1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LLParser.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/AsmParser/SlotMapping.h"
18 #include "llvm/IR/AutoUpgrade.h"
19 #include "llvm/IR/CallingConv.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DebugInfo.h"
22 #include "llvm/IR/DebugInfoMetadata.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/ValueSymbolTable.h"
30 #include "llvm/Support/Dwarf.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/SaveAndRestore.h"
33 #include "llvm/Support/raw_ostream.h"
34 using namespace llvm;
35
getTypeString(Type * T)36 static std::string getTypeString(Type *T) {
37 std::string Result;
38 raw_string_ostream Tmp(Result);
39 Tmp << *T;
40 return Tmp.str();
41 }
42
43 /// Run: module ::= toplevelentity*
Run()44 bool LLParser::Run() {
45 // Prime the lexer.
46 Lex.Lex();
47
48 return ParseTopLevelEntities() ||
49 ValidateEndOfModule();
50 }
51
parseStandaloneConstantValue(Constant * & C,const SlotMapping * Slots)52 bool LLParser::parseStandaloneConstantValue(Constant *&C,
53 const SlotMapping *Slots) {
54 restoreParsingState(Slots);
55 Lex.Lex();
56
57 Type *Ty = nullptr;
58 if (ParseType(Ty) || parseConstantValue(Ty, C))
59 return true;
60 if (Lex.getKind() != lltok::Eof)
61 return Error(Lex.getLoc(), "expected end of string");
62 return false;
63 }
64
restoreParsingState(const SlotMapping * Slots)65 void LLParser::restoreParsingState(const SlotMapping *Slots) {
66 if (!Slots)
67 return;
68 NumberedVals = Slots->GlobalValues;
69 NumberedMetadata = Slots->MetadataNodes;
70 for (const auto &I : Slots->NamedTypes)
71 NamedTypes.insert(
72 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
73 for (const auto &I : Slots->Types)
74 NumberedTypes.insert(
75 std::make_pair(I.first, std::make_pair(I.second, LocTy())));
76 }
77
78 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
79 /// module.
ValidateEndOfModule()80 bool LLParser::ValidateEndOfModule() {
81 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
82 UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
83
84 // Handle any function attribute group forward references.
85 for (std::map<Value*, std::vector<unsigned> >::iterator
86 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
87 I != E; ++I) {
88 Value *V = I->first;
89 std::vector<unsigned> &Vec = I->second;
90 AttrBuilder B;
91
92 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
93 VI != VE; ++VI)
94 B.merge(NumberedAttrBuilders[*VI]);
95
96 if (Function *Fn = dyn_cast<Function>(V)) {
97 AttributeSet AS = Fn->getAttributes();
98 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
99 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
100 AS.getFnAttributes());
101
102 FnAttrs.merge(B);
103
104 // If the alignment was parsed as an attribute, move to the alignment
105 // field.
106 if (FnAttrs.hasAlignmentAttr()) {
107 Fn->setAlignment(FnAttrs.getAlignment());
108 FnAttrs.removeAttribute(Attribute::Alignment);
109 }
110
111 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
112 AttributeSet::get(Context,
113 AttributeSet::FunctionIndex,
114 FnAttrs));
115 Fn->setAttributes(AS);
116 } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
117 AttributeSet AS = CI->getAttributes();
118 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
119 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
120 AS.getFnAttributes());
121 FnAttrs.merge(B);
122 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
123 AttributeSet::get(Context,
124 AttributeSet::FunctionIndex,
125 FnAttrs));
126 CI->setAttributes(AS);
127 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
128 AttributeSet AS = II->getAttributes();
129 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
130 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
131 AS.getFnAttributes());
132 FnAttrs.merge(B);
133 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
134 AttributeSet::get(Context,
135 AttributeSet::FunctionIndex,
136 FnAttrs));
137 II->setAttributes(AS);
138 } else {
139 llvm_unreachable("invalid object with forward attribute group reference");
140 }
141 }
142
143 // If there are entries in ForwardRefBlockAddresses at this point, the
144 // function was never defined.
145 if (!ForwardRefBlockAddresses.empty())
146 return Error(ForwardRefBlockAddresses.begin()->first.Loc,
147 "expected function name in blockaddress");
148
149 for (const auto &NT : NumberedTypes)
150 if (NT.second.second.isValid())
151 return Error(NT.second.second,
152 "use of undefined type '%" + Twine(NT.first) + "'");
153
154 for (StringMap<std::pair<Type*, LocTy> >::iterator I =
155 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
156 if (I->second.second.isValid())
157 return Error(I->second.second,
158 "use of undefined type named '" + I->getKey() + "'");
159
160 if (!ForwardRefComdats.empty())
161 return Error(ForwardRefComdats.begin()->second,
162 "use of undefined comdat '$" +
163 ForwardRefComdats.begin()->first + "'");
164
165 if (!ForwardRefVals.empty())
166 return Error(ForwardRefVals.begin()->second.second,
167 "use of undefined value '@" + ForwardRefVals.begin()->first +
168 "'");
169
170 if (!ForwardRefValIDs.empty())
171 return Error(ForwardRefValIDs.begin()->second.second,
172 "use of undefined value '@" +
173 Twine(ForwardRefValIDs.begin()->first) + "'");
174
175 if (!ForwardRefMDNodes.empty())
176 return Error(ForwardRefMDNodes.begin()->second.second,
177 "use of undefined metadata '!" +
178 Twine(ForwardRefMDNodes.begin()->first) + "'");
179
180 // Resolve metadata cycles.
181 for (auto &N : NumberedMetadata) {
182 if (N.second && !N.second->isResolved())
183 N.second->resolveCycles();
184 }
185
186 // Look for intrinsic functions and CallInst that need to be upgraded
187 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
188 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
189
190 UpgradeDebugInfo(*M);
191
192 if (!Slots)
193 return false;
194 // Initialize the slot mapping.
195 // Because by this point we've parsed and validated everything, we can "steal"
196 // the mapping from LLParser as it doesn't need it anymore.
197 Slots->GlobalValues = std::move(NumberedVals);
198 Slots->MetadataNodes = std::move(NumberedMetadata);
199 for (const auto &I : NamedTypes)
200 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
201 for (const auto &I : NumberedTypes)
202 Slots->Types.insert(std::make_pair(I.first, I.second.first));
203
204 return false;
205 }
206
207 //===----------------------------------------------------------------------===//
208 // Top-Level Entities
209 //===----------------------------------------------------------------------===//
210
ParseTopLevelEntities()211 bool LLParser::ParseTopLevelEntities() {
212 while (1) {
213 switch (Lex.getKind()) {
214 default: return TokError("expected top-level entity");
215 case lltok::Eof: return false;
216 case lltok::kw_declare: if (ParseDeclare()) return true; break;
217 case lltok::kw_define: if (ParseDefine()) return true; break;
218 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
219 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
220 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
221 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
222 case lltok::LocalVar: if (ParseNamedType()) return true; break;
223 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
224 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
225 case lltok::ComdatVar: if (parseComdat()) return true; break;
226 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
227 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
228
229 // The Global variable production with no name can have many different
230 // optional leading prefixes, the production is:
231 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
232 // OptionalThreadLocal OptionalAddrSpace OptionalUnnamedAddr
233 // ('constant'|'global') ...
234 case lltok::kw_private: // OptionalLinkage
235 case lltok::kw_internal: // OptionalLinkage
236 case lltok::kw_weak: // OptionalLinkage
237 case lltok::kw_weak_odr: // OptionalLinkage
238 case lltok::kw_linkonce: // OptionalLinkage
239 case lltok::kw_linkonce_odr: // OptionalLinkage
240 case lltok::kw_appending: // OptionalLinkage
241 case lltok::kw_common: // OptionalLinkage
242 case lltok::kw_extern_weak: // OptionalLinkage
243 case lltok::kw_external: // OptionalLinkage
244 case lltok::kw_default: // OptionalVisibility
245 case lltok::kw_hidden: // OptionalVisibility
246 case lltok::kw_protected: // OptionalVisibility
247 case lltok::kw_dllimport: // OptionalDLLStorageClass
248 case lltok::kw_dllexport: // OptionalDLLStorageClass
249 case lltok::kw_thread_local: // OptionalThreadLocal
250 case lltok::kw_addrspace: // OptionalAddrSpace
251 case lltok::kw_constant: // GlobalType
252 case lltok::kw_global: { // GlobalType
253 unsigned Linkage, Visibility, DLLStorageClass;
254 bool UnnamedAddr;
255 GlobalVariable::ThreadLocalMode TLM;
256 bool HasLinkage;
257 if (ParseOptionalLinkage(Linkage, HasLinkage) ||
258 ParseOptionalVisibility(Visibility) ||
259 ParseOptionalDLLStorageClass(DLLStorageClass) ||
260 ParseOptionalThreadLocal(TLM) ||
261 parseOptionalUnnamedAddr(UnnamedAddr) ||
262 ParseGlobal("", SMLoc(), Linkage, HasLinkage, Visibility,
263 DLLStorageClass, TLM, UnnamedAddr))
264 return true;
265 break;
266 }
267
268 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
269 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
270 case lltok::kw_uselistorder_bb:
271 if (ParseUseListOrderBB()) return true; break;
272 }
273 }
274 }
275
276
277 /// toplevelentity
278 /// ::= 'module' 'asm' STRINGCONSTANT
ParseModuleAsm()279 bool LLParser::ParseModuleAsm() {
280 assert(Lex.getKind() == lltok::kw_module);
281 Lex.Lex();
282
283 std::string AsmStr;
284 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
285 ParseStringConstant(AsmStr)) return true;
286
287 M->appendModuleInlineAsm(AsmStr);
288 return false;
289 }
290
291 /// toplevelentity
292 /// ::= 'target' 'triple' '=' STRINGCONSTANT
293 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
ParseTargetDefinition()294 bool LLParser::ParseTargetDefinition() {
295 assert(Lex.getKind() == lltok::kw_target);
296 std::string Str;
297 switch (Lex.Lex()) {
298 default: return TokError("unknown target property");
299 case lltok::kw_triple:
300 Lex.Lex();
301 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
302 ParseStringConstant(Str))
303 return true;
304 M->setTargetTriple(Str);
305 return false;
306 case lltok::kw_datalayout:
307 Lex.Lex();
308 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
309 ParseStringConstant(Str))
310 return true;
311 M->setDataLayout(Str);
312 return false;
313 }
314 }
315
316 /// toplevelentity
317 /// ::= 'deplibs' '=' '[' ']'
318 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
319 /// FIXME: Remove in 4.0. Currently parse, but ignore.
ParseDepLibs()320 bool LLParser::ParseDepLibs() {
321 assert(Lex.getKind() == lltok::kw_deplibs);
322 Lex.Lex();
323 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
324 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
325 return true;
326
327 if (EatIfPresent(lltok::rsquare))
328 return false;
329
330 do {
331 std::string Str;
332 if (ParseStringConstant(Str)) return true;
333 } while (EatIfPresent(lltok::comma));
334
335 return ParseToken(lltok::rsquare, "expected ']' at end of list");
336 }
337
338 /// ParseUnnamedType:
339 /// ::= LocalVarID '=' 'type' type
ParseUnnamedType()340 bool LLParser::ParseUnnamedType() {
341 LocTy TypeLoc = Lex.getLoc();
342 unsigned TypeID = Lex.getUIntVal();
343 Lex.Lex(); // eat LocalVarID;
344
345 if (ParseToken(lltok::equal, "expected '=' after name") ||
346 ParseToken(lltok::kw_type, "expected 'type' after '='"))
347 return true;
348
349 Type *Result = nullptr;
350 if (ParseStructDefinition(TypeLoc, "",
351 NumberedTypes[TypeID], Result)) return true;
352
353 if (!isa<StructType>(Result)) {
354 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
355 if (Entry.first)
356 return Error(TypeLoc, "non-struct types may not be recursive");
357 Entry.first = Result;
358 Entry.second = SMLoc();
359 }
360
361 return false;
362 }
363
364
365 /// toplevelentity
366 /// ::= LocalVar '=' 'type' type
ParseNamedType()367 bool LLParser::ParseNamedType() {
368 std::string Name = Lex.getStrVal();
369 LocTy NameLoc = Lex.getLoc();
370 Lex.Lex(); // eat LocalVar.
371
372 if (ParseToken(lltok::equal, "expected '=' after name") ||
373 ParseToken(lltok::kw_type, "expected 'type' after name"))
374 return true;
375
376 Type *Result = nullptr;
377 if (ParseStructDefinition(NameLoc, Name,
378 NamedTypes[Name], Result)) return true;
379
380 if (!isa<StructType>(Result)) {
381 std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
382 if (Entry.first)
383 return Error(NameLoc, "non-struct types may not be recursive");
384 Entry.first = Result;
385 Entry.second = SMLoc();
386 }
387
388 return false;
389 }
390
391
392 /// toplevelentity
393 /// ::= 'declare' FunctionHeader
ParseDeclare()394 bool LLParser::ParseDeclare() {
395 assert(Lex.getKind() == lltok::kw_declare);
396 Lex.Lex();
397
398 Function *F;
399 return ParseFunctionHeader(F, false);
400 }
401
402 /// toplevelentity
403 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
ParseDefine()404 bool LLParser::ParseDefine() {
405 assert(Lex.getKind() == lltok::kw_define);
406 Lex.Lex();
407
408 Function *F;
409 return ParseFunctionHeader(F, true) ||
410 ParseOptionalFunctionMetadata(*F) ||
411 ParseFunctionBody(*F);
412 }
413
414 /// ParseGlobalType
415 /// ::= 'constant'
416 /// ::= 'global'
ParseGlobalType(bool & IsConstant)417 bool LLParser::ParseGlobalType(bool &IsConstant) {
418 if (Lex.getKind() == lltok::kw_constant)
419 IsConstant = true;
420 else if (Lex.getKind() == lltok::kw_global)
421 IsConstant = false;
422 else {
423 IsConstant = false;
424 return TokError("expected 'global' or 'constant'");
425 }
426 Lex.Lex();
427 return false;
428 }
429
430 /// ParseUnnamedGlobal:
431 /// OptionalVisibility ALIAS ...
432 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass
433 /// ... -> global variable
434 /// GlobalID '=' OptionalVisibility ALIAS ...
435 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
436 /// ... -> global variable
ParseUnnamedGlobal()437 bool LLParser::ParseUnnamedGlobal() {
438 unsigned VarID = NumberedVals.size();
439 std::string Name;
440 LocTy NameLoc = Lex.getLoc();
441
442 // Handle the GlobalID form.
443 if (Lex.getKind() == lltok::GlobalID) {
444 if (Lex.getUIntVal() != VarID)
445 return Error(Lex.getLoc(), "variable expected to be numbered '%" +
446 Twine(VarID) + "'");
447 Lex.Lex(); // eat GlobalID;
448
449 if (ParseToken(lltok::equal, "expected '=' after name"))
450 return true;
451 }
452
453 bool HasLinkage;
454 unsigned Linkage, Visibility, DLLStorageClass;
455 GlobalVariable::ThreadLocalMode TLM;
456 bool UnnamedAddr;
457 if (ParseOptionalLinkage(Linkage, HasLinkage) ||
458 ParseOptionalVisibility(Visibility) ||
459 ParseOptionalDLLStorageClass(DLLStorageClass) ||
460 ParseOptionalThreadLocal(TLM) ||
461 parseOptionalUnnamedAddr(UnnamedAddr))
462 return true;
463
464 if (Lex.getKind() != lltok::kw_alias)
465 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
466 DLLStorageClass, TLM, UnnamedAddr);
467 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM,
468 UnnamedAddr);
469 }
470
471 /// ParseNamedGlobal:
472 /// GlobalVar '=' OptionalVisibility ALIAS ...
473 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
474 /// ... -> global variable
ParseNamedGlobal()475 bool LLParser::ParseNamedGlobal() {
476 assert(Lex.getKind() == lltok::GlobalVar);
477 LocTy NameLoc = Lex.getLoc();
478 std::string Name = Lex.getStrVal();
479 Lex.Lex();
480
481 bool HasLinkage;
482 unsigned Linkage, Visibility, DLLStorageClass;
483 GlobalVariable::ThreadLocalMode TLM;
484 bool UnnamedAddr;
485 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
486 ParseOptionalLinkage(Linkage, HasLinkage) ||
487 ParseOptionalVisibility(Visibility) ||
488 ParseOptionalDLLStorageClass(DLLStorageClass) ||
489 ParseOptionalThreadLocal(TLM) ||
490 parseOptionalUnnamedAddr(UnnamedAddr))
491 return true;
492
493 if (Lex.getKind() != lltok::kw_alias)
494 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
495 DLLStorageClass, TLM, UnnamedAddr);
496
497 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM,
498 UnnamedAddr);
499 }
500
parseComdat()501 bool LLParser::parseComdat() {
502 assert(Lex.getKind() == lltok::ComdatVar);
503 std::string Name = Lex.getStrVal();
504 LocTy NameLoc = Lex.getLoc();
505 Lex.Lex();
506
507 if (ParseToken(lltok::equal, "expected '=' here"))
508 return true;
509
510 if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
511 return TokError("expected comdat type");
512
513 Comdat::SelectionKind SK;
514 switch (Lex.getKind()) {
515 default:
516 return TokError("unknown selection kind");
517 case lltok::kw_any:
518 SK = Comdat::Any;
519 break;
520 case lltok::kw_exactmatch:
521 SK = Comdat::ExactMatch;
522 break;
523 case lltok::kw_largest:
524 SK = Comdat::Largest;
525 break;
526 case lltok::kw_noduplicates:
527 SK = Comdat::NoDuplicates;
528 break;
529 case lltok::kw_samesize:
530 SK = Comdat::SameSize;
531 break;
532 }
533 Lex.Lex();
534
535 // See if the comdat was forward referenced, if so, use the comdat.
536 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
537 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
538 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
539 return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
540
541 Comdat *C;
542 if (I != ComdatSymTab.end())
543 C = &I->second;
544 else
545 C = M->getOrInsertComdat(Name);
546 C->setSelectionKind(SK);
547
548 return false;
549 }
550
551 // MDString:
552 // ::= '!' STRINGCONSTANT
ParseMDString(MDString * & Result)553 bool LLParser::ParseMDString(MDString *&Result) {
554 std::string Str;
555 if (ParseStringConstant(Str)) return true;
556 llvm::UpgradeMDStringConstant(Str);
557 Result = MDString::get(Context, Str);
558 return false;
559 }
560
561 // MDNode:
562 // ::= '!' MDNodeNumber
ParseMDNodeID(MDNode * & Result)563 bool LLParser::ParseMDNodeID(MDNode *&Result) {
564 // !{ ..., !42, ... }
565 unsigned MID = 0;
566 if (ParseUInt32(MID))
567 return true;
568
569 // If not a forward reference, just return it now.
570 if (NumberedMetadata.count(MID)) {
571 Result = NumberedMetadata[MID];
572 return false;
573 }
574
575 // Otherwise, create MDNode forward reference.
