1 /*
2 *******************************************************************************
3 * Copyright (C) 2013-2014, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 *******************************************************************************
6 * collationbuilder.cpp
7 *
8 * (replaced the former ucol_bld.cpp)
9 *
10 * created on: 2013may06
11 * created by: Markus W. Scherer
12 */
13
14 #ifdef DEBUG_COLLATION_BUILDER
15 #include <stdio.h>
16 #endif
17
18 #include "unicode/utypes.h"
19
20 #if !UCONFIG_NO_COLLATION
21
22 #include "unicode/caniter.h"
23 #include "unicode/normalizer2.h"
24 #include "unicode/tblcoll.h"
25 #include "unicode/parseerr.h"
26 #include "unicode/uchar.h"
27 #include "unicode/ucol.h"
28 #include "unicode/unistr.h"
29 #include "unicode/usetiter.h"
30 #include "unicode/utf16.h"
31 #include "unicode/uversion.h"
32 #include "cmemory.h"
33 #include "collation.h"
34 #include "collationbuilder.h"
35 #include "collationdata.h"
36 #include "collationdatabuilder.h"
37 #include "collationfastlatin.h"
38 #include "collationroot.h"
39 #include "collationrootelements.h"
40 #include "collationruleparser.h"
41 #include "collationsettings.h"
42 #include "collationtailoring.h"
43 #include "collationweights.h"
44 #include "normalizer2impl.h"
45 #include "uassert.h"
46 #include "ucol_imp.h"
47 #include "utf16collationiterator.h"
48
49 U_NAMESPACE_BEGIN
50
51 namespace {
52
53 class BundleImporter : public CollationRuleParser::Importer {
54 public:
BundleImporter()55 BundleImporter() {}
56 virtual ~BundleImporter();
57 virtual void getRules(
58 const char *localeID, const char *collationType,
59 UnicodeString &rules,
60 const char *&errorReason, UErrorCode &errorCode);
61 };
62
~BundleImporter()63 BundleImporter::~BundleImporter() {}
64
65 void
getRules(const char * localeID,const char * collationType,UnicodeString & rules,const char * &,UErrorCode & errorCode)66 BundleImporter::getRules(
67 const char *localeID, const char *collationType,
68 UnicodeString &rules,
69 const char *& /*errorReason*/, UErrorCode &errorCode) {
70 CollationLoader::loadRules(localeID, collationType, rules, errorCode);
71 }
72
73 } // namespace
74
75 // RuleBasedCollator implementation ---------------------------------------- ***
76
77 // These methods are here, rather than in rulebasedcollator.cpp,
78 // for modularization:
79 // Most code using Collator does not need to build a Collator from rules.
80 // By moving these constructors and helper methods to a separate file,
81 // most code will not have a static dependency on the builder code.
82
RuleBasedCollator()83 RuleBasedCollator::RuleBasedCollator()
84 : data(NULL),
85 settings(NULL),
86 tailoring(NULL),
87 cacheEntry(NULL),
88 validLocale(""),
89 explicitlySetAttributes(0),
90 actualLocaleIsSameAsValid(FALSE) {
91 }
92
RuleBasedCollator(const UnicodeString & rules,UErrorCode & errorCode)93 RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, UErrorCode &errorCode)
94 : data(NULL),
95 settings(NULL),
96 tailoring(NULL),
97 cacheEntry(NULL),
98 validLocale(""),
99 explicitlySetAttributes(0),
100 actualLocaleIsSameAsValid(FALSE) {
101 internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, NULL, NULL, errorCode);
102 }
103
RuleBasedCollator(const UnicodeString & rules,ECollationStrength strength,UErrorCode & errorCode)104 RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, ECollationStrength strength,
105 UErrorCode &errorCode)
106 : data(NULL),
107 settings(NULL),
108 tailoring(NULL),
109 cacheEntry(NULL),
110 validLocale(""),
111 explicitlySetAttributes(0),
112 actualLocaleIsSameAsValid(FALSE) {
113 internalBuildTailoring(rules, strength, UCOL_DEFAULT, NULL, NULL, errorCode);
114 }
115
RuleBasedCollator(const UnicodeString & rules,UColAttributeValue decompositionMode,UErrorCode & errorCode)116 RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
117 UColAttributeValue decompositionMode,
118 UErrorCode &errorCode)
119 : data(NULL),
120 settings(NULL),
121 tailoring(NULL),
122 cacheEntry(NULL),
123 validLocale(""),
124 explicitlySetAttributes(0),
125 actualLocaleIsSameAsValid(FALSE) {
126 internalBuildTailoring(rules, UCOL_DEFAULT, decompositionMode, NULL, NULL, errorCode);
127 }
128
RuleBasedCollator(const UnicodeString & rules,ECollationStrength strength,UColAttributeValue decompositionMode,UErrorCode & errorCode)129 RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
130 ECollationStrength strength,
131 UColAttributeValue decompositionMode,
132 UErrorCode &errorCode)
133 : data(NULL),
134 settings(NULL),
135 tailoring(NULL),
136 cacheEntry(NULL),
137 validLocale(""),
138 explicitlySetAttributes(0),
139 actualLocaleIsSameAsValid(FALSE) {
140 internalBuildTailoring(rules, strength, decompositionMode, NULL, NULL, errorCode);
141 }
142
RuleBasedCollator(const UnicodeString & rules,UParseError & parseError,UnicodeString & reason,UErrorCode & errorCode)143 RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
144 UParseError &parseError, UnicodeString &reason,
145 UErrorCode &errorCode)
146 : data(NULL),
147 settings(NULL),
148 tailoring(NULL),
149 cacheEntry(NULL),
150 validLocale(""),
151 explicitlySetAttributes(0),
152 actualLocaleIsSameAsValid(FALSE) {
153 internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, &parseError, &reason, errorCode);
154 }
155
156 void
internalBuildTailoring(const UnicodeString & rules,int32_t strength,UColAttributeValue decompositionMode,UParseError * outParseError,UnicodeString * outReason,UErrorCode & errorCode)157 RuleBasedCollator::internalBuildTailoring(const UnicodeString &rules,
158 int32_t strength,
159 UColAttributeValue decompositionMode,
160 UParseError *outParseError, UnicodeString *outReason,
161 UErrorCode &errorCode) {
162 const CollationTailoring *base = CollationRoot::getRoot(errorCode);
163 if(U_FAILURE(errorCode)) { return; }
164 if(outReason != NULL) { outReason->remove(); }
165 CollationBuilder builder(base, errorCode);
166 UVersionInfo noVersion = { 0, 0, 0, 0 };
167 BundleImporter importer;
168 LocalPointer<CollationTailoring> t(builder.parseAndBuild(rules, noVersion,
169 &importer,
170 outParseError, errorCode));
171 if(U_FAILURE(errorCode)) {
172 const char *reason = builder.getErrorReason();
173 if(reason != NULL && outReason != NULL) {
174 *outReason = UnicodeString(reason, -1, US_INV);
175 }
176 return;
177 }
178 t->actualLocale.setToBogus();
179 adoptTailoring(t.orphan(), errorCode);
180 // Set attributes after building the collator,
181 // to keep the default settings consistent with the rule string.
182 if(strength != UCOL_DEFAULT) {
183 setAttribute(UCOL_STRENGTH, (UColAttributeValue)strength, errorCode);
184 }
185 if(decompositionMode != UCOL_DEFAULT) {
186 setAttribute(UCOL_NORMALIZATION_MODE, decompositionMode, errorCode);
187 }
188 }
189
190 // CollationBuilder implementation ----------------------------------------- ***
191
192 // Some compilers don't care if constants are defined in the .cpp file.
193 // MS Visual C++ does not like it, but gcc requires it. clang does not care.
194 #ifndef _MSC_VER
195 const int32_t CollationBuilder::HAS_BEFORE2;
196 const int32_t CollationBuilder::HAS_BEFORE3;
197 #endif
198
CollationBuilder(const CollationTailoring * b,UErrorCode & errorCode)199 CollationBuilder::CollationBuilder(const CollationTailoring *b, UErrorCode &errorCode)
200 : nfd(*Normalizer2::getNFDInstance(errorCode)),
201 fcd(*Normalizer2Factory::getFCDInstance(errorCode)),
202 nfcImpl(*Normalizer2Factory::getNFCImpl(errorCode)),
203 base(b),
204 baseData(b->data),
205 rootElements(b->data->rootElements, b->data->rootElementsLength),
206 variableTop(0),
207 dataBuilder(new CollationDataBuilder(errorCode)), fastLatinEnabled(TRUE),
208 errorReason(NULL),
209 cesLength(0),
210 rootPrimaryIndexes(errorCode), nodes(errorCode) {
211 nfcImpl.ensureCanonIterData(errorCode);
212 if(U_FAILURE(errorCode)) {
213 errorReason = "CollationBuilder fields initialization failed";
214 return;
215 }
216 if(dataBuilder == NULL) {
217 errorCode = U_MEMORY_ALLOCATION_ERROR;
218 return;
219 }
220 dataBuilder->initForTailoring(baseData, errorCode);
221 if(U_FAILURE(errorCode)) {
222 errorReason = "CollationBuilder initialization failed";
223 }
224 }
225
~CollationBuilder()226 CollationBuilder::~CollationBuilder() {
227 delete dataBuilder;
228 }
229
230 CollationTailoring *
parseAndBuild(const UnicodeString & ruleString,const UVersionInfo rulesVersion,CollationRuleParser::Importer * importer,UParseError * outParseError,UErrorCode & errorCode)231 CollationBuilder::parseAndBuild(const UnicodeString &ruleString,
232 const UVersionInfo rulesVersion,
233 CollationRuleParser::Importer *importer,
234 UParseError *outParseError,
235 UErrorCode &errorCode) {
236 if(U_FAILURE(errorCode)) { return NULL; }
237 if(baseData->rootElements == NULL) {
238 errorCode = U_MISSING_RESOURCE_ERROR;
239 errorReason = "missing root elements data, tailoring not supported";
240 return NULL;
241 }
242 LocalPointer<CollationTailoring> tailoring(new CollationTailoring(base->settings));
243 if(tailoring.isNull() || tailoring->isBogus()) {
244 errorCode = U_MEMORY_ALLOCATION_ERROR;
245 return NULL;
246 }
247 CollationRuleParser parser(baseData, errorCode);
248 if(U_FAILURE(errorCode)) { return NULL; }
249 // Note: This always bases &[last variable] and &[first regular]
250 // on the root collator's maxVariable/variableTop.
