info() != Success)
119 {
120 std::cerr << "sparse solver testing: factorization failed (check_sparse_determinant)\n";
121 return;
122 }
123
124 Scalar refDet = dA.determinant();
125 VERIFY_IS_APPROX(refDet,solver.determinant());
126 }
127 template<typename Solver, typename DenseMat>
check_sparse_abs_determinant(Solver & solver,const typename Solver::MatrixType & A,const DenseMat & dA)128 void check_sparse_abs_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
129 {
130 using std::abs;
131 typedef typename Solver::MatrixType Mat;
132 typedef typename Mat::Scalar Scalar;
133
134 solver.compute(A);
135 if (solver.info() != Success)
136 {
137 std::cerr << "sparse solver testing: factorization failed (check_sparse_abs_determinant)\n";
138 return;
139 }
140
141 Scalar refDet = abs(dA.determinant());
142 VERIFY_IS_APPROX(refDet,solver.absDeterminant());
143 }
144
145 template<typename Solver, typename DenseMat>
146 int generate_sparse_spd_problem(Solver& , typename Solver::MatrixType& A, typename Solver::MatrixType& halfA, DenseMat& dA, int maxSize = 300)
147 {
148 typedef typename Solver::MatrixType Mat;
149 typedef typename Mat::Scalar Scalar;
150 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
151
152 int size = internal::random<int>(1,maxSize);
153 double density = (std::max)(8./(size*size), 0.01);
154
155 Mat M(size, size);
156 DenseMatrix dM(size, size);
157
158 initSparse<Scalar>(density, dM, M, ForceNonZeroDiag);
159
160 A = M * M.adjoint();
161 dA = dM * dM.adjoint();
162
163 halfA.resize(size,size);
164 if(Solver::UpLo==(Lower|Upper))
165 halfA = A;
166 else
167 halfA.template selfadjointView<Solver::UpLo>().rankUpdate(M);
168
169 return size;
170 }
171
172
173 #ifdef TEST_REAL_CASES
174 template<typename Scalar>
get_matrixfolder()175 inline std::string get_matrixfolder()
176 {
177 std::string mat_folder = TEST_REAL_CASES;
178 if( internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value )
179 mat_folder = mat_folder + static_cast<std::string>("/complex/");
180 else
181 mat_folder = mat_folder + static_cast<std::string>("/real/");
182 return mat_folder;
183 }
184 #endif
185
check_sparse_spd_solving(Solver & solver)186 template<typename Solver> void check_sparse_spd_solving(Solver& solver)
187 {
188 typedef typename Solver::MatrixType Mat;
189 typedef typename Mat::Scalar Scalar;
190 typedef SparseMatrix<Scalar,ColMajor> SpMat;
191 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
192 typedef Matrix<Scalar,Dynamic,1> DenseVector;
193
194 // generate the problem
195 Mat A, halfA;
196 DenseMatrix dA;
197 for (int i = 0; i < g_repeat; i++) {
198 int size = generate_sparse_spd_problem(solver, A, halfA, dA);
199
200 // generate the right hand sides
201 int rhsCols = internal::random<int>(1,16);
202 double density = (std::max)(8./(size*rhsCols), 0.1);
203 SpMat B(size,rhsCols);
204 DenseVector b = DenseVector::Random(size);
205 DenseMatrix dB(size,rhsCols);
206 initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
207
208 check_sparse_solving(solver, A, b, dA, b);
209 check_sparse_solving(solver, halfA, b, dA, b);
210 check_sparse_solving(solver, A, dB, dA, dB);
211 check_sparse_solving(solver, halfA, dB, dA, dB);
212 check_sparse_solving(solver, A, B, dA, dB);
213 check_sparse_solving(solver, halfA, B, dA, dB);
214
215 // check only once
216 if(i==0)
217 {
218 b = DenseVector::Zero(size);
219 check_sparse_solving(solver, A, b, dA, b);
220 }
221 }
222
223 // First, get the folder
224 #ifdef TEST_REAL_CASES
225 if (internal::is_same<Scalar, float>::value
226 || internal::is_same<Scalar, std::complex<float> >::value)
227 return ;
228
229 std::string mat_folder = get_matrixfolder<Scalar>();
230 MatrixMarketIterator<Scalar> it(mat_folder);
231 for (; it; ++it)
232 {
233 if (it.sym() == SPD){
234 Mat halfA;
235 PermutationMatrix<Dynamic, Dynamic, Index> pnull;
236 halfA.template selfadjointView<Solver::UpLo>() = it.matrix().template triangularView<Eigen::Lower>().twistedBy(pnull);
