1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines vectorizer utilities.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/Analysis/VectorUtils.h"
21 #include "llvm/IR/GetElementPtrTypeIterator.h"
22 #include "llvm/IR/PatternMatch.h"
23 #include "llvm/IR/Value.h"
24 #include "llvm/IR/Constants.h"
25
26 using namespace llvm;
27 using namespace llvm::PatternMatch;
28
29 /// \brief Identify if the intrinsic is trivially vectorizable.
30 /// This method returns true if the intrinsic's argument types are all
31 /// scalars for the scalar form of the intrinsic and all vectors for
32 /// the vector form of the intrinsic.
isTriviallyVectorizable(Intrinsic::ID ID)33 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
34 switch (ID) {
35 case Intrinsic::sqrt:
36 case Intrinsic::sin:
37 case Intrinsic::cos:
38 case Intrinsic::exp:
39 case Intrinsic::exp2:
40 case Intrinsic::log:
41 case Intrinsic::log10:
42 case Intrinsic::log2:
43 case Intrinsic::fabs:
44 case Intrinsic::minnum:
45 case Intrinsic::maxnum:
46 case Intrinsic::copysign:
47 case Intrinsic::floor:
48 case Intrinsic::ceil:
49 case Intrinsic::trunc:
50 case Intrinsic::rint:
51 case Intrinsic::nearbyint:
52 case Intrinsic::round:
53 case Intrinsic::bswap:
54 case Intrinsic::ctpop:
55 case Intrinsic::pow:
56 case Intrinsic::fma:
57 case Intrinsic::fmuladd:
58 case Intrinsic::ctlz:
59 case Intrinsic::cttz:
60 case Intrinsic::powi:
61 return true;
62 default:
63 return false;
64 }
65 }
66
67 /// \brief Identifies if the intrinsic has a scalar operand. It check for
68 /// ctlz,cttz and powi special intrinsics whose argument is scalar.
hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,unsigned ScalarOpdIdx)69 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
70 unsigned ScalarOpdIdx) {
71 switch (ID) {
72 case Intrinsic::ctlz:
73 case Intrinsic::cttz:
74 case Intrinsic::powi:
75 return (ScalarOpdIdx == 1);
76 default:
77 return false;
78 }
79 }
80
81 /// \brief Check call has a unary float signature
82 /// It checks following:
83 /// a) call should have a single argument
84 /// b) argument type should be floating point type
85 /// c) call instruction type and argument type should be same
86 /// d) call should only reads memory.
87 /// If all these condition is met then return ValidIntrinsicID
88 /// else return not_intrinsic.
89 Intrinsic::ID
checkUnaryFloatSignature(const CallInst & I,Intrinsic::ID ValidIntrinsicID)90 llvm::checkUnaryFloatSignature(const CallInst &I,
91 Intrinsic::ID ValidIntrinsicID) {
92 if (I.getNumArgOperands() != 1 ||
93 !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
94 I.getType() != I.getArgOperand(0)->getType() || !I.onlyReadsMemory())
95 return Intrinsic::not_intrinsic;
96
97 return ValidIntrinsicID;
98 }
99
100 /// \brief Check call has a binary float signature
101 /// It checks following:
102 /// a) call should have 2 arguments.
103 /// b) arguments type should be floating point type
104 /// c) call instruction type and arguments type should be same
105 /// d) call should only reads memory.
106 /// If all these condition is met then return ValidIntrinsicID
107 /// else return not_intrinsic.
108 Intrinsic::ID
checkBinaryFloatSignature(const CallInst & I,Intrinsic::ID ValidIntrinsicID)109 llvm::checkBinaryFloatSignature(const CallInst &I,
110 Intrinsic::ID ValidIntrinsicID) {
111 if (I.getNumArgOperands() != 2 ||
112 !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
113 !I.getArgOperand(1)->getType()->isFloatingPointTy() ||
114 I.getType() != I.getArgOperand(0)->getType() ||
115 I.getType() != I.getArgOperand(1)->getType() || !I.onlyReadsMemory())
116 return Intrinsic::not_intrinsic;
117
118 return ValidIntrinsicID;
119 }
120
121 /// \brief Returns intrinsic ID for call.