251 // If we wanted this to change after [maxVariable x], then we would keep
252 // the tailoring.settings pointer here and read its variableTop when we need it.
253 // See http://unicode.org/cldr/trac/ticket/6070
254 variableTop = base->settings->variableTop;
255 parser.setSink(this);
256 parser.setImporter(importer);
257 CollationSettings &ownedSettings = *SharedObject::copyOnWrite(tailoring->settings);
258 parser.parse(ruleString, ownedSettings, outParseError, errorCode);
259 errorReason = parser.getErrorReason();
260 if(U_FAILURE(errorCode)) { return NULL; }
261 if(dataBuilder->hasMappings()) {
262 makeTailoredCEs(errorCode);
263 closeOverComposites(errorCode);
264 finalizeCEs(errorCode);
265 // Copy all of ASCII, and Latin-1 letters, into each tailoring.
266 optimizeSet.add(0, 0x7f);
267 optimizeSet.add(0xc0, 0xff);
268 // Hangul is decomposed on the fly during collation,
269 // and the tailoring data is always built with HANGUL_TAG specials.
270 optimizeSet.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END);
271 dataBuilder->optimize(optimizeSet, errorCode);
272 tailoring->ensureOwnedData(errorCode);
273 if(U_FAILURE(errorCode)) { return NULL; }
274 if(fastLatinEnabled) { dataBuilder->enableFastLatin(); }
275 dataBuilder->build(*tailoring->ownedData, errorCode);
276 tailoring->builder = dataBuilder;
277 dataBuilder = NULL;
278 } else {
279 tailoring->data = baseData;
280 }
281 if(U_FAILURE(errorCode)) { return NULL; }
282 ownedSettings.fastLatinOptions = CollationFastLatin::getOptions(
283 tailoring->data, ownedSettings,
284 ownedSettings.fastLatinPrimaries, UPRV_LENGTHOF(ownedSettings.fastLatinPrimaries));
285 tailoring->rules = ruleString;
286 tailoring->rules.getTerminatedBuffer(); // ensure NUL-termination
287 tailoring->setVersion(base->version, rulesVersion);
288 return tailoring.orphan();
289 }
290
291 void
addReset(int32_t strength,const UnicodeString & str,const char * & parserErrorReason,UErrorCode & errorCode)292 CollationBuilder::addReset(int32_t strength, const UnicodeString &str,
293 const char *&parserErrorReason, UErrorCode &errorCode) {
294 if(U_FAILURE(errorCode)) { return; }
295 U_ASSERT(!str.isEmpty());
296 if(str.charAt(0) == CollationRuleParser::POS_LEAD) {
297 ces[0] = getSpecialResetPosition(str, parserErrorReason, errorCode);
298 cesLength = 1;
299 if(U_FAILURE(errorCode)) { return; }
300 U_ASSERT((ces[0] & Collation::CASE_AND_QUATERNARY_MASK) == 0);
301 } else {
302 // normal reset to a character or string
303 UnicodeString nfdString = nfd.normalize(str, errorCode);
304 if(U_FAILURE(errorCode)) {
305 parserErrorReason = "normalizing the reset position";
306 return;
307 }
308 cesLength = dataBuilder->getCEs(nfdString, ces, 0);
309 if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
310 errorCode = U_ILLEGAL_ARGUMENT_ERROR;
311 parserErrorReason = "reset position maps to too many collation elements (more than 31)";
312 return;
313 }
314 }
315 if(strength == UCOL_IDENTICAL) { return; } // simple reset-at-position
316
317 // &[before strength]position
318 U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_TERTIARY);
319 int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode);
320 if(U_FAILURE(errorCode)) { return; }
321
322 int64_t node = nodes.elementAti(index);
323 // If the index is for a "weaker" node,
324 // then skip backwards over this and further "weaker" nodes.
325 while(strengthFromNode(node) > strength) {
326 index = previousIndexFromNode(node);
327 node = nodes.elementAti(index);
328 }
329
330 // Find or insert a node whose index we will put into a temporary CE.
331 if(strengthFromNode(node) == strength && isTailoredNode(node)) {
332 // Reset to just before this same-strength tailored node.
333 index = previousIndexFromNode(node);
334 } else if(strength == UCOL_PRIMARY) {
335 // root primary node (has no previous index)
336 uint32_t p = weight32FromNode(node);
337 if(p == 0) {
338 errorCode = U_UNSUPPORTED_ERROR;
339 parserErrorReason = "reset primary-before ignorable not possible";
340 return;
341 }
342 if(p <= rootElements.getFirstPrimary()) {
343 // There is no primary gap between ignorables and the space-first-primary.
344 errorCode = U_UNSUPPORTED_ERROR;
345 parserErrorReason = "reset primary-before first non-ignorable not supported";
346 return;
347 }
348 if(p == Collation::FIRST_TRAILING_PRIMARY) {
349 // We do not support tailoring to an unassigned-implicit CE.
350 errorCode = U_UNSUPPORTED_ERROR;
351 parserErrorReason = "reset primary-before [first trailing] not supported";
352 return;
353 }
354 p = rootElements.getPrimaryBefore(p, baseData->isCompressiblePrimary(p));
355 index = findOrInsertNodeForPrimary(p, errorCode);
356 // Go to the last node in this list:
357 // Tailor after the last node between adjacent root nodes.
358 for(;;) {
359 node = nodes.elementAti(index);
360 int32_t nextIndex = nextIndexFromNode(node);
361 if(nextIndex == 0) { break; }
362 index = nextIndex;
363 }
364 } else {
365 // &[before 2] or &[before 3]
366 index = findCommonNode(index, UCOL_SECONDARY);
367 if(strength >= UCOL_TERTIARY) {
368 index = findCommonNode(index, UCOL_TERTIARY);
369 }
370 // findCommonNode() stayed on the stronger node or moved to
371 // an explicit common-weight node of the reset-before strength.
372 node = nodes.elementAti(index);
373 if(strengthFromNode(node) == strength) {
374 // Found a same-strength node with an explicit weight.
375 uint32_t weight16 = weight16FromNode(node);
376 if(weight16 == 0) {
377 errorCode = U_UNSUPPORTED_ERROR;
378 if(strength == UCOL_SECONDARY) {
379 parserErrorReason = "reset secondary-before secondary ignorable not possible";
380 } else {
381 parserErrorReason = "reset tertiary-before completely ignorable not possible";
382 }
383 return;
384 }
385 U_ASSERT(weight16 > Collation::BEFORE_WEIGHT16);
386 // Reset to just before this node.
387 // Insert the preceding same-level explicit weight if it is not there already.
388 // Which explicit weight immediately precedes this one?
389 weight16 = getWeight16Before(index, node, strength);
390 // Does this preceding weight have a node?
391 uint32_t previousWeight16;
392 int32_t previousIndex = previousIndexFromNode(node);
393 for(int32_t i = previousIndex;; i = previousIndexFromNode(node)) {
394 node = nodes.elementAti(i);
395 int32_t previousStrength = strengthFromNode(node);
396 if(previousStrength < strength) {
397 U_ASSERT(weight16 >= Collation::COMMON_WEIGHT16 || i == previousIndex);
398 // Either the reset element has an above-common weight and
399 // the parent node provides the implied common weight,
400 // or the reset element has a weight<=common in the node
401 // right after the parent, and we need to insert the preceding weight.
402 previousWeight16 = Collation::COMMON_WEIGHT16;
403 break;
404 } else if(previousStrength == strength && !isTailoredNode(node)) {
405 previousWeight16 = weight16FromNode(node);
406 break;
407 }
408 // Skip weaker nodes and same-level tailored nodes.
409 }
410 if(previousWeight16 == weight16) {
411 // The preceding weight has a node,
412 // maybe with following weaker or tailored nodes.
413 // Reset to the last of them.
414 index = previousIndex;
415 } else {
416 // Insert a node with the preceding weight, reset to that.
417 node = nodeFromWeight16(weight16) | nodeFromStrength(strength);
418 index = insertNodeBetween(previousIndex, index, node, errorCode);
419 }
420 } else {
421 // Found a stronger node with implied strength-common weight.
422 uint32_t weight16 = getWeight16Before(index, node, strength);
423 index = findOrInsertWeakNode(index, weight16, strength, errorCode);
424 }
425 // Strength of the temporary CE = strength of its reset position.
426 // Code above raises an error if the before-strength is stronger.
427 strength = ceStrength(ces[cesLength - 1]);
428 }
429 if(U_FAILURE(errorCode)) {
430 parserErrorReason = "inserting reset position for &[before n]";
431 return;
432 }
433 ces[cesLength - 1] = tempCEFromIndexAndStrength(index, strength);
434 }
435
436 uint32_t
getWeight16Before(int32_t index,int64_t node,int32_t level)437 CollationBuilder::getWeight16Before(int32_t index, int64_t node, int32_t level) {
438 U_ASSERT(strengthFromNode(node) < level || !isTailoredNode(node));
439 // Collect the root CE weights if this node is for a root CE.
440 // If it is not, then return the low non-primary boundary for a tailored CE.
441 uint32_t t;
442 if(strengthFromNode(node) == UCOL_TERTIARY) {
443 t = weight16FromNode(node);
444 } else {
445 t = Collation::COMMON_WEIGHT16; // Stronger node with implied common weight.
446 }
447 while(strengthFromNode(node) > UCOL_SECONDARY) {
448 index = previousIndexFromNode(node);
449 node = nodes.elementAti(index);
450 }
451 if(isTailoredNode(node)) {
452 return Collation::BEFORE_WEIGHT16;
453 }
454 uint32_t s;
455 if(strengthFromNode(node) == UCOL_SECONDARY) {
456 s = weight16FromNode(node);
457 } else {
458 s = Collation::COMMON_WEIGHT16; // Stronger node with implied common weight.
