1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_DGMRES_H
11 #define EIGEN_DGMRES_H
12 
13 #include <Eigen/Eigenvalues>
14 
15 namespace Eigen {
16 
17 template< typename _MatrixType,
18           typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
19 class DGMRES;
20 
21 namespace internal {
22 
23 template< typename _MatrixType, typename _Preconditioner>
24 struct traits<DGMRES<_MatrixType,_Preconditioner> >
25 {
26   typedef _MatrixType MatrixType;
27   typedef _Preconditioner Preconditioner;
28 };
29 
30 /** \brief Computes a permutation vector to have a sorted sequence
31   * \param vec The vector to reorder.
32   * \param perm gives the sorted sequence on output. Must be initialized with 0..n-1
33   * \param ncut Put  the ncut smallest elements at the end of the vector
34   * WARNING This is an expensive sort, so should be used only
35   * for small size vectors
36   * TODO Use modified QuickSplit or std::nth_element to get the smallest values
37   */
38 template <typename VectorType, typename IndexType>
39 void sortWithPermutation (VectorType& vec, IndexType& perm, typename IndexType::Scalar& ncut)
40 {
41   eigen_assert(vec.size() == perm.size());
42   typedef typename IndexType::Scalar Index;
43   typedef typename VectorType::Scalar Scalar;
44   bool flag;
45   for (Index k  = 0; k < ncut; k++)
46   {
47     flag = false;
48     for (Index j = 0; j < vec.size()-1; j++)
49     {
50       if ( vec(perm(j)) < vec(perm(j+1)) )
51       {
52         std::swap(perm(j),perm(j+1));
53         flag = true;
54       }
55       if (!flag) break; // The vector is in sorted order
56     }
57   }
58 }
59 
60 }
61 /**
62  * \ingroup IterativeLInearSolvers_Module
63  * \brief A Restarted GMRES with deflation.
64  * This class implements a modification of the GMRES solver for
65  * sparse linear systems. The basis is built with modified
66  * Gram-Schmidt. At each restart, a few approximated eigenvectors
67  * corresponding to the smallest eigenvalues are used to build a
68  * preconditioner for the next cycle. This preconditioner
69  * for deflation can be combined with any other preconditioner,
70  * the IncompleteLUT for instance. The preconditioner is applied
71  * at right of the matrix and the combination is multiplicative.
72  *
73  * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
74  * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
75  * Typical usage :
76  * \code
77  * SparseMatrix<double> A;
78  * VectorXd x, b;
79  * //Fill A and b ...
80  * DGMRES<SparseMatrix<double> > solver;
81  * solver.set_restart(30); // Set restarting value
82  * solver.setEigenv(1); // Set the number of eigenvalues to deflate
83  * solver.compute(A);
84  * x = solver.solve(b);
85  * \endcode
86  *
87  * References :
88  * [1] D. NUENTSA WAKAM and F. PACULL, Memory Efficient Hybrid
89  *  Algebraic Solvers for Linear Systems Arising from Compressible
90  *  Flows, Computers and Fluids, In Press,
91  *  http://dx.doi.org/10.1016/j.compfluid.2012.03.023
92  * [2] K. Burrage and J. Erhel, On the performance of various
93  * adaptive preconditioned GMRES strategies, 5(1998), 101-121.
94  * [3] J. Erhel, K. Burrage and B. Pohl, Restarted GMRES
95  *  preconditioned by deflation,J. Computational and Applied
96  *  Mathematics, 69(1996), 303-318.
97 
98  *
99  */
100 template< typename _MatrixType, typename _Preconditioner>
101 class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
102 {
103     typedef IterativeSolverBase<DGMRES> Base;
104     using Base::mp_matrix;
105     using Base::m_error;
106     using Base::m_iterations;
107     using Base::m_info;
108     using Base::m_isInitialized;
109     using Base::m_tolerance;
110   public:
111     typedef _MatrixType MatrixType;
112     typedef typename MatrixType::Scalar Scalar;
113     typedef typename MatrixType::Index Index;
114     typedef typename MatrixType::RealScalar RealScalar;
115     typedef _Preconditioner Preconditioner;
116     typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
117     typedef Matrix<RealScalar,Dynamic,Dynamic> DenseRealMatrix;
118     typedef Matrix<Scalar,Dynamic,1> DenseVector;
119     typedef Matrix<RealScalar,Dynamic,1> DenseRealVector;
120     typedef Matrix<std::complex<RealScalar>, Dynamic, 1> ComplexVector;
121 
122 
123   /** Default constructor. */
124   DGMRES() : Base(),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}
125 
126   /** Initialize the solver with matrix \a A for further \c Ax=b solving.