576 auto &FwdRef = ForwardRefMDNodes[MID];
577 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), Lex.getLoc());
578
579 Result = FwdRef.first.get();
580 NumberedMetadata[MID].reset(Result);
581 return false;
582 }
583
584 /// ParseNamedMetadata:
585 /// !foo = !{ !1, !2 }
ParseNamedMetadata()586 bool LLParser::ParseNamedMetadata() {
587 assert(Lex.getKind() == lltok::MetadataVar);
588 std::string Name = Lex.getStrVal();
589 Lex.Lex();
590
591 if (ParseToken(lltok::equal, "expected '=' here") ||
592 ParseToken(lltok::exclaim, "Expected '!' here") ||
593 ParseToken(lltok::lbrace, "Expected '{' here"))
594 return true;
595
596 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
597 if (Lex.getKind() != lltok::rbrace)
598 do {
599 if (ParseToken(lltok::exclaim, "Expected '!' here"))
600 return true;
601
602 MDNode *N = nullptr;
603 if (ParseMDNodeID(N)) return true;
604 NMD->addOperand(N);
605 } while (EatIfPresent(lltok::comma));
606
607 return ParseToken(lltok::rbrace, "expected end of metadata node");
608 }
609
610 /// ParseStandaloneMetadata:
611 /// !42 = !{...}
ParseStandaloneMetadata()612 bool LLParser::ParseStandaloneMetadata() {
613 assert(Lex.getKind() == lltok::exclaim);
614 Lex.Lex();
615 unsigned MetadataID = 0;
616
617 MDNode *Init;
618 if (ParseUInt32(MetadataID) ||
619 ParseToken(lltok::equal, "expected '=' here"))
620 return true;
621
622 // Detect common error, from old metadata syntax.
623 if (Lex.getKind() == lltok::Type)
624 return TokError("unexpected type in metadata definition");
625
626 bool IsDistinct = EatIfPresent(lltok::kw_distinct);
627 if (Lex.getKind() == lltok::MetadataVar) {
628 if (ParseSpecializedMDNode(Init, IsDistinct))
629 return true;
630 } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
631 ParseMDTuple(Init, IsDistinct))
632 return true;
633
634 // See if this was forward referenced, if so, handle it.
635 auto FI = ForwardRefMDNodes.find(MetadataID);
636 if (FI != ForwardRefMDNodes.end()) {
637 FI->second.first->replaceAllUsesWith(Init);
638 ForwardRefMDNodes.erase(FI);
639
640 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
641 } else {
642 if (NumberedMetadata.count(MetadataID))
643 return TokError("Metadata id is already used");
644 NumberedMetadata[MetadataID].reset(Init);
645 }
646
647 return false;
648 }
649
isValidVisibilityForLinkage(unsigned V,unsigned L)650 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
651 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
652 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
653 }
654
655 /// ParseAlias:
656 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility
657 /// OptionalDLLStorageClass OptionalThreadLocal
658 /// OptionalUnnamedAddr 'alias' Aliasee
659 ///
660 /// Aliasee
661 /// ::= TypeAndValue
662 ///
663 /// Everything through OptionalUnnamedAddr has already been parsed.
664 ///
ParseAlias(const std::string & Name,LocTy NameLoc,unsigned L,unsigned Visibility,unsigned DLLStorageClass,GlobalVariable::ThreadLocalMode TLM,bool UnnamedAddr)665 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, unsigned L,
666 unsigned Visibility, unsigned DLLStorageClass,
667 GlobalVariable::ThreadLocalMode TLM,
668 bool UnnamedAddr) {
669 assert(Lex.getKind() == lltok::kw_alias);
670 Lex.Lex();
671
672 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
673
674 if(!GlobalAlias::isValidLinkage(Linkage))
675 return Error(NameLoc, "invalid linkage type for alias");
676
677 if (!isValidVisibilityForLinkage(Visibility, L))
678 return Error(NameLoc,
679 "symbol with local linkage must have default visibility");
680
681 Type *Ty;
682 LocTy ExplicitTypeLoc = Lex.getLoc();
683 if (ParseType(Ty) ||
684 ParseToken(lltok::comma, "expected comma after alias's type"))
685 return true;
686
687 Constant *Aliasee;
688 LocTy AliaseeLoc = Lex.getLoc();
689 if (Lex.getKind() != lltok::kw_bitcast &&
690 Lex.getKind() != lltok::kw_getelementptr &&
691 Lex.getKind() != lltok::kw_addrspacecast &&
692 Lex.getKind() != lltok::kw_inttoptr) {
693 if (ParseGlobalTypeAndValue(Aliasee))
694 return true;
695 } else {
696 // The bitcast dest type is not present, it is implied by the dest type.
697 ValID ID;
698 if (ParseValID(ID))
699 return true;
700 if (ID.Kind != ValID::t_Constant)
701 return Error(AliaseeLoc, "invalid aliasee");
702 Aliasee = ID.ConstantVal;
703 }
704
705 Type *AliaseeType = Aliasee->getType();
706 auto *PTy = dyn_cast<PointerType>(AliaseeType);
707 if (!PTy)
708 return Error(AliaseeLoc, "An alias must have pointer type");
709 unsigned AddrSpace = PTy->getAddressSpace();
710
711 if (Ty != PTy->getElementType())
712 return Error(
713 ExplicitTypeLoc,
714 "explicit pointee type doesn't match operand's pointee type");
715
716 GlobalValue *GVal = nullptr;
717
718 // See if the alias was forward referenced, if so, prepare to replace the
719 // forward reference.
720 if (!Name.empty()) {
721 GVal = M->getNamedValue(Name);
722 if (GVal) {
723 if (!ForwardRefVals.erase(Name))
724 return Error(NameLoc, "redefinition of global '@" + Name + "'");
725 }
726 } else {
727 auto I = ForwardRefValIDs.find(NumberedVals.size());
728 if (I != ForwardRefValIDs.end()) {
729 GVal = I->second.first;
730 ForwardRefValIDs.erase(I);
731 }
732 }
733
734 // Okay, create the alias but do not insert it into the module yet.
735 std::unique_ptr<GlobalAlias> GA(
736 GlobalAlias::create(Ty, AddrSpace, (GlobalValue::LinkageTypes)Linkage,
737 Name, Aliasee, /*Parent*/ nullptr));
738 GA->setThreadLocalMode(TLM);
739 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
740 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
741 GA->setUnnamedAddr(UnnamedAddr);
742
743 if (Name.empty())
744 NumberedVals.push_back(GA.get());
745
746 if (GVal) {
747 // Verify that types agree.
748 if (GVal->getType() != GA->getType())
749 return Error(
750 ExplicitTypeLoc,
751 "forward reference and definition of alias have different types");
752
753 // If they agree, just RAUW the old value with the alias and remove the
754 // forward ref info.
755 GVal->replaceAllUsesWith(GA.get());
756 GVal->eraseFromParent();
757 }
758
759 // Insert into the module, we know its name won't collide now.
760 M->getAliasList().push_back(GA.get());
761 assert(GA->getName() == Name && "Should not be a name conflict!");
762
763 // The module owns this now
764 GA.release();
765
766 return false;
767 }
768
769 /// ParseGlobal
770 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
771 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
772 /// OptionalExternallyInitialized GlobalType Type Const
773 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
774 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
775 /// OptionalExternallyInitialized GlobalType Type Const
776 ///
777 /// Everything up to and including OptionalUnnamedAddr has been parsed
778 /// already.
779 ///
ParseGlobal(const std::string & Name,LocTy NameLoc,unsigned Linkage,bool HasLinkage,unsigned Visibility,unsigned DLLStorageClass,GlobalVariable::ThreadLocalMode TLM,bool UnnamedAddr)780 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
781 unsigned Linkage, bool HasLinkage,
782 unsigned Visibility, unsigned DLLStorageClass,
783 GlobalVariable::ThreadLocalMode TLM,
784 bool UnnamedAddr) {
785 if (!isValidVisibilityForLinkage(Visibility, Linkage))
786 return Error(NameLoc,
787 "symbol with local linkage must have default visibility");
788
789 unsigned AddrSpace;
790 bool IsConstant, IsExternallyInitialized;
791 LocTy IsExternallyInitializedLoc;
792 LocTy TyLoc;
793
794 Type *Ty = nullptr;
795 if (ParseOptionalAddrSpace(AddrSpace) ||
796 ParseOptionalToken(lltok::kw_externally_initialized,
797 IsExternallyInitialized,
798 &IsExternallyInitializedLoc) ||
799 ParseGlobalType(IsConstant) ||
800 ParseType(Ty, TyLoc))
801 return true;
802
803 // If the linkage is specified and is external, then no initializer is
804 // present.
805 Constant *Init = nullptr;
806 if (!HasLinkage || (Linkage != GlobalValue::ExternalWeakLinkage &&
807 Linkage != GlobalValue::ExternalLinkage)) {
808 if (ParseGlobalValue(Ty, Init))
809 return true;
810 }
811
812 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
813 return Error(TyLoc, "invalid type for global variable");
814
815 GlobalValue *GVal = nullptr;
816
817 // See if the global was forward referenced, if so, use the global.
818 if (!Name.empty()) {
819 GVal = M->getNamedValue(Name);
820 if (GVal) {
821 if (!ForwardRefVals.erase(Name))
822 return Error(NameLoc, "redefinition of global '@" + Name + "'");
823 }
824 } else {
825 auto I = ForwardRefValIDs.find(NumberedVals.size());
826 if (I != ForwardRefValIDs.end()) {
827 GVal = I->second.first;
828 ForwardRefValIDs.erase(I);
829 }
830 }
831
832 GlobalVariable *GV;
833 if (!GVal) {
834 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
835 Name, nullptr, GlobalVariable::NotThreadLocal,
836 AddrSpace);
837 } else {
838 if (GVal->getValueType() != Ty)
839 return Error(TyLoc,
840 "forward reference and definition of global have different types");
841
842 GV = cast<GlobalVariable>(GVal);
843
844 // Move the forward-reference to the correct spot in the module.
845 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
846 }
847
848 if (Name.empty())
849 NumberedVals.push_back(GV);
850
851 // Set the parsed properties on the global.
852 if (Init)
853 GV->setInitializer(Init);
854 GV->setConstant(IsConstant);
855 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
856 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
857 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
858 GV->setExternallyInitialized(IsExternallyInitialized);
859 GV->setThreadLocalMode(TLM);
860 GV->setUnnamedAddr(UnnamedAddr);
861
862 // Parse attributes on the global.
863 while (Lex.getKind() == lltok::comma) {
864 Lex.Lex();
865
866 if (Lex.getKind() == lltok::kw_section) {
867 Lex.Lex();
868 GV->setSection(Lex.getStrVal());
869 if (ParseToken(lltok::StringConstant, "expected global section string"))
870 return true;
871 } else if (Lex.getKind() == lltok::kw_align) {
872 unsigned Alignment;
873 if (ParseOptionalAlignment(Alignment)) return true;
874 GV->setAlignment(Alignment);
875 } else {
876 Comdat *C;
877 if (parseOptionalComdat(Name, C))
878 return true;
879 if (C)
880 GV->setComdat(C);
881 else
882 return TokError("unknown global variable property!");
883 }
884 }
885
886 return false;
887 }
888
889 /// ParseUnnamedAttrGrp
890 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
ParseUnnamedAttrGrp()891 bool LLParser::ParseUnnamedAttrGrp() {
892 assert(Lex.getKind() == lltok::kw_attributes);
893 LocTy AttrGrpLoc = Lex.getLoc();
894 Lex.Lex();
895
896 if (Lex.getKind() != lltok::AttrGrpID)
897 return TokError("expected attribute group id");
898
899 unsigned VarID = Lex.getUIntVal();
900 std::vector<unsigned> unused;
901 LocTy BuiltinLoc;
902 Lex.Lex();
903
904 if (ParseToken(lltok::equal, "expected '=' here") ||
905 ParseToken(lltok::lbrace, "expected '{' here") ||
906 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
907 BuiltinLoc) ||
908 ParseToken(lltok::rbrace, "expected end of attribute group"))
909 return true;
910
911 if (!NumberedAttrBuilders[VarID].hasAttributes())
912 return Error(AttrGrpLoc, "attribute group has no attributes");
913
914 return false;
915 }
916
917 /// ParseFnAttributeValuePairs
918 /// ::= <attr> | <attr> '=' <value>
ParseFnAttributeValuePairs(AttrBuilder & B,std::vector<unsigned> & FwdRefAttrGrps,bool inAttrGrp,LocTy & BuiltinLoc)919 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
920 std::vector<unsigned> &FwdRefAttrGrps,
921 bool inAttrGrp, LocTy &BuiltinLoc) {
922 bool HaveError = false;
923
924 B.clear();
925
926 while (true) {
927 lltok::Kind Token = Lex.getKind();
928 if (Token == lltok::kw_builtin)
929 BuiltinLoc = Lex.getLoc();
930 switch (Token) {
931 default:
932 if (!inAttrGrp) return HaveError;
933 return Error(Lex.getLoc(), "unterminated attribute group");
934 case lltok::rbrace:
935 // Finished.
936 return false;
937
938 case lltok::AttrGrpID: {
939 // Allow a function to reference an attribute group:
940 //
941 // define void @foo() #1 { ... }
942 if (inAttrGrp)
943 HaveError |=
944 Error(Lex.getLoc(),
945 "cannot have an attribute group reference in an attribute group");
946
947 unsigned AttrGrpNum = Lex.getUIntVal();
948 if (inAttrGrp) break;
949
950 // Save the reference to the attribute group. We'll fill it in later.
951 FwdRefAttrGrps.push_back(AttrGrpNum);
952 break;
953 }
954 // Target-dependent attributes:
955 case lltok::StringConstant: {
956 if (ParseStringAttribute(B))
957 return true;
958 continue;
959 }
960
961 // Target-independent attributes:
962 case lltok::kw_align: {
963 // As a hack, we allow function alignment to be initially parsed as an
964 // attribute on a function declaration/definition or added to an attribute
965 // group and later moved to the alignment field.
966 unsigned Alignment;
967 if (inAttrGrp) {
968 Lex.Lex();
969 if (ParseToken(lltok::equal, "expected '=' here") ||
970 ParseUInt32(Alignment))
971 return true;
972 } else {
973 if (ParseOptionalAlignment(Alignment))
974 return true;
975 }
976 B.addAlignmentAttr(Alignment);
977 continue;
978 }
979 case lltok::kw_alignstack: {
980 unsigned Alignment;
981 if (inAttrGrp) {
982 Lex.Lex();
983 if (ParseToken(lltok::equal, "expected '=' here") ||
984 ParseUInt32(Alignment))
985 return true;
986 } else {
987 if (ParseOptionalStackAlignment(Alignment))
988 return true;
989 }
990 B.addStackAlignmentAttr(Alignment);
991 continue;
992 }
993 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
994 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
995 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
996 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
997 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
998 case lltok::kw_inaccessiblememonly:
999 B.addAttribute(Attribute::InaccessibleMemOnly); break;
1000 case lltok::kw_inaccessiblemem_or_argmemonly:
1001 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1002 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1003 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1004 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1005 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1006 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1007 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1008 case lltok::kw_noimplicitfloat:
1009 B.addAttribute(Attribute::NoImplicitFloat); break;
1010 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1011 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1012 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1013 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1014 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1015 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1016 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1017 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1018 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1019 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1020 case lltok::kw_returns_twice:
1021 B.addAttribute(Attribute::ReturnsTwice); break;
1022 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1023 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1024 case lltok::kw_sspstrong:
1025 B.addAttribute(Attribute::StackProtectStrong); break;
1026 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1027 case lltok::kw_sanitize_address:
1028 B.addAttribute(Attribute::SanitizeAddress); break;
1029 case lltok::kw_sanitize_thread:
1030 B.addAttribute(Attribute::SanitizeThread); break;
1031 case lltok::kw_sanitize_memory:
1032 B.addAttribute(Attribute::SanitizeMemory); break;
1033 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1034
1035 // Error handling.
1036 case lltok::kw_inreg:
1037 case lltok::kw_signext:
1038 case lltok::kw_zeroext:
1039 HaveError |=
1040 Error(Lex.getLoc(),
1041 "invalid use of attribute on a function");
1042 break;
1043 case lltok::kw_byval:
1044 case lltok::kw_dereferenceable:
1045 case lltok::kw_dereferenceable_or_null:
1046 case lltok::kw_inalloca:
1047 case lltok::kw_nest:
1048 case lltok::kw_noalias:
1049 case lltok::kw_nocapture:
1050 case lltok::kw_nonnull:
1051 case lltok::kw_returned:
1052 case lltok::kw_sret:
1053 HaveError |=
1054 Error(Lex.getLoc(),
1055 "invalid use of parameter-only attribute on a function");
1056 break;
1057 }
1058
1059 Lex.Lex();
1060 }
1061 }
1062
1063 //===----------------------------------------------------------------------===//
1064 // GlobalValue Reference/Resolution Routines.
1065 //===----------------------------------------------------------------------===//
1066
createGlobalFwdRef(Module * M,PointerType * PTy,const std::string & Name)1067 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1068 const std::string &Name) {
1069 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1070 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1071 else
1072 return new GlobalVariable(*M, PTy->getElementType(), false,
1073 GlobalValue::ExternalWeakLinkage, nullptr, Name,
1074 nullptr, GlobalVariable::NotThreadLocal,
1075 PTy->getAddressSpace());
1076 }
1077
1078 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1079 /// forward reference record if needed. This can return null if the value
1080 /// exists but does not have the right type.
GetGlobalVal(const std::string & Name,Type * Ty,LocTy Loc)1081 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1082 LocTy Loc) {
1083 PointerType *PTy = dyn_cast<PointerType>(Ty);
1084 if (!PTy) {
1085 Error(Loc, "global variable reference must have pointer type");
1086 return nullptr;
1087 }
1088
1089 // Look this name up in the normal function symbol table.
1090 GlobalValue *Val =
1091 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1092
1093 // If this is a forward reference for the value, see if we already created a
1094 // forward ref record.
1095 if (!Val) {
1096 auto I = ForwardRefVals.find(Name);
1097 if (I != ForwardRefVals.end())
1098 Val = I->second.first;
1099 }
1100
1101 // If we have the value in the symbol table or fwd-ref table, return it.
1102 if (Val) {
1103 if (Val->getType() == Ty) return Val;
1104 Error(Loc, "'@" + Name + "' defined with type '" +
1105 getTypeString(Val->getType()) + "'");
1106 return nullptr;
1107 }
1108
1109 // Otherwise, create a new forward reference for this value and remember it.
1110 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1111 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1112 return FwdVal;
1113 }
1114
GetGlobalVal(unsigned ID,Type * Ty,LocTy Loc)1115 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1116 PointerType *PTy = dyn_cast<PointerType>(Ty);
1117 if (!PTy) {
1118 Error(Loc, "global variable reference must have pointer type");
1119 return nullptr;
1120 }
1121
1122 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1123
1124 // If this is a forward reference for the value, see if we already created a
1125 // forward ref record.
1126 if (!Val) {
1127 auto I = ForwardRefValIDs.find(ID);
1128 if (I != ForwardRefValIDs.end())
1129 Val = I->second.first;
1130 }
1131
1132 // If we have the value in the symbol table or fwd-ref table, return it.
1133 if (Val) {
1134 if (Val->getType() == Ty) return Val;
1135 Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1136 getTypeString(Val->getType()) + "'");
1137 return nullptr;
1138 }
1139
1140 // Otherwise, create a new forward reference for this value and remember it.
1141 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1142 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1143 return FwdVal;
1144 }
1145
1146
1147 //===----------------------------------------------------------------------===//
1148 // Comdat Reference/Resolution Routines.
1149 //===----------------------------------------------------------------------===//
1150
getComdat(const std::string & Name,LocTy Loc)1151 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1152 // Look this name up in the comdat symbol table.
1153 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1154 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1155 if (I != ComdatSymTab.end())
1156 return &I->second;
1157
1158 // Otherwise, create a new forward reference for this value and remember it.