459 }
460 while(strengthFromNode(node) > UCOL_PRIMARY) {
461 index = previousIndexFromNode(node);
462 node = nodes.elementAti(index);
463 }
464 if(isTailoredNode(node)) {
465 return Collation::BEFORE_WEIGHT16;
466 }
467 // [p, s, t] is a root CE. Return the preceding weight for the requested level.
468 uint32_t p = weight32FromNode(node);
469 uint32_t weight16;
470 if(level == UCOL_SECONDARY) {
471 weight16 = rootElements.getSecondaryBefore(p, s);
472 } else {
473 weight16 = rootElements.getTertiaryBefore(p, s, t);
474 U_ASSERT((weight16 & ~Collation::ONLY_TERTIARY_MASK) == 0);
475 }
476 return weight16;
477 }
478
479 int64_t
getSpecialResetPosition(const UnicodeString & str,const char * & parserErrorReason,UErrorCode & errorCode)480 CollationBuilder::getSpecialResetPosition(const UnicodeString &str,
481 const char *&parserErrorReason, UErrorCode &errorCode) {
482 U_ASSERT(str.length() == 2);
483 int64_t ce;
484 int32_t strength = UCOL_PRIMARY;
485 UBool isBoundary = FALSE;
486 UChar32 pos = str.charAt(1) - CollationRuleParser::POS_BASE;
487 U_ASSERT(0 <= pos && pos <= CollationRuleParser::LAST_TRAILING);
488 switch(pos) {
489 case CollationRuleParser::FIRST_TERTIARY_IGNORABLE:
490 // Quaternary CEs are not supported.
491 // Non-zero quaternary weights are possible only on tertiary or stronger CEs.
492 return 0;
493 case CollationRuleParser::LAST_TERTIARY_IGNORABLE:
494 return 0;
495 case CollationRuleParser::FIRST_SECONDARY_IGNORABLE: {
496 // Look for a tailored tertiary node after [0, 0, 0].
497 int32_t index = findOrInsertNodeForRootCE(0, UCOL_TERTIARY, errorCode);
498 if(U_FAILURE(errorCode)) { return 0; }
499 int64_t node = nodes.elementAti(index);
500 if((index = nextIndexFromNode(node)) != 0) {
501 node = nodes.elementAti(index);
502 U_ASSERT(strengthFromNode(node) <= UCOL_TERTIARY);
503 if(isTailoredNode(node) && strengthFromNode(node) == UCOL_TERTIARY) {
504 return tempCEFromIndexAndStrength(index, UCOL_TERTIARY);
505 }
506 }
507 return rootElements.getFirstTertiaryCE();
508 // No need to look for nodeHasAnyBefore() on a tertiary node.
509 }
510 case CollationRuleParser::LAST_SECONDARY_IGNORABLE:
511 ce = rootElements.getLastTertiaryCE();
512 strength = UCOL_TERTIARY;
513 break;
514 case CollationRuleParser::FIRST_PRIMARY_IGNORABLE: {
515 // Look for a tailored secondary node after [0, 0, *].
516 int32_t index = findOrInsertNodeForRootCE(0, UCOL_SECONDARY, errorCode);
517 if(U_FAILURE(errorCode)) { return 0; }
518 int64_t node = nodes.elementAti(index);
519 while((index = nextIndexFromNode(node)) != 0) {
520 node = nodes.elementAti(index);
521 strength = strengthFromNode(node);
522 if(strength < UCOL_SECONDARY) { break; }
523 if(strength == UCOL_SECONDARY) {
524 if(isTailoredNode(node)) {
525 if(nodeHasBefore3(node)) {
526 index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
527 U_ASSERT(isTailoredNode(nodes.elementAti(index)));
528 }
529 return tempCEFromIndexAndStrength(index, UCOL_SECONDARY);
530 } else {
531 break;
532 }
533 }
534 }
535 ce = rootElements.getFirstSecondaryCE();
536 strength = UCOL_SECONDARY;
537 break;
538 }
539 case CollationRuleParser::LAST_PRIMARY_IGNORABLE:
540 ce = rootElements.getLastSecondaryCE();
541 strength = UCOL_SECONDARY;
542 break;
543 case CollationRuleParser::FIRST_VARIABLE:
544 ce = rootElements.getFirstPrimaryCE();
545 isBoundary = TRUE; // FractionalUCA.txt: FDD1 00A0, SPACE first primary
546 break;
547 case CollationRuleParser::LAST_VARIABLE:
548 ce = rootElements.lastCEWithPrimaryBefore(variableTop + 1);
549 break;
550 case CollationRuleParser::FIRST_REGULAR:
551 ce = rootElements.firstCEWithPrimaryAtLeast(variableTop + 1);
552 isBoundary = TRUE; // FractionalUCA.txt: FDD1 263A, SYMBOL first primary
553 break;
554 case CollationRuleParser::LAST_REGULAR:
555 // Use the Hani-first-primary rather than the actual last "regular" CE before it,
556 // for backward compatibility with behavior before the introduction of
557 // script-first-primary CEs in the root collator.
558 ce = rootElements.firstCEWithPrimaryAtLeast(
559 baseData->getFirstPrimaryForGroup(USCRIPT_HAN));
560 break;
561 case CollationRuleParser::FIRST_IMPLICIT:
562 ce = baseData->getSingleCE(0x4e00, errorCode);
563 break;
564 case CollationRuleParser::LAST_IMPLICIT:
565 // We do not support tailoring to an unassigned-implicit CE.
566 errorCode = U_UNSUPPORTED_ERROR;
567 parserErrorReason = "reset to [last implicit] not supported";
568 return 0;
569 case CollationRuleParser::FIRST_TRAILING:
570 ce = Collation::makeCE(Collation::FIRST_TRAILING_PRIMARY);
571 isBoundary = TRUE; // trailing first primary (there is no mapping for it)
572 break;
573 case CollationRuleParser::LAST_TRAILING:
574 errorCode = U_ILLEGAL_ARGUMENT_ERROR;
575 parserErrorReason = "LDML forbids tailoring to U+FFFF";
576 return 0;
577 default:
578 U_ASSERT(FALSE);
579 return 0;
580 }
581
582 int32_t index = findOrInsertNodeForRootCE(ce, strength, errorCode);
583 if(U_FAILURE(errorCode)) { return 0; }
584 int64_t node = nodes.elementAti(index);
585 if((pos & 1) == 0) {
586 // even pos = [first xyz]
587 if(!nodeHasAnyBefore(node) && isBoundary) {
588 // A <group> first primary boundary is artificially added to FractionalUCA.txt.
589 // It is reachable via its special contraction, but is not normally used.
590 // Find the first character tailored after the boundary CE,
591 // or the first real root CE after it.
592 if((index = nextIndexFromNode(node)) != 0) {
593 // If there is a following node, then it must be tailored
594 // because there are no root CEs with a boundary primary
595 // and non-common secondary/tertiary weights.
596 node = nodes.elementAti(index);
597 U_ASSERT(isTailoredNode(node));
598 ce = tempCEFromIndexAndStrength(index, strength);
599 } else {
600 U_ASSERT(strength == UCOL_PRIMARY);
601 uint32_t p = (uint32_t)(ce >> 32);
602 int32_t pIndex = rootElements.findPrimary(p);
603 UBool isCompressible = baseData->isCompressiblePrimary(p);
604 p = rootElements.getPrimaryAfter(p, pIndex, isCompressible);
605 ce = Collation::makeCE(p);
606 index = findOrInsertNodeForRootCE(ce, UCOL_PRIMARY, errorCode);
607 if(U_FAILURE(errorCode)) { return 0; }
608 node = nodes.elementAti(index);
609 }
610 }
611 if(nodeHasAnyBefore(node)) {
612 // Get the first node that was tailored before this one at a weaker strength.
613 if(nodeHasBefore2(node)) {
614 index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
615 node = nodes.elementAti(index);
616 }
617 if(nodeHasBefore3(node)) {
618 index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
619 }
620 U_ASSERT(isTailoredNode(nodes.elementAti(index)));
621 ce = tempCEFromIndexAndStrength(index, strength);
622 }
623 } else {
624 // odd pos = [last xyz]
625 // Find the last node that was tailored after the [last xyz]
626 // at a strength no greater than the position's strength.
627 for(;;) {
628 int32_t nextIndex = nextIndexFromNode(node);
629 if(nextIndex == 0) { break; }
630 int64_t nextNode = nodes.elementAti(nextIndex);
631 if(strengthFromNode(nextNode) < strength) { break; }
632 index = nextIndex;
633 node = nextNode;
634 }
635 // Do not make a temporary CE for a root node.
636 // This last node might be the node for the root CE itself,
637 // or a node with a common secondary or tertiary weight.
638 if(isTailoredNode(node)) {
639 ce = tempCEFromIndexAndStrength(index, strength);
640 }
641 }
642 return ce;
643 }
644
645 void
addRelation(int32_t strength,const UnicodeString & prefix,const UnicodeString & str,const UnicodeString & extension,const char * & parserErrorReason,UErrorCode & errorCode)646 CollationBuilder::addRelation(int32_t strength, const UnicodeString &prefix,
647 const UnicodeString &str, const UnicodeString &extension,
648 const char *&parserErrorReason, UErrorCode &errorCode) {
649 if(U_FAILURE(errorCode)) { return; }
650 UnicodeString nfdPrefix;
651 if(!prefix.isEmpty()) {
652 nfd.normalize(prefix, nfdPrefix, errorCode);
653 if(U_FAILURE(errorCode)) {
654 parserErrorReason = "normalizing the relation prefix";
655 return;
656 }
657 }
658 UnicodeString nfdString = nfd.normalize(str, errorCode);
659 if(U_FAILURE(errorCode)) {
660 parserErrorReason = "normalizing the relation string";
661 return;
662 }
663
664 // The runtime code decomposes Hangul syllables on the fly,
665 // with recursive processing but without making the Jamo pieces visible for matching.
666 // It does not work with certain types of contextual mappings.
667 int32_t nfdLength = nfdString.length();
668 if(nfdLength >= 2) {
669 UChar c = nfdString.charAt(0);
670 if(Hangul::isJamoL(c) || Hangul::isJamoV(c)) {
671 // While handling a Hangul syllable, contractions starting with Jamo L or V
672 // would not see the following Jamo of that syllable.
