1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines routines for folding instructions into constants.
11 //
12 // Also, to supplement the basic IR ConstantExpr simplifications,
13 // this file defines some additional folding routines that can make use of
14 // DataLayout information. These functions cannot go in IR due to library
15 // dependency issues.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Config/config.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GetElementPtrTypeIterator.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include <cerrno>
38 #include <cmath>
39
40 #ifdef HAVE_FENV_H
41 #include <fenv.h>
42 #endif
43
44 using namespace llvm;
45
46 //===----------------------------------------------------------------------===//
47 // Constant Folding internal helper functions
48 //===----------------------------------------------------------------------===//
49
50 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
51 /// This always returns a non-null constant, but it may be a
52 /// ConstantExpr if unfoldable.
FoldBitCast(Constant * C,Type * DestTy,const DataLayout & DL)53 static Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
54 // Catch the obvious splat cases.
55 if (C->isNullValue() && !DestTy->isX86_MMXTy())
56 return Constant::getNullValue(DestTy);
57 if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
58 !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
59 return Constant::getAllOnesValue(DestTy);
60
61 // Handle a vector->integer cast.
62 if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
63 VectorType *VTy = dyn_cast<VectorType>(C->getType());
64 if (!VTy)
65 return ConstantExpr::getBitCast(C, DestTy);
66
67 unsigned NumSrcElts = VTy->getNumElements();
68 Type *SrcEltTy = VTy->getElementType();
69
70 // If the vector is a vector of floating point, convert it to vector of int
71 // to simplify things.
72 if (SrcEltTy->isFloatingPointTy()) {
73 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
74 Type *SrcIVTy =
75 VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
76 // Ask IR to do the conversion now that #elts line up.
77 C = ConstantExpr::getBitCast(C, SrcIVTy);
78 }
79
80 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
81 if (!CDV)
82 return ConstantExpr::getBitCast(C, DestTy);
83
84 // Now that we know that the input value is a vector of integers, just shift
85 // and insert them into our result.
86 unsigned BitShift = DL.getTypeAllocSizeInBits(SrcEltTy);
87 APInt Result(IT->getBitWidth(), 0);
88 for (unsigned i = 0; i != NumSrcElts; ++i) {
89 Result <<= BitShift;
90 if (DL.isLittleEndian())
91 Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
92 else
93 Result |= CDV->getElementAsInteger(i);
94 }
95
96 return ConstantInt::get(IT, Result);
97 }
98
99 // The code below only handles casts to vectors currently.
100 VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
101 if (!DestVTy)
102 return ConstantExpr::getBitCast(C, DestTy);
103
104 // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
105 // vector so the code below can handle it uniformly.
106 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
107 Constant *Ops = C; // don't take the address of C!
108 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
109 }
110
111 // If this is a bitcast from constant vector -> vector, fold it.
112 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
113 return ConstantExpr::getBitCast(C, DestTy);
114
115 // If the element types match, IR can fold it.
116 unsigned NumDstElt = DestVTy->getNumElements();
117 unsigned NumSrcElt = C->getType()->getVectorNumElements();
118 if (NumDstElt == NumSrcElt)
119 return ConstantExpr::getBitCast(C, DestTy);
120
121 Type *SrcEltTy = C->getType()->getVectorElementType();
122 Type *DstEltTy = DestVTy->getElementType();
123
124 // Otherwise, we're changing the number of elements in a vector, which
125 // requires endianness information to do the right thing. For example,
126 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
127 // folds to (little endian):
128 // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
129 // and to (big endian):
130 // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
131
132 // First thing is first. We only want to think about integer here, so if
133 // we have something in FP form, recast it as integer.
134 if (DstEltTy->isFloatingPointTy()) {
135 // Fold to an vector of integers with same size as our FP type.
136 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
137 Type *DestIVTy =
138 VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
139 // Recursively handle this integer conversion, if possible.
140 C = FoldBitCast(C, DestIVTy, DL);
141
142 // Finally, IR can handle this now that #elts line up.
143 return ConstantExpr::getBitCast(C, DestTy);
144 }
145
146 // Okay, we know the destination is integer, if the input is FP, convert
147 // it to integer first.
148 if (SrcEltTy->isFloatingPointTy()) {
149 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
150 Type *SrcIVTy =
151 VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
152 // Ask IR to do the conversion now that #elts line up.
153 C = ConstantExpr::getBitCast(C, SrcIVTy);
154 // If IR wasn't able to fold it, bail out.
155 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
156 !isa<ConstantDataVector>(C))
157 return C;
158 }
159
160 // Now we know that the input and output vectors are both integer vectors
161 // of the same size, and that their #elements is not the same. Do the
162 // conversion here, which depends on whether the input or output has
163 // more elements.
164 bool isLittleEndian = DL.isLittleEndian();
165
166 SmallVector<Constant*, 32> Result;
167 if (NumDstElt < NumSrcElt) {
168 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
169 Constant *Zero = Constant::getNullValue(DstEltTy);
170 unsigned Ratio = NumSrcElt/NumDstElt;
171 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
172 unsigned SrcElt = 0;
173 for (unsigned i = 0; i != NumDstElt; ++i) {
174 // Build each element of the result.
175 Constant *Elt = Zero;
176 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
177 for (unsigned j = 0; j != Ratio; ++j) {
178 Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
179 if (!Src) // Reject constantexpr elements.
180 return ConstantExpr::getBitCast(C, DestTy);
181
182 // Zero extend the element to the right size.
183 Src = ConstantExpr::getZExt(Src, Elt->getType());
184
185 // Shift it to the right place, depending on endianness.
186 Src = ConstantExpr::getShl(Src,
187 ConstantInt::get(Src->getType(), ShiftAmt));
188 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
189
190 // Mix it in.
191 Elt = ConstantExpr::getOr(Elt, Src);
192 }
193 Result.push_back(Elt);
194 }
195 return ConstantVector::get(Result);
196 }
197
198 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
199 unsigned Ratio = NumDstElt/NumSrcElt;
200 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
201
202 // Loop over each source value, expanding into multiple results.
203 for (unsigned i = 0; i != NumSrcElt; ++i) {
204 Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
205 if (!Src) // Reject constantexpr elements.
206 return ConstantExpr::getBitCast(C, DestTy);
207
208 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
209 for (unsigned j = 0; j != Ratio; ++j) {
210 // Shift the piece of the value into the right place, depending on
211 // endianness.
212 Constant *Elt = ConstantExpr::getLShr(Src,
213 ConstantInt::get(Src->getType(), ShiftAmt));
214 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
215
216 // Truncate the element to an integer with the same pointer size and
217 // convert the element back to a pointer using a inttoptr.
218 if (DstEltTy->isPointerTy()) {
219 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
220 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
221 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
222 continue;
223 }
224
225 // Truncate and remember this piece.
226 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
227 }
228 }
229
230 return ConstantVector::get(Result);
231 }
232
233
234 /// If this constant is a constant offset from a global, return the global and
235 /// the constant. Because of constantexprs, this function is recursive.
IsConstantOffsetFromGlobal(Constant * C,GlobalValue * & GV,APInt & Offset,const DataLayout & DL)236 static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
237 APInt &Offset, const DataLayout &DL) {
238 // Trivial case, constant is the global.
239 if ((GV = dyn_cast<GlobalValue>(C))) {
240 unsigned BitWidth = DL.getPointerTypeSizeInBits(GV->getType());
241 Offset = APInt(BitWidth, 0);
242 return true;
243 }
244
245 // Otherwise, if this isn't a constant expr, bail out.
246 ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
247 if (!CE) return false;
248
249 // Look through ptr->int and ptr->ptr casts.
250 if (CE->getOpcode() == Instruction::PtrToInt ||
251 CE->getOpcode() == Instruction::BitCast)
252 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
253
254 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
255 GEPOperator *GEP = dyn_cast<GEPOperator>(CE);
256 if (!GEP)
257 return false;
258
259 unsigned BitWidth = DL.getPointerTypeSizeInBits(GEP->getType());
260 APInt TmpOffset(BitWidth, 0);
261
262 // If the base isn't a global+constant, we aren't either.
263 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
264 return false;
265
266 // Otherwise, add any offset that our operands provide.