1159 Comdat *C = M->getOrInsertComdat(Name);
1160 ForwardRefComdats[Name] = Loc;
1161 return C;
1162 }
1163
1164
1165 //===----------------------------------------------------------------------===//
1166 // Helper Routines.
1167 //===----------------------------------------------------------------------===//
1168
1169 /// ParseToken - If the current token has the specified kind, eat it and return
1170 /// success. Otherwise, emit the specified error and return failure.
ParseToken(lltok::Kind T,const char * ErrMsg)1171 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1172 if (Lex.getKind() != T)
1173 return TokError(ErrMsg);
1174 Lex.Lex();
1175 return false;
1176 }
1177
1178 /// ParseStringConstant
1179 /// ::= StringConstant
ParseStringConstant(std::string & Result)1180 bool LLParser::ParseStringConstant(std::string &Result) {
1181 if (Lex.getKind() != lltok::StringConstant)
1182 return TokError("expected string constant");
1183 Result = Lex.getStrVal();
1184 Lex.Lex();
1185 return false;
1186 }
1187
1188 /// ParseUInt32
1189 /// ::= uint32
ParseUInt32(unsigned & Val)1190 bool LLParser::ParseUInt32(unsigned &Val) {
1191 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1192 return TokError("expected integer");
1193 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1194 if (Val64 != unsigned(Val64))
1195 return TokError("expected 32-bit integer (too large)");
1196 Val = Val64;
1197 Lex.Lex();
1198 return false;
1199 }
1200
1201 /// ParseUInt64
1202 /// ::= uint64
ParseUInt64(uint64_t & Val)1203 bool LLParser::ParseUInt64(uint64_t &Val) {
1204 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1205 return TokError("expected integer");
1206 Val = Lex.getAPSIntVal().getLimitedValue();
1207 Lex.Lex();
1208 return false;
1209 }
1210
1211 /// ParseTLSModel
1212 /// := 'localdynamic'
1213 /// := 'initialexec'
1214 /// := 'localexec'
ParseTLSModel(GlobalVariable::ThreadLocalMode & TLM)1215 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1216 switch (Lex.getKind()) {
1217 default:
1218 return TokError("expected localdynamic, initialexec or localexec");
1219 case lltok::kw_localdynamic:
1220 TLM = GlobalVariable::LocalDynamicTLSModel;
1221 break;
1222 case lltok::kw_initialexec:
1223 TLM = GlobalVariable::InitialExecTLSModel;
1224 break;
1225 case lltok::kw_localexec:
1226 TLM = GlobalVariable::LocalExecTLSModel;
1227 break;
1228 }
1229
1230 Lex.Lex();
1231 return false;
1232 }
1233
1234 /// ParseOptionalThreadLocal
1235 /// := /*empty*/
1236 /// := 'thread_local'
1237 /// := 'thread_local' '(' tlsmodel ')'
ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode & TLM)1238 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1239 TLM = GlobalVariable::NotThreadLocal;
1240 if (!EatIfPresent(lltok::kw_thread_local))
1241 return false;
1242
1243 TLM = GlobalVariable::GeneralDynamicTLSModel;
1244 if (Lex.getKind() == lltok::lparen) {
1245 Lex.Lex();
1246 return ParseTLSModel(TLM) ||
1247 ParseToken(lltok::rparen, "expected ')' after thread local model");
1248 }
1249 return false;
1250 }
1251
1252 /// ParseOptionalAddrSpace
1253 /// := /*empty*/
1254 /// := 'addrspace' '(' uint32 ')'
ParseOptionalAddrSpace(unsigned & AddrSpace)1255 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1256 AddrSpace = 0;
1257 if (!EatIfPresent(lltok::kw_addrspace))
1258 return false;
1259 return ParseToken(lltok::lparen, "expected '(' in address space") ||
1260 ParseUInt32(AddrSpace) ||
1261 ParseToken(lltok::rparen, "expected ')' in address space");
1262 }
1263
1264 /// ParseStringAttribute
1265 /// := StringConstant
1266 /// := StringConstant '=' StringConstant
ParseStringAttribute(AttrBuilder & B)1267 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1268 std::string Attr = Lex.getStrVal();
1269 Lex.Lex();
1270 std::string Val;
1271 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1272 return true;
1273 B.addAttribute(Attr, Val);
1274 return false;
1275 }
1276
1277 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
ParseOptionalParamAttrs(AttrBuilder & B)1278 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1279 bool HaveError = false;
1280
1281 B.clear();
1282
1283 while (1) {
1284 lltok::Kind Token = Lex.getKind();
1285 switch (Token) {
1286 default: // End of attributes.
1287 return HaveError;
1288 case lltok::StringConstant: {
1289 if (ParseStringAttribute(B))
1290 return true;
1291 continue;
1292 }
1293 case lltok::kw_align: {
1294 unsigned Alignment;
1295 if (ParseOptionalAlignment(Alignment))
1296 return true;
1297 B.addAlignmentAttr(Alignment);
1298 continue;
1299 }
1300 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break;
1301 case lltok::kw_dereferenceable: {
1302 uint64_t Bytes;
1303 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1304 return true;
1305 B.addDereferenceableAttr(Bytes);
1306 continue;
1307 }
1308 case lltok::kw_dereferenceable_or_null: {
1309 uint64_t Bytes;
1310 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1311 return true;
1312 B.addDereferenceableOrNullAttr(Bytes);
1313 continue;
1314 }
1315 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break;
1316 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1317 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break;
1318 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1319 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break;
1320 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1321 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1322 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1323 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break;
1324 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1325 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break;
1326 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1327
1328 case lltok::kw_alignstack:
1329 case lltok::kw_alwaysinline:
1330 case lltok::kw_argmemonly:
1331 case lltok::kw_builtin:
1332 case lltok::kw_inlinehint:
1333 case lltok::kw_jumptable:
1334 case lltok::kw_minsize:
1335 case lltok::kw_naked:
1336 case lltok::kw_nobuiltin:
1337 case lltok::kw_noduplicate:
1338 case lltok::kw_noimplicitfloat:
1339 case lltok::kw_noinline:
1340 case lltok::kw_nonlazybind:
1341 case lltok::kw_noredzone:
1342 case lltok::kw_noreturn:
1343 case lltok::kw_nounwind:
1344 case lltok::kw_optnone:
1345 case lltok::kw_optsize:
1346 case lltok::kw_returns_twice:
1347 case lltok::kw_sanitize_address:
1348 case lltok::kw_sanitize_memory:
1349 case lltok::kw_sanitize_thread:
1350 case lltok::kw_ssp:
1351 case lltok::kw_sspreq:
1352 case lltok::kw_sspstrong:
1353 case lltok::kw_safestack:
1354 case lltok::kw_uwtable:
1355 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1356 break;
1357 }
1358
1359 Lex.Lex();
1360 }
1361 }
1362
1363 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
ParseOptionalReturnAttrs(AttrBuilder & B)1364 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1365 bool HaveError = false;
1366
1367 B.clear();
1368
1369 while (1) {
1370 lltok::Kind Token = Lex.getKind();
1371 switch (Token) {
1372 default: // End of attributes.
1373 return HaveError;
1374 case lltok::StringConstant: {
1375 if (ParseStringAttribute(B))
1376 return true;
1377 continue;
1378 }
1379 case lltok::kw_dereferenceable: {
1380 uint64_t Bytes;
1381 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1382 return true;
1383 B.addDereferenceableAttr(Bytes);
1384 continue;
1385 }
1386 case lltok::kw_dereferenceable_or_null: {
1387 uint64_t Bytes;
1388 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1389 return true;
1390 B.addDereferenceableOrNullAttr(Bytes);
1391 continue;
1392 }
1393 case lltok::kw_align: {
1394 unsigned Alignment;
1395 if (ParseOptionalAlignment(Alignment))
1396 return true;
1397 B.addAlignmentAttr(Alignment);
1398 continue;
1399 }
1400 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1401 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1402 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1403 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1404 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1405
1406 // Error handling.
1407 case lltok::kw_byval:
1408 case lltok::kw_inalloca:
1409 case lltok::kw_nest:
1410 case lltok::kw_nocapture:
1411 case lltok::kw_returned:
1412 case lltok::kw_sret:
1413 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1414 break;
1415
1416 case lltok::kw_alignstack:
1417 case lltok::kw_alwaysinline:
1418 case lltok::kw_argmemonly:
1419 case lltok::kw_builtin:
1420 case lltok::kw_cold:
1421 case lltok::kw_inlinehint:
1422 case lltok::kw_jumptable:
1423 case lltok::kw_minsize:
1424 case lltok::kw_naked:
1425 case lltok::kw_nobuiltin:
1426 case lltok::kw_noduplicate:
1427 case lltok::kw_noimplicitfloat:
1428 case lltok::kw_noinline:
1429 case lltok::kw_nonlazybind:
1430 case lltok::kw_noredzone:
1431 case lltok::kw_noreturn:
1432 case lltok::kw_nounwind:
1433 case lltok::kw_optnone:
1434 case lltok::kw_optsize:
1435 case lltok::kw_returns_twice:
1436 case lltok::kw_sanitize_address:
1437 case lltok::kw_sanitize_memory:
1438 case lltok::kw_sanitize_thread:
1439 case lltok::kw_ssp:
1440 case lltok::kw_sspreq:
1441 case lltok::kw_sspstrong:
1442 case lltok::kw_safestack:
1443 case lltok::kw_uwtable:
1444 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1445 break;
1446
1447 case lltok::kw_readnone:
1448 case lltok::kw_readonly:
1449 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1450 }
1451
1452 Lex.Lex();
1453 }
1454 }
1455
1456 /// ParseOptionalLinkage
1457 /// ::= /*empty*/
1458 /// ::= 'private'
1459 /// ::= 'internal'
1460 /// ::= 'weak'
1461 /// ::= 'weak_odr'
1462 /// ::= 'linkonce'
1463 /// ::= 'linkonce_odr'
1464 /// ::= 'available_externally'
1465 /// ::= 'appending'
1466 /// ::= 'common'
1467 /// ::= 'extern_weak'
1468 /// ::= 'external'
ParseOptionalLinkage(unsigned & Res,bool & HasLinkage)1469 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1470 HasLinkage = false;
1471 switch (Lex.getKind()) {
1472 default: Res=GlobalValue::ExternalLinkage; return false;
1473 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
1474 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
1475 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
1476 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
1477 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
1478 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
1479 case lltok::kw_available_externally:
1480 Res = GlobalValue::AvailableExternallyLinkage;
1481 break;
1482 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
1483 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
1484 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
1485 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
1486 }
1487 Lex.Lex();
1488 HasLinkage = true;
1489 return false;
1490 }
1491
1492 /// ParseOptionalVisibility
1493 /// ::= /*empty*/
1494 /// ::= 'default'
1495 /// ::= 'hidden'
1496 /// ::= 'protected'
1497 ///
ParseOptionalVisibility(unsigned & Res)1498 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1499 switch (Lex.getKind()) {
1500 default: Res = GlobalValue::DefaultVisibility; return false;
1501 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
1502 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
1503 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1504 }
1505 Lex.Lex();
1506 return false;
1507 }
1508
1509 /// ParseOptionalDLLStorageClass
1510 /// ::= /*empty*/
1511 /// ::= 'dllimport'
1512 /// ::= 'dllexport'
1513 ///
ParseOptionalDLLStorageClass(unsigned & Res)1514 bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1515 switch (Lex.getKind()) {
1516 default: Res = GlobalValue::DefaultStorageClass; return false;
1517 case lltok::kw_dllimport: Res = GlobalValue::DLLImportStorageClass; break;
1518 case lltok::kw_dllexport: Res = GlobalValue::DLLExportStorageClass; break;
1519 }
1520 Lex.Lex();
1521 return false;
1522 }
1523
1524 /// ParseOptionalCallingConv
1525 /// ::= /*empty*/
1526 /// ::= 'ccc'
1527 /// ::= 'fastcc'
1528 /// ::= 'intel_ocl_bicc'
1529 /// ::= 'coldcc'
1530 /// ::= 'x86_stdcallcc'
1531 /// ::= 'x86_fastcallcc'
1532 /// ::= 'x86_thiscallcc'
1533 /// ::= 'x86_vectorcallcc'
1534 /// ::= 'arm_apcscc'
1535 /// ::= 'arm_aapcscc'
1536 /// ::= 'arm_aapcs_vfpcc'
1537 /// ::= 'msp430_intrcc'
1538 /// ::= 'ptx_kernel'
1539 /// ::= 'ptx_device'
1540 /// ::= 'spir_func'
1541 /// ::= 'spir_kernel'
1542 /// ::= 'x86_64_sysvcc'
1543 /// ::= 'x86_64_win64cc'
1544 /// ::= 'webkit_jscc'
1545 /// ::= 'anyregcc'
1546 /// ::= 'preserve_mostcc'
1547 /// ::= 'preserve_allcc'
1548 /// ::= 'ghccc'
1549 /// ::= 'x86_intrcc'
1550 /// ::= 'hhvmcc'
1551 /// ::= 'hhvm_ccc'
1552 /// ::= 'cxx_fast_tlscc'
1553 /// ::= 'cc' UINT
1554 ///
ParseOptionalCallingConv(unsigned & CC)1555 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1556 switch (Lex.getKind()) {
1557 default: CC = CallingConv::C; return false;
1558 case lltok::kw_ccc: CC = CallingConv::C; break;
1559 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1560 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1561 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
1562 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1563 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1564 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1565 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1566 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
1567 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1568 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
1569 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
1570 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
1571 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break;
1572 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
1573 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1574 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break;
1575 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1576 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break;
1577 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
1578 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1579 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1580 case lltok::kw_ghccc: CC = CallingConv::GHC; break;
1581 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break;
1582 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break;
1583 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break;
1584 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1585 case lltok::kw_cc: {
1586 Lex.Lex();
1587 return ParseUInt32(CC);
1588 }
1589 }
1590
1591 Lex.Lex();
1592 return false;
1593 }
1594
1595 /// ParseMetadataAttachment
1596 /// ::= !dbg !42
ParseMetadataAttachment(unsigned & Kind,MDNode * & MD)1597 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1598 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1599
1600 std::string Name = Lex.getStrVal();
1601 Kind = M->getMDKindID(Name);
1602 Lex.Lex();
1603
1604 return ParseMDNode(MD);
1605 }
1606
1607 /// ParseInstructionMetadata
1608 /// ::= !dbg !42 (',' !dbg !57)*
ParseInstructionMetadata(Instruction & Inst)1609 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1610 do {
1611 if (Lex.getKind() != lltok::MetadataVar)
1612 return TokError("expected metadata after comma");
1613
1614 unsigned MDK;
1615 MDNode *N;
1616 if (ParseMetadataAttachment(MDK, N))
1617 return true;
1618
1619 Inst.setMetadata(MDK, N);
1620 if (MDK == LLVMContext::MD_tbaa)
1621 InstsWithTBAATag.push_back(&Inst);
1622
1623 // If this is the end of the list, we're done.
1624 } while (EatIfPresent(lltok::comma));
1625 return false;
1626 }
1627
1628 /// ParseOptionalFunctionMetadata
1629 /// ::= (!dbg !57)*
ParseOptionalFunctionMetadata(Function & F)1630 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1631 while (Lex.getKind() == lltok::MetadataVar) {
1632 unsigned MDK;
1633 MDNode *N;
1634 if (ParseMetadataAttachment(MDK, N))
1635 return true;
1636
1637 F.setMetadata(MDK, N);
1638 }
1639 return false;
1640 }
1641
1642 /// ParseOptionalAlignment
1643 /// ::= /* empty */
1644 /// ::= 'align' 4
ParseOptionalAlignment(unsigned & Alignment)1645 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1646 Alignment = 0;
1647 if (!EatIfPresent(lltok::kw_align))
1648 return false;
1649 LocTy AlignLoc = Lex.getLoc();
1650 if (ParseUInt32(Alignment)) return true;
1651 if (!isPowerOf2_32(Alignment))
1652 return Error(AlignLoc, "alignment is not a power of two");
1653 if (Alignment > Value::MaximumAlignment)
1654 return Error(AlignLoc, "huge alignments are not supported yet");
1655 return false;
1656 }
1657
1658 /// ParseOptionalDerefAttrBytes
1659 /// ::= /* empty */
1660 /// ::= AttrKind '(' 4 ')'
1661 ///
1662 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,uint64_t & Bytes)1663 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1664 uint64_t &Bytes) {
1665 assert((AttrKind == lltok::kw_dereferenceable ||
1666 AttrKind == lltok::kw_dereferenceable_or_null) &&
1667 "contract!");
1668
1669 Bytes = 0;
1670 if (!EatIfPresent(AttrKind))
1671 return false;
1672 LocTy ParenLoc = Lex.getLoc();
1673 if (!EatIfPresent(lltok::lparen))
1674 return Error(ParenLoc, "expected '('");
1675 LocTy DerefLoc = Lex.getLoc();
1676 if (ParseUInt64(Bytes)) return true;
1677 ParenLoc = Lex.getLoc();
1678 if (!EatIfPresent(lltok::rparen))
1679 return Error(ParenLoc, "expected ')'");
1680 if (!Bytes)
1681 return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1682 return false;
1683 }
1684
1685 /// ParseOptionalCommaAlign
1686 /// ::=
1687 /// ::= ',' align 4
1688 ///
1689 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1690 /// end.
ParseOptionalCommaAlign(unsigned & Alignment,bool & AteExtraComma)1691 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1692 bool &AteExtraComma) {
1693 AteExtraComma = false;
1694 while (EatIfPresent(lltok::comma)) {
1695 // Metadata at the end is an early exit.
1696 if (Lex.getKind() == lltok::MetadataVar) {
1697 AteExtraComma = true;
1698 return false;
1699 }
1700
1701 if (Lex.getKind() != lltok::kw_align)
1702 return Error(Lex.getLoc(), "expected metadata or 'align'");
1703
1704 if (ParseOptionalAlignment(Alignment)) return true;
1705 }
1706
1707 return false;
1708 }
1709
1710 /// ParseScopeAndOrdering
1711 /// if isAtomic: ::= 'singlethread'? AtomicOrdering
1712 /// else: ::=
1713 ///
1714 /// This sets Scope and Ordering to the parsed values.
ParseScopeAndOrdering(bool isAtomic,SynchronizationScope & Scope,AtomicOrdering & Ordering)1715 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1716 AtomicOrdering &Ordering) {
1717 if (!isAtomic)
1718 return false;
1719
1720 Scope = CrossThread;
1721 if (EatIfPresent(lltok::kw_singlethread))
1722 Scope = SingleThread;
1723
1724 return ParseOrdering(Ordering);
1725 }
1726
1727 /// ParseOrdering
1728 /// ::= AtomicOrdering
1729 ///
1730 /// This sets Ordering to the parsed value.