122 /// For the input call instruction it finds mapping intrinsic and returns
123 /// its ID, in case it does not found it return not_intrinsic.
getIntrinsicIDForCall(CallInst * CI,const TargetLibraryInfo * TLI)124 Intrinsic::ID llvm::getIntrinsicIDForCall(CallInst *CI,
125 const TargetLibraryInfo *TLI) {
126 // If we have an intrinsic call, check if it is trivially vectorizable.
127 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
128 Intrinsic::ID ID = II->getIntrinsicID();
129 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
130 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume)
131 return ID;
132 return Intrinsic::not_intrinsic;
133 }
134
135 if (!TLI)
136 return Intrinsic::not_intrinsic;
137
138 LibFunc::Func Func;
139 Function *F = CI->getCalledFunction();
140 // We're going to make assumptions on the semantics of the functions, check
141 // that the target knows that it's available in this environment and it does
142 // not have local linkage.
143 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
144 return Intrinsic::not_intrinsic;
145
146 // Otherwise check if we have a call to a function that can be turned into a
147 // vector intrinsic.
148 switch (Func) {
149 default:
150 break;
151 case LibFunc::sin:
152 case LibFunc::sinf:
153 case LibFunc::sinl:
154 return checkUnaryFloatSignature(*CI, Intrinsic::sin);
155 case LibFunc::cos:
156 case LibFunc::cosf:
157 case LibFunc::cosl:
158 return checkUnaryFloatSignature(*CI, Intrinsic::cos);
159 case LibFunc::exp:
160 case LibFunc::expf:
161 case LibFunc::expl:
162 return checkUnaryFloatSignature(*CI, Intrinsic::exp);
163 case LibFunc::exp2:
164 case LibFunc::exp2f:
165 case LibFunc::exp2l:
166 return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
167 case LibFunc::log:
168 case LibFunc::logf:
169 case LibFunc::logl:
170 return checkUnaryFloatSignature(*CI, Intrinsic::log);
171 case LibFunc::log10:
172 case LibFunc::log10f:
173 case LibFunc::log10l:
174 return checkUnaryFloatSignature(*CI, Intrinsic::log10);
175 case LibFunc::log2:
176 case LibFunc::log2f:
177 case LibFunc::log2l:
178 return checkUnaryFloatSignature(*CI, Intrinsic::log2);
179 case LibFunc::fabs:
180 case LibFunc::fabsf:
181 case LibFunc::fabsl:
182 return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
183 case LibFunc::fmin:
184 case LibFunc::fminf:
185 case LibFunc::fminl:
186 return checkBinaryFloatSignature(*CI, Intrinsic::minnum);
187 case LibFunc::fmax:
188 case LibFunc::fmaxf:
189 case LibFunc::fmaxl:
190 return checkBinaryFloatSignature(*CI, Intrinsic::maxnum);
191 case LibFunc::copysign:
192 case LibFunc::copysignf:
193 case LibFunc::copysignl:
194 return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
195 case LibFunc::floor:
196 case LibFunc::floorf:
197 case LibFunc::floorl:
198 return checkUnaryFloatSignature(*CI, Intrinsic::floor);
199 case LibFunc::ceil:
200 case LibFunc::ceilf:
201 case LibFunc::ceill:
202 return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
203 case LibFunc::trunc:
204 case LibFunc::truncf:
205 case LibFunc::truncl:
206 return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
207 case LibFunc::rint:
208 case LibFunc::rintf:
209 case LibFunc::rintl:
210 return checkUnaryFloatSignature(*CI, Intrinsic::rint);
211 case LibFunc::nearbyint:
212 case LibFunc::nearbyintf:
213 case LibFunc::nearbyintl:
214 return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
215 case LibFunc::round:
216 case LibFunc::roundf:
217 case LibFunc::roundl:
218 return checkUnaryFloatSignature(*CI, Intrinsic::round);
219 case LibFunc::pow:
220 case LibFunc::powf:
221 case LibFunc::powl:
222 return checkBinaryFloatSignature(*CI, Intrinsic::pow);
223 }
224
225 return Intrinsic::not_intrinsic;
226 }
227
228 /// \brief Find the operand of the GEP that should be checked for consecutive
229 /// stores. This ignores trailing indices that have no effect on the final
230 /// pointer.