673 errorCode = U_UNSUPPORTED_ERROR;
674 parserErrorReason = "contractions starting with conjoining Jamo L or V not supported";
675 return;
676 }
677 c = nfdString.charAt(nfdLength - 1);
678 if(Hangul::isJamoL(c) ||
679 (Hangul::isJamoV(c) && Hangul::isJamoL(nfdString.charAt(nfdLength - 2)))) {
680 // A contraction ending with Jamo L or L+V would require
681 // generating Hangul syllables in addTailComposites() (588 for a Jamo L),
682 // or decomposing a following Hangul syllable on the fly, during contraction matching.
683 errorCode = U_UNSUPPORTED_ERROR;
684 parserErrorReason = "contractions ending with conjoining Jamo L or L+V not supported";
685 return;
686 }
687 // A Hangul syllable completely inside a contraction is ok.
688 }
689 // Note: If there is a prefix, then the parser checked that
690 // both the prefix and the string beging with NFC boundaries (not Jamo V or T).
691 // Therefore: prefix.isEmpty() || !isJamoVOrT(nfdString.charAt(0))
692 // (While handling a Hangul syllable, prefixes on Jamo V or T
693 // would not see the previous Jamo of that syllable.)
694
695 if(strength != UCOL_IDENTICAL) {
696 // Find the node index after which we insert the new tailored node.
697 int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode);
698 U_ASSERT(cesLength > 0);
699 int64_t ce = ces[cesLength - 1];
700 if(strength == UCOL_PRIMARY && !isTempCE(ce) && (uint32_t)(ce >> 32) == 0) {
701 // There is no primary gap between ignorables and the space-first-primary.
702 errorCode = U_UNSUPPORTED_ERROR;
703 parserErrorReason = "tailoring primary after ignorables not supported";
704 return;
705 }
706 if(strength == UCOL_QUATERNARY && ce == 0) {
707 // The CE data structure does not support non-zero quaternary weights
708 // on tertiary ignorables.
709 errorCode = U_UNSUPPORTED_ERROR;
710 parserErrorReason = "tailoring quaternary after tertiary ignorables not supported";
711 return;
712 }
713 // Insert the new tailored node.
714 index = insertTailoredNodeAfter(index, strength, errorCode);
715 if(U_FAILURE(errorCode)) {
716 parserErrorReason = "modifying collation elements";
717 return;
718 }
719 // Strength of the temporary CE:
720 // The new relation may yield a stronger CE but not a weaker one.
721 int32_t tempStrength = ceStrength(ce);
722 if(strength < tempStrength) { tempStrength = strength; }
723 ces[cesLength - 1] = tempCEFromIndexAndStrength(index, tempStrength);
724 }
725
726 setCaseBits(nfdString, parserErrorReason, errorCode);
727 if(U_FAILURE(errorCode)) { return; }
728
729 int32_t cesLengthBeforeExtension = cesLength;
730 if(!extension.isEmpty()) {
731 UnicodeString nfdExtension = nfd.normalize(extension, errorCode);
732 if(U_FAILURE(errorCode)) {
733 parserErrorReason = "normalizing the relation extension";
734 return;
735 }
736 cesLength = dataBuilder->getCEs(nfdExtension, ces, cesLength);
737 if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
738 errorCode = U_ILLEGAL_ARGUMENT_ERROR;
739 parserErrorReason =
740 "extension string adds too many collation elements (more than 31 total)";
741 return;
742 }
743 }
744 uint32_t ce32 = Collation::UNASSIGNED_CE32;
745 if((prefix != nfdPrefix || str != nfdString) &&
746 !ignorePrefix(prefix, errorCode) && !ignoreString(str, errorCode)) {
747 // Map from the original input to the CEs.
748 // We do this in case the canonical closure is incomplete,
749 // so that it is possible to explicitly provide the missing mappings.
750 ce32 = addIfDifferent(prefix, str, ces, cesLength, ce32, errorCode);
751 }
752 addWithClosure(nfdPrefix, nfdString, ces, cesLength, ce32, errorCode);
753 if(U_FAILURE(errorCode)) {
754 parserErrorReason = "writing collation elements";
755 return;
756 }
757 cesLength = cesLengthBeforeExtension;
758 }
759
760 int32_t
findOrInsertNodeForCEs(int32_t strength,const char * & parserErrorReason,UErrorCode & errorCode)761 CollationBuilder::findOrInsertNodeForCEs(int32_t strength, const char *&parserErrorReason,
762 UErrorCode &errorCode) {
763 if(U_FAILURE(errorCode)) { return 0; }
764 U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_QUATERNARY);
765
766 // Find the last CE that is at least as "strong" as the requested difference.
767 // Note: Stronger is smaller (UCOL_PRIMARY=0).
768 int64_t ce;
769 for(;; --cesLength) {
770 if(cesLength == 0) {
771 ce = ces[0] = 0;
772 cesLength = 1;
773 break;
774 } else {
775 ce = ces[cesLength - 1];
776 }
777 if(ceStrength(ce) <= strength) { break; }
778 }
779
780 if(isTempCE(ce)) {
781 // No need to findCommonNode() here for lower levels
782 // because insertTailoredNodeAfter() will do that anyway.
783 return indexFromTempCE(ce);
784 }
785
786 // root CE
787 if((uint8_t)(ce >> 56) == Collation::UNASSIGNED_IMPLICIT_BYTE) {
788 errorCode = U_UNSUPPORTED_ERROR;
789 parserErrorReason = "tailoring relative to an unassigned code point not supported";
790 return 0;
791 }
792 return findOrInsertNodeForRootCE(ce, strength, errorCode);
793 }
794
795 int32_t
findOrInsertNodeForRootCE(int64_t ce,int32_t strength,UErrorCode & errorCode)796 CollationBuilder::findOrInsertNodeForRootCE(int64_t ce, int32_t strength, UErrorCode &errorCode) {
797 if(U_FAILURE(errorCode)) { return 0; }
798 U_ASSERT((uint8_t)(ce >> 56) != Collation::UNASSIGNED_IMPLICIT_BYTE);
799
800 // Find or insert the node for each of the root CE's weights,
801 // down to the requested level/strength.
802 // Root CEs must have common=zero quaternary weights (for which we never insert any nodes).
803 U_ASSERT((ce & 0xc0) == 0);
804 int32_t index = findOrInsertNodeForPrimary((uint32_t)(ce >> 32), errorCode);
805 if(strength >= UCOL_SECONDARY) {
806 uint32_t lower32 = (uint32_t)ce;
807 index = findOrInsertWeakNode(index, lower32 >> 16, UCOL_SECONDARY, errorCode);
808 if(strength >= UCOL_TERTIARY) {
809 index = findOrInsertWeakNode(index, lower32 & Collation::ONLY_TERTIARY_MASK,
810 UCOL_TERTIARY, errorCode);
811 }
812 }
813 return index;
814 }
815
816 namespace {
817
818 /**
819 * Like Java Collections.binarySearch(List, key, Comparator).
820 *
821 * @return the index>=0 where the item was found,
822 * or the index<0 for inserting the string at ~index in sorted order
823 * (index into rootPrimaryIndexes)
824 */
825 int32_t
binarySearchForRootPrimaryNode(const int32_t * rootPrimaryIndexes,int32_t length,const int64_t * nodes,uint32_t p)826 binarySearchForRootPrimaryNode(const int32_t *rootPrimaryIndexes, int32_t length,
827 const int64_t *nodes, uint32_t p) {
828 if(length == 0) { return ~0; }
829 int32_t start = 0;
830 int32_t limit = length;
831 for (;;) {
832 int32_t i = (start + limit) / 2;
833 int64_t node = nodes[rootPrimaryIndexes[i]];
834 uint32_t nodePrimary = (uint32_t)(node >> 32); // weight32FromNode(node)
835 if (p == nodePrimary) {
836 return i;
837 } else if (p < nodePrimary) {
838 if (i == start) {
839 return ~start; // insert s before i
840 }
841 limit = i;
842 } else {
843 if (i == start) {
844 return ~(start + 1); // insert s after i
845 }
846 start = i;
847 }
848 }
849 }
850
851 } // namespace
852
853 int32_t
findOrInsertNodeForPrimary(uint32_t p,UErrorCode & errorCode)854 CollationBuilder::findOrInsertNodeForPrimary(uint32_t p, UErrorCode &errorCode) {
855 if(U_FAILURE(errorCode)) { return 0; }
856
857 int32_t rootIndex = binarySearchForRootPrimaryNode(
858 rootPrimaryIndexes.getBuffer(), rootPrimaryIndexes.size(), nodes.getBuffer(), p);
859 if(rootIndex >= 0) {
860 return rootPrimaryIndexes.elementAti(rootIndex);
861 } else {
862 // Start a new list of nodes with this primary.
863 int32_t index = nodes.size();
864 nodes.addElement(nodeFromWeight32(p), errorCode);
865 rootPrimaryIndexes.insertElementAt(index, ~rootIndex, errorCode);
866 return index;
867 }
868 }
869
870 int32_t
findOrInsertWeakNode(int32_t index,uint32_t weight16,int32_t level,UErrorCode & errorCode)871 CollationBuilder::findOrInsertWeakNode(int32_t index, uint32_t weight16, int32_t level, UErrorCode &errorCode) {
872 if(U_FAILURE(errorCode)) { return 0; }
873 U_ASSERT(0 <= index && index < nodes.size());
874 U_ASSERT(UCOL_SECONDARY <= level && level <= UCOL_TERTIARY);
875
876 if(weight16 == Collation::COMMON_WEIGHT16) {
877 return findCommonNode(index, level);
878 }
879
880 // If this will be the first below-common weight for the parent node,
881 // then we will also need to insert a common weight after it.
882 int64_t node = nodes.elementAti(index);
883 U_ASSERT(strengthFromNode(node) < level); // parent node is stronger
884 if(weight16 != 0 && weight16 < Collation::COMMON_WEIGHT16) {
885 int32_t hasThisLevelBefore = level == UCOL_SECONDARY ? HAS_BEFORE2 : HAS_BEFORE3;
886 if((node & hasThisLevelBefore) == 0) {
887 // The parent node has an implied level-common weight.
