1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines simple local analyses for load instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/Loads.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/GlobalAlias.h"
19 #include "llvm/IR/GlobalVariable.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/IR/Operator.h"
24 using namespace llvm;
25
26 /// \brief Test if A and B will obviously have the same value.
27 ///
28 /// This includes recognizing that %t0 and %t1 will have the same
29 /// value in code like this:
30 /// \code
31 /// %t0 = getelementptr \@a, 0, 3
32 /// store i32 0, i32* %t0
33 /// %t1 = getelementptr \@a, 0, 3
34 /// %t2 = load i32* %t1
35 /// \endcode
36 ///
AreEquivalentAddressValues(const Value * A,const Value * B)37 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
38 // Test if the values are trivially equivalent.
39 if (A == B)
40 return true;
41
42 // Test if the values come from identical arithmetic instructions.
43 // Use isIdenticalToWhenDefined instead of isIdenticalTo because
44 // this function is only used when one address use dominates the
45 // other, which means that they'll always either have the same
46 // value or one of them will have an undefined value.
47 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
48 isa<GetElementPtrInst>(A))
49 if (const Instruction *BI = dyn_cast<Instruction>(B))
50 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
51 return true;
52
53 // Otherwise they may not be equivalent.
54 return false;
55 }
56
57 /// \brief Check if executing a load of this pointer value cannot trap.
58 ///
59 /// If it is not obviously safe to load from the specified pointer, we do
60 /// a quick local scan of the basic block containing \c ScanFrom, to determine
61 /// if the address is already accessed.
62 ///
63 /// This uses the pointee type to determine how many bytes need to be safe to
64 /// load from the pointer.
isSafeToLoadUnconditionally(Value * V,Instruction * ScanFrom,unsigned Align)65 bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom,
66 unsigned Align) {
67 const DataLayout &DL = ScanFrom->getModule()->getDataLayout();
68
69 // Zero alignment means that the load has the ABI alignment for the target
70 if (Align == 0)
71 Align = DL.getABITypeAlignment(V->getType()->getPointerElementType());
72 assert(isPowerOf2_32(Align));
73
74 int64_t ByteOffset = 0;
75 Value *Base = V;
76 Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL);
77
78 if (ByteOffset < 0) // out of bounds
79 return false;
80
81 Type *BaseType = nullptr;
82 unsigned BaseAlign = 0;
83 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
84 // An alloca is safe to load from as load as it is suitably aligned.
85 BaseType = AI->getAllocatedType();
86 BaseAlign = AI->getAlignment();
87 } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
88 // Global variables are not necessarily safe to load from if they are
89 // overridden. Their size may change or they may be weak and require a test
90 // to determine if they were in fact provided.
91 if (!GV->mayBeOverridden()) {
92 BaseType = GV->getType()->getElementType();
93 BaseAlign = GV->getAlignment();
94 }
95 }
96
97 PointerType *AddrTy = cast<PointerType>(V->getType());
98 uint64_t LoadSize = DL.getTypeStoreSize(AddrTy->getElementType());
99
100 // If we found a base allocated type from either an alloca or global variable,
101 // try to see if we are definitively within the allocated region. We need to
102 // know the size of the base type and the loaded type to do anything in this
103 // case.
104 if (BaseType && BaseType->isSized()) {
105 if (BaseAlign == 0)
106 BaseAlign = DL.getPrefTypeAlignment(BaseType);
107
108 if (Align <= BaseAlign) {
109 // Check if the load is within the bounds of the underlying object.
110 if (ByteOffset + LoadSize <= DL.getTypeAllocSize(BaseType) &&
111 ((ByteOffset % Align) == 0))
112 return true;
113 }
114 }
115
116 // Otherwise, be a little bit aggressive by scanning the local block where we
117 // want to check to see if the pointer is already being loaded or stored
118 // from/to. If so, the previous load or store would have already trapped,
119 // so there is no harm doing an extra load (also, CSE will later eliminate
120 // the load entirely).
121 BasicBlock::iterator BBI = ScanFrom->getIterator(),
122 E = ScanFrom->getParent()->begin();
123
124 // We can at least always strip pointer casts even though we can't use the
125 // base here.
126 V = V->stripPointerCasts();
127
128 while (BBI != E) {
129 --BBI;
130
131 // If we see a free or a call which may write to memory (i.e. which might do
132 // a free) the pointer could be marked invalid.
133 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
134 !isa<DbgInfoIntrinsic>(BBI))
135 return false;
136
137 Value *AccessedPtr;
138 unsigned AccessedAlign;
139 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
140 AccessedPtr = LI->getPointerOperand();
141 AccessedAlign = LI->getAlignment();
142 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
143 AccessedPtr = SI->getPointerOperand();
144 AccessedAlign = SI->getAlignment();
145 } else
146 continue;
147
148 Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();
149 if (AccessedAlign == 0)
150 AccessedAlign = DL.getABITypeAlignment(AccessedTy);
151 if (AccessedAlign < Align)
152 continue;
153
154 // Handle trivial cases.