getGEPInductionOperand(const GetElementPtrInst * Gep)231 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
232 const DataLayout &DL = Gep->getModule()->getDataLayout();
233 unsigned LastOperand = Gep->getNumOperands() - 1;
234 unsigned GEPAllocSize = DL.getTypeAllocSize(
235 cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
236
237 // Walk backwards and try to peel off zeros.
238 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
239 // Find the type we're currently indexing into.
240 gep_type_iterator GEPTI = gep_type_begin(Gep);
241 std::advance(GEPTI, LastOperand - 1);
242
243 // If it's a type with the same allocation size as the result of the GEP we
244 // can peel off the zero index.
245 if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize)
246 break;
247 --LastOperand;
248 }
249
250 return LastOperand;
251 }
252
253 /// \brief If the argument is a GEP, then returns the operand identified by
254 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
255 /// operand, it returns that instead.
stripGetElementPtr(Value * Ptr,ScalarEvolution * SE,Loop * Lp)256 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
257 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
258 if (!GEP)
259 return Ptr;
260
261 unsigned InductionOperand = getGEPInductionOperand(GEP);
262
263 // Check that all of the gep indices are uniform except for our induction
264 // operand.
265 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
266 if (i != InductionOperand &&
267 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
268 return Ptr;
269 return GEP->getOperand(InductionOperand);
270 }
271
272 /// \brief If a value has only one user that is a CastInst, return it.
getUniqueCastUse(Value * Ptr,Loop * Lp,Type * Ty)273 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
274 Value *UniqueCast = nullptr;
275 for (User *U : Ptr->users()) {
276 CastInst *CI = dyn_cast<CastInst>(U);
277 if (CI && CI->getType() == Ty) {
278 if (!UniqueCast)
279 UniqueCast = CI;
280 else
281 return nullptr;
282 }
283 }
284 return UniqueCast;
285 }
286
287 /// \brief Get the stride of a pointer access in a loop. Looks for symbolic
288 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
getStrideFromPointer(Value * Ptr,ScalarEvolution * SE,Loop * Lp)289 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
290 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
291 if (!PtrTy || PtrTy->isAggregateType())
292 return nullptr;
293
294 // Try to remove a gep instruction to make the pointer (actually index at this
295 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
296 // pointer, otherwise, we are analyzing the index.
297 Value *OrigPtr = Ptr;
298
299 // The size of the pointer access.
300 int64_t PtrAccessSize = 1;
301
302 Ptr = stripGetElementPtr(Ptr, SE, Lp);
303 const SCEV *V = SE->getSCEV(Ptr);
304
305 if (Ptr != OrigPtr)
306 // Strip off casts.
307 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
308 V = C->getOperand();
309
310 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
311 if (!S)
312 return nullptr;
313
314 V = S->getStepRecurrence(*SE);
315 if (!V)
316 return nullptr;
317
318 // Strip off the size of access multiplication if we are still analyzing the
319 // pointer.
320 if (OrigPtr == Ptr) {
321 const DataLayout &DL = Lp->getHeader()->getModule()->getDataLayout();
322 DL.getTypeAllocSize(PtrTy->getElementType());
323 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
324 if (M->getOperand(0)->getSCEVType() != scConstant)
325 return nullptr;
326
327 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
328
329 // Huge step value - give up.
330 if (APStepVal.getBitWidth() > 64)
331 return nullptr;
332
333 int64_t StepVal = APStepVal.getSExtValue();
334 if (PtrAccessSize != StepVal)
335 return nullptr;
336 V = M->getOperand(1);
337 }
338 }
339
340 // Strip off casts.