888 int64_t commonNode =
889 nodeFromWeight16(Collation::COMMON_WEIGHT16) | nodeFromStrength(level);
890 if(level == UCOL_SECONDARY) {
891 // Move the HAS_BEFORE3 flag from the parent node
892 // to the new secondary common node.
893 commonNode |= node & HAS_BEFORE3;
894 node &= ~(int64_t)HAS_BEFORE3;
895 }
896 nodes.setElementAt(node | hasThisLevelBefore, index);
897 // Insert below-common-weight node.
898 int32_t nextIndex = nextIndexFromNode(node);
899 node = nodeFromWeight16(weight16) | nodeFromStrength(level);
900 index = insertNodeBetween(index, nextIndex, node, errorCode);
901 // Insert common-weight node.
902 insertNodeBetween(index, nextIndex, commonNode, errorCode);
903 // Return index of below-common-weight node.
904 return index;
905 }
906 }
907
908 // Find the root CE's weight for this level.
909 // Postpone insertion if not found:
910 // Insert the new root node before the next stronger node,
911 // or before the next root node with the same strength and a larger weight.
912 int32_t nextIndex;
913 while((nextIndex = nextIndexFromNode(node)) != 0) {
914 node = nodes.elementAti(nextIndex);
915 int32_t nextStrength = strengthFromNode(node);
916 if(nextStrength <= level) {
917 // Insert before a stronger node.
918 if(nextStrength < level) { break; }
919 // nextStrength == level
920 if(!isTailoredNode(node)) {
921 uint32_t nextWeight16 = weight16FromNode(node);
922 if(nextWeight16 == weight16) {
923 // Found the node for the root CE up to this level.
924 return nextIndex;
925 }
926 // Insert before a node with a larger same-strength weight.
927 if(nextWeight16 > weight16) { break; }
928 }
929 }
930 // Skip the next node.
931 index = nextIndex;
932 }
933 node = nodeFromWeight16(weight16) | nodeFromStrength(level);
934 return insertNodeBetween(index, nextIndex, node, errorCode);
935 }
936
937 int32_t
insertTailoredNodeAfter(int32_t index,int32_t strength,UErrorCode & errorCode)938 CollationBuilder::insertTailoredNodeAfter(int32_t index, int32_t strength, UErrorCode &errorCode) {
939 if(U_FAILURE(errorCode)) { return 0; }
940 U_ASSERT(0 <= index && index < nodes.size());
941 if(strength >= UCOL_SECONDARY) {
942 index = findCommonNode(index, UCOL_SECONDARY);
943 if(strength >= UCOL_TERTIARY) {
944 index = findCommonNode(index, UCOL_TERTIARY);
945 }
946 }
947 // Postpone insertion:
948 // Insert the new node before the next one with a strength at least as strong.
949 int64_t node = nodes.elementAti(index);
950 int32_t nextIndex;
951 while((nextIndex = nextIndexFromNode(node)) != 0) {
952 node = nodes.elementAti(nextIndex);
953 if(strengthFromNode(node) <= strength) { break; }
954 // Skip the next node which has a weaker (larger) strength than the new one.
955 index = nextIndex;
956 }
957 node = IS_TAILORED | nodeFromStrength(strength);
958 return insertNodeBetween(index, nextIndex, node, errorCode);
959 }
960
961 int32_t
insertNodeBetween(int32_t index,int32_t nextIndex,int64_t node,UErrorCode & errorCode)962 CollationBuilder::insertNodeBetween(int32_t index, int32_t nextIndex, int64_t node,
963 UErrorCode &errorCode) {
964 if(U_FAILURE(errorCode)) { return 0; }
965 U_ASSERT(previousIndexFromNode(node) == 0);
966 U_ASSERT(nextIndexFromNode(node) == 0);
967 U_ASSERT(nextIndexFromNode(nodes.elementAti(index)) == nextIndex);
968 // Append the new node and link it to the existing nodes.
969 int32_t newIndex = nodes.size();
970 node |= nodeFromPreviousIndex(index) | nodeFromNextIndex(nextIndex);
971 nodes.addElement(node, errorCode);
972 if(U_FAILURE(errorCode)) { return 0; }
973 // nodes[index].nextIndex = newIndex
974 node = nodes.elementAti(index);
975 nodes.setElementAt(changeNodeNextIndex(node, newIndex), index);
976 // nodes[nextIndex].previousIndex = newIndex
977 if(nextIndex != 0) {
978 node = nodes.elementAti(nextIndex);
979 nodes.setElementAt(changeNodePreviousIndex(node, newIndex), nextIndex);
980 }
981 return newIndex;
982 }
983
984 int32_t
findCommonNode(int32_t index,int32_t strength) const985 CollationBuilder::findCommonNode(int32_t index, int32_t strength) const {
986 U_ASSERT(UCOL_SECONDARY <= strength && strength <= UCOL_TERTIARY);
987 int64_t node = nodes.elementAti(index);
988 if(strengthFromNode(node) >= strength) {
989 // The current node is no stronger.
990 return index;
991 }
992 if(strength == UCOL_SECONDARY ? !nodeHasBefore2(node) : !nodeHasBefore3(node)) {
993 // The current node implies the strength-common weight.
994 return index;
995 }
996 index = nextIndexFromNode(node);
997 node = nodes.elementAti(index);
998 U_ASSERT(!isTailoredNode(node) && strengthFromNode(node) == strength &&
999 weight16FromNode(node) < Collation::COMMON_WEIGHT16);
1000 // Skip to the explicit common node.
1001 do {
1002 index = nextIndexFromNode(node);
1003 node = nodes.elementAti(index);
1004 U_ASSERT(strengthFromNode(node) >= strength);
1005 } while(isTailoredNode(node) || strengthFromNode(node) > strength ||
1006 weight16FromNode(node) < Collation::COMMON_WEIGHT16);
1007 U_ASSERT(weight16FromNode(node) == Collation::COMMON_WEIGHT16);
1008 return index;
1009 }
1010
1011 void
setCaseBits(const UnicodeString & nfdString,const char * & parserErrorReason,UErrorCode & errorCode)1012 CollationBuilder::setCaseBits(const UnicodeString &nfdString,
1013 const char *&parserErrorReason, UErrorCode &errorCode) {
1014 if(U_FAILURE(errorCode)) { return; }
1015 int32_t numTailoredPrimaries = 0;
1016 for(int32_t i = 0; i < cesLength; ++i) {
1017 if(ceStrength(ces[i]) == UCOL_PRIMARY) { ++numTailoredPrimaries; }
1018 }
1019 // We should not be able to get too many case bits because
1020 // cesLength<=31==MAX_EXPANSION_LENGTH.
1021 // 31 pairs of case bits fit into an int64_t without setting its sign bit.
1022 U_ASSERT(numTailoredPrimaries <= 31);
1023
1024 int64_t cases = 0;
1025 if(numTailoredPrimaries > 0) {
1026 const UChar *s = nfdString.getBuffer();
1027 UTF16CollationIterator baseCEs(baseData, FALSE, s, s, s + nfdString.length());
1028 int32_t baseCEsLength = baseCEs.fetchCEs(errorCode) - 1;
1029 if(U_FAILURE(errorCode)) {
1030 parserErrorReason = "fetching root CEs for tailored string";
1031 return;
1032 }
1033 U_ASSERT(baseCEsLength >= 0 && baseCEs.getCE(baseCEsLength) == Collation::NO_CE);
1034
1035 uint32_t lastCase = 0;
1036 int32_t numBasePrimaries = 0;
1037 for(int32_t i = 0; i < baseCEsLength; ++i) {
1038 int64_t ce = baseCEs.getCE(i);
1039 if((ce >> 32) != 0) {
1040 ++numBasePrimaries;
1041 uint32_t c = ((uint32_t)ce >> 14) & 3;
1042 U_ASSERT(c == 0 || c == 2); // lowercase or uppercase, no mixed case in any base CE
1043 if(numBasePrimaries < numTailoredPrimaries) {
1044 cases |= (int64_t)c << ((numBasePrimaries - 1) * 2);
1045 } else if(numBasePrimaries == numTailoredPrimaries) {
1046 lastCase = c;
1047 } else if(c != lastCase) {
1048 // There are more base primary CEs than tailored primaries.
1049 // Set mixed case if the case bits of the remainder differ.
1050 lastCase = 1;
1051 // Nothing more can change.
1052 break;
1053 }
1054 }
1055 }
1056 if(numBasePrimaries >= numTailoredPrimaries) {
1057 cases |= (int64_t)lastCase << ((numTailoredPrimaries - 1) * 2);
1058 }
1059 }
1060
1061 for(int32_t i = 0; i < cesLength; ++i) {
1062 int64_t ce = ces[i] & INT64_C(0xffffffffffff3fff); // clear old case bits
1063 int32_t strength = ceStrength(ce);
1064 if(strength == UCOL_PRIMARY) {
1065 ce |= (cases & 3) << 14;
1066 cases >>= 2;
1067 } else if(strength == UCOL_TERTIARY) {
1068 // Tertiary CEs must have uppercase bits.
1069 // See the LDML spec, and comments in class CollationCompare.
1070 ce |= 0x8000;
1071 }
1072 // Tertiary ignorable CEs must have 0 case bits.
1073 // We set 0 case bits for secondary CEs too
1074 // since currently only U+0345 is cased and maps to a secondary CE,
1075 // and it is lowercase. Other secondaries are uncased.
1076 // See [[:Cased:]&[:uca1=:]] where uca1 queries the root primary weight.
1077 ces[i] = ce;
1078 }
1079 }
1080
1081 void
suppressContractions(const UnicodeSet & set,const char * & parserErrorReason,UErrorCode & errorCode)1082 CollationBuilder::suppressContractions(const UnicodeSet &set, const char *&parserErrorReason,
1083 UErrorCode &errorCode) {
1084 if(U_FAILURE(errorCode)) { return; }
1085 dataBuilder->suppressContractions(set, errorCode);
1086 if(U_FAILURE(errorCode)) {
1087 parserErrorReason = "application of [suppressContractions [set]] failed";
1088 }
1089 }
1090
1091 void
optimize(const UnicodeSet & set,const char * &,UErrorCode & errorCode)1092 CollationBuilder::optimize(const UnicodeSet &set, const char *& /* parserErrorReason */,
1093 UErrorCode &errorCode) {
1094 if(U_FAILURE(errorCode)) { return; }
1095 optimizeSet.addAll(set);
1096 }
1097
1098 uint32_t
addWithClosure(const UnicodeString & nfdPrefix,const UnicodeString & nfdString,const int64_t newCEs[],int32_t newCEsLength,uint32_t ce32,UErrorCode & errorCode)1099 CollationBuilder::addWithClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1100 const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1101 UErrorCode &errorCode) {
1102 // Map from the NFD input to the CEs.
