1 //===-- llvm/Target/TargetMachine.h - Target Information --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the TargetMachine and LLVMTargetMachine classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_TARGET_TARGETMACHINE_H
15 #define LLVM_TARGET_TARGETMACHINE_H
16 
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/Pass.h"
21 #include "llvm/Support/CodeGen.h"
22 #include "llvm/Target/TargetOptions.h"
23 #include <cassert>
24 #include <string>
25 
26 namespace llvm {
27 
28 class InstrItineraryData;
29 class GlobalValue;
30 class Mangler;
31 class MachineFunctionInitializer;
32 class MCAsmInfo;
33 class MCCodeGenInfo;
34 class MCContext;
35 class MCInstrInfo;
36 class MCRegisterInfo;
37 class MCSubtargetInfo;
38 class MCSymbol;
39 class Target;
40 class DataLayout;
41 class TargetLibraryInfo;
42 class TargetFrameLowering;
43 class TargetIRAnalysis;
44 class TargetIntrinsicInfo;
45 class TargetLowering;
46 class TargetPassConfig;
47 class TargetRegisterInfo;
48 class TargetSelectionDAGInfo;
49 class TargetSubtargetInfo;
50 class TargetTransformInfo;
51 class formatted_raw_ostream;
52 class raw_ostream;
53 class raw_pwrite_stream;
54 class TargetLoweringObjectFile;
55 
56 // The old pass manager infrastructure is hidden in a legacy namespace now.
57 namespace legacy {
58 class PassManagerBase;
59 }
60 using legacy::PassManagerBase;
61 
62 //===----------------------------------------------------------------------===//
63 ///
64 /// Primary interface to the complete machine description for the target
65 /// machine.  All target-specific information should be accessible through this
66 /// interface.
67 ///
68 class TargetMachine {
69   TargetMachine(const TargetMachine &) = delete;
70   void operator=(const TargetMachine &) = delete;
71 protected: // Can only create subclasses.
72   TargetMachine(const Target &T, StringRef DataLayoutString,
73                 const Triple &TargetTriple, StringRef CPU, StringRef FS,
74                 const TargetOptions &Options);
75 
76   /// The Target that this machine was created for.
77   const Target &TheTarget;
78 
79   /// DataLayout for the target: keep ABI type size and alignment.
80   ///
81   /// The DataLayout is created based on the string representation provided
82   /// during construction. It is kept here only to avoid reparsing the string
83   /// but should not really be used during compilation, because it has an
84   /// internal cache that is context specific.
85   const DataLayout DL;
86 
87   /// Triple string, CPU name, and target feature strings the TargetMachine
88   /// instance is created with.
89   Triple TargetTriple;
90   std::string TargetCPU;
91   std::string TargetFS;
92 
93   /// Low level target information such as relocation model. Non-const to
94   /// allow resetting optimization level per-function.
95   MCCodeGenInfo *CodeGenInfo;
96 
97   /// Contains target specific asm information.
98   const MCAsmInfo *AsmInfo;
99 
100   const MCRegisterInfo *MRI;
101   const MCInstrInfo *MII;
102   const MCSubtargetInfo *STI;
103 
104   unsigned RequireStructuredCFG : 1;
105   unsigned O0WantsFastISel : 1;
106 
107   /// This API is here to support the C API, deprecated in 3.7 release.
108   /// This should never be used outside of legacy existing client.
getDataLayout()109   const DataLayout &getDataLayout() const { return DL; }
110   friend struct C_API_PRIVATE_ACCESS;
111 
112 public:
113   mutable TargetOptions Options;
114 
115   virtual ~TargetMachine();
116 
getTarget()117   const Target &getTarget() const { return TheTarget; }
118 
getTargetTriple()119   const Triple &getTargetTriple() const { return TargetTriple; }
getTargetCPU()120   StringRef getTargetCPU() const { return TargetCPU; }
getTargetFeatureString()121   StringRef getTargetFeatureString() const { return TargetFS; }
122 
123   /// Virtual method implemented by subclasses that returns a reference to that
124   /// target's TargetSubtargetInfo-derived member variable.
getSubtargetImpl(const Function &)125   virtual const TargetSubtargetInfo *getSubtargetImpl(const Function &) const {
126     return nullptr;
127   }
getObjFileLowering()128   virtual TargetLoweringObjectFile *getObjFileLowering() const {
129     return nullptr;
130   }
131 
132   /// This method returns a pointer to the specified type of
133   /// TargetSubtargetInfo.  In debug builds, it verifies that the object being
134   /// returned is of the correct type.
getSubtarget(const Function & F)135   template <typename STC> const STC &getSubtarget(const Function &F) const {
136     return *static_cast<const STC*>(getSubtargetImpl(F));
137   }
138 
139   /// Create a DataLayout.
createDataLayout()140   const DataLayout createDataLayout() const { return DL; }
141 
142   /// Test if a DataLayout if compatible with the CodeGen for this target.