341 Type *StripedOffRecurrenceCast = nullptr;
342 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
343 StripedOffRecurrenceCast = C->getType();
344 V = C->getOperand();
345 }
346
347 // Look for the loop invariant symbolic value.
348 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
349 if (!U)
350 return nullptr;
351
352 Value *Stride = U->getValue();
353 if (!Lp->isLoopInvariant(Stride))
354 return nullptr;
355
356 // If we have stripped off the recurrence cast we have to make sure that we
357 // return the value that is used in this loop so that we can replace it later.
358 if (StripedOffRecurrenceCast)
359 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
360
361 return Stride;
362 }
363
364 /// \brief Given a vector and an element number, see if the scalar value is
365 /// already around as a register, for example if it were inserted then extracted
366 /// from the vector.
findScalarElement(Value * V,unsigned EltNo)367 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
368 assert(V->getType()->isVectorTy() && "Not looking at a vector?");
369 VectorType *VTy = cast<VectorType>(V->getType());
370 unsigned Width = VTy->getNumElements();
371 if (EltNo >= Width) // Out of range access.
372 return UndefValue::get(VTy->getElementType());
373
374 if (Constant *C = dyn_cast<Constant>(V))
375 return C->getAggregateElement(EltNo);
376
377 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
378 // If this is an insert to a variable element, we don't know what it is.
379 if (!isa<ConstantInt>(III->getOperand(2)))
380 return nullptr;
381 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
382
383 // If this is an insert to the element we are looking for, return the
384 // inserted value.
385 if (EltNo == IIElt)
386 return III->getOperand(1);
387
388 // Otherwise, the insertelement doesn't modify the value, recurse on its
389 // vector input.
390 return findScalarElement(III->getOperand(0), EltNo);
391 }
392
393 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
394 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
395 int InEl = SVI->getMaskValue(EltNo);
396 if (InEl < 0)
397 return UndefValue::get(VTy->getElementType());
398 if (InEl < (int)LHSWidth)
399 return findScalarElement(SVI->getOperand(0), InEl);
400 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
401 }
402
403 // Extract a value from a vector add operation with a constant zero.
404 Value *Val = nullptr; Constant *Con = nullptr;
405 if (match(V, m_Add(m_Value(Val), m_Constant(Con))))
406 if (Constant *Elt = Con->getAggregateElement(EltNo))
407 if (Elt->isNullValue())
408 return findScalarElement(Val, EltNo);
409
410 // Otherwise, we don't know.
411 return nullptr;
412 }
413
414 /// \brief Get splat value if the input is a splat vector or return nullptr.
415 /// This function is not fully general. It checks only 2 cases:
416 /// the input value is (1) a splat constants vector or (2) a sequence
417 /// of instructions that broadcast a single value into a vector.
418 ///
getSplatValue(const Value * V)419 const llvm::Value *llvm::getSplatValue(const Value *V) {
420
421 if (auto *C = dyn_cast<Constant>(V))
422 if (isa<VectorType>(V->getType()))
423 return C->getSplatValue();
424
425 auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
426 if (!ShuffleInst)
427 return nullptr;
428 // All-zero (or undef) shuffle mask elements.
429 for (int MaskElt : ShuffleInst->getShuffleMask())
430 if (MaskElt != 0 && MaskElt != -1)
431 return nullptr;
432 // The first shuffle source is 'insertelement' with index 0.
433 auto *InsertEltInst =
434 dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
435 if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
436 !cast<ConstantInt>(InsertEltInst->getOperand(2))->isNullValue())
437 return nullptr;
438
439 return InsertEltInst->getOperand(1);
440 }
441
442 MapVector<Instruction *, uint64_t>
computeMinimumValueSizes(ArrayRef<BasicBlock * > Blocks,DemandedBits & DB,const TargetTransformInfo * TTI)443 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
444 const TargetTransformInfo *TTI) {
445
446 // DemandedBits will give us every value's live-out bits. But we want
447 // to ensure no extra casts would need to be inserted, so every DAG
448 // of connected values must have the same minimum bitwidth.