1103 ce32 = addIfDifferent(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode);
1104 ce32 = addOnlyClosure(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode);
1105 addTailComposites(nfdPrefix, nfdString, errorCode);
1106 return ce32;
1107 }
1108
1109 uint32_t
addOnlyClosure(const UnicodeString & nfdPrefix,const UnicodeString & nfdString,const int64_t newCEs[],int32_t newCEsLength,uint32_t ce32,UErrorCode & errorCode)1110 CollationBuilder::addOnlyClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1111 const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1112 UErrorCode &errorCode) {
1113 if(U_FAILURE(errorCode)) { return ce32; }
1114
1115 // Map from canonically equivalent input to the CEs. (But not from the all-NFD input.)
1116 if(nfdPrefix.isEmpty()) {
1117 CanonicalIterator stringIter(nfdString, errorCode);
1118 if(U_FAILURE(errorCode)) { return ce32; }
1119 UnicodeString prefix;
1120 for(;;) {
1121 UnicodeString str = stringIter.next();
1122 if(str.isBogus()) { break; }
1123 if(ignoreString(str, errorCode) || str == nfdString) { continue; }
1124 ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode);
1125 if(U_FAILURE(errorCode)) { return ce32; }
1126 }
1127 } else {
1128 CanonicalIterator prefixIter(nfdPrefix, errorCode);
1129 CanonicalIterator stringIter(nfdString, errorCode);
1130 if(U_FAILURE(errorCode)) { return ce32; }
1131 for(;;) {
1132 UnicodeString prefix = prefixIter.next();
1133 if(prefix.isBogus()) { break; }
1134 if(ignorePrefix(prefix, errorCode)) { continue; }
1135 UBool samePrefix = prefix == nfdPrefix;
1136 for(;;) {
1137 UnicodeString str = stringIter.next();
1138 if(str.isBogus()) { break; }
1139 if(ignoreString(str, errorCode) || (samePrefix && str == nfdString)) { continue; }
1140 ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode);
1141 if(U_FAILURE(errorCode)) { return ce32; }
1142 }
1143 stringIter.reset();
1144 }
1145 }
1146 return ce32;
1147 }
1148
1149 void
addTailComposites(const UnicodeString & nfdPrefix,const UnicodeString & nfdString,UErrorCode & errorCode)1150 CollationBuilder::addTailComposites(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1151 UErrorCode &errorCode) {
1152 if(U_FAILURE(errorCode)) { return; }
1153
1154 // Look for the last starter in the NFD string.
1155 UChar32 lastStarter;
1156 int32_t indexAfterLastStarter = nfdString.length();
1157 for(;;) {
1158 if(indexAfterLastStarter == 0) { return; } // no starter at all
1159 lastStarter = nfdString.char32At(indexAfterLastStarter - 1);
1160 if(nfd.getCombiningClass(lastStarter) == 0) { break; }
1161 indexAfterLastStarter -= U16_LENGTH(lastStarter);
1162 }
1163 // No closure to Hangul syllables since we decompose them on the fly.
1164 if(Hangul::isJamoL(lastStarter)) { return; }
1165
1166 // Are there any composites whose decomposition starts with the lastStarter?
1167 // Note: Normalizer2Impl does not currently return start sets for NFC_QC=Maybe characters.
1168 // We might find some more equivalent mappings here if it did.
1169 UnicodeSet composites;
1170 if(!nfcImpl.getCanonStartSet(lastStarter, composites)) { return; }
1171
1172 UnicodeString decomp;
1173 UnicodeString newNFDString, newString;
1174 int64_t newCEs[Collation::MAX_EXPANSION_LENGTH];
1175 UnicodeSetIterator iter(composites);
1176 while(iter.next()) {
1177 U_ASSERT(!iter.isString());
1178 UChar32 composite = iter.getCodepoint();
1179 nfd.getDecomposition(composite, decomp);
1180 if(!mergeCompositeIntoString(nfdString, indexAfterLastStarter, composite, decomp,
1181 newNFDString, newString, errorCode)) {
1182 continue;
1183 }
1184 int32_t newCEsLength = dataBuilder->getCEs(nfdPrefix, newNFDString, newCEs, 0);
1185 if(newCEsLength > Collation::MAX_EXPANSION_LENGTH) {
1186 // Ignore mappings that we cannot store.
1187 continue;
1188 }
1189 // Note: It is possible that the newCEs do not make use of the mapping
1190 // for which we are adding the tail composites, in which case we might be adding
1191 // unnecessary mappings.
1192 // For example, when we add tail composites for ae^ (^=combining circumflex),
1193 // UCA discontiguous-contraction matching does not find any matches
1194 // for ae_^ (_=any combining diacritic below) *unless* there is also
1195 // a contraction mapping for ae.
1196 // Thus, if there is no ae contraction, then the ae^ mapping is ignored
1197 // while fetching the newCEs for ae_^.
1198 // TODO: Try to detect this effectively.
1199 // (Alternatively, print a warning when prefix contractions are missing.)
1200
1201 // We do not need an explicit mapping for the NFD strings.
1202 // It is fine if the NFD input collates like this via a sequence of mappings.
1203 // It also saves a little bit of space, and may reduce the set of characters with contractions.
1204 uint32_t ce32 = addIfDifferent(nfdPrefix, newString,
1205 newCEs, newCEsLength, Collation::UNASSIGNED_CE32, errorCode);
1206 if(ce32 != Collation::UNASSIGNED_CE32) {
1207 // was different, was added
1208 addOnlyClosure(nfdPrefix, newNFDString, newCEs, newCEsLength, ce32, errorCode);
1209 }
1210 }
1211 }
1212
1213 UBool
mergeCompositeIntoString(const UnicodeString & nfdString,int32_t indexAfterLastStarter,UChar32 composite,const UnicodeString & decomp,UnicodeString & newNFDString,UnicodeString & newString,UErrorCode & errorCode) const1214 CollationBuilder::mergeCompositeIntoString(const UnicodeString &nfdString,
1215 int32_t indexAfterLastStarter,
1216 UChar32 composite, const UnicodeString &decomp,
1217 UnicodeString &newNFDString, UnicodeString &newString,
1218 UErrorCode &errorCode) const {
1219 if(U_FAILURE(errorCode)) { return FALSE; }
1220 U_ASSERT(nfdString.char32At(indexAfterLastStarter - 1) == decomp.char32At(0));
1221 int32_t lastStarterLength = decomp.moveIndex32(0, 1);
1222 if(lastStarterLength == decomp.length()) {
1223 // Singleton decompositions should be found by addWithClosure()
1224 // and the CanonicalIterator, so we can ignore them here.
1225 return FALSE;
1226 }
1227 if(nfdString.compare(indexAfterLastStarter, 0x7fffffff,
1228 decomp, lastStarterLength, 0x7fffffff) == 0) {
1229 // same strings, nothing new to be found here
1230 return FALSE;
1231 }
1232
1233 // Make new FCD strings that combine a composite, or its decomposition,
1234 // into the nfdString's last starter and the combining marks following it.
1235 // Make an NFD version, and a version with the composite.
1236 newNFDString.setTo(nfdString, 0, indexAfterLastStarter);
1237 newString.setTo(nfdString, 0, indexAfterLastStarter - lastStarterLength).append(composite);
1238
1239 // The following is related to discontiguous contraction matching,
1240 // but builds only FCD strings (or else returns FALSE).
1241 int32_t sourceIndex = indexAfterLastStarter;
1242 int32_t decompIndex = lastStarterLength;
1243 // Small optimization: We keep the source character across loop iterations
1244 // because we do not always consume it,
1245 // and then need not fetch it again nor look up its combining class again.
1246 UChar32 sourceChar = U_SENTINEL;
1247 // The cc variables need to be declared before the loop so that at the end
1248 // they are set to the last combining classes seen.
1249 uint8_t sourceCC = 0;
1250 uint8_t decompCC = 0;
1251 for(;;) {
1252 if(sourceChar < 0) {
1253 if(sourceIndex >= nfdString.length()) { break; }
1254 sourceChar = nfdString.char32At(sourceIndex);
1255 sourceCC = nfd.getCombiningClass(sourceChar);
1256 U_ASSERT(sourceCC != 0);
1257 }
1258 // We consume a decomposition character in each iteration.
1259 if(decompIndex >= decomp.length()) { break; }
1260 UChar32 decompChar = decomp.char32At(decompIndex);
1261 decompCC = nfd.getCombiningClass(decompChar);
1262 // Compare the two characters and their combining classes.
1263 if(decompCC == 0) {
1264 // Unable to merge because the source contains a non-zero combining mark
1265 // but the composite's decomposition contains another starter.
1266 // The strings would not be equivalent.
1267 return FALSE;
1268 } else if(sourceCC < decompCC) {
1269 // Composite + sourceChar would not be FCD.
1270 return FALSE;
1271 } else if(decompCC < sourceCC) {
1272 newNFDString.append(decompChar);
1273 decompIndex += U16_LENGTH(decompChar);
1274 } else if(decompChar != sourceChar) {
1275 // Blocked because same combining class.
1276 return FALSE;
1277 } else { // match: decompChar == sourceChar
1278 newNFDString.append(decompChar);
1279 decompIndex += U16_LENGTH(decompChar);
1280 sourceIndex += U16_LENGTH(decompChar);
1281 sourceChar = U_SENTINEL;
1282 }
1283 }
1284 // We are at the end of at least one of the two inputs.
1285 if(sourceChar >= 0) { // more characters from nfdString but not from decomp
1286 if(sourceCC < decompCC) {
1287 // Appending the next source character to the composite would not be FCD.