267 if (!GEP->accumulateConstantOffset(DL, TmpOffset))
268 return false;
269
270 Offset = TmpOffset;
271 return true;
272 }
273
274 /// Recursive helper to read bits out of global. C is the constant being copied
275 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
276 /// results into and BytesLeft is the number of bytes left in
277 /// the CurPtr buffer. DL is the DataLayout.
ReadDataFromGlobal(Constant * C,uint64_t ByteOffset,unsigned char * CurPtr,unsigned BytesLeft,const DataLayout & DL)278 static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
279 unsigned char *CurPtr, unsigned BytesLeft,
280 const DataLayout &DL) {
281 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
282 "Out of range access");
283
284 // If this element is zero or undefined, we can just return since *CurPtr is
285 // zero initialized.
286 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
287 return true;
288
289 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
290 if (CI->getBitWidth() > 64 ||
291 (CI->getBitWidth() & 7) != 0)
292 return false;
293
294 uint64_t Val = CI->getZExtValue();
295 unsigned IntBytes = unsigned(CI->getBitWidth()/8);
296
297 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
298 int n = ByteOffset;
299 if (!DL.isLittleEndian())
300 n = IntBytes - n - 1;
301 CurPtr[i] = (unsigned char)(Val >> (n * 8));
302 ++ByteOffset;
303 }
304 return true;
305 }
306
307 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
308 if (CFP->getType()->isDoubleTy()) {
309 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
310 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
311 }
312 if (CFP->getType()->isFloatTy()){
313 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
314 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
315 }
316 if (CFP->getType()->isHalfTy()){
317 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
318 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
319 }
320 return false;
321 }
322
323 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
324 const StructLayout *SL = DL.getStructLayout(CS->getType());
325 unsigned Index = SL->getElementContainingOffset(ByteOffset);
326 uint64_t CurEltOffset = SL->getElementOffset(Index);
327 ByteOffset -= CurEltOffset;
328
329 while (1) {
330 // If the element access is to the element itself and not to tail padding,
331 // read the bytes from the element.
332 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
333
334 if (ByteOffset < EltSize &&
335 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
336 BytesLeft, DL))
337 return false;
338
339 ++Index;
340
341 // Check to see if we read from the last struct element, if so we're done.
342 if (Index == CS->getType()->getNumElements())
343 return true;
344
345 // If we read all of the bytes we needed from this element we're done.
346 uint64_t NextEltOffset = SL->getElementOffset(Index);
347
348 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
349 return true;
350
351 // Move to the next element of the struct.
352 CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
353 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
354 ByteOffset = 0;
355 CurEltOffset = NextEltOffset;
356 }
357 // not reached.
358 }
359
360 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
361 isa<ConstantDataSequential>(C)) {
362 Type *EltTy = C->getType()->getSequentialElementType();
363 uint64_t EltSize = DL.getTypeAllocSize(EltTy);
364 uint64_t Index = ByteOffset / EltSize;
365 uint64_t Offset = ByteOffset - Index * EltSize;
366 uint64_t NumElts;
367 if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
368 NumElts = AT->getNumElements();
369 else
370 NumElts = C->getType()->getVectorNumElements();
371
372 for (; Index != NumElts; ++Index) {
373 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
374 BytesLeft, DL))
375 return false;
376
377 uint64_t BytesWritten = EltSize - Offset;
378 assert(BytesWritten <= EltSize && "Not indexing into this element?");
379 if (BytesWritten >= BytesLeft)
380 return true;
381
382 Offset = 0;
383 BytesLeft -= BytesWritten;
384 CurPtr += BytesWritten;
385 }
386 return true;
387 }
388
389 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
390 if (CE->getOpcode() == Instruction::IntToPtr &&
391 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
392 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
393 BytesLeft, DL);
394 }
395 }
396
397 // Otherwise, unknown initializer type.
398 return false;
399 }
400
FoldReinterpretLoadFromConstPtr(Constant * C,const DataLayout & DL)401 static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
402 const DataLayout &DL) {
403 PointerType *PTy = cast<PointerType>(C->getType());
404 Type *LoadTy = PTy->getElementType();
405 IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
406
407 // If this isn't an integer load we can't fold it directly.
408 if (!IntType) {
409 unsigned AS = PTy->getAddressSpace();
410
411 // If this is a float/double load, we can try folding it as an int32/64 load
412 // and then bitcast the result. This can be useful for union cases. Note
413 // that address spaces don't matter here since we're not going to result in
414 // an actual new load.
415 Type *MapTy;
416 if (LoadTy->isHalfTy())
417 MapTy = Type::getInt16PtrTy(C->getContext(), AS);
418 else if (LoadTy->isFloatTy())
419 MapTy = Type::getInt32PtrTy(C->getContext(), AS);
420 else if (LoadTy->isDoubleTy())
421 MapTy = Type::getInt64PtrTy(C->getContext(), AS);
422 else if (LoadTy->isVectorTy()) {
423 MapTy = PointerType::getIntNPtrTy(C->getContext(),
424 DL.getTypeAllocSizeInBits(LoadTy), AS);
425 } else
426 return nullptr;
427
428 C = FoldBitCast(C, MapTy, DL);
429 if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, DL))
430 return FoldBitCast(Res, LoadTy, DL);
431 return nullptr;
432 }
433
434 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
435 if (BytesLoaded > 32 || BytesLoaded == 0)
436 return nullptr;
437
438 GlobalValue *GVal;
439 APInt Offset;
440 if (!IsConstantOffsetFromGlobal(C, GVal, Offset, DL))
441 return nullptr;
442
443 GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
444 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
445 !GV->getInitializer()->getType()->isSized())
446 return nullptr;
447
448 // If we're loading off the beginning of the global, some bytes may be valid,
449 // but we don't try to handle this.
450 if (Offset.isNegative())
451 return nullptr;
452
453 // If we're not accessing anything in this constant, the result is undefined.
454 if (Offset.getZExtValue() >=
455 DL.getTypeAllocSize(GV->getInitializer()->getType()))
456 return UndefValue::get(IntType);
457
458 unsigned char RawBytes[32] = {0};
459 if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
460 BytesLoaded, DL))
461 return nullptr;
462
463 APInt ResultVal = APInt(IntType->getBitWidth(), 0);
464 if (DL.isLittleEndian()) {
465 ResultVal = RawBytes[BytesLoaded - 1];
466 for (unsigned i = 1; i != BytesLoaded; ++i) {
467 ResultVal <<= 8;
468 ResultVal |= RawBytes[BytesLoaded - 1 - i];
469 }
470 } else {
471 ResultVal = RawBytes[0];
472 for (unsigned i = 1; i != BytesLoaded; ++i) {
473 ResultVal <<= 8;
474 ResultVal |= RawBytes[i];
475 }
476 }
477
478 return ConstantInt::get(IntType->getContext(), ResultVal);
479 }
480
ConstantFoldLoadThroughBitcast(ConstantExpr * CE,const DataLayout & DL)481 static Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE,
482 const DataLayout &DL) {
483 auto *DestPtrTy = dyn_cast<PointerType>(CE->getType());
484 if (!DestPtrTy)
485 return nullptr;
486 Type *DestTy = DestPtrTy->getElementType();
487
488 Constant *C = ConstantFoldLoadFromConstPtr(CE->getOperand(0), DL);
489 if (!C)
490 return nullptr;
491
492 do {
493 Type *SrcTy = C->getType();
494
495 // If the type sizes are the same and a cast is legal, just directly
496 // cast the constant.
497 if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
498 Instruction::CastOps Cast = Instruction::BitCast;
499 // If we are going from a pointer to int or vice versa, we spell the cast
500 // differently.
501 if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
502 Cast = Instruction::IntToPtr;
503 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
504 Cast = Instruction::PtrToInt;
505
506 if (CastInst::castIsValid(Cast, C, DestTy))
507 return ConstantExpr::getCast(Cast, C, DestTy);
508 }
509
510 // If this isn't an aggregate type, there is nothing we can do to drill down
511 // and find a bitcastable constant.
512 if (!SrcTy->isAggregateType())
513 return nullptr;
514
515 // We're simulating a load through a pointer that was bitcast to point to
516 // a different type, so we can try to walk down through the initial
517 // elements of an aggregate to see if some part of th e aggregate is
518 // castable to implement the "load" semantic model.
519 C = C->getAggregateElement(0u);
520 } while (C);
521
522 return nullptr;
523 }
524
525 /// Return the value that a load from C would produce if it is constant and
526 /// determinable. If this is not determinable, return null.