143   ///
144   /// The LLVM Module owns a DataLayout that is used for the target independent
145   /// optimizations and code generation. This hook provides a target specific
146   /// check on the validity of this DataLayout.
isCompatibleDataLayout(const DataLayout & Candidate)147   bool isCompatibleDataLayout(const DataLayout &Candidate) const {
148     return DL == Candidate;
149   }
150 
151   /// Get the pointer size for this target.
152   ///
153   /// This is the only time the DataLayout in the TargetMachine is used.
getPointerSize()154   unsigned getPointerSize() const { return DL.getPointerSize(); }
155 
156   /// \brief Reset the target options based on the function's attributes.
157   // FIXME: Remove TargetOptions that affect per-function code generation
158   // from TargetMachine.
159   void resetTargetOptions(const Function &F) const;
160 
161   /// Return target specific asm information.
getMCAsmInfo()162   const MCAsmInfo *getMCAsmInfo() const { return AsmInfo; }
163 
getMCRegisterInfo()164   const MCRegisterInfo *getMCRegisterInfo() const { return MRI; }
getMCInstrInfo()165   const MCInstrInfo *getMCInstrInfo() const { return MII; }
getMCSubtargetInfo()166   const MCSubtargetInfo *getMCSubtargetInfo() const { return STI; }
167 
168   /// If intrinsic information is available, return it.  If not, return null.
getIntrinsicInfo()169   virtual const TargetIntrinsicInfo *getIntrinsicInfo() const {
170     return nullptr;
171   }
172 
requiresStructuredCFG()173   bool requiresStructuredCFG() const { return RequireStructuredCFG; }
setRequiresStructuredCFG(bool Value)174   void setRequiresStructuredCFG(bool Value) { RequireStructuredCFG = Value; }
175 
176   /// Returns the code generation relocation model. The choices are static, PIC,
177   /// and dynamic-no-pic, and target default.
178   Reloc::Model getRelocationModel() const;
179 
180   /// Returns the code model. The choices are small, kernel, medium, large, and
181   /// target default.
182   CodeModel::Model getCodeModel() const;
183 
184   /// Returns the TLS model which should be used for the given global variable.
185   TLSModel::Model getTLSModel(const GlobalValue *GV) const;
186 
187   /// Returns the optimization level: None, Less, Default, or Aggressive.
188   CodeGenOpt::Level getOptLevel() const;
189 
190   /// \brief Overrides the optimization level.
191   void setOptLevel(CodeGenOpt::Level Level) const;
192 
setFastISel(bool Enable)193   void setFastISel(bool Enable) { Options.EnableFastISel = Enable; }
getO0WantsFastISel()194   bool getO0WantsFastISel() { return O0WantsFastISel; }
setO0WantsFastISel(bool Enable)195   void setO0WantsFastISel(bool Enable) { O0WantsFastISel = Enable; }
196 
shouldPrintMachineCode()197   bool shouldPrintMachineCode() const { return Options.PrintMachineCode; }
198 
199   /// Returns the default value of asm verbosity.
200   ///
getAsmVerbosityDefault()201   bool getAsmVerbosityDefault() const {
202     return Options.MCOptions.AsmVerbose;
203   }
204 
getUniqueSectionNames()205   bool getUniqueSectionNames() const { return Options.UniqueSectionNames; }
206 
207   /// Return true if data objects should be emitted into their own section,
208   /// corresponds to -fdata-sections.
getDataSections()209   bool getDataSections() const {
210     return Options.DataSections;
211   }
212 
213   /// Return true if functions should be emitted into their own section,
214   /// corresponding to -ffunction-sections.
getFunctionSections()215   bool getFunctionSections() const {
216     return Options.FunctionSections;
217   }
218 
219   /// \brief Get a \c TargetIRAnalysis appropriate for the target.