1288 return FALSE;
1289 }
1290 newNFDString.append(nfdString, sourceIndex, 0x7fffffff);
1291 newString.append(nfdString, sourceIndex, 0x7fffffff);
1292 } else if(decompIndex < decomp.length()) { // more characters from decomp, not from nfdString
1293 newNFDString.append(decomp, decompIndex, 0x7fffffff);
1294 }
1295 U_ASSERT(nfd.isNormalized(newNFDString, errorCode));
1296 U_ASSERT(fcd.isNormalized(newString, errorCode));
1297 U_ASSERT(nfd.normalize(newString, errorCode) == newNFDString); // canonically equivalent
1298 return TRUE;
1299 }
1300
1301 UBool
ignorePrefix(const UnicodeString & s,UErrorCode & errorCode) const1302 CollationBuilder::ignorePrefix(const UnicodeString &s, UErrorCode &errorCode) const {
1303 // Do not map non-FCD prefixes.
1304 return !isFCD(s, errorCode);
1305 }
1306
1307 UBool
ignoreString(const UnicodeString & s,UErrorCode & errorCode) const1308 CollationBuilder::ignoreString(const UnicodeString &s, UErrorCode &errorCode) const {
1309 // Do not map non-FCD strings.
1310 // Do not map strings that start with Hangul syllables: We decompose those on the fly.
1311 return !isFCD(s, errorCode) || Hangul::isHangul(s.charAt(0));
1312 }
1313
1314 UBool
isFCD(const UnicodeString & s,UErrorCode & errorCode) const1315 CollationBuilder::isFCD(const UnicodeString &s, UErrorCode &errorCode) const {
1316 return U_SUCCESS(errorCode) && fcd.isNormalized(s, errorCode);
1317 }
1318
1319 void
closeOverComposites(UErrorCode & errorCode)1320 CollationBuilder::closeOverComposites(UErrorCode &errorCode) {
1321 UnicodeSet composites(UNICODE_STRING_SIMPLE("[:NFD_QC=N:]"), errorCode); // Java: static final
1322 if(U_FAILURE(errorCode)) { return; }
1323 // Hangul is decomposed on the fly during collation.
1324 composites.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END);
1325 UnicodeString prefix; // empty
1326 UnicodeString nfdString;
1327 UnicodeSetIterator iter(composites);
1328 while(iter.next()) {
1329 U_ASSERT(!iter.isString());
1330 nfd.getDecomposition(iter.getCodepoint(), nfdString);
1331 cesLength = dataBuilder->getCEs(nfdString, ces, 0);
1332 if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
1333 // Too many CEs from the decomposition (unusual), ignore this composite.
1334 // We could add a capacity parameter to getCEs() and reallocate if necessary.
1335 // However, this can only really happen in contrived cases.
1336 continue;
1337 }
1338 const UnicodeString &composite(iter.getString());
1339 addIfDifferent(prefix, composite, ces, cesLength, Collation::UNASSIGNED_CE32, errorCode);
1340 }
1341 }
1342
1343 uint32_t
addIfDifferent(const UnicodeString & prefix,const UnicodeString & str,const int64_t newCEs[],int32_t newCEsLength,uint32_t ce32,UErrorCode & errorCode)1344 CollationBuilder::addIfDifferent(const UnicodeString &prefix, const UnicodeString &str,
1345 const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1346 UErrorCode &errorCode) {
1347 if(U_FAILURE(errorCode)) { return ce32; }
1348 int64_t oldCEs[Collation::MAX_EXPANSION_LENGTH];
1349 int32_t oldCEsLength = dataBuilder->getCEs(prefix, str, oldCEs, 0);
1350 if(!sameCEs(newCEs, newCEsLength, oldCEs, oldCEsLength)) {
1351 if(ce32 == Collation::UNASSIGNED_CE32) {
1352 ce32 = dataBuilder->encodeCEs(newCEs, newCEsLength, errorCode);
1353 }
1354 dataBuilder->addCE32(prefix, str, ce32, errorCode);
1355 }
1356 return ce32;
1357 }
1358
1359 UBool
sameCEs(const int64_t ces1[],int32_t ces1Length,const int64_t ces2[],int32_t ces2Length)1360 CollationBuilder::sameCEs(const int64_t ces1[], int32_t ces1Length,
1361 const int64_t ces2[], int32_t ces2Length) {
1362 if(ces1Length != ces2Length) {
1363 return FALSE;
1364 }
1365 U_ASSERT(ces1Length <= Collation::MAX_EXPANSION_LENGTH);
1366 for(int32_t i = 0; i < ces1Length; ++i) {
1367 if(ces1[i] != ces2[i]) { return FALSE; }
1368 }
1369 return TRUE;
1370 }
1371
1372 #ifdef DEBUG_COLLATION_BUILDER
1373
1374 uint32_t
alignWeightRight(uint32_t w)1375 alignWeightRight(uint32_t w) {
1376 if(w != 0) {
1377 while((w & 0xff) == 0) { w >>= 8; }
1378 }
1379 return w;
1380 }
1381
1382 #endif
1383
1384 void
makeTailoredCEs(UErrorCode & errorCode)1385 CollationBuilder::makeTailoredCEs(UErrorCode &errorCode) {
1386 if(U_FAILURE(errorCode)) { return; }
1387
1388 CollationWeights primaries, secondaries, tertiaries;
1389 int64_t *nodesArray = nodes.getBuffer();
1390 #ifdef DEBUG_COLLATION_BUILDER
1391 puts("\nCollationBuilder::makeTailoredCEs()");
1392 #endif
1393
1394 for(int32_t rpi = 0; rpi < rootPrimaryIndexes.size(); ++rpi) {
1395 int32_t i = rootPrimaryIndexes.elementAti(rpi);
1396 int64_t node = nodesArray[i];
1397 uint32_t p = weight32FromNode(node);
1398 uint32_t s = p == 0 ? 0 : Collation::COMMON_WEIGHT16;
1399 uint32_t t = s;
1400 uint32_t q = 0;
1401 UBool pIsTailored = FALSE;
1402 UBool sIsTailored = FALSE;
1403 UBool tIsTailored = FALSE;
1404 #ifdef DEBUG_COLLATION_BUILDER
1405 printf("\nprimary %lx\n", (long)alignWeightRight(p));
1406 #endif
1407 int32_t pIndex = p == 0 ? 0 : rootElements.findPrimary(p);
1408 int32_t nextIndex = nextIndexFromNode(node);
1409 while(nextIndex != 0) {
1410 i = nextIndex;
1411 node = nodesArray[i];
1412 nextIndex = nextIndexFromNode(node);
1413 int32_t strength = strengthFromNode(node);
1414 if(strength == UCOL_QUATERNARY) {
1415 U_ASSERT(isTailoredNode(node));
1416 #ifdef DEBUG_COLLATION_BUILDER
1417 printf(" quat+ ");
1418 #endif
1419 if(q == 3) {
1420 errorCode = U_BUFFER_OVERFLOW_ERROR;
1421 errorReason = "quaternary tailoring gap too small";
1422 return;
1423 }
1424 ++q;
1425 } else {
1426 if(strength == UCOL_TERTIARY) {
1427 if(isTailoredNode(node)) {
1428 #ifdef DEBUG_COLLATION_BUILDER
1429 printf(" ter+ ");
1430 #endif
1431 if(!tIsTailored) {
1432 // First tailored tertiary node for [p, s].
1433 int32_t tCount = countTailoredNodes(nodesArray, nextIndex,
1434 UCOL_TERTIARY) + 1;
1435 uint32_t tLimit;
1436 if(t == 0) {
1437 // Gap at the beginning of the tertiary CE range.
1438 t = rootElements.getTertiaryBoundary() - 0x100;
1439 tLimit = rootElements.getFirstTertiaryCE() & Collation::ONLY_TERTIARY_MASK;
1440 } else if(!pIsTailored && !sIsTailored) {
1441 // p and s are root weights.
1442 tLimit = rootElements.getTertiaryAfter(pIndex, s, t);
1443 } else if(t == Collation::BEFORE_WEIGHT16) {
1444 tLimit = Collation::COMMON_WEIGHT16;
1445 } else {
1446 // [p, s] is tailored.
1447 U_ASSERT(t == Collation::COMMON_WEIGHT16);
1448 tLimit = rootElements.getTertiaryBoundary();
1449 }
1450 U_ASSERT(tLimit == 0x4000 || (tLimit & ~Collation::ONLY_TERTIARY_MASK) == 0);
1451 tertiaries.initForTertiary();
1452 if(!tertiaries.allocWeights(t, tLimit, tCount)) {
1453 errorCode = U_BUFFER_OVERFLOW_ERROR;
1454 errorReason = "tertiary tailoring gap too small";
1455 return;
1456 }
1457 tIsTailored = TRUE;
1458 }
1459 t = tertiaries.nextWeight();
1460 U_ASSERT(t != 0xffffffff);
1461 } else {
1462 t = weight16FromNode(node);
1463 tIsTailored = FALSE;
1464 #ifdef DEBUG_COLLATION_BUILDER
1465 printf(" ter %lx\n", (long)alignWeightRight(t));
1466 #endif
1467 }
1468 } else {
1469 if(strength == UCOL_SECONDARY) {
1470 if(isTailoredNode(node)) {
1471 #ifdef DEBUG_COLLATION_BUILDER
1472 printf(" sec+ ");
1473 #endif
1474 if(!sIsTailored) {
1475 // First tailored secondary node for p.
1476 int32_t sCount = countTailoredNodes(nodesArray, nextIndex,
1477 UCOL_SECONDARY) + 1;
1478 uint32_t sLimit;
1479 if(s == 0) {
1480 // Gap at the beginning of the secondary CE range.
1481 s = rootElements.getSecondaryBoundary() - 0x100;
1482 sLimit = rootElements.getFirstSecondaryCE() >> 16;
1483 } else if(!pIsTailored) {
1484 // p is a root primary.
1485 sLimit = rootElements.getSecondaryAfter(pIndex, s);
1486 } else if(s == Collation::BEFORE_WEIGHT16) {
1487 sLimit = Collation::COMMON_WEIGHT16;
1488 } else {
1489 // p is a tailored primary.