127     *
128     * This constructor is a shortcut for the default constructor followed
129     * by a call to compute().
130     *
131     * \warning this class stores a reference to the matrix A as well as some
132     * precomputed values that depend on it. Therefore, if \a A is changed
133     * this class becomes invalid. Call compute() to update it with the new
134     * matrix A, or modify a copy of A.
135     */
136   DGMRES(const MatrixType& A) : Base(A),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false)
137   {}
138 
139   ~DGMRES() {}
140 
141   /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
142     * \a x0 as an initial solution.
143     *
144     * \sa compute()
145     */
146   template<typename Rhs,typename Guess>
147   inline const internal::solve_retval_with_guess<DGMRES, Rhs, Guess>
148   solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
149   {
150     eigen_assert(m_isInitialized && "DGMRES is not initialized.");
151     eigen_assert(Base::rows()==b.rows()
152               && "DGMRES::solve(): invalid number of rows of the right hand side matrix b");
153     return internal::solve_retval_with_guess
154             <DGMRES, Rhs, Guess>(*this, b.derived(), x0);
155   }
156 
157   /** \internal */
158   template<typename Rhs,typename Dest>
159   void _solveWithGuess(const Rhs& b, Dest& x) const
160   {
161     bool failed = false;
162     for(int j=0; j<b.cols(); ++j)
163     {
164       m_iterations = Base::maxIterations();
165       m_error = Base::m_tolerance;
166 
167       typename Dest::ColXpr xj(x,j);
168       dgmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner);
169     }
170     m_info = failed ? NumericalIssue
171            : m_error <= Base::m_tolerance ? Success
172            : NoConvergence;
173     m_isInitialized = true;
174   }
175 
176   /** \internal */
177   template<typename Rhs,typename Dest>
178   void _solve(const Rhs& b, Dest& x) const
179   {
180     x = b;
181     _solveWithGuess(b,x);
182   }
183   /**
184    * Get the restart value
185     */
186   int restart() { return m_restart; }
187 
188   /**
189    * Set the restart value (default is 30)
190    */
191   void set_restart(const int restart) { m_restart=restart; }
192 
193   /**
194    * Set the number of eigenvalues to deflate at each restart
195    */
196   void setEigenv(const int neig)
197   {
198     m_neig = neig;
199     if (neig+1 > m_maxNeig) m_maxNeig = neig+1; // To allow for complex conjugates
200   }
201 
202   /**
203    * Get the size of the deflation subspace size
204    */
205   int deflSize() {return m_r; }
206 
207   /**
208    * Set the maximum size of the deflation subspace
209    */
210   void setMaxEigenv(const int maxNeig) { m_maxNeig = maxNeig; }
211 
212   protected:
213     // DGMRES algorithm
214     template<typename Rhs, typename Dest>
215     void dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x, const Preconditioner& precond) const;
216     // Perform one cycle of GMRES
217     template<typename Dest>
218     int dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, int& nbIts) const;
219     // Compute data to use for deflation
220     int dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, Index& neig) const;
221     // Apply deflation to a vector
222     template<typename RhsType, typename DestType>
223     int dgmresApplyDeflation(const RhsType& In, DestType& Out) const;
224     ComplexVector schurValues(const ComplexSchur<DenseMatrix>& schurofH) const;
225     ComplexVector schurValues(const RealSchur<DenseMatrix>& schurofH) const;
226     // Init data for deflation
227     void dgmresInitDeflation(Index& rows) const;
228     mutable DenseMatrix m_V; // Krylov basis vectors
229     mutable DenseMatrix m_H; // Hessenberg matrix
230     mutable DenseMatrix m_Hes; // Initial hessenberg matrix wihout Givens rotations applied
231     mutable Index m_restart; // Maximum size of the Krylov subspace
232     mutable DenseMatrix m_U; // Vectors that form the basis of the invariant subspace
233     mutable DenseMatrix m_MU; // matrix operator applied to m_U (for next cycles)
234     mutable DenseMatrix m_T; /* T=U^T*M^{-1}*A*U */
235     mutable PartialPivLU<DenseMatrix> m_luT; // LU factorization of m_T
236     mutable int m_neig; //Number of eigenvalues to extract at each restart
237     mutable int m_r; // Current number of deflated eigenvalues, size of m_U
238     mutable int m_maxNeig; // Maximum number of eigenvalues to deflate
239     mutable RealScalar m_lambdaN; //Modulus of the largest eigenvalue of A
240     mutable bool m_isDeflAllocated;
241     mutable bool m_isDeflInitialized;
242 
243     //Adaptive strategy
244     mutable RealScalar m_smv; // Smaller multiple of the remaining number of steps allowed
245     mutable bool m_force; // Force the use of deflation at each restart
246 
247 };
248 /**
249  * \brief Perform several cycles of restarted GMRES with modified Gram Schmidt,
250  *
251  * A right preconditioner is used combined with deflation.