449 EquivalenceClasses<Value *> ECs;
450 SmallVector<Value *, 16> Worklist;
451 SmallPtrSet<Value *, 4> Roots;
452 SmallPtrSet<Value *, 16> Visited;
453 DenseMap<Value *, uint64_t> DBits;
454 SmallPtrSet<Instruction *, 4> InstructionSet;
455 MapVector<Instruction *, uint64_t> MinBWs;
456
457 // Determine the roots. We work bottom-up, from truncs or icmps.
458 bool SeenExtFromIllegalType = false;
459 for (auto *BB : Blocks)
460 for (auto &I : *BB) {
461 InstructionSet.insert(&I);
462
463 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
464 !TTI->isTypeLegal(I.getOperand(0)->getType()))
465 SeenExtFromIllegalType = true;
466
467 // Only deal with non-vector integers up to 64-bits wide.
468 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
469 !I.getType()->isVectorTy() &&
470 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
471 // Don't make work for ourselves. If we know the loaded type is legal,
472 // don't add it to the worklist.
473 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
474 continue;
475
476 Worklist.push_back(&I);
477 Roots.insert(&I);
478 }
479 }
480 // Early exit.
481 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
482 return MinBWs;
483
484 // Now proceed breadth-first, unioning values together.
485 while (!Worklist.empty()) {
486 Value *Val = Worklist.pop_back_val();
487 Value *Leader = ECs.getOrInsertLeaderValue(Val);
488
489 if (Visited.count(Val))
490 continue;
491 Visited.insert(Val);
492
493 // Non-instructions terminate a chain successfully.
494 if (!isa<Instruction>(Val))
495 continue;
496 Instruction *I = cast<Instruction>(Val);
497
498 // If we encounter a type that is larger than 64 bits, we can't represent
499 // it so bail out.
500 if (DB.getDemandedBits(I).getBitWidth() > 64)
501 return MapVector<Instruction *, uint64_t>();
502
503 uint64_t V = DB.getDemandedBits(I).getZExtValue();
504 DBits[Leader] |= V;
505
506 // Casts, loads and instructions outside of our range terminate a chain
507 // successfully.
508 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
509 !InstructionSet.count(I))
510 continue;
511
512 // Unsafe casts terminate a chain unsuccessfully. We can't do anything
513 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
514 // transform anything that relies on them.
515 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
516 !I->getType()->isIntegerTy()) {
517 DBits[Leader] |= ~0ULL;
518 continue;
519 }
520
521 // We don't modify the types of PHIs. Reductions will already have been
522 // truncated if possible, and inductions' sizes will have been chosen by
523 // indvars.
524 if (isa<PHINode>(I))
525 continue;
526
527 if (DBits[Leader] == ~0ULL)
528 // All bits demanded, no point continuing.
529 continue;
530
531 for (Value *O : cast<User>(I)->operands()) {
532 ECs.unionSets(Leader, O);
533 Worklist.push_back(O);
534 }
535 }
536
537 // Now we've discovered all values, walk them to see if there are
538 // any users we didn't see. If there are, we can't optimize that
539 // chain.
540 for (auto &I : DBits)
541 for (auto *U : I.first->users())
542 if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
543 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
544
545 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
546 uint64_t LeaderDemandedBits = 0;
547 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
548 LeaderDemandedBits |= DBits[*MI];
549
550 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
551 llvm::countLeadingZeros(LeaderDemandedBits);
552 // Round up to a power of 2
553 if (!isPowerOf2_64((uint64_t)MinBW))
554 MinBW = NextPowerOf2(MinBW);
555 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
556 if (!isa<Instruction>(*MI))
557 continue;
558 Type *Ty = (*MI)->getType();
559 if (Roots.count(*MI))
560 Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
561 if (MinBW < Ty->getScalarSizeInBits())
562 MinBWs[cast<Instruction>(*MI)] = MinBW;
563 }
564 }
565
566 return MinBWs;
567 }
568