1490 U_ASSERT(s == Collation::COMMON_WEIGHT16);
1491 sLimit = rootElements.getSecondaryBoundary();
1492 }
1493 if(s == Collation::COMMON_WEIGHT16) {
1494 // Do not tailor into the getSortKey() range of
1495 // compressed common secondaries.
1496 s = rootElements.getLastCommonSecondary();
1497 }
1498 secondaries.initForSecondary();
1499 if(!secondaries.allocWeights(s, sLimit, sCount)) {
1500 errorCode = U_BUFFER_OVERFLOW_ERROR;
1501 errorReason = "secondary tailoring gap too small";
1502 #ifdef DEBUG_COLLATION_BUILDER
1503 printf("!secondaries.allocWeights(%lx, %lx, sCount=%ld)\n",
1504 (long)alignWeightRight(s), (long)alignWeightRight(sLimit),
1505 (long)alignWeightRight(sCount));
1506 #endif
1507 return;
1508 }
1509 sIsTailored = TRUE;
1510 }
1511 s = secondaries.nextWeight();
1512 U_ASSERT(s != 0xffffffff);
1513 } else {
1514 s = weight16FromNode(node);
1515 sIsTailored = FALSE;
1516 #ifdef DEBUG_COLLATION_BUILDER
1517 printf(" sec %lx\n", (long)alignWeightRight(s));
1518 #endif
1519 }
1520 } else /* UCOL_PRIMARY */ {
1521 U_ASSERT(isTailoredNode(node));
1522 #ifdef DEBUG_COLLATION_BUILDER
1523 printf("pri+ ");
1524 #endif
1525 if(!pIsTailored) {
1526 // First tailored primary node in this list.
1527 int32_t pCount = countTailoredNodes(nodesArray, nextIndex,
1528 UCOL_PRIMARY) + 1;
1529 UBool isCompressible = baseData->isCompressiblePrimary(p);
1530 uint32_t pLimit =
1531 rootElements.getPrimaryAfter(p, pIndex, isCompressible);
1532 primaries.initForPrimary(isCompressible);
1533 if(!primaries.allocWeights(p, pLimit, pCount)) {
1534 errorCode = U_BUFFER_OVERFLOW_ERROR; // TODO: introduce a more specific UErrorCode?
1535 errorReason = "primary tailoring gap too small";
1536 return;
1537 }
1538 pIsTailored = TRUE;
1539 }
1540 p = primaries.nextWeight();
1541 U_ASSERT(p != 0xffffffff);
1542 s = Collation::COMMON_WEIGHT16;
1543 sIsTailored = FALSE;
1544 }
1545 t = s == 0 ? 0 : Collation::COMMON_WEIGHT16;
1546 tIsTailored = FALSE;
1547 }
1548 q = 0;
1549 }
1550 if(isTailoredNode(node)) {
1551 nodesArray[i] = Collation::makeCE(p, s, t, q);
1552 #ifdef DEBUG_COLLATION_BUILDER
1553 printf("%016llx\n", (long long)nodesArray[i]);
1554 #endif
1555 }
1556 }
1557 }
1558 }
1559
1560 int32_t
countTailoredNodes(const int64_t * nodesArray,int32_t i,int32_t strength)1561 CollationBuilder::countTailoredNodes(const int64_t *nodesArray, int32_t i, int32_t strength) {
1562 int32_t count = 0;
1563 for(;;) {
1564 if(i == 0) { break; }
1565 int64_t node = nodesArray[i];
1566 if(strengthFromNode(node) < strength) { break; }
1567 if(strengthFromNode(node) == strength) {
1568 if(isTailoredNode(node)) {
1569 ++count;
1570 } else {
1571 break;
1572 }
1573 }
1574 i = nextIndexFromNode(node);
1575 }
1576 return count;
1577 }
1578
1579 class CEFinalizer : public CollationDataBuilder::CEModifier {
1580 public:
CEFinalizer(const int64_t * ces)1581 CEFinalizer(const int64_t *ces) : finalCEs(ces) {}
1582 virtual ~CEFinalizer();
modifyCE32(uint32_t ce32) const1583 virtual int64_t modifyCE32(uint32_t ce32) const {
1584 U_ASSERT(!Collation::isSpecialCE32(ce32));
1585 if(CollationBuilder::isTempCE32(ce32)) {
1586 // retain case bits
1587 return finalCEs[CollationBuilder::indexFromTempCE32(ce32)] | ((ce32 & 0xc0) << 8);
1588 } else {
1589 return Collation::NO_CE;
1590 }
1591 }
modifyCE(int64_t ce) const1592 virtual int64_t modifyCE(int64_t ce) const {
1593 if(CollationBuilder::isTempCE(ce)) {
1594 // retain case bits
1595 return finalCEs[CollationBuilder::indexFromTempCE(ce)] | (ce & 0xc000);
1596 } else {
1597 return Collation::NO_CE;
1598 }
1599 }
1600
1601 private:
1602 const int64_t *finalCEs;
1603 };
1604
~CEFinalizer()1605 CEFinalizer::~CEFinalizer() {}
1606
1607 void
finalizeCEs(UErrorCode & errorCode)1608 CollationBuilder::finalizeCEs(UErrorCode &errorCode) {
1609 if(U_FAILURE(errorCode)) { return; }
1610 LocalPointer<CollationDataBuilder> newBuilder(new CollationDataBuilder(errorCode), errorCode);
1611 if(U_FAILURE(errorCode)) {
1612 return;
1613 }
1614 newBuilder->initForTailoring(baseData, errorCode);
1615 CEFinalizer finalizer(nodes.getBuffer());
1616 newBuilder->copyFrom(*dataBuilder, finalizer, errorCode);
1617 if(U_FAILURE(errorCode)) { return; }
1618 delete dataBuilder;
1619 dataBuilder = newBuilder.orphan();
1620 }
1621
1622 int32_t
ceStrength(int64_t ce)1623 CollationBuilder::ceStrength(int64_t ce) {
1624 return
1625 isTempCE(ce) ? strengthFromTempCE(ce) :
1626 (ce & INT64_C(0xff00000000000000)) != 0 ? UCOL_PRIMARY :
1627 ((uint32_t)ce & 0xff000000) != 0 ? UCOL_SECONDARY :
1628 ce != 0 ? UCOL_TERTIARY :
1629 UCOL_IDENTICAL;
1630 }
1631
1632 U_NAMESPACE_END
1633
1634 U_NAMESPACE_USE
1635
1636 U_CAPI UCollator * U_EXPORT2
ucol_openRules(const UChar * rules,int32_t rulesLength,UColAttributeValue normalizationMode,UCollationStrength strength,UParseError * parseError,UErrorCode * pErrorCode)1637 ucol_openRules(const UChar *rules, int32_t rulesLength,
1638 UColAttributeValue normalizationMode, UCollationStrength strength,
1639 UParseError *parseError, UErrorCode *pErrorCode) {
1640 if(U_FAILURE(*pErrorCode)) { return NULL; }
1641 if(rules == NULL && rulesLength != 0) {
1642 *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR;
1643 return NULL;
1644 }
1645 RuleBasedCollator *coll = new RuleBasedCollator();
1646 if(coll == NULL) {
1647 *pErrorCode = U_MEMORY_ALLOCATION_ERROR;
1648 return NULL;
1649 }
1650 UnicodeString r((UBool)(rulesLength < 0), rules, rulesLength);
1651 coll->internalBuildTailoring(r, strength, normalizationMode, parseError, NULL, *pErrorCode);
1652 if(U_FAILURE(*pErrorCode)) {
1653 delete coll;
1654 return NULL;
1655 }
1656 return coll->toUCollator();
1657 }
1658
1659 static const int32_t internalBufferSize = 512;
1660
1661 // The @internal ucol_getUnsafeSet() was moved here from ucol_sit.cpp
1662 // because it calls UnicodeSet "builder" code that depends on all Unicode properties,
1663 // and the rest of the collation "runtime" code only depends on normalization.
1664 // This function is not related to the collation builder,
1665 // but it did not seem worth moving it into its own .cpp file,
1666 // nor rewriting it to use lower-level UnicodeSet and Normalizer2Impl methods.
1667 U_CAPI int32_t U_EXPORT2
ucol_getUnsafeSet(const UCollator * coll,USet * unsafe,UErrorCode * status)1668 ucol_getUnsafeSet( const UCollator *coll,
1669 USet *unsafe,
1670 UErrorCode *status)
1671 {
1672 UChar buffer[internalBufferSize];
1673 int32_t len = 0;
1674
1675 uset_clear(unsafe);
1676
1677 // cccpattern = "[[:^tccc=0:][:^lccc=0:]]", unfortunately variant
1678 static const UChar cccpattern[25] = { 0x5b, 0x5b, 0x3a, 0x5e, 0x74, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d,
1679 0x5b, 0x3a, 0x5e, 0x6c, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d, 0x5d, 0x00 };
1680
1681 // add chars that fail the fcd check
1682 uset_applyPattern(unsafe, cccpattern, 24, USET_IGNORE_SPACE, status);
1683
1684 // add lead/trail surrogates
1685 // (trail surrogates should need to be unsafe only if the caller tests for UTF-16 code *units*,
1686 // not when testing code *points*)
1687 uset_addRange(unsafe, 0xd800, 0xdfff);
1688
1689 USet *contractions = uset_open(0,0);
1690
1691 int32_t i = 0, j = 0;
1692 ucol_getContractionsAndExpansions(coll, contractions, NULL, FALSE, status);
1693 int32_t contsSize = uset_size(contractions);
1694 UChar32 c = 0;
1695 // Contraction set consists only of strings
1696 // to get unsafe code points, we need to
1697 // break the strings apart and add them to the unsafe set
1698 for(i = 0; i < contsSize; i++) {
1699 len = uset_getItem(contractions, i, NULL, NULL, buffer, internalBufferSize, status);
1700 if(len > 0) {
1701 j = 0;
1702 while(j < len) {
1703 U16_NEXT(buffer, j, len, c);
1704 if(j < len) {
1705 uset_add(unsafe, c);
1706 }
1707 }
1708 }
1709 }
1710
1711 uset_close(contractions);
1712
1713 return uset_size(unsafe);
1714 }
1715
1716 #endif // !UCONFIG_NO_COLLATION
1717