ParseOrdering(AtomicOrdering & Ordering)1731 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
1732 switch (Lex.getKind()) {
1733 default: return TokError("Expected ordering on atomic instruction");
1734 case lltok::kw_unordered: Ordering = Unordered; break;
1735 case lltok::kw_monotonic: Ordering = Monotonic; break;
1736 case lltok::kw_acquire: Ordering = Acquire; break;
1737 case lltok::kw_release: Ordering = Release; break;
1738 case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1739 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1740 }
1741 Lex.Lex();
1742 return false;
1743 }
1744
1745 /// ParseOptionalStackAlignment
1746 /// ::= /* empty */
1747 /// ::= 'alignstack' '(' 4 ')'
ParseOptionalStackAlignment(unsigned & Alignment)1748 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1749 Alignment = 0;
1750 if (!EatIfPresent(lltok::kw_alignstack))
1751 return false;
1752 LocTy ParenLoc = Lex.getLoc();
1753 if (!EatIfPresent(lltok::lparen))
1754 return Error(ParenLoc, "expected '('");
1755 LocTy AlignLoc = Lex.getLoc();
1756 if (ParseUInt32(Alignment)) return true;
1757 ParenLoc = Lex.getLoc();
1758 if (!EatIfPresent(lltok::rparen))
1759 return Error(ParenLoc, "expected ')'");
1760 if (!isPowerOf2_32(Alignment))
1761 return Error(AlignLoc, "stack alignment is not a power of two");
1762 return false;
1763 }
1764
1765 /// ParseIndexList - This parses the index list for an insert/extractvalue
1766 /// instruction. This sets AteExtraComma in the case where we eat an extra
1767 /// comma at the end of the line and find that it is followed by metadata.
1768 /// Clients that don't allow metadata can call the version of this function that
1769 /// only takes one argument.
1770 ///
1771 /// ParseIndexList
1772 /// ::= (',' uint32)+
1773 ///
ParseIndexList(SmallVectorImpl<unsigned> & Indices,bool & AteExtraComma)1774 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1775 bool &AteExtraComma) {
1776 AteExtraComma = false;
1777
1778 if (Lex.getKind() != lltok::comma)
1779 return TokError("expected ',' as start of index list");
1780
1781 while (EatIfPresent(lltok::comma)) {
1782 if (Lex.getKind() == lltok::MetadataVar) {
1783 if (Indices.empty()) return TokError("expected index");
1784 AteExtraComma = true;
1785 return false;
1786 }
1787 unsigned Idx = 0;
1788 if (ParseUInt32(Idx)) return true;
1789 Indices.push_back(Idx);
1790 }
1791
1792 return false;
1793 }
1794
1795 //===----------------------------------------------------------------------===//
1796 // Type Parsing.
1797 //===----------------------------------------------------------------------===//
1798
1799 /// ParseType - Parse a type.
ParseType(Type * & Result,const Twine & Msg,bool AllowVoid)1800 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
1801 SMLoc TypeLoc = Lex.getLoc();
1802 switch (Lex.getKind()) {
1803 default:
1804 return TokError(Msg);
1805 case lltok::Type:
1806 // Type ::= 'float' | 'void' (etc)
1807 Result = Lex.getTyVal();
1808 Lex.Lex();
1809 break;
1810 case lltok::lbrace:
1811 // Type ::= StructType
1812 if (ParseAnonStructType(Result, false))
1813 return true;
1814 break;
1815 case lltok::lsquare:
1816 // Type ::= '[' ... ']'
1817 Lex.Lex(); // eat the lsquare.
1818 if (ParseArrayVectorType(Result, false))
1819 return true;
1820 break;
1821 case lltok::less: // Either vector or packed struct.
1822 // Type ::= '<' ... '>'
1823 Lex.Lex();
1824 if (Lex.getKind() == lltok::lbrace) {
1825 if (ParseAnonStructType(Result, true) ||
1826 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1827 return true;
1828 } else if (ParseArrayVectorType(Result, true))
1829 return true;
1830 break;
1831 case lltok::LocalVar: {
1832 // Type ::= %foo
1833 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1834
1835 // If the type hasn't been defined yet, create a forward definition and
1836 // remember where that forward def'n was seen (in case it never is defined).
1837 if (!Entry.first) {
1838 Entry.first = StructType::create(Context, Lex.getStrVal());
1839 Entry.second = Lex.getLoc();
1840 }
1841 Result = Entry.first;
1842 Lex.Lex();
1843 break;
1844 }
1845
1846 case lltok::LocalVarID: {
1847 // Type ::= %4
1848 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1849
1850 // If the type hasn't been defined yet, create a forward definition and
1851 // remember where that forward def'n was seen (in case it never is defined).
1852 if (!Entry.first) {
1853 Entry.first = StructType::create(Context);
1854 Entry.second = Lex.getLoc();
1855 }
1856 Result = Entry.first;
1857 Lex.Lex();
1858 break;
1859 }
1860 }
1861
1862 // Parse the type suffixes.
1863 while (1) {
1864 switch (Lex.getKind()) {
1865 // End of type.
1866 default:
1867 if (!AllowVoid && Result->isVoidTy())
1868 return Error(TypeLoc, "void type only allowed for function results");
1869 return false;
1870
1871 // Type ::= Type '*'
1872 case lltok::star:
1873 if (Result->isLabelTy())
1874 return TokError("basic block pointers are invalid");
1875 if (Result->isVoidTy())
1876 return TokError("pointers to void are invalid - use i8* instead");
1877 if (!PointerType::isValidElementType(Result))
1878 return TokError("pointer to this type is invalid");
1879 Result = PointerType::getUnqual(Result);
1880 Lex.Lex();
1881 break;
1882
1883 // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1884 case lltok::kw_addrspace: {
1885 if (Result->isLabelTy())
1886 return TokError("basic block pointers are invalid");
1887 if (Result->isVoidTy())
1888 return TokError("pointers to void are invalid; use i8* instead");
1889 if (!PointerType::isValidElementType(Result))
1890 return TokError("pointer to this type is invalid");
1891 unsigned AddrSpace;
1892 if (ParseOptionalAddrSpace(AddrSpace) ||
1893 ParseToken(lltok::star, "expected '*' in address space"))
1894 return true;
1895
1896 Result = PointerType::get(Result, AddrSpace);
1897 break;
1898 }
1899
1900 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1901 case lltok::lparen:
1902 if (ParseFunctionType(Result))
1903 return true;
1904 break;
1905 }
1906 }
1907 }
1908
1909 /// ParseParameterList
1910 /// ::= '(' ')'
1911 /// ::= '(' Arg (',' Arg)* ')'
1912 /// Arg
1913 /// ::= Type OptionalAttributes Value OptionalAttributes
ParseParameterList(SmallVectorImpl<ParamInfo> & ArgList,PerFunctionState & PFS,bool IsMustTailCall,bool InVarArgsFunc)1914 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1915 PerFunctionState &PFS, bool IsMustTailCall,
1916 bool InVarArgsFunc) {
1917 if (ParseToken(lltok::lparen, "expected '(' in call"))
1918 return true;
1919
1920 unsigned AttrIndex = 1;
1921 while (Lex.getKind() != lltok::rparen) {
1922 // If this isn't the first argument, we need a comma.
1923 if (!ArgList.empty() &&
1924 ParseToken(lltok::comma, "expected ',' in argument list"))
1925 return true;
1926
1927 // Parse an ellipsis if this is a musttail call in a variadic function.
1928 if (Lex.getKind() == lltok::dotdotdot) {
1929 const char *Msg = "unexpected ellipsis in argument list for ";
1930 if (!IsMustTailCall)
1931 return TokError(Twine(Msg) + "non-musttail call");
1932 if (!InVarArgsFunc)
1933 return TokError(Twine(Msg) + "musttail call in non-varargs function");
1934 Lex.Lex(); // Lex the '...', it is purely for readability.
1935 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1936 }
1937
1938 // Parse the argument.
1939 LocTy ArgLoc;
1940 Type *ArgTy = nullptr;
1941 AttrBuilder ArgAttrs;
1942 Value *V;
1943 if (ParseType(ArgTy, ArgLoc))
1944 return true;
1945
1946 if (ArgTy->isMetadataTy()) {
1947 if (ParseMetadataAsValue(V, PFS))
1948 return true;
1949 } else {
1950 // Otherwise, handle normal operands.
1951 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
1952 return true;
1953 }
1954 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
1955 AttrIndex++,
1956 ArgAttrs)));
1957 }
1958
1959 if (IsMustTailCall && InVarArgsFunc)
1960 return TokError("expected '...' at end of argument list for musttail call "
1961 "in varargs function");
1962
1963 Lex.Lex(); // Lex the ')'.
1964 return false;
1965 }
1966
1967 /// ParseOptionalOperandBundles
1968 /// ::= /*empty*/
1969 /// ::= '[' OperandBundle [, OperandBundle ]* ']'
1970 ///
1971 /// OperandBundle
1972 /// ::= bundle-tag '(' ')'
1973 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')'
1974 ///
1975 /// bundle-tag ::= String Constant
ParseOptionalOperandBundles(SmallVectorImpl<OperandBundleDef> & BundleList,PerFunctionState & PFS)1976 bool LLParser::ParseOptionalOperandBundles(
1977 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
1978 LocTy BeginLoc = Lex.getLoc();
1979 if (!EatIfPresent(lltok::lsquare))
1980 return false;
1981
1982 while (Lex.getKind() != lltok::rsquare) {
1983 // If this isn't the first operand bundle, we need a comma.
1984 if (!BundleList.empty() &&
1985 ParseToken(lltok::comma, "expected ',' in input list"))
1986 return true;
1987
1988 std::string Tag;
1989 if (ParseStringConstant(Tag))
1990 return true;
1991
1992 if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
1993 return true;
1994
1995 std::vector<Value *> Inputs;
1996 while (Lex.getKind() != lltok::rparen) {
1997 // If this isn't the first input, we need a comma.
1998 if (!Inputs.empty() &&
1999 ParseToken(lltok::comma, "expected ',' in input list"))
2000 return true;
2001
2002 Type *Ty = nullptr;
2003 Value *Input = nullptr;
2004 if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2005 return true;
2006 Inputs.push_back(Input);
2007 }
2008
2009 BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2010
2011 Lex.Lex(); // Lex the ')'.
2012 }
2013
2014 if (BundleList.empty())
2015 return Error(BeginLoc, "operand bundle set must not be empty");
2016
2017 Lex.Lex(); // Lex the ']'.
2018 return false;
2019 }
2020
2021 /// ParseArgumentList - Parse the argument list for a function type or function
2022 /// prototype.
2023 /// ::= '(' ArgTypeListI ')'
2024 /// ArgTypeListI
2025 /// ::= /*empty*/
2026 /// ::= '...'
2027 /// ::= ArgTypeList ',' '...'
2028 /// ::= ArgType (',' ArgType)*
2029 ///
ParseArgumentList(SmallVectorImpl<ArgInfo> & ArgList,bool & isVarArg)2030 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2031 bool &isVarArg){
2032 isVarArg = false;
2033 assert(Lex.getKind() == lltok::lparen);
2034 Lex.Lex(); // eat the (.
2035
2036 if (Lex.getKind() == lltok::rparen) {
2037 // empty
2038 } else if (Lex.getKind() == lltok::dotdotdot) {
2039 isVarArg = true;
2040 Lex.Lex();
2041 } else {
2042 LocTy TypeLoc = Lex.getLoc();
2043 Type *ArgTy = nullptr;
2044 AttrBuilder Attrs;
2045 std::string Name;
2046
2047 if (ParseType(ArgTy) ||
2048 ParseOptionalParamAttrs(Attrs)) return true;
2049
2050 if (ArgTy->isVoidTy())
2051 return Error(TypeLoc, "argument can not have void type");
2052
2053 if (Lex.getKind() == lltok::LocalVar) {
2054 Name = Lex.getStrVal();
2055 Lex.Lex();
2056 }
2057
2058 if (!FunctionType::isValidArgumentType(ArgTy))
2059 return Error(TypeLoc, "invalid type for function argument");
2060
2061 unsigned AttrIndex = 1;
2062 ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(),
2063 AttrIndex++, Attrs),
2064 std::move(Name));
2065
2066 while (EatIfPresent(lltok::comma)) {
2067 // Handle ... at end of arg list.
2068 if (EatIfPresent(lltok::dotdotdot)) {
2069 isVarArg = true;
2070 break;
2071 }
2072
2073 // Otherwise must be an argument type.
2074 TypeLoc = Lex.getLoc();
2075 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2076
2077 if (ArgTy->isVoidTy())
2078 return Error(TypeLoc, "argument can not have void type");
2079
2080 if (Lex.getKind() == lltok::LocalVar) {
2081 Name = Lex.getStrVal();
2082 Lex.Lex();
2083 } else {
2084 Name = "";
2085 }
2086
2087 if (!ArgTy->isFirstClassType())
2088 return Error(TypeLoc, "invalid type for function argument");
2089
2090 ArgList.emplace_back(
2091 TypeLoc, ArgTy,
2092 AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs),
2093 std::move(Name));
2094 }
2095 }
2096
2097 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2098 }
2099
2100 /// ParseFunctionType
2101 /// ::= Type ArgumentList OptionalAttrs
ParseFunctionType(Type * & Result)2102 bool LLParser::ParseFunctionType(Type *&Result) {
2103 assert(Lex.getKind() == lltok::lparen);
2104
2105 if (!FunctionType::isValidReturnType(Result))
2106 return TokError("invalid function return type");
2107
2108 SmallVector<ArgInfo, 8> ArgList;
2109 bool isVarArg;
2110 if (ParseArgumentList(ArgList, isVarArg))
2111 return true;
2112
2113 // Reject names on the arguments lists.
2114 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2115 if (!ArgList[i].Name.empty())
2116 return Error(ArgList[i].Loc, "argument name invalid in function type");
2117 if (ArgList[i].Attrs.hasAttributes(i + 1))
2118 return Error(ArgList[i].Loc,
2119 "argument attributes invalid in function type");
2120 }
2121
2122 SmallVector<Type*, 16> ArgListTy;
2123 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2124 ArgListTy.push_back(ArgList[i].Ty);
2125
2126 Result = FunctionType::get(Result, ArgListTy, isVarArg);
2127 return false;
2128 }
2129
2130 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2131 /// other structs.
ParseAnonStructType(Type * & Result,bool Packed)2132 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2133 SmallVector<Type*, 8> Elts;
2134 if (ParseStructBody(Elts)) return true;
2135
2136 Result = StructType::get(Context, Elts, Packed);
2137 return false;
2138 }
2139
2140 /// ParseStructDefinition - Parse a struct in a 'type' definition.
ParseStructDefinition(SMLoc TypeLoc,StringRef Name,std::pair<Type *,LocTy> & Entry,Type * & ResultTy)2141 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2142 std::pair<Type*, LocTy> &Entry,
2143 Type *&ResultTy) {
2144 // If the type was already defined, diagnose the redefinition.
2145 if (Entry.first && !Entry.second.isValid())
2146 return Error(TypeLoc, "redefinition of type");
2147
2148 // If we have opaque, just return without filling in the definition for the
2149 // struct. This counts as a definition as far as the .ll file goes.
2150 if (EatIfPresent(lltok::kw_opaque)) {
2151 // This type is being defined, so clear the location to indicate this.
2152 Entry.second = SMLoc();
2153
2154 // If this type number has never been uttered, create it.
2155 if (!Entry.first)
2156 Entry.first = StructType::create(Context, Name);
2157 ResultTy = Entry.first;
2158 return false;
2159 }
2160
2161 // If the type starts with '<', then it is either a packed struct or a vector.
2162 bool isPacked = EatIfPresent(lltok::less);
2163
2164 // If we don't have a struct, then we have a random type alias, which we
2165 // accept for compatibility with old files. These types are not allowed to be
2166 // forward referenced and not allowed to be recursive.
2167 if (Lex.getKind() != lltok::lbrace) {
2168 if (Entry.first)
2169 return Error(TypeLoc, "forward references to non-struct type");
2170
2171 ResultTy = nullptr;
2172 if (isPacked)
2173 return ParseArrayVectorType(ResultTy, true);
2174 return ParseType(ResultTy);
2175 }
2176
2177 // This type is being defined, so clear the location to indicate this.
2178 Entry.second = SMLoc();
2179
2180 // If this type number has never been uttered, create it.
2181 if (!Entry.first)
2182 Entry.first = StructType::create(Context, Name);
2183
2184 StructType *STy = cast<StructType>(Entry.first);
2185
2186 SmallVector<Type*, 8> Body;
2187 if (ParseStructBody(Body) ||
2188 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2189 return true;
2190
2191 STy->setBody(Body, isPacked);
2192 ResultTy = STy;
2193 return false;
2194 }
2195
2196
2197 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
2198 /// StructType
2199 /// ::= '{' '}'
2200 /// ::= '{' Type (',' Type)* '}'
2201 /// ::= '<' '{' '}' '>'
2202 /// ::= '<' '{' Type (',' Type)* '}' '>'
ParseStructBody(SmallVectorImpl<Type * > & Body)2203 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2204 assert(Lex.getKind() == lltok::lbrace);
2205 Lex.Lex(); // Consume the '{'
2206
2207 // Handle the empty struct.
2208 if (EatIfPresent(lltok::rbrace))
2209 return false;
2210
2211 LocTy EltTyLoc = Lex.getLoc();
2212 Type *Ty = nullptr;
2213 if (ParseType(Ty)) return true;
2214 Body.push_back(Ty);
2215
2216 if (!StructType::isValidElementType(Ty))
2217 return Error(EltTyLoc, "invalid element type for struct");
2218
2219 while (EatIfPresent(lltok::comma)) {
2220 EltTyLoc = Lex.getLoc();
2221 if (ParseType(Ty)) return true;
2222
2223 if (!StructType::isValidElementType(Ty))
2224 return Error(EltTyLoc, "invalid element type for struct");
2225
2226 Body.push_back(Ty);
2227 }
2228
2229 return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2230 }
2231
2232 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2233 /// token has already been consumed.
2234 /// Type
2235 /// ::= '[' APSINTVAL 'x' Types ']'
2236 /// ::= '<' APSINTVAL 'x' Types '>'
ParseArrayVectorType(Type * & Result,bool isVector)2237 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2238 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2239 Lex.getAPSIntVal().getBitWidth() > 64)
2240 return TokError("expected number in address space");
2241
2242 LocTy SizeLoc = Lex.getLoc();
2243 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2244 Lex.Lex();
2245
2246 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2247 return true;
2248
2249 LocTy TypeLoc = Lex.getLoc();
2250 Type *EltTy = nullptr;
2251 if (ParseType(EltTy)) return true;
2252
2253 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2254 "expected end of sequential type"))
2255 return true;
2256
2257 if (isVector) {
2258 if (Size == 0)
2259 return Error(SizeLoc, "zero element vector is illegal");
2260 if ((unsigned)Size != Size)
2261 return Error(SizeLoc, "size too large for vector");
2262 if (!VectorType::isValidElementType(EltTy))
2263 return Error(TypeLoc, "invalid vector element type");
2264 Result = VectorType::get(EltTy, unsigned(Size));
2265 } else {
2266 if (!ArrayType::isValidElementType(EltTy))
2267 return Error(TypeLoc, "invalid array element type");
2268 Result = ArrayType::get(EltTy, Size);
2269 }
2270 return false;
2271 }
2272
2273 //===----------------------------------------------------------------------===//
2274 // Function Semantic Analysis.
2275 //===----------------------------------------------------------------------===//
2276
PerFunctionState(LLParser & p,Function & f,int functionNumber)2277 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2278 int functionNumber)
2279 : P(p), F(f), FunctionNumber(functionNumber) {
2280
2281 // Insert unnamed arguments into the NumberedVals list.
2282 for (Argument &A : F.args())
2283 if (!A.hasName())
2284 NumberedVals.push_back(&A);
2285 }
2286
~PerFunctionState()2287 LLParser::PerFunctionState::~PerFunctionState() {
2288 // If there were any forward referenced non-basicblock values, delete them.