ConstantFoldLoadFromConstPtr(Constant * C,const DataLayout & DL)527 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
528 const DataLayout &DL) {
529 // First, try the easy cases:
530 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
531 if (GV->isConstant() && GV->hasDefinitiveInitializer())
532 return GV->getInitializer();
533
534 if (auto *GA = dyn_cast<GlobalAlias>(C))
535 if (GA->getAliasee() && !GA->mayBeOverridden())
536 return ConstantFoldLoadFromConstPtr(GA->getAliasee(), DL);
537
538 // If the loaded value isn't a constant expr, we can't handle it.
539 ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
540 if (!CE)
541 return nullptr;
542
543 if (CE->getOpcode() == Instruction::GetElementPtr) {
544 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
545 if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
546 if (Constant *V =
547 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
548 return V;
549 }
550 }
551 }
552
553 if (CE->getOpcode() == Instruction::BitCast)
554 if (Constant *LoadedC = ConstantFoldLoadThroughBitcast(CE, DL))
555 return LoadedC;
556
557 // Instead of loading constant c string, use corresponding integer value
558 // directly if string length is small enough.
559 StringRef Str;
560 if (getConstantStringInfo(CE, Str) && !Str.empty()) {
561 unsigned StrLen = Str.size();
562 Type *Ty = cast<PointerType>(CE->getType())->getElementType();
563 unsigned NumBits = Ty->getPrimitiveSizeInBits();
564 // Replace load with immediate integer if the result is an integer or fp
565 // value.
566 if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
567 (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
568 APInt StrVal(NumBits, 0);
569 APInt SingleChar(NumBits, 0);
570 if (DL.isLittleEndian()) {
571 for (signed i = StrLen-1; i >= 0; i--) {
572 SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
573 StrVal = (StrVal << 8) | SingleChar;
574 }
575 } else {
576 for (unsigned i = 0; i < StrLen; i++) {
577 SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
578 StrVal = (StrVal << 8) | SingleChar;
579 }
580 // Append NULL at the end.
581 SingleChar = 0;
582 StrVal = (StrVal << 8) | SingleChar;
583 }
584
585 Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
586 if (Ty->isFloatingPointTy())
587 Res = ConstantExpr::getBitCast(Res, Ty);
588 return Res;
589 }
590 }
591
592 // If this load comes from anywhere in a constant global, and if the global
593 // is all undef or zero, we know what it loads.
594 if (GlobalVariable *GV =
595 dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
596 if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
597 Type *ResTy = cast<PointerType>(C->getType())->getElementType();
598 if (GV->getInitializer()->isNullValue())
599 return Constant::getNullValue(ResTy);
600 if (isa<UndefValue>(GV->getInitializer()))
601 return UndefValue::get(ResTy);
602 }
603 }
604
605 // Try hard to fold loads from bitcasted strange and non-type-safe things.
606 return FoldReinterpretLoadFromConstPtr(CE, DL);
607 }
608
ConstantFoldLoadInst(const LoadInst * LI,const DataLayout & DL)609 static Constant *ConstantFoldLoadInst(const LoadInst *LI,
610 const DataLayout &DL) {
611 if (LI->isVolatile()) return nullptr;
612
613 if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
614 return ConstantFoldLoadFromConstPtr(C, DL);
615
616 return nullptr;
617 }
618
619 /// One of Op0/Op1 is a constant expression.
620 /// Attempt to symbolically evaluate the result of a binary operator merging
621 /// these together. If target data info is available, it is provided as DL,
622 /// otherwise DL is null.
SymbolicallyEvaluateBinop(unsigned Opc,Constant * Op0,Constant * Op1,const DataLayout & DL)623 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
624 Constant *Op1,
625 const DataLayout &DL) {
626 // SROA
627
628 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
629 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
630 // bits.
631
632 if (Opc == Instruction::And) {
633 unsigned BitWidth = DL.getTypeSizeInBits(Op0->getType()->getScalarType());
634 APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
635 APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
636 computeKnownBits(Op0, KnownZero0, KnownOne0, DL);
637 computeKnownBits(Op1, KnownZero1, KnownOne1, DL);
638 if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
639 // All the bits of Op0 that the 'and' could be masking are already zero.
640 return Op0;
641 }
642 if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
643 // All the bits of Op1 that the 'and' could be masking are already zero.
644 return Op1;
645 }
646
647 APInt KnownZero = KnownZero0 | KnownZero1;
648 APInt KnownOne = KnownOne0 & KnownOne1;
649 if ((KnownZero | KnownOne).isAllOnesValue()) {
650 return ConstantInt::get(Op0->getType(), KnownOne);
651 }
652 }
653
654 // If the constant expr is something like &A[123] - &A[4].f, fold this into a
655 // constant. This happens frequently when iterating over a global array.
656 if (Opc == Instruction::Sub) {
657 GlobalValue *GV1, *GV2;
658 APInt Offs1, Offs2;
659
660 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
661 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
662 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
663
664 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
665 // PtrToInt may change the bitwidth so we have convert to the right size
666 // first.
667 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
668 Offs2.zextOrTrunc(OpSize));
669 }
670 }
671
672 return nullptr;
673 }
674
675 /// If array indices are not pointer-sized integers, explicitly cast them so
676 /// that they aren't implicitly casted by the getelementptr.
CastGEPIndices(Type * SrcTy,ArrayRef<Constant * > Ops,Type * ResultTy,const DataLayout & DL,const TargetLibraryInfo * TLI)677 static Constant *CastGEPIndices(Type *SrcTy, ArrayRef<Constant *> Ops,
678 Type *ResultTy, const DataLayout &DL,
679 const TargetLibraryInfo *TLI) {
680 Type *IntPtrTy = DL.getIntPtrType(ResultTy);
681
682 bool Any = false;
683 SmallVector<Constant*, 32> NewIdxs;
684 for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
685 if ((i == 1 ||
686 !isa<StructType>(GetElementPtrInst::getIndexedType(
687 cast<PointerType>(Ops[0]->getType()->getScalarType())
688 ->getElementType(),
689 Ops.slice(1, i - 1)))) &&
690 Ops[i]->getType() != IntPtrTy) {
691 Any = true;
692 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
693 true,
694 IntPtrTy,
695 true),
696 Ops[i], IntPtrTy));
697 } else
698 NewIdxs.push_back(Ops[i]);
699 }
700
701 if (!Any)
702 return nullptr;
703
704 Constant *C = ConstantExpr::getGetElementPtr(SrcTy, Ops[0], NewIdxs);
705 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
706 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
707 C = Folded;
708 }
709
710 return C;
711 }
712
713 /// Strip the pointer casts, but preserve the address space information.
StripPtrCastKeepAS(Constant * Ptr)714 static Constant* StripPtrCastKeepAS(Constant* Ptr) {
715 assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
716 PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
717 Ptr = Ptr->stripPointerCasts();
718 PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
719
720 // Preserve the address space number of the pointer.
721 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
722 NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
723 OldPtrTy->getAddressSpace());
724 Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
725 }
726 return Ptr;
727 }
728
729 /// If we can symbolically evaluate the GEP constant expression, do so.
SymbolicallyEvaluateGEP(Type * SrcTy,ArrayRef<Constant * > Ops,Type * ResultTy,const DataLayout & DL,const TargetLibraryInfo * TLI)730 static Constant *SymbolicallyEvaluateGEP(Type *SrcTy, ArrayRef<Constant *> Ops,
731 Type *ResultTy, const DataLayout &DL,
732 const TargetLibraryInfo *TLI) {
733 Constant *Ptr = Ops[0];
734 if (!Ptr->getType()->getPointerElementType()->isSized() ||
735 !Ptr->getType()->isPointerTy())
736 return nullptr;
737
738 Type *IntPtrTy = DL.getIntPtrType(Ptr->getType());
739 Type *ResultElementTy = ResultTy->getPointerElementType();
740
741 // If this is a constant expr gep that is effectively computing an
742 // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
743 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
744 if (!isa<ConstantInt>(Ops[i])) {
745
746 // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
747 // "inttoptr (sub (ptrtoint Ptr), V)"
748 if (Ops.size() == 2 && ResultElementTy->isIntegerTy(8)) {
749 ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
750 assert((!CE || CE->getType() == IntPtrTy) &&
751 "CastGEPIndices didn't canonicalize index types!");
752 if (CE && CE->getOpcode() == Instruction::Sub &&
753 CE->getOperand(0)->isNullValue()) {
754 Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
755 Res = ConstantExpr::getSub(Res, CE->getOperand(1));
756 Res = ConstantExpr::getIntToPtr(Res, ResultTy);
757 if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
758 Res = ConstantFoldConstantExpression(ResCE, DL, TLI);
759 return Res;
760 }
761 }
762 return nullptr;
763 }
764
765 unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy);
766 APInt Offset =
767 APInt(BitWidth,
768 DL.getIndexedOffset(
769 Ptr->getType(),
770 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
771 Ptr = StripPtrCastKeepAS(Ptr);
772
773 // If this is a GEP of a GEP, fold it all into a single GEP.