220   ///
221   /// This is used to construct the new pass manager's target IR analysis pass,
222   /// set up appropriately for this target machine. Even the old pass manager
223   /// uses this to answer queries about the IR.
224   virtual TargetIRAnalysis getTargetIRAnalysis();
225 
226   /// These enums are meant to be passed into addPassesToEmitFile to indicate
227   /// what type of file to emit, and returned by it to indicate what type of
228   /// file could actually be made.
229   enum CodeGenFileType {
230     CGFT_AssemblyFile,
231     CGFT_ObjectFile,
232     CGFT_Null         // Do not emit any output.
233   };
234 
235   /// Add passes to the specified pass manager to get the specified file
236   /// emitted.  Typically this will involve several steps of code generation.
237   /// This method should return true if emission of this file type is not
238   /// supported, or false on success.
239   virtual bool addPassesToEmitFile(
240       PassManagerBase &, raw_pwrite_stream &, CodeGenFileType,
241       bool /*DisableVerify*/ = true, AnalysisID /*StartBefore*/ = nullptr,
242       AnalysisID /*StartAfter*/ = nullptr, AnalysisID /*StopAfter*/ = nullptr,
243       MachineFunctionInitializer * /*MFInitializer*/ = nullptr) {
244     return true;
245   }
246 
247   /// Add passes to the specified pass manager to get machine code emitted with
248   /// the MCJIT. This method returns true if machine code is not supported. It
249   /// fills the MCContext Ctx pointer which can be used to build custom
250   /// MCStreamer.
251   ///
252   virtual bool addPassesToEmitMC(PassManagerBase &, MCContext *&,
253                                  raw_pwrite_stream &,
254                                  bool /*DisableVerify*/ = true) {
255     return true;
256   }
257 
258   /// True if subtarget inserts the final scheduling pass on its own.
259   ///
260   /// Branch relaxation, which must happen after block placement, can
261   /// on some targets (e.g. SystemZ) expose additional post-RA
262   /// scheduling opportunities.
targetSchedulesPostRAScheduling()263   virtual bool targetSchedulesPostRAScheduling() const { return false; };
264 
265   void getNameWithPrefix(SmallVectorImpl<char> &Name, const GlobalValue *GV,
266                          Mangler &Mang, bool MayAlwaysUsePrivate = false) const;
267   MCSymbol *getSymbol(const GlobalValue *GV, Mangler &Mang) const;
268 };
269 
270 /// This class describes a target machine that is implemented with the LLVM
271 /// target-independent code generator.
272 ///
273 class LLVMTargetMachine : public TargetMachine {
274 protected: // Can only create subclasses.
275   LLVMTargetMachine(const Target &T, StringRef DataLayoutString,
276                     const Triple &TargetTriple, StringRef CPU, StringRef FS,
277                     TargetOptions Options, Reloc::Model RM, CodeModel::Model CM,
278                     CodeGenOpt::Level OL);
279 
280   void initAsmInfo();
281 public:
282   /// \brief Get a TargetIRAnalysis implementation for the target.
283   ///
284   /// This analysis will produce a TTI result which uses the common code
285   /// generator to answer queries about the IR.
286   TargetIRAnalysis getTargetIRAnalysis() override;
287 
288   /// Create a pass configuration object to be used by addPassToEmitX methods
289   /// for generating a pipeline of CodeGen passes.
290   virtual TargetPassConfig *createPassConfig(PassManagerBase &PM);
291 
292   /// Add passes to the specified pass manager to get the specified file
293   /// emitted.  Typically this will involve several steps of code generation.
294   bool addPassesToEmitFile(
295       PassManagerBase &PM, raw_pwrite_stream &Out, CodeGenFileType FileType,
296       bool DisableVerify = true, AnalysisID StartBefore = nullptr,
297       AnalysisID StartAfter = nullptr, AnalysisID StopAfter = nullptr,
298       MachineFunctionInitializer *MFInitializer = nullptr) override;
299 
300   /// Add passes to the specified pass manager to get machine code emitted with
301   /// the MCJIT. This method returns true if machine code is not supported. It
302   /// fills the MCContext Ctx pointer which can be used to build custom
303   /// MCStreamer.
304   bool addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx,
305                          raw_pwrite_stream &OS,
306                          bool DisableVerify = true) override;
307 };
308 
309 } // End llvm namespace
310 
311 #endif
312