2289
2290 for (const auto &P : ForwardRefVals) {
2291 if (isa<BasicBlock>(P.second.first))
2292 continue;
2293 P.second.first->replaceAllUsesWith(
2294 UndefValue::get(P.second.first->getType()));
2295 delete P.second.first;
2296 }
2297
2298 for (const auto &P : ForwardRefValIDs) {
2299 if (isa<BasicBlock>(P.second.first))
2300 continue;
2301 P.second.first->replaceAllUsesWith(
2302 UndefValue::get(P.second.first->getType()));
2303 delete P.second.first;
2304 }
2305 }
2306
FinishFunction()2307 bool LLParser::PerFunctionState::FinishFunction() {
2308 if (!ForwardRefVals.empty())
2309 return P.Error(ForwardRefVals.begin()->second.second,
2310 "use of undefined value '%" + ForwardRefVals.begin()->first +
2311 "'");
2312 if (!ForwardRefValIDs.empty())
2313 return P.Error(ForwardRefValIDs.begin()->second.second,
2314 "use of undefined value '%" +
2315 Twine(ForwardRefValIDs.begin()->first) + "'");
2316 return false;
2317 }
2318
2319
2320 /// GetVal - Get a value with the specified name or ID, creating a
2321 /// forward reference record if needed. This can return null if the value
2322 /// exists but does not have the right type.
GetVal(const std::string & Name,Type * Ty,LocTy Loc)2323 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2324 LocTy Loc) {
2325 // Look this name up in the normal function symbol table.
2326 Value *Val = F.getValueSymbolTable().lookup(Name);
2327
2328 // If this is a forward reference for the value, see if we already created a
2329 // forward ref record.
2330 if (!Val) {
2331 auto I = ForwardRefVals.find(Name);
2332 if (I != ForwardRefVals.end())
2333 Val = I->second.first;
2334 }
2335
2336 // If we have the value in the symbol table or fwd-ref table, return it.
2337 if (Val) {
2338 if (Val->getType() == Ty) return Val;
2339 if (Ty->isLabelTy())
2340 P.Error(Loc, "'%" + Name + "' is not a basic block");
2341 else
2342 P.Error(Loc, "'%" + Name + "' defined with type '" +
2343 getTypeString(Val->getType()) + "'");
2344 return nullptr;
2345 }
2346
2347 // Don't make placeholders with invalid type.
2348 if (!Ty->isFirstClassType()) {
2349 P.Error(Loc, "invalid use of a non-first-class type");
2350 return nullptr;
2351 }
2352
2353 // Otherwise, create a new forward reference for this value and remember it.
2354 Value *FwdVal;
2355 if (Ty->isLabelTy()) {
2356 FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2357 } else {
2358 FwdVal = new Argument(Ty, Name);
2359 }
2360
2361 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2362 return FwdVal;
2363 }
2364
GetVal(unsigned ID,Type * Ty,LocTy Loc)2365 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
2366 // Look this name up in the normal function symbol table.
2367 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2368
2369 // If this is a forward reference for the value, see if we already created a
2370 // forward ref record.
2371 if (!Val) {
2372 auto I = ForwardRefValIDs.find(ID);
2373 if (I != ForwardRefValIDs.end())
2374 Val = I->second.first;
2375 }
2376
2377 // If we have the value in the symbol table or fwd-ref table, return it.
2378 if (Val) {
2379 if (Val->getType() == Ty) return Val;
2380 if (Ty->isLabelTy())
2381 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2382 else
2383 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2384 getTypeString(Val->getType()) + "'");
2385 return nullptr;
2386 }
2387
2388 if (!Ty->isFirstClassType()) {
2389 P.Error(Loc, "invalid use of a non-first-class type");
2390 return nullptr;
2391 }
2392
2393 // Otherwise, create a new forward reference for this value and remember it.
2394 Value *FwdVal;
2395 if (Ty->isLabelTy()) {
2396 FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2397 } else {
2398 FwdVal = new Argument(Ty);
2399 }
2400
2401 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2402 return FwdVal;
2403 }
2404
2405 /// SetInstName - After an instruction is parsed and inserted into its
2406 /// basic block, this installs its name.
SetInstName(int NameID,const std::string & NameStr,LocTy NameLoc,Instruction * Inst)2407 bool LLParser::PerFunctionState::SetInstName(int NameID,
2408 const std::string &NameStr,
2409 LocTy NameLoc, Instruction *Inst) {
2410 // If this instruction has void type, it cannot have a name or ID specified.
2411 if (Inst->getType()->isVoidTy()) {
2412 if (NameID != -1 || !NameStr.empty())
2413 return P.Error(NameLoc, "instructions returning void cannot have a name");
2414 return false;
2415 }
2416
2417 // If this was a numbered instruction, verify that the instruction is the
2418 // expected value and resolve any forward references.
2419 if (NameStr.empty()) {
2420 // If neither a name nor an ID was specified, just use the next ID.
2421 if (NameID == -1)
2422 NameID = NumberedVals.size();
2423
2424 if (unsigned(NameID) != NumberedVals.size())
2425 return P.Error(NameLoc, "instruction expected to be numbered '%" +
2426 Twine(NumberedVals.size()) + "'");
2427
2428 auto FI = ForwardRefValIDs.find(NameID);
2429 if (FI != ForwardRefValIDs.end()) {
2430 Value *Sentinel = FI->second.first;
2431 if (Sentinel->getType() != Inst->getType())
2432 return P.Error(NameLoc, "instruction forward referenced with type '" +
2433 getTypeString(FI->second.first->getType()) + "'");
2434
2435 Sentinel->replaceAllUsesWith(Inst);
2436 delete Sentinel;
2437 ForwardRefValIDs.erase(FI);
2438 }
2439
2440 NumberedVals.push_back(Inst);
2441 return false;
2442 }
2443
2444 // Otherwise, the instruction had a name. Resolve forward refs and set it.
2445 auto FI = ForwardRefVals.find(NameStr);
2446 if (FI != ForwardRefVals.end()) {
2447 Value *Sentinel = FI->second.first;
2448 if (Sentinel->getType() != Inst->getType())
2449 return P.Error(NameLoc, "instruction forward referenced with type '" +
2450 getTypeString(FI->second.first->getType()) + "'");
2451
2452 Sentinel->replaceAllUsesWith(Inst);
2453 delete Sentinel;
2454 ForwardRefVals.erase(FI);
2455 }
2456
2457 // Set the name on the instruction.
2458 Inst->setName(NameStr);
2459
2460 if (Inst->getName() != NameStr)
2461 return P.Error(NameLoc, "multiple definition of local value named '" +
2462 NameStr + "'");
2463 return false;
2464 }
2465
2466 /// GetBB - Get a basic block with the specified name or ID, creating a
2467 /// forward reference record if needed.
GetBB(const std::string & Name,LocTy Loc)2468 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2469 LocTy Loc) {
2470 return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2471 Type::getLabelTy(F.getContext()), Loc));
2472 }
2473
GetBB(unsigned ID,LocTy Loc)2474 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2475 return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2476 Type::getLabelTy(F.getContext()), Loc));
2477 }
2478
2479 /// DefineBB - Define the specified basic block, which is either named or
2480 /// unnamed. If there is an error, this returns null otherwise it returns
2481 /// the block being defined.
DefineBB(const std::string & Name,LocTy Loc)2482 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2483 LocTy Loc) {
2484 BasicBlock *BB;
2485 if (Name.empty())
2486 BB = GetBB(NumberedVals.size(), Loc);
2487 else
2488 BB = GetBB(Name, Loc);
2489 if (!BB) return nullptr; // Already diagnosed error.
2490
2491 // Move the block to the end of the function. Forward ref'd blocks are
2492 // inserted wherever they happen to be referenced.
2493 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2494
2495 // Remove the block from forward ref sets.
2496 if (Name.empty()) {
2497 ForwardRefValIDs.erase(NumberedVals.size());
2498 NumberedVals.push_back(BB);
2499 } else {
2500 // BB forward references are already in the function symbol table.
2501 ForwardRefVals.erase(Name);
2502 }
2503
2504 return BB;
2505 }
2506
2507 //===----------------------------------------------------------------------===//
2508 // Constants.
2509 //===----------------------------------------------------------------------===//
2510
2511 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2512 /// type implied. For example, if we parse "4" we don't know what integer type
2513 /// it has. The value will later be combined with its type and checked for
2514 /// sanity. PFS is used to convert function-local operands of metadata (since
2515 /// metadata operands are not just parsed here but also converted to values).
2516 /// PFS can be null when we are not parsing metadata values inside a function.
ParseValID(ValID & ID,PerFunctionState * PFS)2517 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2518 ID.Loc = Lex.getLoc();
2519 switch (Lex.getKind()) {
2520 default: return TokError("expected value token");
2521 case lltok::GlobalID: // @42
2522 ID.UIntVal = Lex.getUIntVal();
2523 ID.Kind = ValID::t_GlobalID;
2524 break;
2525 case lltok::GlobalVar: // @foo
2526 ID.StrVal = Lex.getStrVal();
2527 ID.Kind = ValID::t_GlobalName;
2528 break;
2529 case lltok::LocalVarID: // %42
2530 ID.UIntVal = Lex.getUIntVal();
2531 ID.Kind = ValID::t_LocalID;
2532 break;
2533 case lltok::LocalVar: // %foo
2534 ID.StrVal = Lex.getStrVal();
2535 ID.Kind = ValID::t_LocalName;
2536 break;
2537 case lltok::APSInt:
2538 ID.APSIntVal = Lex.getAPSIntVal();
2539 ID.Kind = ValID::t_APSInt;
2540 break;
2541 case lltok::APFloat:
2542 ID.APFloatVal = Lex.getAPFloatVal();
2543 ID.Kind = ValID::t_APFloat;
2544 break;
2545 case lltok::kw_true:
2546 ID.ConstantVal = ConstantInt::getTrue(Context);
2547 ID.Kind = ValID::t_Constant;
2548 break;
2549 case lltok::kw_false:
2550 ID.ConstantVal = ConstantInt::getFalse(Context);
2551 ID.Kind = ValID::t_Constant;
2552 break;
2553 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2554 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2555 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2556 case lltok::kw_none: ID.Kind = ValID::t_None; break;
2557
2558 case lltok::lbrace: {
2559 // ValID ::= '{' ConstVector '}'
2560 Lex.Lex();
2561 SmallVector<Constant*, 16> Elts;
2562 if (ParseGlobalValueVector(Elts) ||
2563 ParseToken(lltok::rbrace, "expected end of struct constant"))
2564 return true;
2565
2566 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2567 ID.UIntVal = Elts.size();
2568 memcpy(ID.ConstantStructElts.get(), Elts.data(),
2569 Elts.size() * sizeof(Elts[0]));
2570 ID.Kind = ValID::t_ConstantStruct;
2571 return false;
2572 }
2573 case lltok::less: {
2574 // ValID ::= '<' ConstVector '>' --> Vector.
2575 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2576 Lex.Lex();
2577 bool isPackedStruct = EatIfPresent(lltok::lbrace);
2578
2579 SmallVector<Constant*, 16> Elts;
2580 LocTy FirstEltLoc = Lex.getLoc();
2581 if (ParseGlobalValueVector(Elts) ||
2582 (isPackedStruct &&
2583 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2584 ParseToken(lltok::greater, "expected end of constant"))
2585 return true;
2586
2587 if (isPackedStruct) {
2588 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2589 memcpy(ID.ConstantStructElts.get(), Elts.data(),
2590 Elts.size() * sizeof(Elts[0]));
2591 ID.UIntVal = Elts.size();
2592 ID.Kind = ValID::t_PackedConstantStruct;
2593 return false;
2594 }
2595
2596 if (Elts.empty())
2597 return Error(ID.Loc, "constant vector must not be empty");
2598
2599 if (!Elts[0]->getType()->isIntegerTy() &&
2600 !Elts[0]->getType()->isFloatingPointTy() &&
2601 !Elts[0]->getType()->isPointerTy())
2602 return Error(FirstEltLoc,
2603 "vector elements must have integer, pointer or floating point type");
2604
2605 // Verify that all the vector elements have the same type.
2606 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2607 if (Elts[i]->getType() != Elts[0]->getType())
2608 return Error(FirstEltLoc,
2609 "vector element #" + Twine(i) +
2610 " is not of type '" + getTypeString(Elts[0]->getType()));
2611
2612 ID.ConstantVal = ConstantVector::get(Elts);
2613 ID.Kind = ValID::t_Constant;
2614 return false;
2615 }
2616 case lltok::lsquare: { // Array Constant
2617 Lex.Lex();
2618 SmallVector<Constant*, 16> Elts;
2619 LocTy FirstEltLoc = Lex.getLoc();
2620 if (ParseGlobalValueVector(Elts) ||
2621 ParseToken(lltok::rsquare, "expected end of array constant"))
2622 return true;
2623
2624 // Handle empty element.
2625 if (Elts.empty()) {
2626 // Use undef instead of an array because it's inconvenient to determine
2627 // the element type at this point, there being no elements to examine.
2628 ID.Kind = ValID::t_EmptyArray;
2629 return false;
2630 }
2631
2632 if (!Elts[0]->getType()->isFirstClassType())
2633 return Error(FirstEltLoc, "invalid array element type: " +
2634 getTypeString(Elts[0]->getType()));
2635
2636 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2637
2638 // Verify all elements are correct type!
2639 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2640 if (Elts[i]->getType() != Elts[0]->getType())
2641 return Error(FirstEltLoc,
2642 "array element #" + Twine(i) +
2643 " is not of type '" + getTypeString(Elts[0]->getType()));
2644 }
2645
2646 ID.ConstantVal = ConstantArray::get(ATy, Elts);
2647 ID.Kind = ValID::t_Constant;
2648 return false;
2649 }
2650 case lltok::kw_c: // c "foo"
2651 Lex.Lex();
2652 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2653 false);
2654 if (ParseToken(lltok::StringConstant, "expected string")) return true;
2655 ID.Kind = ValID::t_Constant;
2656 return false;
2657
2658 case lltok::kw_asm: {
2659 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2660 // STRINGCONSTANT
2661 bool HasSideEffect, AlignStack, AsmDialect;
2662 Lex.Lex();
2663 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2664 ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2665 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2666 ParseStringConstant(ID.StrVal) ||
2667 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2668 ParseToken(lltok::StringConstant, "expected constraint string"))
2669 return true;
2670 ID.StrVal2 = Lex.getStrVal();
2671 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2672 (unsigned(AsmDialect)<<2);
2673 ID.Kind = ValID::t_InlineAsm;
2674 return false;
2675 }
2676
2677 case lltok::kw_blockaddress: {
2678 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2679 Lex.Lex();
2680
2681 ValID Fn, Label;
2682
2683 if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2684 ParseValID(Fn) ||
2685 ParseToken(lltok::comma, "expected comma in block address expression")||
2686 ParseValID(Label) ||
2687 ParseToken(lltok::rparen, "expected ')' in block address expression"))
2688 return true;
2689
2690 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2691 return Error(Fn.Loc, "expected function name in blockaddress");
2692 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2693 return Error(Label.Loc, "expected basic block name in blockaddress");
2694
2695 // Try to find the function (but skip it if it's forward-referenced).
2696 GlobalValue *GV = nullptr;
2697 if (Fn.Kind == ValID::t_GlobalID) {
2698 if (Fn.UIntVal < NumberedVals.size())
2699 GV = NumberedVals[Fn.UIntVal];
2700 } else if (!ForwardRefVals.count(Fn.StrVal)) {
2701 GV = M->getNamedValue(Fn.StrVal);
2702 }
2703 Function *F = nullptr;
2704 if (GV) {
2705 // Confirm that it's actually a function with a definition.
2706 if (!isa<Function>(GV))
2707 return Error(Fn.Loc, "expected function name in blockaddress");
2708 F = cast<Function>(GV);
2709 if (F->isDeclaration())
2710 return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
2711 }
2712
2713 if (!F) {
2714 // Make a global variable as a placeholder for this reference.
2715 GlobalValue *&FwdRef =
2716 ForwardRefBlockAddresses.insert(std::make_pair(
2717 std::move(Fn),
2718 std::map<ValID, GlobalValue *>()))
2719 .first->second.insert(std::make_pair(std::move(Label), nullptr))
2720 .first->second;
2721 if (!FwdRef)
2722 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
2723 GlobalValue::InternalLinkage, nullptr, "");
2724 ID.ConstantVal = FwdRef;
2725 ID.Kind = ValID::t_Constant;
2726 return false;
2727 }
2728
2729 // We found the function; now find the basic block. Don't use PFS, since we
2730 // might be inside a constant expression.
2731 BasicBlock *BB;
2732 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
2733 if (Label.Kind == ValID::t_LocalID)
2734 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
2735 else
2736 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
2737 if (!BB)
2738 return Error(Label.Loc, "referenced value is not a basic block");
2739 } else {
2740 if (Label.Kind == ValID::t_LocalID)
2741 return Error(Label.Loc, "cannot take address of numeric label after "
2742 "the function is defined");
2743 BB = dyn_cast_or_null<BasicBlock>(
2744 F->getValueSymbolTable().lookup(Label.StrVal));
2745 if (!BB)
2746 return Error(Label.Loc, "referenced value is not a basic block");
2747 }
2748
2749 ID.ConstantVal = BlockAddress::get(F, BB);
2750 ID.Kind = ValID::t_Constant;
2751 return false;
2752 }
2753
2754 case lltok::kw_trunc:
2755 case lltok::kw_zext:
2756 case lltok::kw_sext:
2757 case lltok::kw_fptrunc:
2758 case lltok::kw_fpext:
2759 case lltok::kw_bitcast:
2760 case lltok::kw_addrspacecast:
2761 case lltok::kw_uitofp:
2762 case lltok::kw_sitofp:
2763 case lltok::kw_fptoui:
2764 case lltok::kw_fptosi:
2765 case lltok::kw_inttoptr:
2766 case lltok::kw_ptrtoint: {
2767 unsigned Opc = Lex.getUIntVal();
2768 Type *DestTy = nullptr;
2769 Constant *SrcVal;
2770 Lex.Lex();
2771 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2772 ParseGlobalTypeAndValue(SrcVal) ||
2773 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2774 ParseType(DestTy) ||
2775 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2776 return true;
2777 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2778 return Error(ID.Loc, "invalid cast opcode for cast from '" +
2779 getTypeString(SrcVal->getType()) + "' to '" +
2780 getTypeString(DestTy) + "'");
2781 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2782 SrcVal, DestTy);
2783 ID.Kind = ValID::t_Constant;
2784 return false;
2785 }
2786 case lltok::kw_extractvalue: {
2787 Lex.Lex();
2788 Constant *Val;
2789 SmallVector<unsigned, 4> Indices;
2790 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2791 ParseGlobalTypeAndValue(Val) ||
2792 ParseIndexList(Indices) ||
2793 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2794 return true;
2795
2796 if (!Val->getType()->isAggregateType())
2797 return Error(ID.Loc, "extractvalue operand must be aggregate type");
2798 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2799 return Error(ID.Loc, "invalid indices for extractvalue");
2800 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2801 ID.Kind = ValID::t_Constant;
2802 return false;
2803 }
2804 case lltok::kw_insertvalue: {
2805 Lex.Lex();
2806 Constant *Val0, *Val1;
2807 SmallVector<unsigned, 4> Indices;
2808 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2809 ParseGlobalTypeAndValue(Val0) ||
2810 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2811 ParseGlobalTypeAndValue(Val1) ||
2812 ParseIndexList(Indices) ||
2813 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2814 return true;
2815 if (!Val0->getType()->isAggregateType())
2816 return Error(ID.Loc, "insertvalue operand must be aggregate type");
2817 Type *IndexedType =
2818 ExtractValueInst::getIndexedType(Val0->getType(), Indices);
2819 if (!IndexedType)
2820 return Error(ID.Loc, "invalid indices for insertvalue");
2821 if (IndexedType != Val1->getType())
2822 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
2823 getTypeString(Val1->getType()) +
2824 "' instead of '" + getTypeString(IndexedType) +
2825 "'");
2826 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2827 ID.Kind = ValID::t_Constant;
2828 return false;
2829 }
2830 case lltok::kw_icmp:
2831 case lltok::kw_fcmp: {
2832 unsigned PredVal, Opc = Lex.getUIntVal();
2833 Constant *Val0, *Val1;
2834 Lex.Lex();
2835 if (ParseCmpPredicate(PredVal, Opc) ||
2836 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2837 ParseGlobalTypeAndValue(Val0) ||
2838 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2839 ParseGlobalTypeAndValue(Val1) ||
2840 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2841 return true;
2842
2843 if (Val0->getType() != Val1->getType())
2844 return Error(ID.Loc, "compare operands must have the same type");
2845
2846 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2847
2848 if (Opc == Instruction::FCmp) {
2849 if (!Val0->getType()->isFPOrFPVectorTy())
2850 return Error(ID.Loc, "fcmp requires floating point operands");
2851 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2852 } else {
2853 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2854 if (!Val0->getType()->isIntOrIntVectorTy() &&
2855 !Val0->getType()->getScalarType()->isPointerTy())
2856 return Error(ID.Loc, "icmp requires pointer or integer operands");
2857 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2858 }
2859 ID.Kind = ValID::t_Constant;
2860 return false;
2861 }
2862
2863 // Binary Operators.