774 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
775 SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
776
777 // Do not try the incorporate the sub-GEP if some index is not a number.
778 bool AllConstantInt = true;
779 for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
780 if (!isa<ConstantInt>(NestedOps[i])) {
781 AllConstantInt = false;
782 break;
783 }
784 if (!AllConstantInt)
785 break;
786
787 Ptr = cast<Constant>(GEP->getOperand(0));
788 Offset += APInt(BitWidth, DL.getIndexedOffset(Ptr->getType(), NestedOps));
789 Ptr = StripPtrCastKeepAS(Ptr);
790 }
791
792 // If the base value for this address is a literal integer value, fold the
793 // getelementptr to the resulting integer value casted to the pointer type.
794 APInt BasePtr(BitWidth, 0);
795 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
796 if (CE->getOpcode() == Instruction::IntToPtr) {
797 if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
798 BasePtr = Base->getValue().zextOrTrunc(BitWidth);
799 }
800 }
801
802 if (Ptr->isNullValue() || BasePtr != 0) {
803 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
804 return ConstantExpr::getIntToPtr(C, ResultTy);
805 }
806
807 // Otherwise form a regular getelementptr. Recompute the indices so that
808 // we eliminate over-indexing of the notional static type array bounds.
809 // This makes it easy to determine if the getelementptr is "inbounds".
810 // Also, this helps GlobalOpt do SROA on GlobalVariables.
811 Type *Ty = Ptr->getType();
812 assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
813 SmallVector<Constant *, 32> NewIdxs;
814
815 do {
816 if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
817 if (ATy->isPointerTy()) {
818 // The only pointer indexing we'll do is on the first index of the GEP.
819 if (!NewIdxs.empty())
820 break;
821
822 // Only handle pointers to sized types, not pointers to functions.
823 if (!ATy->getElementType()->isSized())
824 return nullptr;
825 }
826
827 // Determine which element of the array the offset points into.
828 APInt ElemSize(BitWidth, DL.getTypeAllocSize(ATy->getElementType()));
829 if (ElemSize == 0)
830 // The element size is 0. This may be [0 x Ty]*, so just use a zero
831 // index for this level and proceed to the next level to see if it can
832 // accommodate the offset.
833 NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
834 else {
835 // The element size is non-zero divide the offset by the element
836 // size (rounding down), to compute the index at this level.
837 APInt NewIdx = Offset.udiv(ElemSize);
838 Offset -= NewIdx * ElemSize;
839 NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
840 }
841 Ty = ATy->getElementType();
842 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
843 // If we end up with an offset that isn't valid for this struct type, we
844 // can't re-form this GEP in a regular form, so bail out. The pointer
845 // operand likely went through casts that are necessary to make the GEP
846 // sensible.
847 const StructLayout &SL = *DL.getStructLayout(STy);
848 if (Offset.uge(SL.getSizeInBytes()))
849 break;
850
851 // Determine which field of the struct the offset points into. The
852 // getZExtValue is fine as we've already ensured that the offset is
853 // within the range representable by the StructLayout API.
854 unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
855 NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
856 ElIdx));
857 Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
858 Ty = STy->getTypeAtIndex(ElIdx);
859 } else {
860 // We've reached some non-indexable type.
861 break;
862 }
863 } while (Ty != ResultElementTy);
864
865 // If we haven't used up the entire offset by descending the static
866 // type, then the offset is pointing into the middle of an indivisible
867 // member, so we can't simplify it.
868 if (Offset != 0)
869 return nullptr;
870
871 // Create a GEP.
872 Constant *C = ConstantExpr::getGetElementPtr(SrcTy, Ptr, NewIdxs);
873 assert(C->getType()->getPointerElementType() == Ty &&
874 "Computed GetElementPtr has unexpected type!");
875
876 // If we ended up indexing a member with a type that doesn't match
877 // the type of what the original indices indexed, add a cast.
878 if (Ty != ResultElementTy)
879 C = FoldBitCast(C, ResultTy, DL);
880
881 return C;
882 }
883
884
885
886 //===----------------------------------------------------------------------===//
887 // Constant Folding public APIs
888 //===----------------------------------------------------------------------===//
889
890 /// Try to constant fold the specified instruction.
891 /// If successful, the constant result is returned, if not, null is returned.
892 /// Note that this fails if not all of the operands are constant. Otherwise,
893 /// this function can only fail when attempting to fold instructions like loads
894 /// and stores, which have no constant expression form.
ConstantFoldInstruction(Instruction * I,const DataLayout & DL,const TargetLibraryInfo * TLI)895 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
896 const TargetLibraryInfo *TLI) {
897 // Handle PHI nodes quickly here...
898 if (PHINode *PN = dyn_cast<PHINode>(I)) {
899 Constant *CommonValue = nullptr;
900
901 for (Value *Incoming : PN->incoming_values()) {
902 // If the incoming value is undef then skip it. Note that while we could
903 // skip the value if it is equal to the phi node itself we choose not to
904 // because that would break the rule that constant folding only applies if
905 // all operands are constants.
906 if (isa<UndefValue>(Incoming))
907 continue;
908 // If the incoming value is not a constant, then give up.
909 Constant *C = dyn_cast<Constant>(Incoming);
910 if (!C)
911 return nullptr;
912 // Fold the PHI's operands.
913 if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
914 C = ConstantFoldConstantExpression(NewC, DL, TLI);
915 // If the incoming value is a different constant to
916 // the one we saw previously, then give up.
917 if (CommonValue && C != CommonValue)
918 return nullptr;
919 CommonValue = C;
920 }
921
922
923 // If we reach here, all incoming values are the same constant or undef.
924 return CommonValue ? CommonValue : UndefValue::get(PN->getType());
925 }
926
927 // Scan the operand list, checking to see if they are all constants, if so,
928 // hand off to ConstantFoldInstOperands.
929 SmallVector<Constant*, 8> Ops;
930 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
931 Constant *Op = dyn_cast<Constant>(*i);
932 if (!Op)
933 return nullptr; // All operands not constant!
934
935 // Fold the Instruction's operands.
936 if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
937 Op = ConstantFoldConstantExpression(NewCE, DL, TLI);
938
939 Ops.push_back(Op);
940 }
941
942 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
943 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
944 DL, TLI);
945
946 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
947 return ConstantFoldLoadInst(LI, DL);
948
949 if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I)) {
950 return ConstantExpr::getInsertValue(
951 cast<Constant>(IVI->getAggregateOperand()),
952 cast<Constant>(IVI->getInsertedValueOperand()),
953 IVI->getIndices());
954 }
955
956 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I)) {
957 return ConstantExpr::getExtractValue(
958 cast<Constant>(EVI->getAggregateOperand()),
959 EVI->getIndices());
960 }
961
962 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, DL, TLI);
963 }
964
965 static Constant *
ConstantFoldConstantExpressionImpl(const ConstantExpr * CE,const DataLayout & DL,const TargetLibraryInfo * TLI,SmallPtrSetImpl<ConstantExpr * > & FoldedOps)966 ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout &DL,
967 const TargetLibraryInfo *TLI,
968 SmallPtrSetImpl<ConstantExpr *> &FoldedOps) {
969 SmallVector<Constant *, 8> Ops;
970 for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e;
971 ++i) {
972 Constant *NewC = cast<Constant>(*i);
973 // Recursively fold the ConstantExpr's operands. If we have already folded
974 // a ConstantExpr, we don't have to process it again.