155 if (AccessedPtr == V)
156 return true;
157
158 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
159 LoadSize <= DL.getTypeStoreSize(AccessedTy))
160 return true;
161 }
162 return false;
163 }
164
165 /// DefMaxInstsToScan - the default number of maximum instructions
166 /// to scan in the block, used by FindAvailableLoadedValue().
167 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
168 /// threading in part by eliminating partially redundant loads.
169 /// At that point, the value of MaxInstsToScan was already set to '6'
170 /// without documented explanation.
171 cl::opt<unsigned>
172 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
173 cl::desc("Use this to specify the default maximum number of instructions "
174 "to scan backward from a given instruction, when searching for "
175 "available loaded value"));
176
177 /// \brief Scan the ScanBB block backwards to see if we have the value at the
178 /// memory address *Ptr locally available within a small number of instructions.
179 ///
180 /// The scan starts from \c ScanFrom. \c MaxInstsToScan specifies the maximum
181 /// instructions to scan in the block. If it is set to \c 0, it will scan the whole
182 /// block.
183 ///
184 /// If the value is available, this function returns it. If not, it returns the
185 /// iterator for the last validated instruction that the value would be live
186 /// through. If we scanned the entire block and didn't find something that
187 /// invalidates \c *Ptr or provides it, \c ScanFrom is left at the last
188 /// instruction processed and this returns null.
189 ///
190 /// You can also optionally specify an alias analysis implementation, which
191 /// makes this more precise.
192 ///
193 /// If \c AATags is non-null and a load or store is found, the AA tags from the
194 /// load or store are recorded there. If there are no AA tags or if no access is
195 /// found, it is left unmodified.
FindAvailableLoadedValue(Value * Ptr,BasicBlock * ScanBB,BasicBlock::iterator & ScanFrom,unsigned MaxInstsToScan,AliasAnalysis * AA,AAMDNodes * AATags)196 Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
197 BasicBlock::iterator &ScanFrom,
198 unsigned MaxInstsToScan,
199 AliasAnalysis *AA, AAMDNodes *AATags) {
200 if (MaxInstsToScan == 0)
201 MaxInstsToScan = ~0U;
202
203 Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
204
205 const DataLayout &DL = ScanBB->getModule()->getDataLayout();
206
207 // Try to get the store size for the type.
208 uint64_t AccessSize = DL.getTypeStoreSize(AccessTy);
209
210 Value *StrippedPtr = Ptr->stripPointerCasts();
211
212 while (ScanFrom != ScanBB->begin()) {
213 // We must ignore debug info directives when counting (otherwise they
214 // would affect codegen).
215 Instruction *Inst = &*--ScanFrom;
216 if (isa<DbgInfoIntrinsic>(Inst))
217 continue;
218
219 // Restore ScanFrom to expected value in case next test succeeds
220 ScanFrom++;
221
222 // Don't scan huge blocks.
223 if (MaxInstsToScan-- == 0)
224 return nullptr;
225
226 --ScanFrom;
227 // If this is a load of Ptr, the loaded value is available.
228 // (This is true even if the load is volatile or atomic, although
229 // those cases are unlikely.)
230 if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
231 if (AreEquivalentAddressValues(
232 LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
233 CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
234 if (AATags)
235 LI->getAAMetadata(*AATags);
236 return LI;
237 }
238
239 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
240 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
241 // If this is a store through Ptr, the value is available!
242 // (This is true even if the store is volatile or atomic, although
243 // those cases are unlikely.)
244 if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
245 CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
246 AccessTy, DL)) {
247 if (AATags)
248 SI->getAAMetadata(*AATags);
249 return SI->getOperand(0);
250 }
251
252 // If both StrippedPtr and StorePtr reach all the way to an alloca or
253 // global and they are different, ignore the store. This is a trivial form
254 // of alias analysis that is important for reg2mem'd code.
255 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
256 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
257 StrippedPtr != StorePtr)
258 continue;
259
260 // If we have alias analysis and it says the store won't modify the loaded
261 // value, ignore the store.
262 if (AA && (AA->getModRefInfo(SI, StrippedPtr, AccessSize) & MRI_Mod) == 0)
263 continue;
264
265 // Otherwise the store that may or may not alias the pointer, bail out.
266 ++ScanFrom;
267 return nullptr;
268 }
269
270 // If this is some other instruction that may clobber Ptr, bail out.
271 if (Inst->mayWriteToMemory()) {
272 // If alias analysis claims that it really won't modify the load,
273 // ignore it.
274 if (AA &&
275 (AA->getModRefInfo(Inst, StrippedPtr, AccessSize) & MRI_Mod) == 0)
276 continue;
277
278 // May modify the pointer, bail out.
279 ++ScanFrom;
280 return nullptr;
281 }
282 }
283
284 // Got to the start of the block, we didn't find it, but are done for this
285 // block.
286 return nullptr;
287 }
288