2864 case lltok::kw_add:
2865 case lltok::kw_fadd:
2866 case lltok::kw_sub:
2867 case lltok::kw_fsub:
2868 case lltok::kw_mul:
2869 case lltok::kw_fmul:
2870 case lltok::kw_udiv:
2871 case lltok::kw_sdiv:
2872 case lltok::kw_fdiv:
2873 case lltok::kw_urem:
2874 case lltok::kw_srem:
2875 case lltok::kw_frem:
2876 case lltok::kw_shl:
2877 case lltok::kw_lshr:
2878 case lltok::kw_ashr: {
2879 bool NUW = false;
2880 bool NSW = false;
2881 bool Exact = false;
2882 unsigned Opc = Lex.getUIntVal();
2883 Constant *Val0, *Val1;
2884 Lex.Lex();
2885 LocTy ModifierLoc = Lex.getLoc();
2886 if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2887 Opc == Instruction::Mul || Opc == Instruction::Shl) {
2888 if (EatIfPresent(lltok::kw_nuw))
2889 NUW = true;
2890 if (EatIfPresent(lltok::kw_nsw)) {
2891 NSW = true;
2892 if (EatIfPresent(lltok::kw_nuw))
2893 NUW = true;
2894 }
2895 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2896 Opc == Instruction::LShr || Opc == Instruction::AShr) {
2897 if (EatIfPresent(lltok::kw_exact))
2898 Exact = true;
2899 }
2900 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2901 ParseGlobalTypeAndValue(Val0) ||
2902 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2903 ParseGlobalTypeAndValue(Val1) ||
2904 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2905 return true;
2906 if (Val0->getType() != Val1->getType())
2907 return Error(ID.Loc, "operands of constexpr must have same type");
2908 if (!Val0->getType()->isIntOrIntVectorTy()) {
2909 if (NUW)
2910 return Error(ModifierLoc, "nuw only applies to integer operations");
2911 if (NSW)
2912 return Error(ModifierLoc, "nsw only applies to integer operations");
2913 }
2914 // Check that the type is valid for the operator.
2915 switch (Opc) {
2916 case Instruction::Add:
2917 case Instruction::Sub:
2918 case Instruction::Mul:
2919 case Instruction::UDiv:
2920 case Instruction::SDiv:
2921 case Instruction::URem:
2922 case Instruction::SRem:
2923 case Instruction::Shl:
2924 case Instruction::AShr:
2925 case Instruction::LShr:
2926 if (!Val0->getType()->isIntOrIntVectorTy())
2927 return Error(ID.Loc, "constexpr requires integer operands");
2928 break;
2929 case Instruction::FAdd:
2930 case Instruction::FSub:
2931 case Instruction::FMul:
2932 case Instruction::FDiv:
2933 case Instruction::FRem:
2934 if (!Val0->getType()->isFPOrFPVectorTy())
2935 return Error(ID.Loc, "constexpr requires fp operands");
2936 break;
2937 default: llvm_unreachable("Unknown binary operator!");
2938 }
2939 unsigned Flags = 0;
2940 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2941 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
2942 if (Exact) Flags |= PossiblyExactOperator::IsExact;
2943 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2944 ID.ConstantVal = C;
2945 ID.Kind = ValID::t_Constant;
2946 return false;
2947 }
2948
2949 // Logical Operations
2950 case lltok::kw_and:
2951 case lltok::kw_or:
2952 case lltok::kw_xor: {
2953 unsigned Opc = Lex.getUIntVal();
2954 Constant *Val0, *Val1;
2955 Lex.Lex();
2956 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2957 ParseGlobalTypeAndValue(Val0) ||
2958 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2959 ParseGlobalTypeAndValue(Val1) ||
2960 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2961 return true;
2962 if (Val0->getType() != Val1->getType())
2963 return Error(ID.Loc, "operands of constexpr must have same type");
2964 if (!Val0->getType()->isIntOrIntVectorTy())
2965 return Error(ID.Loc,
2966 "constexpr requires integer or integer vector operands");
2967 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2968 ID.Kind = ValID::t_Constant;
2969 return false;
2970 }
2971
2972 case lltok::kw_getelementptr:
2973 case lltok::kw_shufflevector:
2974 case lltok::kw_insertelement:
2975 case lltok::kw_extractelement:
2976 case lltok::kw_select: {
2977 unsigned Opc = Lex.getUIntVal();
2978 SmallVector<Constant*, 16> Elts;
2979 bool InBounds = false;
2980 Type *Ty;
2981 Lex.Lex();
2982
2983 if (Opc == Instruction::GetElementPtr)
2984 InBounds = EatIfPresent(lltok::kw_inbounds);
2985
2986 if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
2987 return true;
2988
2989 LocTy ExplicitTypeLoc = Lex.getLoc();
2990 if (Opc == Instruction::GetElementPtr) {
2991 if (ParseType(Ty) ||
2992 ParseToken(lltok::comma, "expected comma after getelementptr's type"))
2993 return true;
2994 }
2995
2996 if (ParseGlobalValueVector(Elts) ||
2997 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2998 return true;
2999
3000 if (Opc == Instruction::GetElementPtr) {
3001 if (Elts.size() == 0 ||
3002 !Elts[0]->getType()->getScalarType()->isPointerTy())
3003 return Error(ID.Loc, "base of getelementptr must be a pointer");
3004
3005 Type *BaseType = Elts[0]->getType();
3006 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3007 if (Ty != BasePointerType->getElementType())
3008 return Error(
3009 ExplicitTypeLoc,
3010 "explicit pointee type doesn't match operand's pointee type");
3011
3012 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3013 for (Constant *Val : Indices) {
3014 Type *ValTy = Val->getType();
3015 if (!ValTy->getScalarType()->isIntegerTy())
3016 return Error(ID.Loc, "getelementptr index must be an integer");
3017 if (ValTy->isVectorTy() != BaseType->isVectorTy())
3018 return Error(ID.Loc, "getelementptr index type missmatch");
3019 if (ValTy->isVectorTy()) {
3020 unsigned ValNumEl = ValTy->getVectorNumElements();
3021 unsigned PtrNumEl = BaseType->getVectorNumElements();
3022 if (ValNumEl != PtrNumEl)
3023 return Error(
3024 ID.Loc,
3025 "getelementptr vector index has a wrong number of elements");
3026 }
3027 }
3028
3029 SmallPtrSet<Type*, 4> Visited;
3030 if (!Indices.empty() && !Ty->isSized(&Visited))
3031 return Error(ID.Loc, "base element of getelementptr must be sized");
3032
3033 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3034 return Error(ID.Loc, "invalid getelementptr indices");
3035 ID.ConstantVal =
3036 ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds);
3037 } else if (Opc == Instruction::Select) {
3038 if (Elts.size() != 3)
3039 return Error(ID.Loc, "expected three operands to select");
3040 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3041 Elts[2]))
3042 return Error(ID.Loc, Reason);
3043 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3044 } else if (Opc == Instruction::ShuffleVector) {
3045 if (Elts.size() != 3)
3046 return Error(ID.Loc, "expected three operands to shufflevector");
3047 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3048 return Error(ID.Loc, "invalid operands to shufflevector");
3049 ID.ConstantVal =
3050 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3051 } else if (Opc == Instruction::ExtractElement) {
3052 if (Elts.size() != 2)
3053 return Error(ID.Loc, "expected two operands to extractelement");
3054 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3055 return Error(ID.Loc, "invalid extractelement operands");
3056 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3057 } else {
3058 assert(Opc == Instruction::InsertElement && "Unknown opcode");
3059 if (Elts.size() != 3)
3060 return Error(ID.Loc, "expected three operands to insertelement");
3061 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3062 return Error(ID.Loc, "invalid insertelement operands");
3063 ID.ConstantVal =
3064 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3065 }
3066
3067 ID.Kind = ValID::t_Constant;
3068 return false;
3069 }
3070 }
3071
3072 Lex.Lex();
3073 return false;
3074 }
3075
3076 /// ParseGlobalValue - Parse a global value with the specified type.
ParseGlobalValue(Type * Ty,Constant * & C)3077 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3078 C = nullptr;
3079 ValID ID;
3080 Value *V = nullptr;
3081 bool Parsed = ParseValID(ID) ||
3082 ConvertValIDToValue(Ty, ID, V, nullptr);
3083 if (V && !(C = dyn_cast<Constant>(V)))
3084 return Error(ID.Loc, "global values must be constants");
3085 return Parsed;
3086 }
3087
ParseGlobalTypeAndValue(Constant * & V)3088 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3089 Type *Ty = nullptr;
3090 return ParseType(Ty) ||
3091 ParseGlobalValue(Ty, V);
3092 }
3093
parseOptionalComdat(StringRef GlobalName,Comdat * & C)3094 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3095 C = nullptr;
3096
3097 LocTy KwLoc = Lex.getLoc();
3098 if (!EatIfPresent(lltok::kw_comdat))
3099 return false;
3100
3101 if (EatIfPresent(lltok::lparen)) {
3102 if (Lex.getKind() != lltok::ComdatVar)
3103 return TokError("expected comdat variable");
3104 C = getComdat(Lex.getStrVal(), Lex.getLoc());
3105 Lex.Lex();
3106 if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3107 return true;
3108 } else {
3109 if (GlobalName.empty())
3110 return TokError("comdat cannot be unnamed");
3111 C = getComdat(GlobalName, KwLoc);
3112 }
3113
3114 return false;
3115 }
3116
3117 /// ParseGlobalValueVector
3118 /// ::= /*empty*/
3119 /// ::= TypeAndValue (',' TypeAndValue)*
ParseGlobalValueVector(SmallVectorImpl<Constant * > & Elts)3120 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
3121 // Empty list.
3122 if (Lex.getKind() == lltok::rbrace ||
3123 Lex.getKind() == lltok::rsquare ||
3124 Lex.getKind() == lltok::greater ||
3125 Lex.getKind() == lltok::rparen)
3126 return false;
3127
3128 Constant *C;
3129 if (ParseGlobalTypeAndValue(C)) return true;
3130 Elts.push_back(C);
3131
3132 while (EatIfPresent(lltok::comma)) {
3133 if (ParseGlobalTypeAndValue(C)) return true;
3134 Elts.push_back(C);
3135 }
3136
3137 return false;
3138 }
3139
ParseMDTuple(MDNode * & MD,bool IsDistinct)3140 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3141 SmallVector<Metadata *, 16> Elts;
3142 if (ParseMDNodeVector(Elts))
3143 return true;
3144
3145 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3146 return false;
3147 }
3148
3149 /// MDNode:
3150 /// ::= !{ ... }
3151 /// ::= !7
3152 /// ::= !DILocation(...)
ParseMDNode(MDNode * & N)3153 bool LLParser::ParseMDNode(MDNode *&N) {
3154 if (Lex.getKind() == lltok::MetadataVar)
3155 return ParseSpecializedMDNode(N);
3156
3157 return ParseToken(lltok::exclaim, "expected '!' here") ||
3158 ParseMDNodeTail(N);
3159 }
3160
ParseMDNodeTail(MDNode * & N)3161 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3162 // !{ ... }
3163 if (Lex.getKind() == lltok::lbrace)
3164 return ParseMDTuple(N);
3165
3166 // !42
3167 return ParseMDNodeID(N);
3168 }
3169
3170 namespace {
3171
3172 /// Structure to represent an optional metadata field.
3173 template <class FieldTy> struct MDFieldImpl {
3174 typedef MDFieldImpl ImplTy;
3175 FieldTy Val;
3176 bool Seen;
3177
assign__anon9b0a3bb40111::MDFieldImpl3178 void assign(FieldTy Val) {
3179 Seen = true;
3180 this->Val = std::move(Val);
3181 }
3182
MDFieldImpl__anon9b0a3bb40111::MDFieldImpl3183 explicit MDFieldImpl(FieldTy Default)
3184 : Val(std::move(Default)), Seen(false) {}
3185 };
3186
3187 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3188 uint64_t Max;
3189
MDUnsignedField__anon9b0a3bb40111::MDUnsignedField3190 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3191 : ImplTy(Default), Max(Max) {}
3192 };
3193 struct LineField : public MDUnsignedField {
LineField__anon9b0a3bb40111::LineField3194 LineField() : MDUnsignedField(0, UINT32_MAX) {}
3195 };
3196 struct ColumnField : public MDUnsignedField {
ColumnField__anon9b0a3bb40111::ColumnField3197 ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3198 };
3199 struct DwarfTagField : public MDUnsignedField {
DwarfTagField__anon9b0a3bb40111::DwarfTagField3200 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
DwarfTagField__anon9b0a3bb40111::DwarfTagField3201 DwarfTagField(dwarf::Tag DefaultTag)
3202 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3203 };
3204 struct DwarfMacinfoTypeField : public MDUnsignedField {
DwarfMacinfoTypeField__anon9b0a3bb40111::DwarfMacinfoTypeField3205 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
DwarfMacinfoTypeField__anon9b0a3bb40111::DwarfMacinfoTypeField3206 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3207 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3208 };
3209 struct DwarfAttEncodingField : public MDUnsignedField {
DwarfAttEncodingField__anon9b0a3bb40111::DwarfAttEncodingField3210 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3211 };
3212 struct DwarfVirtualityField : public MDUnsignedField {
DwarfVirtualityField__anon9b0a3bb40111::DwarfVirtualityField3213 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3214 };
3215 struct DwarfLangField : public MDUnsignedField {
DwarfLangField__anon9b0a3bb40111::DwarfLangField3216 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3217 };
3218
3219 struct DIFlagField : public MDUnsignedField {
DIFlagField__anon9b0a3bb40111::DIFlagField3220 DIFlagField() : MDUnsignedField(0, UINT32_MAX) {}
3221 };
3222
3223 struct MDSignedField : public MDFieldImpl<int64_t> {
3224 int64_t Min;
3225 int64_t Max;
3226
MDSignedField__anon9b0a3bb40111::MDSignedField3227 MDSignedField(int64_t Default = 0)
3228 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
MDSignedField__anon9b0a3bb40111::MDSignedField3229 MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3230 : ImplTy(Default), Min(Min), Max(Max) {}
3231 };
3232
3233 struct MDBoolField : public MDFieldImpl<bool> {
MDBoolField__anon9b0a3bb40111::MDBoolField3234 MDBoolField(bool Default = false) : ImplTy(Default) {}
3235 };
3236 struct MDField : public MDFieldImpl<Metadata *> {
3237 bool AllowNull;
3238
MDField__anon9b0a3bb40111::MDField3239 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3240 };
3241 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
MDConstant__anon9b0a3bb40111::MDConstant3242 MDConstant() : ImplTy(nullptr) {}
3243 };
3244 struct MDStringField : public MDFieldImpl<MDString *> {
3245 bool AllowEmpty;
MDStringField__anon9b0a3bb40111::MDStringField3246 MDStringField(bool AllowEmpty = true)
3247 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3248 };
3249 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
MDFieldList__anon9b0a3bb40111::MDFieldList3250 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3251 };
3252
3253 } // end namespace
3254
3255 namespace llvm {
3256
3257 template <>
ParseMDField(LocTy Loc,StringRef Name,MDUnsignedField & Result)3258 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3259 MDUnsignedField &Result) {
3260 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3261 return TokError("expected unsigned integer");
3262
3263 auto &U = Lex.getAPSIntVal();
3264 if (U.ugt(Result.Max))
3265 return TokError("value for '" + Name + "' too large, limit is " +
3266 Twine(Result.Max));
3267 Result.assign(U.getZExtValue());
3268 assert(Result.Val <= Result.Max && "Expected value in range");
3269 Lex.Lex();
3270 return false;
3271 }
3272
3273 template <>
ParseMDField(LocTy Loc,StringRef Name,LineField & Result)3274 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3275 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3276 }
3277 template <>
ParseMDField(LocTy Loc,StringRef Name,ColumnField & Result)3278 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3279 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3280 }
3281
3282 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfTagField & Result)3283 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3284 if (Lex.getKind() == lltok::APSInt)
3285 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3286
3287 if (Lex.getKind() != lltok::DwarfTag)
3288 return TokError("expected DWARF tag");
3289
3290 unsigned Tag = dwarf::getTag(Lex.getStrVal());
3291 if (Tag == dwarf::DW_TAG_invalid)
3292 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3293 assert(Tag <= Result.Max && "Expected valid DWARF tag");
3294
3295 Result.assign(Tag);
3296 Lex.Lex();
3297 return false;
3298 }
3299
3300 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfMacinfoTypeField & Result)3301 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3302 DwarfMacinfoTypeField &Result) {
3303 if (Lex.getKind() == lltok::APSInt)
3304 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3305
3306 if (Lex.getKind() != lltok::DwarfMacinfo)
3307 return TokError("expected DWARF macinfo type");
3308
3309 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3310 if (Macinfo == dwarf::DW_MACINFO_invalid)
3311 return TokError(
3312 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3313 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3314
3315 Result.assign(Macinfo);
3316 Lex.Lex();
3317 return false;
3318 }
3319
3320 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfVirtualityField & Result)3321 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3322 DwarfVirtualityField &Result) {
3323 if (Lex.getKind() == lltok::APSInt)
3324 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3325
3326 if (Lex.getKind() != lltok::DwarfVirtuality)
3327 return TokError("expected DWARF virtuality code");
3328
3329 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3330 if (!Virtuality)
3331 return TokError("invalid DWARF virtuality code" + Twine(" '") +
3332 Lex.getStrVal() + "'");
3333 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3334 Result.assign(Virtuality);
3335 Lex.Lex();
3336 return false;
3337 }
3338
3339 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfLangField & Result)3340 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3341 if (Lex.getKind() == lltok::APSInt)
3342 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3343
3344 if (Lex.getKind() != lltok::DwarfLang)
3345 return TokError("expected DWARF language");
3346
3347 unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3348 if (!Lang)
3349 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3350 "'");
3351 assert(Lang <= Result.Max && "Expected valid DWARF language");
3352 Result.assign(Lang);
3353 Lex.Lex();
3354 return false;
3355 }
3356
3357 template <>
ParseMDField(LocTy Loc,StringRef Name,DwarfAttEncodingField & Result)3358 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3359 DwarfAttEncodingField &Result) {
3360 if (Lex.getKind() == lltok::APSInt)
3361 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3362
3363 if (Lex.getKind() != lltok::DwarfAttEncoding)
3364 return TokError("expected DWARF type attribute encoding");
3365
3366 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3367 if (!Encoding)
3368 return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3369 Lex.getStrVal() + "'");
3370 assert(Encoding <= Result.Max && "Expected valid DWARF language");
3371 Result.assign(Encoding);
3372 Lex.Lex();
3373 return false;
3374 }
3375
3376 /// DIFlagField
3377 /// ::= uint32
3378 /// ::= DIFlagVector
3379 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3380 template <>
ParseMDField(LocTy Loc,StringRef Name,DIFlagField & Result)3381 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3382 assert(Result.Max == UINT32_MAX && "Expected only 32-bits");
3383
3384 // Parser for a single flag.