252  *
253  */
254 template< typename _MatrixType, typename _Preconditioner>
255 template<typename Rhs, typename Dest>
256 void DGMRES<_MatrixType, _Preconditioner>::dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x,
257               const Preconditioner& precond) const
258 {
259   //Initialization
260   int n = mat.rows();
261   DenseVector r0(n);
262   int nbIts = 0;
263   m_H.resize(m_restart+1, m_restart);
264   m_Hes.resize(m_restart, m_restart);
265   m_V.resize(n,m_restart+1);
266   //Initial residual vector and intial norm
267   x = precond.solve(x);
268   r0 = rhs - mat * x;
269   RealScalar beta = r0.norm();
270   RealScalar normRhs = rhs.norm();
271   m_error = beta/normRhs;
272   if(m_error < m_tolerance)
273     m_info = Success;
274   else
275     m_info = NoConvergence;
276 
277   // Iterative process
278   while (nbIts < m_iterations && m_info == NoConvergence)
279   {
280     dgmresCycle(mat, precond, x, r0, beta, normRhs, nbIts);
281 
282     // Compute the new residual vector for the restart
283     if (nbIts < m_iterations && m_info == NoConvergence)
284       r0 = rhs - mat * x;
285   }
286 }
287 
288 /**
289  * \brief Perform one restart cycle of DGMRES
290  * \param mat The coefficient matrix
291  * \param precond The preconditioner
292  * \param x the new approximated solution
293  * \param r0 The initial residual vector
294  * \param beta The norm of the residual computed so far
295  * \param normRhs The norm of the right hand side vector
296  * \param nbIts The number of iterations
297  */
298 template< typename _MatrixType, typename _Preconditioner>
299 template<typename Dest>
300 int DGMRES<_MatrixType, _Preconditioner>::dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, int& nbIts) const
301 {
302   //Initialization
303   DenseVector g(m_restart+1); // Right hand side of the least square problem
304   g.setZero();
305   g(0) = Scalar(beta);
306   m_V.col(0) = r0/beta;
307   m_info = NoConvergence;
308   std::vector<JacobiRotation<Scalar> >gr(m_restart); // Givens rotations
309   int it = 0; // Number of inner iterations
310   int n = mat.rows();
311   DenseVector tv1(n), tv2(n);  //Temporary vectors
312   while (m_info == NoConvergence && it < m_restart && nbIts < m_iterations)
313   {
314     // Apply preconditioner(s) at right
315     if (m_isDeflInitialized )
316     {
317       dgmresApplyDeflation(m_V.col(it), tv1); // Deflation
318       tv2 = precond.solve(tv1);
319     }
320     else
321     {
322       tv2 = precond.solve(m_V.col(it)); // User's selected preconditioner
323     }
324     tv1 = mat * tv2;
325 
326     // Orthogonalize it with the previous basis in the basis using modified Gram-Schmidt
327     Scalar coef;
328     for (int i = 0; i <= it; ++i)
329     {
330       coef = tv1.dot(m_V.col(i));
331       tv1 = tv1 - coef * m_V.col(i);
332       m_H(i,it) = coef;
333       m_Hes(i,it) = coef;
334     }
335     // Normalize the vector
336     coef = tv1.norm();
337     m_V.col(it+1) = tv1/coef;
338     m_H(it+1, it) = coef;
339 //     m_Hes(it+1,it) = coef;
340 
341     // FIXME Check for happy breakdown
342 
343     // Update Hessenberg matrix with Givens rotations
344     for (int i = 1; i <= it; ++i)
345     {
346       m_H.col(it).applyOnTheLeft(i-1,i,gr[i-1].adjoint());
347     }
348     // Compute the new plane rotation