975 if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) {
976 if (FoldedOps.insert(NewCE).second)
977 NewC = ConstantFoldConstantExpressionImpl(NewCE, DL, TLI, FoldedOps);
978 }
979 Ops.push_back(NewC);
980 }
981
982 if (CE->isCompare())
983 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
984 DL, TLI);
985 return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, DL, TLI);
986 }
987
988 /// Attempt to fold the constant expression
989 /// using the specified DataLayout. If successful, the constant result is
990 /// result is returned, if not, null is returned.
ConstantFoldConstantExpression(const ConstantExpr * CE,const DataLayout & DL,const TargetLibraryInfo * TLI)991 Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
992 const DataLayout &DL,
993 const TargetLibraryInfo *TLI) {
994 SmallPtrSet<ConstantExpr *, 4> FoldedOps;
995 return ConstantFoldConstantExpressionImpl(CE, DL, TLI, FoldedOps);
996 }
997
998 /// Attempt to constant fold an instruction with the
999 /// specified opcode and operands. If successful, the constant result is
1000 /// returned, if not, null is returned. Note that this function can fail when
1001 /// attempting to fold instructions like loads and stores, which have no
1002 /// constant expression form.
1003 ///
1004 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
1005 /// information, due to only being passed an opcode and operands. Constant
1006 /// folding using this function strips this information.
1007 ///
ConstantFoldInstOperands(unsigned Opcode,Type * DestTy,ArrayRef<Constant * > Ops,const DataLayout & DL,const TargetLibraryInfo * TLI)1008 Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
1009 ArrayRef<Constant *> Ops,
1010 const DataLayout &DL,
1011 const TargetLibraryInfo *TLI) {
1012 // Handle easy binops first.
1013 if (Instruction::isBinaryOp(Opcode)) {
1014 if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) {
1015 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], DL))
1016 return C;
1017 }
1018
1019 return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
1020 }
1021
1022 switch (Opcode) {
1023 default: return nullptr;
1024 case Instruction::ICmp:
1025 case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1026 case Instruction::Call:
1027 if (Function *F = dyn_cast<Function>(Ops.back()))
1028 if (canConstantFoldCallTo(F))
1029 return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
1030 return nullptr;
1031 case Instruction::PtrToInt:
1032 // If the input is a inttoptr, eliminate the pair. This requires knowing
1033 // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1034 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
1035 if (CE->getOpcode() == Instruction::IntToPtr) {
1036 Constant *Input = CE->getOperand(0);
1037 unsigned InWidth = Input->getType()->getScalarSizeInBits();
1038 unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
1039 if (PtrWidth < InWidth) {
1040 Constant *Mask =
1041 ConstantInt::get(CE->getContext(),
1042 APInt::getLowBitsSet(InWidth, PtrWidth));
1043 Input = ConstantExpr::getAnd(Input, Mask);
1044 }
1045 // Do a zext or trunc to get to the dest size.
1046 return ConstantExpr::getIntegerCast(Input, DestTy, false);
1047 }
1048 }
1049 return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1050 case Instruction::IntToPtr:
1051 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1052 // the int size is >= the ptr size and the address spaces are the same.
1053 // This requires knowing the width of a pointer, so it can't be done in
1054 // ConstantExpr::getCast.
1055 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
1056 if (CE->getOpcode() == Instruction::PtrToInt) {
1057 Constant *SrcPtr = CE->getOperand(0);
1058 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1059 unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1060
1061 if (MidIntSize >= SrcPtrSize) {
1062 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1063 if (SrcAS == DestTy->getPointerAddressSpace())
1064 return FoldBitCast(CE->getOperand(0), DestTy, DL);
1065 }
1066 }
1067 }
1068
1069 return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1070 case Instruction::Trunc:
1071 case Instruction::ZExt:
1072 case Instruction::SExt:
1073 case Instruction::FPTrunc:
1074 case Instruction::FPExt:
1075 case Instruction::UIToFP:
1076 case Instruction::SIToFP:
1077 case Instruction::FPToUI:
1078 case Instruction::FPToSI:
1079 case Instruction::AddrSpaceCast:
1080 return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1081 case Instruction::BitCast:
1082 return FoldBitCast(Ops[0], DestTy, DL);
1083 case Instruction::Select:
1084 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1085 case Instruction::ExtractElement:
1086 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1087 case Instruction::InsertElement:
1088 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1089 case Instruction::ShuffleVector:
1090 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1091 case Instruction::GetElementPtr: {
1092 Type *SrcTy = nullptr;
1093 if (Constant *C = CastGEPIndices(SrcTy, Ops, DestTy, DL, TLI))
1094 return C;
1095 if (Constant *C = SymbolicallyEvaluateGEP(SrcTy, Ops, DestTy, DL, TLI))
1096 return C;
1097
1098 return ConstantExpr::getGetElementPtr(SrcTy, Ops[0], Ops.slice(1));
1099 }
1100 }
1101 }
1102
1103 /// Attempt to constant fold a compare
1104 /// instruction (icmp/fcmp) with the specified operands. If it fails, it
1105 /// returns a constant expression of the specified operands.
ConstantFoldCompareInstOperands(unsigned Predicate,Constant * Ops0,Constant * Ops1,const DataLayout & DL,const TargetLibraryInfo * TLI)1106 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1107 Constant *Ops0, Constant *Ops1,
1108 const DataLayout &DL,
1109 const TargetLibraryInfo *TLI) {
1110 // fold: icmp (inttoptr x), null -> icmp x, 0
1111 // fold: icmp (ptrtoint x), 0 -> icmp x, null
1112 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1113 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1114 //
1115 // FIXME: The following comment is out of data and the DataLayout is here now.
1116 // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1117 // around to know if bit truncation is happening.
1118 if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1119 if (Ops1->isNullValue()) {
1120 if (CE0->getOpcode() == Instruction::IntToPtr) {
1121 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1122 // Convert the integer value to the right size to ensure we get the
1123 // proper extension or truncation.
1124 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1125 IntPtrTy, false);
1126 Constant *Null = Constant::getNullValue(C->getType());
1127 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1128 }
1129
1130 // Only do this transformation if the int is intptrty in size, otherwise
1131 // there is a truncation or extension that we aren't modeling.
1132 if (CE0->getOpcode() == Instruction::PtrToInt) {
1133 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1134 if (CE0->getType() == IntPtrTy) {
1135 Constant *C = CE0->getOperand(0);
1136 Constant *Null = Constant::getNullValue(C->getType());
1137 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1138 }
1139 }
1140 }
1141
1142 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1143 if (CE0->getOpcode() == CE1->getOpcode()) {
1144 if (CE0->getOpcode() == Instruction::IntToPtr) {
1145 Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1146
1147 // Convert the integer value to the right size to ensure we get the
1148 // proper extension or truncation.
1149 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1150 IntPtrTy, false);
1151 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1152 IntPtrTy, false);
1153 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1154 }
1155
1156 // Only do this transformation if the int is intptrty in size, otherwise
1157 // there is a truncation or extension that we aren't modeling.
1158 if (CE0->getOpcode() == Instruction::PtrToInt) {
1159 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1160 if (CE0->getType() == IntPtrTy &&
1161 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1162 return ConstantFoldCompareInstOperands(
1163 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1164 }
1165 }
1166 }
1167 }
1168
1169 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1170 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1171 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1172 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1173 Constant *LHS = ConstantFoldCompareInstOperands(
1174 Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1175 Constant *RHS = ConstantFoldCompareInstOperands(
1176 Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1177 unsigned OpC =
1178 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1179 Constant *Ops[] = { LHS, RHS };
1180 return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, DL, TLI);
1181 }
1182 }
1183
1184 return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1185 }
1186
1187
1188 /// Given a constant and a getelementptr constantexpr, return the constant value
1189 /// being addressed by the constant expression, or null if something is funny
1190 /// and we can't decide.
ConstantFoldLoadThroughGEPConstantExpr(Constant * C,ConstantExpr * CE)1191 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1192 ConstantExpr *CE) {
1193 if (!CE->getOperand(1)->isNullValue())
1194 return nullptr; // Do not allow stepping over the value!
1195
1196 // Loop over all of the operands, tracking down which value we are
1197 // addressing.
1198 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1199 C = C->getAggregateElement(CE->getOperand(i));
1200 if (!C)
1201 return nullptr;
1202 }
1203 return C;
1204 }
1205
1206 /// Given a constant and getelementptr indices (with an *implied* zero pointer
1207 /// index that is not in the list), return the constant value being addressed by
1208 /// a virtual load, or null if something is funny and we can't decide.