3385 auto parseFlag = [&](unsigned &Val) {
3386 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned())
3387 return ParseUInt32(Val);
3388
3389 if (Lex.getKind() != lltok::DIFlag)
3390 return TokError("expected debug info flag");
3391
3392 Val = DINode::getFlag(Lex.getStrVal());
3393 if (!Val)
3394 return TokError(Twine("invalid debug info flag flag '") +
3395 Lex.getStrVal() + "'");
3396 Lex.Lex();
3397 return false;
3398 };
3399
3400 // Parse the flags and combine them together.
3401 unsigned Combined = 0;
3402 do {
3403 unsigned Val;
3404 if (parseFlag(Val))
3405 return true;
3406 Combined |= Val;
3407 } while (EatIfPresent(lltok::bar));
3408
3409 Result.assign(Combined);
3410 return false;
3411 }
3412
3413 template <>
ParseMDField(LocTy Loc,StringRef Name,MDSignedField & Result)3414 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3415 MDSignedField &Result) {
3416 if (Lex.getKind() != lltok::APSInt)
3417 return TokError("expected signed integer");
3418
3419 auto &S = Lex.getAPSIntVal();
3420 if (S < Result.Min)
3421 return TokError("value for '" + Name + "' too small, limit is " +
3422 Twine(Result.Min));
3423 if (S > Result.Max)
3424 return TokError("value for '" + Name + "' too large, limit is " +
3425 Twine(Result.Max));
3426 Result.assign(S.getExtValue());
3427 assert(Result.Val >= Result.Min && "Expected value in range");
3428 assert(Result.Val <= Result.Max && "Expected value in range");
3429 Lex.Lex();
3430 return false;
3431 }
3432
3433 template <>
ParseMDField(LocTy Loc,StringRef Name,MDBoolField & Result)3434 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3435 switch (Lex.getKind()) {
3436 default:
3437 return TokError("expected 'true' or 'false'");
3438 case lltok::kw_true:
3439 Result.assign(true);
3440 break;
3441 case lltok::kw_false:
3442 Result.assign(false);
3443 break;
3444 }
3445 Lex.Lex();
3446 return false;
3447 }
3448
3449 template <>
ParseMDField(LocTy Loc,StringRef Name,MDField & Result)3450 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3451 if (Lex.getKind() == lltok::kw_null) {
3452 if (!Result.AllowNull)
3453 return TokError("'" + Name + "' cannot be null");
3454 Lex.Lex();
3455 Result.assign(nullptr);
3456 return false;
3457 }
3458
3459 Metadata *MD;
3460 if (ParseMetadata(MD, nullptr))
3461 return true;
3462
3463 Result.assign(MD);
3464 return false;
3465 }
3466
3467 template <>
ParseMDField(LocTy Loc,StringRef Name,MDConstant & Result)3468 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) {
3469 Metadata *MD;
3470 if (ParseValueAsMetadata(MD, "expected constant", nullptr))
3471 return true;
3472
3473 Result.assign(cast<ConstantAsMetadata>(MD));
3474 return false;
3475 }
3476
3477 template <>
ParseMDField(LocTy Loc,StringRef Name,MDStringField & Result)3478 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3479 LocTy ValueLoc = Lex.getLoc();
3480 std::string S;
3481 if (ParseStringConstant(S))
3482 return true;
3483
3484 if (!Result.AllowEmpty && S.empty())
3485 return Error(ValueLoc, "'" + Name + "' cannot be empty");
3486
3487 Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3488 return false;
3489 }
3490
3491 template <>
ParseMDField(LocTy Loc,StringRef Name,MDFieldList & Result)3492 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3493 SmallVector<Metadata *, 4> MDs;
3494 if (ParseMDNodeVector(MDs))
3495 return true;
3496
3497 Result.assign(std::move(MDs));
3498 return false;
3499 }
3500
3501 } // end namespace llvm
3502
3503 template <class ParserTy>
ParseMDFieldsImplBody(ParserTy parseField)3504 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3505 do {
3506 if (Lex.getKind() != lltok::LabelStr)
3507 return TokError("expected field label here");
3508
3509 if (parseField())
3510 return true;
3511 } while (EatIfPresent(lltok::comma));
3512
3513 return false;
3514 }
3515
3516 template <class ParserTy>
ParseMDFieldsImpl(ParserTy parseField,LocTy & ClosingLoc)3517 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3518 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3519 Lex.Lex();
3520
3521 if (ParseToken(lltok::lparen, "expected '(' here"))
3522 return true;
3523 if (Lex.getKind() != lltok::rparen)
3524 if (ParseMDFieldsImplBody(parseField))
3525 return true;
3526
3527 ClosingLoc = Lex.getLoc();
3528 return ParseToken(lltok::rparen, "expected ')' here");
3529 }
3530
3531 template <class FieldTy>
ParseMDField(StringRef Name,FieldTy & Result)3532 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3533 if (Result.Seen)
3534 return TokError("field '" + Name + "' cannot be specified more than once");
3535
3536 LocTy Loc = Lex.getLoc();
3537 Lex.Lex();
3538 return ParseMDField(Loc, Name, Result);
3539 }
3540
ParseSpecializedMDNode(MDNode * & N,bool IsDistinct)3541 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3542 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3543
3544 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
3545 if (Lex.getStrVal() == #CLASS) \
3546 return Parse##CLASS(N, IsDistinct);
3547 #include "llvm/IR/Metadata.def"
3548
3549 return TokError("expected metadata type");
3550 }
3551
3552 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
3553 #define NOP_FIELD(NAME, TYPE, INIT)
3554 #define REQUIRE_FIELD(NAME, TYPE, INIT) \
3555 if (!NAME.Seen) \
3556 return Error(ClosingLoc, "missing required field '" #NAME "'");
3557 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
3558 if (Lex.getStrVal() == #NAME) \
3559 return ParseMDField(#NAME, NAME);
3560 #define PARSE_MD_FIELDS() \
3561 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
3562 do { \
3563 LocTy ClosingLoc; \
3564 if (ParseMDFieldsImpl([&]() -> bool { \
3565 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
3566 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \
3567 }, ClosingLoc)) \
3568 return true; \
3569 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
3570 } while (false)
3571 #define GET_OR_DISTINCT(CLASS, ARGS) \
3572 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
3573
3574 /// ParseDILocationFields:
3575 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
ParseDILocation(MDNode * & Result,bool IsDistinct)3576 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
3577 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3578 OPTIONAL(line, LineField, ); \
3579 OPTIONAL(column, ColumnField, ); \
3580 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
3581 OPTIONAL(inlinedAt, MDField, );
3582 PARSE_MD_FIELDS();
3583 #undef VISIT_MD_FIELDS
3584
3585 Result = GET_OR_DISTINCT(
3586 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
3587 return false;
3588 }
3589
3590 /// ParseGenericDINode:
3591 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
ParseGenericDINode(MDNode * & Result,bool IsDistinct)3592 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
3593 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3594 REQUIRED(tag, DwarfTagField, ); \
3595 OPTIONAL(header, MDStringField, ); \
3596 OPTIONAL(operands, MDFieldList, );
3597 PARSE_MD_FIELDS();
3598 #undef VISIT_MD_FIELDS
3599
3600 Result = GET_OR_DISTINCT(GenericDINode,
3601 (Context, tag.Val, header.Val, operands.Val));
3602 return false;
3603 }
3604
3605 /// ParseDISubrange:
3606 /// ::= !DISubrange(count: 30, lowerBound: 2)
ParseDISubrange(MDNode * & Result,bool IsDistinct)3607 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
3608 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3609 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \
3610 OPTIONAL(lowerBound, MDSignedField, );
3611 PARSE_MD_FIELDS();
3612 #undef VISIT_MD_FIELDS
3613
3614 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val));
3615 return false;
3616 }
3617
3618 /// ParseDIEnumerator:
3619 /// ::= !DIEnumerator(value: 30, name: "SomeKind")
ParseDIEnumerator(MDNode * & Result,bool IsDistinct)3620 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
3621 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3622 REQUIRED(name, MDStringField, ); \
3623 REQUIRED(value, MDSignedField, );
3624 PARSE_MD_FIELDS();
3625 #undef VISIT_MD_FIELDS
3626
3627 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
3628 return false;
3629 }
3630
3631 /// ParseDIBasicType:
3632 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
ParseDIBasicType(MDNode * & Result,bool IsDistinct)3633 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
3634 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3635 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
3636 OPTIONAL(name, MDStringField, ); \
3637 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
3638 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \
3639 OPTIONAL(encoding, DwarfAttEncodingField, );
3640 PARSE_MD_FIELDS();
3641 #undef VISIT_MD_FIELDS
3642
3643 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
3644 align.Val, encoding.Val));
3645 return false;
3646 }
3647
3648 /// ParseDIDerivedType:
3649 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
3650 /// line: 7, scope: !1, baseType: !2, size: 32,
3651 /// align: 32, offset: 0, flags: 0, extraData: !3)
ParseDIDerivedType(MDNode * & Result,bool IsDistinct)3652 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
3653 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3654 REQUIRED(tag, DwarfTagField, ); \
3655 OPTIONAL(name, MDStringField, ); \
3656 OPTIONAL(file, MDField, ); \
3657 OPTIONAL(line, LineField, ); \
3658 OPTIONAL(scope, MDField, ); \
3659 REQUIRED(baseType, MDField, ); \
3660 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
3661 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \
3662 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
3663 OPTIONAL(flags, DIFlagField, ); \
3664 OPTIONAL(extraData, MDField, );
3665 PARSE_MD_FIELDS();
3666 #undef VISIT_MD_FIELDS
3667
3668 Result = GET_OR_DISTINCT(DIDerivedType,
3669 (Context, tag.Val, name.Val, file.Val, line.Val,
3670 scope.Val, baseType.Val, size.Val, align.Val,
3671 offset.Val, flags.Val, extraData.Val));
3672 return false;
3673 }
3674
ParseDICompositeType(MDNode * & Result,bool IsDistinct)3675 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
3676 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3677 REQUIRED(tag, DwarfTagField, ); \
3678 OPTIONAL(name, MDStringField, ); \
3679 OPTIONAL(file, MDField, ); \
3680 OPTIONAL(line, LineField, ); \
3681 OPTIONAL(scope, MDField, ); \
3682 OPTIONAL(baseType, MDField, ); \
3683 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
3684 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \
3685 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
3686 OPTIONAL(flags, DIFlagField, ); \
3687 OPTIONAL(elements, MDField, ); \
3688 OPTIONAL(runtimeLang, DwarfLangField, ); \
3689 OPTIONAL(vtableHolder, MDField, ); \
3690 OPTIONAL(templateParams, MDField, ); \
3691 OPTIONAL(identifier, MDStringField, );
3692 PARSE_MD_FIELDS();
3693 #undef VISIT_MD_FIELDS
3694
3695 Result = GET_OR_DISTINCT(
3696 DICompositeType,
3697 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
3698 size.Val, align.Val, offset.Val, flags.Val, elements.Val,
3699 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
3700 return false;
3701 }
3702
ParseDISubroutineType(MDNode * & Result,bool IsDistinct)3703 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
3704 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3705 OPTIONAL(flags, DIFlagField, ); \
3706 REQUIRED(types, MDField, );
3707 PARSE_MD_FIELDS();
3708 #undef VISIT_MD_FIELDS
3709
3710 Result = GET_OR_DISTINCT(DISubroutineType, (Context, flags.Val, types.Val));
3711 return false;
3712 }
3713
3714 /// ParseDIFileType:
3715 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir")
ParseDIFile(MDNode * & Result,bool IsDistinct)3716 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
3717 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3718 REQUIRED(filename, MDStringField, ); \
3719 REQUIRED(directory, MDStringField, );
3720 PARSE_MD_FIELDS();
3721 #undef VISIT_MD_FIELDS
3722
3723 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val));
3724 return false;
3725 }
3726
3727 /// ParseDICompileUnit:
3728 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
3729 /// isOptimized: true, flags: "-O2", runtimeVersion: 1,
3730 /// splitDebugFilename: "abc.debug", emissionKind: 1,
3731 /// enums: !1, retainedTypes: !2, subprograms: !3,
3732 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
ParseDICompileUnit(MDNode * & Result,bool IsDistinct)3733 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
3734 if (!IsDistinct)
3735 return Lex.Error("missing 'distinct', required for !DICompileUnit");
3736
3737 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3738 REQUIRED(language, DwarfLangField, ); \
3739 REQUIRED(file, MDField, (/* AllowNull */ false)); \
3740 OPTIONAL(producer, MDStringField, ); \
3741 OPTIONAL(isOptimized, MDBoolField, ); \
3742 OPTIONAL(flags, MDStringField, ); \
3743 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
3744 OPTIONAL(splitDebugFilename, MDStringField, ); \
3745 OPTIONAL(emissionKind, MDUnsignedField, (0, UINT32_MAX)); \
3746 OPTIONAL(enums, MDField, ); \
3747 OPTIONAL(retainedTypes, MDField, ); \
3748 OPTIONAL(subprograms, MDField, ); \
3749 OPTIONAL(globals, MDField, ); \
3750 OPTIONAL(imports, MDField, ); \
3751 OPTIONAL(macros, MDField, ); \
3752 OPTIONAL(dwoId, MDUnsignedField, );
3753 PARSE_MD_FIELDS();
3754 #undef VISIT_MD_FIELDS
3755
3756 Result = DICompileUnit::getDistinct(
3757 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
3758 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
3759 retainedTypes.Val, subprograms.Val, globals.Val, imports.Val, macros.Val,
3760 dwoId.Val);
3761 return false;
3762 }
3763
3764 /// ParseDISubprogram:
3765 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
3766 /// file: !1, line: 7, type: !2, isLocal: false,
3767 /// isDefinition: true, scopeLine: 8, containingType: !3,
3768 /// virtuality: DW_VIRTUALTIY_pure_virtual,
3769 /// virtualIndex: 10, flags: 11,
3770 /// isOptimized: false, templateParams: !4, declaration: !5,
3771 /// variables: !6)
ParseDISubprogram(MDNode * & Result,bool IsDistinct)3772 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
3773 auto Loc = Lex.getLoc();
3774 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3775 OPTIONAL(scope, MDField, ); \
3776 OPTIONAL(name, MDStringField, ); \
3777 OPTIONAL(linkageName, MDStringField, ); \
3778 OPTIONAL(file, MDField, ); \
3779 OPTIONAL(line, LineField, ); \
3780 OPTIONAL(type, MDField, ); \
3781 OPTIONAL(isLocal, MDBoolField, ); \
3782 OPTIONAL(isDefinition, MDBoolField, (true)); \
3783 OPTIONAL(scopeLine, LineField, ); \
3784 OPTIONAL(containingType, MDField, ); \
3785 OPTIONAL(virtuality, DwarfVirtualityField, ); \
3786 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
3787 OPTIONAL(flags, DIFlagField, ); \
3788 OPTIONAL(isOptimized, MDBoolField, ); \
3789 OPTIONAL(templateParams, MDField, ); \
3790 OPTIONAL(declaration, MDField, ); \
3791 OPTIONAL(variables, MDField, );
3792 PARSE_MD_FIELDS();
3793 #undef VISIT_MD_FIELDS
3794
3795 if (isDefinition.Val && !IsDistinct)
3796 return Lex.Error(
3797 Loc,
3798 "missing 'distinct', required for !DISubprogram when 'isDefinition'");
3799
3800 Result = GET_OR_DISTINCT(
3801 DISubprogram,
3802 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
3803 type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val,
3804 containingType.Val, virtuality.Val, virtualIndex.Val, flags.Val,
3805 isOptimized.Val, templateParams.Val, declaration.Val, variables.Val));
3806 return false;
3807 }
3808
3809 /// ParseDILexicalBlock:
3810 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
ParseDILexicalBlock(MDNode * & Result,bool IsDistinct)3811 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
3812 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3813 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
3814 OPTIONAL(file, MDField, ); \
3815 OPTIONAL(line, LineField, ); \
3816 OPTIONAL(column, ColumnField, );
3817 PARSE_MD_FIELDS();
3818 #undef VISIT_MD_FIELDS
3819
3820 Result = GET_OR_DISTINCT(
3821 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
3822 return false;
3823 }
3824
3825 /// ParseDILexicalBlockFile:
3826 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
ParseDILexicalBlockFile(MDNode * & Result,bool IsDistinct)3827 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
3828 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3829 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
3830 OPTIONAL(file, MDField, ); \
3831 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
3832 PARSE_MD_FIELDS();
3833 #undef VISIT_MD_FIELDS
3834
3835 Result = GET_OR_DISTINCT(DILexicalBlockFile,
3836 (Context, scope.Val, file.Val, discriminator.Val));
3837 return false;
3838 }
3839
3840 /// ParseDINamespace:
3841 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
ParseDINamespace(MDNode * & Result,bool IsDistinct)3842 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
3843 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3844 REQUIRED(scope, MDField, ); \
3845 OPTIONAL(file, MDField, ); \
3846 OPTIONAL(name, MDStringField, ); \
3847 OPTIONAL(line, LineField, );
3848 PARSE_MD_FIELDS();
3849 #undef VISIT_MD_FIELDS
3850
3851 Result = GET_OR_DISTINCT(DINamespace,
3852 (Context, scope.Val, file.Val, name.Val, line.Val));
3853 return false;
3854 }
3855
3856 /// ParseDIMacro:
3857 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
ParseDIMacro(MDNode * & Result,bool IsDistinct)3858 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
3859 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3860 REQUIRED(type, DwarfMacinfoTypeField, ); \
3861 REQUIRED(line, LineField, ); \
3862 REQUIRED(name, MDStringField, ); \
3863 OPTIONAL(value, MDStringField, );
3864 PARSE_MD_FIELDS();
3865 #undef VISIT_MD_FIELDS
3866
3867 Result = GET_OR_DISTINCT(DIMacro,
3868 (Context, type.Val, line.Val, name.Val, value.Val));
3869 return false;
3870 }
3871
3872 /// ParseDIMacroFile:
3873 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
ParseDIMacroFile(MDNode * & Result,bool IsDistinct)3874 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
3875 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3876 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \
3877 REQUIRED(line, LineField, ); \
3878 REQUIRED(file, MDField, ); \
3879 OPTIONAL(nodes, MDField, );
3880 PARSE_MD_FIELDS();
3881 #undef VISIT_MD_FIELDS
3882
3883 Result = GET_OR_DISTINCT(DIMacroFile,