349     gr[it].makeGivens(m_H(it, it), m_H(it+1,it));
350     // Apply the new rotation
351     m_H.col(it).applyOnTheLeft(it,it+1,gr[it].adjoint());
352     g.applyOnTheLeft(it,it+1, gr[it].adjoint());
353 
354     beta = std::abs(g(it+1));
355     m_error = beta/normRhs;
356     std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl;
357     it++; nbIts++;
358 
359     if (m_error < m_tolerance)
360     {
361       // The method has converged
362       m_info = Success;
363       break;
364     }
365   }
366 
367   // Compute the new coefficients by solving the least square problem
368 //   it++;
369   //FIXME  Check first if the matrix is singular ... zero diagonal
370   DenseVector nrs(m_restart);
371   nrs = m_H.topLeftCorner(it,it).template triangularView<Upper>().solve(g.head(it));
372 
373   // Form the new solution
374   if (m_isDeflInitialized)
375   {
376     tv1 = m_V.leftCols(it) * nrs;
377     dgmresApplyDeflation(tv1, tv2);
378     x = x + precond.solve(tv2);
379   }
380   else
381     x = x + precond.solve(m_V.leftCols(it) * nrs);
382 
383   // Go for a new cycle and compute data for deflation
384   if(nbIts < m_iterations && m_info == NoConvergence && m_neig > 0 && (m_r+m_neig) < m_maxNeig)
385     dgmresComputeDeflationData(mat, precond, it, m_neig);
386   return 0;
387 
388 }
389 
390 
391 template< typename _MatrixType, typename _Preconditioner>
392 void DGMRES<_MatrixType, _Preconditioner>::dgmresInitDeflation(Index& rows) const
393 {
394   m_U.resize(rows, m_maxNeig);
395   m_MU.resize(rows, m_maxNeig);
396   m_T.resize(m_maxNeig, m_maxNeig);
397   m_lambdaN = 0.0;
398   m_isDeflAllocated = true;
399 }
400 
401 template< typename _MatrixType, typename _Preconditioner>
402 inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const ComplexSchur<DenseMatrix>& schurofH) const
403 {
404   return schurofH.matrixT().diagonal();
405 }
406 
407 template< typename _MatrixType, typename _Preconditioner>
408 inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const RealSchur<DenseMatrix>& schurofH) const
409 {
410   typedef typename MatrixType::Index Index;
411   const DenseMatrix& T = schurofH.matrixT();
412   Index it = T.rows();
413   ComplexVector eig(it);
414   Index j = 0;
415   while (j < it-1)
416   {
417     if (T(j+1,j) ==Scalar(0))
418     {
419       eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0));
420       j++;
421     }
422     else
423     {
424       eig(j) = std::complex<RealScalar>(T(j,j),T(j+1,j));
425       eig(j+1) = std::complex<RealScalar>(T(j,j+1),T(j+1,j+1));
426       j++;
427     }
428   }
429   if (j < it-1) eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0));
430   return eig;
431 }
432 
433 template< typename _MatrixType, typename _Preconditioner>
434 int DGMRES<_MatrixType, _Preconditioner>::dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, Index& neig) const
435 {
436   // First, find the Schur form of the Hessenberg matrix H
437   typename internal::conditional<NumTraits<Scalar>::IsComplex, ComplexSchur<DenseMatrix>, RealSchur<DenseMatrix> >::type schurofH;
438   bool computeU = true;
439   DenseMatrix matrixQ(it,it);
440   matrixQ.setIdentity();
441   schurofH.computeFromHessenberg(m_Hes.topLeftCorner(it,it), matrixQ, computeU);
442 
443   ComplexVector eig(it);