237
238 std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n";
239 check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX());
240 check_sparse_solving_real_cases(solver, halfA, it.rhs(), it.refX());
241 }
242 }
243 #endif
244 }
245
check_sparse_spd_determinant(Solver & solver)246 template<typename Solver> void check_sparse_spd_determinant(Solver& solver)
247 {
248 typedef typename Solver::MatrixType Mat;
249 typedef typename Mat::Scalar Scalar;
250 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
251
252 // generate the problem
253 Mat A, halfA;
254 DenseMatrix dA;
255 generate_sparse_spd_problem(solver, A, halfA, dA, 30);
256
257 for (int i = 0; i < g_repeat; i++) {
258 check_sparse_determinant(solver, A, dA);
259 check_sparse_determinant(solver, halfA, dA );
260 }
261 }
262
263 template<typename Solver, typename DenseMat>
264 int generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300)
265 {
266 typedef typename Solver::MatrixType Mat;
267 typedef typename Mat::Scalar Scalar;
268
269 int size = internal::random<int>(1,maxSize);
270 double density = (std::max)(8./(size*size), 0.01);
271
272 A.resize(size,size);
273 dA.resize(size,size);
274
275 initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
276
277 return size;
278 }
279
check_sparse_square_solving(Solver & solver)280 template<typename Solver> void check_sparse_square_solving(Solver& solver)
281 {
282 typedef typename Solver::MatrixType Mat;
283 typedef typename Mat::Scalar Scalar;
284 typedef SparseMatrix<Scalar,ColMajor> SpMat;
285 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
286 typedef Matrix<Scalar,Dynamic,1> DenseVector;
287
288 int rhsCols = internal::random<int>(1,16);
289
290 Mat A;
291 DenseMatrix dA;
292 for (int i = 0; i < g_repeat; i++) {
293 int size = generate_sparse_square_problem(solver, A, dA);
294
295 A.makeCompressed();
296 DenseVector b = DenseVector::Random(size);
297 DenseMatrix dB(size,rhsCols);
298 SpMat B(size,rhsCols);
299 double density = (std::max)(8./(size*rhsCols), 0.1);
300 initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
301 B.makeCompressed();
302 check_sparse_solving(solver, A, b, dA, b);
303 check_sparse_solving(solver, A, dB, dA, dB);
304 check_sparse_solving(solver, A, B, dA, dB);
305
306 // check only once
307 if(i==0)
308 {
309 b = DenseVector::Zero(size);
310 check_sparse_solving(solver, A, b, dA, b);
311 }
312 }
313
314 // First, get the folder
315 #ifdef TEST_REAL_CASES
316 if (internal::is_same<Scalar, float>::value
317 || internal::is_same<Scalar, std::complex<float> >::value)
318 return ;
319
320 std::string mat_folder = get_matrixfolder<Scalar>();
321 MatrixMarketIterator<Scalar> it(mat_folder);
322 for (; it; ++it)
323 {
324 std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n";
325 check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX());
326 }
327 #endif
328
329 }
330
check_sparse_square_determinant(Solver & solver)331 template<typename Solver> void check_sparse_square_determinant(Solver& solver)
332 {
333 typedef typename Solver::MatrixType Mat;
334 typedef typename Mat::Scalar Scalar;
335 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
336
337 // generate the problem
338 Mat A;
339 DenseMatrix dA;
340 generate_sparse_square_problem(solver, A, dA, 30);
341 A.makeCompressed();
342 for (int i = 0; i < g_repeat; i++) {
343 check_sparse_determinant(solver, A, dA);
344 }
345 }
346
check_sparse_square_abs_determinant(Solver & solver)347 template<typename Solver> void check_sparse_square_abs_determinant(Solver& solver)
348 {
349 typedef typename Solver::MatrixType Mat;
350 typedef typename Mat::Scalar Scalar;
351 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
352
353 // generate the problem
354 Mat A;
355 DenseMatrix dA;
356 generate_sparse_square_problem(solver, A, dA, 30);
357 A.makeCompressed();
358 for (int i = 0; i < g_repeat; i++) {
359 check_sparse_abs_determinant(solver, A, dA);
360 }
361 }
362
363