ConstantFoldLoadThroughGEPIndices(Constant * C,ArrayRef<Constant * > Indices)1209 Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1210 ArrayRef<Constant*> Indices) {
1211 // Loop over all of the operands, tracking down which value we are
1212 // addressing.
1213 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1214 C = C->getAggregateElement(Indices[i]);
1215 if (!C)
1216 return nullptr;
1217 }
1218 return C;
1219 }
1220
1221
1222 //===----------------------------------------------------------------------===//
1223 // Constant Folding for Calls
1224 //
1225
1226 /// Return true if it's even possible to fold a call to the specified function.
canConstantFoldCallTo(const Function * F)1227 bool llvm::canConstantFoldCallTo(const Function *F) {
1228 switch (F->getIntrinsicID()) {
1229 case Intrinsic::fabs:
1230 case Intrinsic::minnum:
1231 case Intrinsic::maxnum:
1232 case Intrinsic::log:
1233 case Intrinsic::log2:
1234 case Intrinsic::log10:
1235 case Intrinsic::exp:
1236 case Intrinsic::exp2:
1237 case Intrinsic::floor:
1238 case Intrinsic::ceil:
1239 case Intrinsic::sqrt:
1240 case Intrinsic::sin:
1241 case Intrinsic::cos:
1242 case Intrinsic::trunc:
1243 case Intrinsic::rint:
1244 case Intrinsic::nearbyint:
1245 case Intrinsic::pow:
1246 case Intrinsic::powi:
1247 case Intrinsic::bswap:
1248 case Intrinsic::ctpop:
1249 case Intrinsic::ctlz:
1250 case Intrinsic::cttz:
1251 case Intrinsic::fma:
1252 case Intrinsic::fmuladd:
1253 case Intrinsic::copysign:
1254 case Intrinsic::round:
1255 case Intrinsic::sadd_with_overflow:
1256 case Intrinsic::uadd_with_overflow:
1257 case Intrinsic::ssub_with_overflow:
1258 case Intrinsic::usub_with_overflow:
1259 case Intrinsic::smul_with_overflow:
1260 case Intrinsic::umul_with_overflow:
1261 case Intrinsic::convert_from_fp16:
1262 case Intrinsic::convert_to_fp16:
1263 case Intrinsic::x86_sse_cvtss2si:
1264 case Intrinsic::x86_sse_cvtss2si64:
1265 case Intrinsic::x86_sse_cvttss2si:
1266 case Intrinsic::x86_sse_cvttss2si64:
1267 case Intrinsic::x86_sse2_cvtsd2si:
1268 case Intrinsic::x86_sse2_cvtsd2si64:
1269 case Intrinsic::x86_sse2_cvttsd2si:
1270 case Intrinsic::x86_sse2_cvttsd2si64:
1271 return true;
1272 default:
1273 return false;
1274 case 0: break;
1275 }
1276
1277 if (!F->hasName())
1278 return false;
1279 StringRef Name = F->getName();
1280
1281 // In these cases, the check of the length is required. We don't want to
1282 // return true for a name like "cos\0blah" which strcmp would return equal to
1283 // "cos", but has length 8.
1284 switch (Name[0]) {
1285 default:
1286 return false;
1287 case 'a':
1288 return Name == "acos" || Name == "asin" || Name == "atan" ||
1289 Name == "atan2" || Name == "acosf" || Name == "asinf" ||
1290 Name == "atanf" || Name == "atan2f";
1291 case 'c':
1292 return Name == "ceil" || Name == "cos" || Name == "cosh" ||
1293 Name == "ceilf" || Name == "cosf" || Name == "coshf";
1294 case 'e':
1295 return Name == "exp" || Name == "exp2" || Name == "expf" || Name == "exp2f";
1296 case 'f':
1297 return Name == "fabs" || Name == "floor" || Name == "fmod" ||
1298 Name == "fabsf" || Name == "floorf" || Name == "fmodf";
1299 case 'l':
1300 return Name == "log" || Name == "log10" || Name == "logf" ||
1301 Name == "log10f";
1302 case 'p':
1303 return Name == "pow" || Name == "powf";
1304 case 's':
1305 return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1306 Name == "sinf" || Name == "sinhf" || Name == "sqrtf";
1307 case 't':
1308 return Name == "tan" || Name == "tanh" || Name == "tanf" || Name == "tanhf";
1309 }
1310 }
1311
GetConstantFoldFPValue(double V,Type * Ty)1312 static Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1313 if (Ty->isHalfTy()) {
1314 APFloat APF(V);
1315 bool unused;
1316 APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
1317 return ConstantFP::get(Ty->getContext(), APF);
1318 }
1319 if (Ty->isFloatTy())
1320 return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1321 if (Ty->isDoubleTy())
1322 return ConstantFP::get(Ty->getContext(), APFloat(V));
1323 llvm_unreachable("Can only constant fold half/float/double");
1324
1325 }
1326
1327 namespace {
1328 /// Clear the floating-point exception state.
llvm_fenv_clearexcept()1329 static inline void llvm_fenv_clearexcept() {
1330 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1331 feclearexcept(FE_ALL_EXCEPT);
1332 #endif
1333 errno = 0;
1334 }
1335
1336 /// Test if a floating-point exception was raised.
llvm_fenv_testexcept()1337 static inline bool llvm_fenv_testexcept() {
1338 int errno_val = errno;
1339 if (errno_val == ERANGE || errno_val == EDOM)
1340 return true;
1341 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1342 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1343 return true;
1344 #endif
1345 return false;
1346 }
1347 } // End namespace
1348
ConstantFoldFP(double (* NativeFP)(double),double V,Type * Ty)1349 static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1350 Type *Ty) {
1351 llvm_fenv_clearexcept();
1352 V = NativeFP(V);
1353 if (llvm_fenv_testexcept()) {
1354 llvm_fenv_clearexcept();
1355 return nullptr;
1356 }
1357
1358 return GetConstantFoldFPValue(V, Ty);
1359 }
1360
ConstantFoldBinaryFP(double (* NativeFP)(double,double),double V,double W,Type * Ty)1361 static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1362 double V, double W, Type *Ty) {
1363 llvm_fenv_clearexcept();
1364 V = NativeFP(V, W);
1365 if (llvm_fenv_testexcept()) {
1366 llvm_fenv_clearexcept();
1367 return nullptr;
1368 }
1369
1370 return GetConstantFoldFPValue(V, Ty);
1371 }
1372
1373 /// Attempt to fold an SSE floating point to integer conversion of a constant
1374 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1375 /// used (toward nearest, ties to even). This matches the behavior of the
1376 /// non-truncating SSE instructions in the default rounding mode. The desired
1377 /// integer type Ty is used to select how many bits are available for the
1378 /// result. Returns null if the conversion cannot be performed, otherwise
1379 /// returns the Constant value resulting from the conversion.
ConstantFoldConvertToInt(const APFloat & Val,bool roundTowardZero,Type * Ty)1380 static Constant *ConstantFoldConvertToInt(const APFloat &Val,
1381 bool roundTowardZero, Type *Ty) {
1382 // All of these conversion intrinsics form an integer of at most 64bits.