444   Matrix<Index,Dynamic,1>perm(it);
445   eig = this->schurValues(schurofH);
446 
447   // Reorder the absolute values of Schur values
448   DenseRealVector modulEig(it);
449   for (int j=0; j<it; ++j) modulEig(j) = std::abs(eig(j));
450   perm.setLinSpaced(it,0,it-1);
451   internal::sortWithPermutation(modulEig, perm, neig);
452 
453   if (!m_lambdaN)
454   {
455     m_lambdaN = (std::max)(modulEig.maxCoeff(), m_lambdaN);
456   }
457   //Count the real number of extracted eigenvalues (with complex conjugates)
458   int nbrEig = 0;
459   while (nbrEig < neig)
460   {
461     if(eig(perm(it-nbrEig-1)).imag() == RealScalar(0)) nbrEig++;
462     else nbrEig += 2;
463   }
464   // Extract the  Schur vectors corresponding to the smallest Ritz values
465   DenseMatrix Sr(it, nbrEig);
466   Sr.setZero();
467   for (int j = 0; j < nbrEig; j++)
468   {
469     Sr.col(j) = schurofH.matrixU().col(perm(it-j-1));
470   }
471 
472   // Form the Schur vectors of the initial matrix using the Krylov basis
473   DenseMatrix X;
474   X = m_V.leftCols(it) * Sr;
475   if (m_r)
476   {
477    // Orthogonalize X against m_U using modified Gram-Schmidt
478    for (int j = 0; j < nbrEig; j++)
479      for (int k =0; k < m_r; k++)
480       X.col(j) = X.col(j) - (m_U.col(k).dot(X.col(j)))*m_U.col(k);
481   }
482 
483   // Compute m_MX = A * M^-1 * X
484   Index m = m_V.rows();
485   if (!m_isDeflAllocated)
486     dgmresInitDeflation(m);
487   DenseMatrix MX(m, nbrEig);
488   DenseVector tv1(m);
489   for (int j = 0; j < nbrEig; j++)
490   {
491     tv1 = mat * X.col(j);
492     MX.col(j) = precond.solve(tv1);
493   }
494 
495   //Update m_T = [U'MU U'MX; X'MU X'MX]
496   m_T.block(m_r, m_r, nbrEig, nbrEig) = X.transpose() * MX;
497   if(m_r)
498   {
499     m_T.block(0, m_r, m_r, nbrEig) = m_U.leftCols(m_r).transpose() * MX;
500     m_T.block(m_r, 0, nbrEig, m_r) = X.transpose() * m_MU.leftCols(m_r);
501   }
502 
503   // Save X into m_U and m_MX in m_MU
504   for (int j = 0; j < nbrEig; j++) m_U.col(m_r+j) = X.col(j);
505   for (int j = 0; j < nbrEig; j++) m_MU.col(m_r+j) = MX.col(j);
506   // Increase the size of the invariant subspace
507   m_r += nbrEig;
508 
509   // Factorize m_T into m_luT
510   m_luT.compute(m_T.topLeftCorner(m_r, m_r));
511 
512   //FIXME CHeck if the factorization was correctly done (nonsingular matrix)
513   m_isDeflInitialized = true;
514   return 0;
515 }
516 template<typename _MatrixType, typename _Preconditioner>
517 template<typename RhsType, typename DestType>
518 int DGMRES<_MatrixType, _Preconditioner>::dgmresApplyDeflation(const RhsType &x, DestType &y) const
519 {
520   DenseVector x1 = m_U.leftCols(m_r).transpose() * x;
521   y = x + m_U.leftCols(m_r) * ( m_lambdaN * m_luT.solve(x1) - x1);
522   return 0;
523 }
524 
525 namespace internal {
526 
527   template<typename _MatrixType, typename _Preconditioner, typename Rhs>
528 struct solve_retval<DGMRES<_MatrixType, _Preconditioner>, Rhs>
529   : solve_retval_base<DGMRES<_MatrixType, _Preconditioner>, Rhs>
530 {
531   typedef DGMRES<_MatrixType, _Preconditioner> Dec;
532   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
533 
534   template<typename Dest> void evalTo(Dest& dst) const
535   {
536     dec()._solve(rhs(),dst);
537   }
538 };
539 } // end namespace internal
540 
541 } // end namespace Eigen
542 #endif
543