1383 unsigned ResultWidth = Ty->getIntegerBitWidth();
1384 assert(ResultWidth <= 64 &&
1385 "Can only constant fold conversions to 64 and 32 bit ints");
1386
1387 uint64_t UIntVal;
1388 bool isExact = false;
1389 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1390 : APFloat::rmNearestTiesToEven;
1391 APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1392 /*isSigned=*/true, mode,
1393 &isExact);
1394 if (status != APFloat::opOK && status != APFloat::opInexact)
1395 return nullptr;
1396 return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1397 }
1398
getValueAsDouble(ConstantFP * Op)1399 static double getValueAsDouble(ConstantFP *Op) {
1400 Type *Ty = Op->getType();
1401
1402 if (Ty->isFloatTy())
1403 return Op->getValueAPF().convertToFloat();
1404
1405 if (Ty->isDoubleTy())
1406 return Op->getValueAPF().convertToDouble();
1407
1408 bool unused;
1409 APFloat APF = Op->getValueAPF();
1410 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1411 return APF.convertToDouble();
1412 }
1413
ConstantFoldScalarCall(StringRef Name,unsigned IntrinsicID,Type * Ty,ArrayRef<Constant * > Operands,const TargetLibraryInfo * TLI)1414 static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
1415 Type *Ty, ArrayRef<Constant *> Operands,
1416 const TargetLibraryInfo *TLI) {
1417 if (Operands.size() == 1) {
1418 if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1419 if (IntrinsicID == Intrinsic::convert_to_fp16) {
1420 APFloat Val(Op->getValueAPF());
1421
1422 bool lost = false;
1423 Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1424
1425 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1426 }
1427
1428 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1429 return nullptr;
1430
1431 if (IntrinsicID == Intrinsic::round) {
1432 APFloat V = Op->getValueAPF();
1433 V.roundToIntegral(APFloat::rmNearestTiesToAway);
1434 return ConstantFP::get(Ty->getContext(), V);
1435 }
1436
1437 if (IntrinsicID == Intrinsic::floor) {
1438 APFloat V = Op->getValueAPF();
1439 V.roundToIntegral(APFloat::rmTowardNegative);
1440 return ConstantFP::get(Ty->getContext(), V);
1441 }
1442
1443 if (IntrinsicID == Intrinsic::ceil) {
1444 APFloat V = Op->getValueAPF();
1445 V.roundToIntegral(APFloat::rmTowardPositive);
1446 return ConstantFP::get(Ty->getContext(), V);
1447 }
1448
1449 if (IntrinsicID == Intrinsic::trunc) {
1450 APFloat V = Op->getValueAPF();
1451 V.roundToIntegral(APFloat::rmTowardZero);
1452 return ConstantFP::get(Ty->getContext(), V);
1453 }
1454
1455 if (IntrinsicID == Intrinsic::rint) {
1456 APFloat V = Op->getValueAPF();
1457 V.roundToIntegral(APFloat::rmNearestTiesToEven);
1458 return ConstantFP::get(Ty->getContext(), V);
1459 }
1460
1461 if (IntrinsicID == Intrinsic::nearbyint) {
1462 APFloat V = Op->getValueAPF();
1463 V.roundToIntegral(APFloat::rmNearestTiesToEven);
1464 return ConstantFP::get(Ty->getContext(), V);
1465 }
1466
1467 /// We only fold functions with finite arguments. Folding NaN and inf is
1468 /// likely to be aborted with an exception anyway, and some host libms
1469 /// have known errors raising exceptions.
1470 if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1471 return nullptr;
1472
1473 /// Currently APFloat versions of these functions do not exist, so we use
1474 /// the host native double versions. Float versions are not called
1475 /// directly but for all these it is true (float)(f((double)arg)) ==
1476 /// f(arg). Long double not supported yet.
1477 double V = getValueAsDouble(Op);
1478
1479 switch (IntrinsicID) {
1480 default: break;
1481 case Intrinsic::fabs:
1482 return ConstantFoldFP(fabs, V, Ty);
1483 case Intrinsic::log2:
1484 return ConstantFoldFP(Log2, V, Ty);
1485 case Intrinsic::log:
1486 return ConstantFoldFP(log, V, Ty);
1487 case Intrinsic::log10:
1488 return ConstantFoldFP(log10, V, Ty);
1489 case Intrinsic::exp:
1490 return ConstantFoldFP(exp, V, Ty);
1491 case Intrinsic::exp2:
1492 return ConstantFoldFP(exp2, V, Ty);
1493 case Intrinsic::sin:
1494 return ConstantFoldFP(sin, V, Ty);
1495 case Intrinsic::cos:
1496 return ConstantFoldFP(cos, V, Ty);
1497 }
1498
1499 if (!TLI)
1500 return nullptr;
1501
1502 switch (Name[0]) {
1503 case 'a':
1504 if ((Name == "acos" && TLI->has(LibFunc::acos)) ||
1505 (Name == "acosf" && TLI->has(LibFunc::acosf)))
1506 return ConstantFoldFP(acos, V, Ty);
1507 else if ((Name == "asin" && TLI->has(LibFunc::asin)) ||
1508 (Name == "asinf" && TLI->has(LibFunc::asinf)))
1509 return ConstantFoldFP(asin, V, Ty);
1510 else if ((Name == "atan" && TLI->has(LibFunc::atan)) ||
1511 (Name == "atanf" && TLI->has(LibFunc::atanf)))
1512 return ConstantFoldFP(atan, V, Ty);
1513 break;
1514 case 'c':
1515 if ((Name == "ceil" && TLI->has(LibFunc::ceil)) ||
1516 (Name == "ceilf" && TLI->has(LibFunc::ceilf)))
1517 return ConstantFoldFP(ceil, V, Ty);
1518 else if ((Name == "cos" && TLI->has(LibFunc::cos)) ||
1519 (Name == "cosf" && TLI->has(LibFunc::cosf)))
1520 return ConstantFoldFP(cos, V, Ty);
1521 else if ((Name == "cosh" && TLI->has(LibFunc::cosh)) ||
1522 (Name == "coshf" && TLI->has(LibFunc::coshf)))
1523 return ConstantFoldFP(cosh, V, Ty);
1524 break;
1525 case 'e':
1526 if ((Name == "exp" && TLI->has(LibFunc::exp)) ||
1527 (Name == "expf" && TLI->has(LibFunc::expf)))
1528 return ConstantFoldFP(exp, V, Ty);
1529 if ((Name == "exp2" && TLI->has(LibFunc::exp2)) ||
1530 (Name == "exp2f" && TLI->has(LibFunc::exp2f)))
1531 // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1532 // C99 library.
1533 return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1534 break;
1535 case 'f':
1536 if ((Name == "fabs" && TLI->has(LibFunc::fabs)) ||
1537 (Name == "fabsf" && TLI->has(LibFunc::fabsf)))
1538 return ConstantFoldFP(fabs, V, Ty);
1539 else if ((Name == "floor" && TLI->has(LibFunc::floor)) ||
1540 (Name == "floorf" && TLI->has(LibFunc::floorf)))
1541 return ConstantFoldFP(floor, V, Ty);
1542 break;
1543 case 'l':
1544 if ((Name == "log" && V > 0 && TLI->has(LibFunc::log)) ||
1545 (Name == "logf" && V > 0 && TLI->has(LibFunc::logf)))
1546 return ConstantFoldFP(log, V, Ty);
1547 else if ((Name == "log10" && V > 0 && TLI->has(LibFunc::log10)) ||
1548 (Name == "log10f" && V > 0 && TLI->has(LibFunc::log10f)))
1549 return ConstantFoldFP(log10, V, Ty);
1550 else if (IntrinsicID == Intrinsic::sqrt &&
1551 (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
1552 if (V >= -0.0)
1553 return ConstantFoldFP(sqrt, V, Ty);
1554 else {
1555 // Unlike the sqrt definitions in C/C++, POSIX, and IEEE-754 - which
1556 // all guarantee or favor returning NaN - the square root of a
1557 // negative number is not defined for the LLVM sqrt intrinsic.
1558 // This is because the intrinsic should only be emitted in place of
1559 // libm's sqrt function when using "no-nans-fp-math".
1560 return UndefValue::get(Ty);
1561 }
1562 }
1563 break;
1564 case 's':
1565 if ((Name == "sin" && TLI->has(LibFunc::sin)) ||
1566 (Name == "sinf" && TLI->has(LibFunc::sinf)))
1567 return ConstantFoldFP(sin, V, Ty);
1568 else if ((Name == "sinh" && TLI->has(LibFunc::sinh)) ||
1569 (Name == "sinhf" && TLI->has(LibFunc::sinhf)))
1570 return ConstantFoldFP(sinh, V, Ty);
1571 else if ((Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt)) ||
1572 (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf)))
1573 return ConstantFoldFP(sqrt, V, Ty);
1574 break;
1575 case 't':
1576 if ((Name == "tan" && TLI->has(LibFunc::tan)) ||
1577 (Name == "tanf" && TLI->has(LibFunc::tanf)))
1578 return ConstantFoldFP(tan, V, Ty);
1579 else if ((Name == "tanh" && TLI->has(LibFunc::tanh)) ||
1580 (Name == "tanhf" && TLI->has(LibFunc::tanhf)))
1581 return ConstantFoldFP(tanh, V, Ty);
1582 break;
1583 default:
1584 break;
1585 }
1586 return nullptr;
1587 }
1588
1589 if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1590 switch (IntrinsicID) {
1591 case Intrinsic::bswap:
1592 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
1593 case Intrinsic::ctpop:
1594 return ConstantInt::get(Ty, Op->getValue().countPopulation());
1595 case Intrinsic::convert_from_fp16: {
1596 APFloat Val(APFloat::IEEEhalf, Op->getValue());
1597
1598 bool lost = false;
1599 APFloat::opStatus status = Val.convert(
1600 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
1601
1602 // Conversion is always precise.
1603 (void)status;
1604 assert(status == APFloat::opOK && !lost &&
1605 "Precision lost during fp16 constfolding");
1606
1607 return ConstantFP::get(Ty->getContext(), Val);
1608 }
1609 default:
1610 return nullptr;
1611 }
1612 }
1613
1614 // Support ConstantVector in case we have an Undef in the top.
1615 if (isa<ConstantVector>(Operands[0]) ||
1616 isa<ConstantDataVector>(Operands[0])) {
1617 Constant *Op = cast<Constant>(Operands[0]);
1618 switch (IntrinsicID) {
1619 default: break;
1620 case Intrinsic::x86_sse_cvtss2si:
1621 case Intrinsic::x86_sse_cvtss2si64:
1622 case Intrinsic::x86_sse2_cvtsd2si:
1623 case Intrinsic::x86_sse2_cvtsd2si64:
1624 if (ConstantFP *FPOp =
1625 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1626 return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1627 /*roundTowardZero=*/false, Ty);
1628 case Intrinsic::x86_sse_cvttss2si:
1629 case Intrinsic::x86_sse_cvttss2si64:
1630 case Intrinsic::x86_sse2_cvttsd2si:
1631 case Intrinsic::x86_sse2_cvttsd2si64:
1632 if (ConstantFP *FPOp =
1633 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1634 return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1635 /*roundTowardZero=*/true, Ty);
1636 }
1637 }
1638
1639 if (isa<UndefValue>(Operands[0])) {
1640 if (IntrinsicID == Intrinsic::bswap)
1641 return Operands[0];
1642 return nullptr;
1643 }
1644
1645 return nullptr;
1646 }
1647
1648 if (Operands.size() == 2) {
1649 if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1650 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1651 return nullptr;
1652 double Op1V = getValueAsDouble(Op1);
1653
1654 if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1655 if (Op2->getType() != Op1->getType())
1656 return nullptr;
1657
1658 double Op2V = getValueAsDouble(Op2);
1659 if (IntrinsicID == Intrinsic::pow) {
1660 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1661 }
1662 if (IntrinsicID == Intrinsic::copysign) {
1663 APFloat V1 = Op1->getValueAPF();
1664 APFloat V2 = Op2->getValueAPF();
1665 V1.copySign(V2);
1666 return ConstantFP::get(Ty->getContext(), V1);
1667 }
1668
1669 if (IntrinsicID == Intrinsic::minnum) {
1670 const APFloat &C1 = Op1->getValueAPF();
1671 const APFloat &C2 = Op2->getValueAPF();
1672 return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
1673 }
1674
1675 if (IntrinsicID == Intrinsic::maxnum) {
1676 const APFloat &C1 = Op1->getValueAPF();
1677 const APFloat &C2 = Op2->getValueAPF();
1678 return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
1679 }
1680
1681 if (!TLI)
1682 return nullptr;
1683 if ((Name == "pow" && TLI->has(LibFunc::pow)) ||
1684 (Name == "powf" && TLI->has(LibFunc::powf)))
1685 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1686 if ((Name == "fmod" && TLI->has(LibFunc::fmod)) ||
1687 (Name == "fmodf" && TLI->has(LibFunc::fmodf)))
1688 return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1689 if ((Name == "atan2" && TLI->has(LibFunc::atan2)) ||
1690 (Name == "atan2f" && TLI->has(LibFunc::atan2f)))
1691 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1692 } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1693 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
1694 return ConstantFP::get(Ty->getContext(),
1695 APFloat((float)std::pow((float)Op1V,
1696 (int)Op2C->getZExtValue())));
1697 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
1698 return ConstantFP::get(Ty->getContext(),
1699 APFloat((float)std::pow((float)Op1V,
1700 (int)Op2C->getZExtValue())));
1701 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
1702 return ConstantFP::get(Ty->getContext(),
1703 APFloat((double)std::pow((double)Op1V,
1704 (int)Op2C->getZExtValue())));
1705 }
1706 return nullptr;
1707 }
1708
1709 if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1710 if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1711 switch (IntrinsicID) {
1712 default: break;
1713 case Intrinsic::sadd_with_overflow:
1714 case Intrinsic::uadd_with_overflow:
1715 case Intrinsic::ssub_with_overflow:
1716 case Intrinsic::usub_with_overflow:
1717 case Intrinsic::smul_with_overflow:
1718 case Intrinsic::umul_with_overflow: {
1719 APInt Res;
1720 bool Overflow;
1721 switch (IntrinsicID) {
1722 default: llvm_unreachable("Invalid case");
1723 case Intrinsic::sadd_with_overflow:
1724 Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1725 break;
1726 case Intrinsic::uadd_with_overflow:
1727 Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1728 break;
1729 case Intrinsic::ssub_with_overflow:
1730 Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1731 break;
1732 case Intrinsic::usub_with_overflow:
1733 Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1734 break;
1735 case Intrinsic::smul_with_overflow:
1736 Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1737 break;
1738 case Intrinsic::umul_with_overflow:
1739 Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1740 break;
1741 }
1742 Constant *Ops[] = {
1743 ConstantInt::get(Ty->getContext(), Res),
1744 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
1745 };
1746 return ConstantStruct::get(cast<StructType>(Ty), Ops);
1747 }
1748 case Intrinsic::cttz:
1749 if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
1750 return UndefValue::get(Ty);
1751 return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
1752 case Intrinsic::ctlz:
1753 if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
1754 return UndefValue::get(Ty);
1755 return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
1756 }
1757 }
1758
1759 return nullptr;
1760 }
1761 return nullptr;
1762 }
1763
1764 if (Operands.size() != 3)
1765 return nullptr;
1766
1767 if (const ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1768 if (const ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1769 if (const ConstantFP *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
1770 switch (IntrinsicID) {
1771 default: break;
1772 case Intrinsic::fma:
1773 case Intrinsic::fmuladd: {
1774 APFloat V = Op1->getValueAPF();
1775 APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
1776 Op3->getValueAPF(),
1777 APFloat::rmNearestTiesToEven);
1778 if (s != APFloat::opInvalidOp)
1779 return ConstantFP::get(Ty->getContext(), V);
1780
1781 return nullptr;
1782 }
1783 }
1784 }
1785 }
1786 }
1787
1788 return nullptr;
1789 }
1790
ConstantFoldVectorCall(StringRef Name,unsigned IntrinsicID,VectorType * VTy,ArrayRef<Constant * > Operands,const TargetLibraryInfo * TLI)1791 static Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
1792 VectorType *VTy,
1793 ArrayRef<Constant *> Operands,
1794 const TargetLibraryInfo *TLI) {
1795 SmallVector<Constant *, 4> Result(VTy->getNumElements());
1796 SmallVector<Constant *, 4> Lane(Operands.size());
1797 Type *Ty = VTy->getElementType();
1798
1799 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
1800 // Gather a column of constants.
1801 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
1802 Constant *Agg = Operands[J]->getAggregateElement(I);
1803 if (!Agg)
1804 return nullptr;
1805
1806 Lane[J] = Agg;
1807 }
1808
1809 // Use the regular scalar folding to simplify this column.
1810 Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI);
1811 if (!Folded)
1812 return nullptr;
1813 Result[I] = Folded;
1814 }
1815
1816 return ConstantVector::get(Result);
1817 }
1818
1819 /// Attempt to constant fold a call to the specified function
1820 /// with the specified arguments, returning null if unsuccessful.
1821 Constant *
ConstantFoldCall(Function * F,ArrayRef<Constant * > Operands,const TargetLibraryInfo * TLI)1822 llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
1823 const TargetLibraryInfo *TLI) {
1824 if (!F->hasName())
1825 return nullptr;
1826 StringRef Name = F->getName();
1827
1828 Type *Ty = F->getReturnType();
1829
1830 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1831 return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, TLI);
1832
1833 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI);
1834 }
1835