3884 (Context, type.Val, line.Val, file.Val, nodes.Val));
3885 return false;
3886 }
3887
3888
3889 /// ParseDIModule:
3890 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
3891 /// includePath: "/usr/include", isysroot: "/")
ParseDIModule(MDNode * & Result,bool IsDistinct)3892 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
3893 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3894 REQUIRED(scope, MDField, ); \
3895 REQUIRED(name, MDStringField, ); \
3896 OPTIONAL(configMacros, MDStringField, ); \
3897 OPTIONAL(includePath, MDStringField, ); \
3898 OPTIONAL(isysroot, MDStringField, );
3899 PARSE_MD_FIELDS();
3900 #undef VISIT_MD_FIELDS
3901
3902 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
3903 configMacros.Val, includePath.Val, isysroot.Val));
3904 return false;
3905 }
3906
3907 /// ParseDITemplateTypeParameter:
3908 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1)
ParseDITemplateTypeParameter(MDNode * & Result,bool IsDistinct)3909 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
3910 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3911 OPTIONAL(name, MDStringField, ); \
3912 REQUIRED(type, MDField, );
3913 PARSE_MD_FIELDS();
3914 #undef VISIT_MD_FIELDS
3915
3916 Result =
3917 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
3918 return false;
3919 }
3920
3921 /// ParseDITemplateValueParameter:
3922 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
3923 /// name: "V", type: !1, value: i32 7)
ParseDITemplateValueParameter(MDNode * & Result,bool IsDistinct)3924 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
3925 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3926 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
3927 OPTIONAL(name, MDStringField, ); \
3928 OPTIONAL(type, MDField, ); \
3929 REQUIRED(value, MDField, );
3930 PARSE_MD_FIELDS();
3931 #undef VISIT_MD_FIELDS
3932
3933 Result = GET_OR_DISTINCT(DITemplateValueParameter,
3934 (Context, tag.Val, name.Val, type.Val, value.Val));
3935 return false;
3936 }
3937
3938 /// ParseDIGlobalVariable:
3939 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
3940 /// file: !1, line: 7, type: !2, isLocal: false,
3941 /// isDefinition: true, variable: i32* @foo,
3942 /// declaration: !3)
ParseDIGlobalVariable(MDNode * & Result,bool IsDistinct)3943 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
3944 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3945 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \
3946 OPTIONAL(scope, MDField, ); \
3947 OPTIONAL(linkageName, MDStringField, ); \
3948 OPTIONAL(file, MDField, ); \
3949 OPTIONAL(line, LineField, ); \
3950 OPTIONAL(type, MDField, ); \
3951 OPTIONAL(isLocal, MDBoolField, ); \
3952 OPTIONAL(isDefinition, MDBoolField, (true)); \
3953 OPTIONAL(variable, MDConstant, ); \
3954 OPTIONAL(declaration, MDField, );
3955 PARSE_MD_FIELDS();
3956 #undef VISIT_MD_FIELDS
3957
3958 Result = GET_OR_DISTINCT(DIGlobalVariable,
3959 (Context, scope.Val, name.Val, linkageName.Val,
3960 file.Val, line.Val, type.Val, isLocal.Val,
3961 isDefinition.Val, variable.Val, declaration.Val));
3962 return false;
3963 }
3964
3965 /// ParseDILocalVariable:
3966 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
3967 /// file: !1, line: 7, type: !2, arg: 2, flags: 7)
3968 /// ::= !DILocalVariable(scope: !0, name: "foo",
3969 /// file: !1, line: 7, type: !2, arg: 2, flags: 7)
ParseDILocalVariable(MDNode * & Result,bool IsDistinct)3970 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
3971 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
3972 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
3973 OPTIONAL(name, MDStringField, ); \
3974 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
3975 OPTIONAL(file, MDField, ); \
3976 OPTIONAL(line, LineField, ); \
3977 OPTIONAL(type, MDField, ); \
3978 OPTIONAL(flags, DIFlagField, );
3979 PARSE_MD_FIELDS();
3980 #undef VISIT_MD_FIELDS
3981
3982 Result = GET_OR_DISTINCT(DILocalVariable,
3983 (Context, scope.Val, name.Val, file.Val, line.Val,
3984 type.Val, arg.Val, flags.Val));
3985 return false;
3986 }
3987
3988 /// ParseDIExpression:
3989 /// ::= !DIExpression(0, 7, -1)
ParseDIExpression(MDNode * & Result,bool IsDistinct)3990 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
3991 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3992 Lex.Lex();
3993
3994 if (ParseToken(lltok::lparen, "expected '(' here"))
3995 return true;
3996
3997 SmallVector<uint64_t, 8> Elements;
3998 if (Lex.getKind() != lltok::rparen)
3999 do {
4000 if (Lex.getKind() == lltok::DwarfOp) {
4001 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4002 Lex.Lex();
4003 Elements.push_back(Op);
4004 continue;
4005 }
4006 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4007 }
4008
4009 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4010 return TokError("expected unsigned integer");
4011
4012 auto &U = Lex.getAPSIntVal();
4013 if (U.ugt(UINT64_MAX))
4014 return TokError("element too large, limit is " + Twine(UINT64_MAX));
4015 Elements.push_back(U.getZExtValue());
4016 Lex.Lex();
4017 } while (EatIfPresent(lltok::comma));
4018
4019 if (ParseToken(lltok::rparen, "expected ')' here"))
4020 return true;
4021
4022 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4023 return false;
4024 }
4025
4026 /// ParseDIObjCProperty:
4027 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4028 /// getter: "getFoo", attributes: 7, type: !2)
ParseDIObjCProperty(MDNode * & Result,bool IsDistinct)4029 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4030 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4031 OPTIONAL(name, MDStringField, ); \
4032 OPTIONAL(file, MDField, ); \
4033 OPTIONAL(line, LineField, ); \
4034 OPTIONAL(setter, MDStringField, ); \
4035 OPTIONAL(getter, MDStringField, ); \
4036 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
4037 OPTIONAL(type, MDField, );
4038 PARSE_MD_FIELDS();
4039 #undef VISIT_MD_FIELDS
4040
4041 Result = GET_OR_DISTINCT(DIObjCProperty,
4042 (Context, name.Val, file.Val, line.Val, setter.Val,
4043 getter.Val, attributes.Val, type.Val));
4044 return false;
4045 }
4046
4047 /// ParseDIImportedEntity:
4048 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4049 /// line: 7, name: "foo")
ParseDIImportedEntity(MDNode * & Result,bool IsDistinct)4050 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4051 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4052 REQUIRED(tag, DwarfTagField, ); \
4053 REQUIRED(scope, MDField, ); \
4054 OPTIONAL(entity, MDField, ); \
4055 OPTIONAL(line, LineField, ); \
4056 OPTIONAL(name, MDStringField, );
4057 PARSE_MD_FIELDS();
4058 #undef VISIT_MD_FIELDS
4059
4060 Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val,
4061 entity.Val, line.Val, name.Val));
4062 return false;
4063 }
4064
4065 #undef PARSE_MD_FIELD
4066 #undef NOP_FIELD
4067 #undef REQUIRE_FIELD
4068 #undef DECLARE_FIELD
4069
4070 /// ParseMetadataAsValue
4071 /// ::= metadata i32 %local
4072 /// ::= metadata i32 @global
4073 /// ::= metadata i32 7
4074 /// ::= metadata !0
4075 /// ::= metadata !{...}
4076 /// ::= metadata !"string"
ParseMetadataAsValue(Value * & V,PerFunctionState & PFS)4077 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4078 // Note: the type 'metadata' has already been parsed.
4079 Metadata *MD;
4080 if (ParseMetadata(MD, &PFS))
4081 return true;
4082
4083 V = MetadataAsValue::get(Context, MD);
4084 return false;
4085 }
4086
4087 /// ParseValueAsMetadata
4088 /// ::= i32 %local
4089 /// ::= i32 @global
4090 /// ::= i32 7
ParseValueAsMetadata(Metadata * & MD,const Twine & TypeMsg,PerFunctionState * PFS)4091 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4092 PerFunctionState *PFS) {
4093 Type *Ty;
4094 LocTy Loc;
4095 if (ParseType(Ty, TypeMsg, Loc))
4096 return true;
4097 if (Ty->isMetadataTy())
4098 return Error(Loc, "invalid metadata-value-metadata roundtrip");
4099
4100 Value *V;
4101 if (ParseValue(Ty, V, PFS))
4102 return true;
4103
4104 MD = ValueAsMetadata::get(V);
4105 return false;
4106 }
4107
4108 /// ParseMetadata
4109 /// ::= i32 %local
4110 /// ::= i32 @global
4111 /// ::= i32 7
4112 /// ::= !42
4113 /// ::= !{...}
4114 /// ::= !"string"
4115 /// ::= !DILocation(...)
ParseMetadata(Metadata * & MD,PerFunctionState * PFS)4116 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4117 if (Lex.getKind() == lltok::MetadataVar) {
4118 MDNode *N;
4119 if (ParseSpecializedMDNode(N))
4120 return true;
4121 MD = N;
4122 return false;
4123 }
4124
4125 // ValueAsMetadata:
4126 // <type> <value>
4127 if (Lex.getKind() != lltok::exclaim)
4128 return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4129
4130 // '!'.
4131 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4132 Lex.Lex();
4133
4134 // MDString:
4135 // ::= '!' STRINGCONSTANT
4136 if (Lex.getKind() == lltok::StringConstant) {
4137 MDString *S;
4138 if (ParseMDString(S))
4139 return true;
4140 MD = S;
4141 return false;
4142 }
4143
4144 // MDNode:
4145 // !{ ... }
4146 // !7
4147 MDNode *N;
4148 if (ParseMDNodeTail(N))
4149 return true;
4150 MD = N;
4151 return false;
4152 }
4153
4154
4155 //===----------------------------------------------------------------------===//
4156 // Function Parsing.
4157 //===----------------------------------------------------------------------===//
4158
ConvertValIDToValue(Type * Ty,ValID & ID,Value * & V,PerFunctionState * PFS)4159 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4160 PerFunctionState *PFS) {
4161 if (Ty->isFunctionTy())
4162 return Error(ID.Loc, "functions are not values, refer to them as pointers");
4163
4164 switch (ID.Kind) {
4165 case ValID::t_LocalID:
4166 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4167 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
4168 return V == nullptr;
4169 case ValID::t_LocalName:
4170 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4171 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
4172 return V == nullptr;
4173 case ValID::t_InlineAsm: {
4174 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4175 return Error(ID.Loc, "invalid type for inline asm constraint string");
4176 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4177 (ID.UIntVal >> 1) & 1,
4178 (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4179 return false;
4180 }
4181 case ValID::t_GlobalName:
4182 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4183 return V == nullptr;
4184 case ValID::t_GlobalID:
4185 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4186 return V == nullptr;
4187 case ValID::t_APSInt:
4188 if (!Ty->isIntegerTy())
4189 return Error(ID.Loc, "integer constant must have integer type");
4190 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4191 V = ConstantInt::get(Context, ID.APSIntVal);
4192 return false;
4193 case ValID::t_APFloat:
4194 if (!Ty->isFloatingPointTy() ||
4195 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4196 return Error(ID.Loc, "floating point constant invalid for type");
4197
4198 // The lexer has no type info, so builds all half, float, and double FP
4199 // constants as double. Fix this here. Long double does not need this.
4200 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
4201 bool Ignored;
4202 if (Ty->isHalfTy())
4203 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
4204 &Ignored);
4205 else if (Ty->isFloatTy())
4206 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
4207 &Ignored);
4208 }
4209 V = ConstantFP::get(Context, ID.APFloatVal);
4210
4211 if (V->getType() != Ty)
4212 return Error(ID.Loc, "floating point constant does not have type '" +
4213 getTypeString(Ty) + "'");
4214
4215 return false;
4216 case ValID::t_Null:
4217 if (!Ty->isPointerTy())
4218 return Error(ID.Loc, "null must be a pointer type");
4219 V = ConstantPointerNull::get(cast<PointerType>(Ty));
4220 return false;
4221 case ValID::t_Undef:
4222 // FIXME: LabelTy should not be a first-class type.
4223 if (!Ty->isFirstClassType() || Ty->isLabelTy())
4224 return Error(ID.Loc, "invalid type for undef constant");
4225 V = UndefValue::get(Ty);
4226 return false;
4227 case ValID::t_EmptyArray:
4228 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4229 return Error(ID.Loc, "invalid empty array initializer");
4230 V = UndefValue::get(Ty);
4231 return false;
4232 case ValID::t_Zero:
4233 // FIXME: LabelTy should not be a first-class type.
4234 if (!Ty->isFirstClassType() || Ty->isLabelTy())
4235 return Error(ID.Loc, "invalid type for null constant");
4236 V = Constant::getNullValue(Ty);
4237 return false;
4238 case ValID::t_None:
4239 if (!Ty->isTokenTy())
4240 return Error(ID.Loc, "invalid type for none constant");
4241 V = Constant::getNullValue(Ty);
4242 return false;
4243 case ValID::t_Constant:
4244 if (ID.ConstantVal->getType() != Ty)
4245 return Error(ID.Loc, "constant expression type mismatch");
4246
4247 V = ID.ConstantVal;
4248 return false;
4249 case ValID::t_ConstantStruct:
4250 case ValID::t_PackedConstantStruct:
4251 if (StructType *ST = dyn_cast<StructType>(Ty)) {
4252 if (ST->getNumElements() != ID.UIntVal)
4253 return Error(ID.Loc,
4254 "initializer with struct type has wrong # elements");
4255 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4256 return Error(ID.Loc, "packed'ness of initializer and type don't match");
4257
4258 // Verify that the elements are compatible with the structtype.
4259 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4260 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4261 return Error(ID.Loc, "element " + Twine(i) +
4262 " of struct initializer doesn't match struct element type");
4263
4264 V = ConstantStruct::get(
4265 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4266 } else
4267 return Error(ID.Loc, "constant expression type mismatch");
4268 return false;
4269 }
4270 llvm_unreachable("Invalid ValID");
4271 }
4272
parseConstantValue(Type * Ty,Constant * & C)4273 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4274 C = nullptr;
4275 ValID ID;
4276 auto Loc = Lex.getLoc();
4277 if (ParseValID(ID, /*PFS=*/nullptr))
4278 return true;
4279 switch (ID.Kind) {
4280 case ValID::t_APSInt:
4281 case ValID::t_APFloat:
4282 case ValID::t_Undef:
4283 case ValID::t_Constant:
4284 case ValID::t_ConstantStruct:
4285 case ValID::t_PackedConstantStruct: {
4286 Value *V;
4287 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
4288 return true;
4289 assert(isa<Constant>(V) && "Expected a constant value");
4290 C = cast<Constant>(V);
4291 return false;
4292 }
4293 default:
4294 return Error(Loc, "expected a constant value");
4295 }
4296 }
4297
ParseValue(Type * Ty,Value * & V,PerFunctionState * PFS)4298 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4299 V = nullptr;
4300 ValID ID;
4301 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
4302 }
4303
ParseTypeAndValue(Value * & V,PerFunctionState * PFS)4304 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4305 Type *Ty = nullptr;
4306 return ParseType(Ty) ||
4307 ParseValue(Ty, V, PFS);
4308 }
4309
ParseTypeAndBasicBlock(BasicBlock * & BB,LocTy & Loc,PerFunctionState & PFS)4310 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4311 PerFunctionState &PFS) {
4312 Value *V;
4313 Loc = Lex.getLoc();
4314 if (ParseTypeAndValue(V, PFS)) return true;
4315 if (!isa<BasicBlock>(V))
4316 return Error(Loc, "expected a basic block");
4317 BB = cast<BasicBlock>(V);
4318 return false;
4319 }
4320
4321
4322 /// FunctionHeader
4323 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
4324 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
4325 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
ParseFunctionHeader(Function * & Fn,bool isDefine)4326 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4327 // Parse the linkage.
4328 LocTy LinkageLoc = Lex.getLoc();
4329 unsigned Linkage;
4330
4331 unsigned Visibility;
4332 unsigned DLLStorageClass;
4333 AttrBuilder RetAttrs;
4334 unsigned CC;
4335 Type *RetType = nullptr;
4336 LocTy RetTypeLoc = Lex.getLoc();
4337 if (ParseOptionalLinkage(Linkage) ||
4338 ParseOptionalVisibility(Visibility) ||
4339 ParseOptionalDLLStorageClass(DLLStorageClass) ||
4340 ParseOptionalCallingConv(CC) ||
4341 ParseOptionalReturnAttrs(RetAttrs) ||
4342 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4343 return true;
4344
4345 // Verify that the linkage is ok.
4346 switch ((GlobalValue::LinkageTypes)Linkage) {
4347 case GlobalValue::ExternalLinkage:
4348 break; // always ok.
4349 case GlobalValue::ExternalWeakLinkage:
4350 if (isDefine)
4351 return Error(LinkageLoc, "invalid linkage for function definition");
4352 break;
4353 case GlobalValue::PrivateLinkage:
4354 case GlobalValue::InternalLinkage:
4355 case GlobalValue::AvailableExternallyLinkage:
4356 case GlobalValue::LinkOnceAnyLinkage:
4357 case GlobalValue::LinkOnceODRLinkage:
4358 case GlobalValue::WeakAnyLinkage:
4359 case GlobalValue::WeakODRLinkage:
4360 if (!isDefine)
4361 return Error(LinkageLoc, "invalid linkage for function declaration");
4362 break;
4363 case GlobalValue::AppendingLinkage:
4364 case GlobalValue::CommonLinkage:
4365 return Error(LinkageLoc, "invalid function linkage type");
4366 }
4367
4368 if (!isValidVisibilityForLinkage(Visibility, Linkage))
4369 return Error(LinkageLoc,
4370 "symbol with local linkage must have default visibility");
4371
4372 if (!FunctionType::isValidReturnType(RetType))
4373 return Error(RetTypeLoc, "invalid function return type");
4374
4375 LocTy NameLoc = Lex.getLoc();
4376
4377 std::string FunctionName;
4378 if (Lex.getKind() == lltok::GlobalVar) {
4379 FunctionName = Lex.getStrVal();
4380 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
4381 unsigned NameID = Lex.getUIntVal();
4382
4383 if (NameID != NumberedVals.size())
4384 return TokError("function expected to be numbered '%" +
4385 Twine(NumberedVals.size()) + "'");
4386 } else {
4387 return TokError("expected function name");
4388 }
4389
4390 Lex.Lex();
4391
4392 if (Lex.getKind() != lltok::lparen)
4393 return TokError("expected '(' in function argument list");
4394
4395 SmallVector<ArgInfo, 8> ArgList;
4396 bool isVarArg;
4397 AttrBuilder FuncAttrs;
4398 std::vector<unsigned> FwdRefAttrGrps;
4399 LocTy BuiltinLoc;
4400 std::string Section;
4401 unsigned Alignment;
4402 std::string GC;
4403 bool UnnamedAddr;
4404 LocTy UnnamedAddrLoc;
4405 Constant *Prefix = nullptr;
4406 Constant *Prologue = nullptr;
4407 Constant *PersonalityFn = nullptr;
4408 Comdat *C;
4409
4410 if (ParseArgumentList(ArgList, isVarArg) ||
4411 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
4412 &UnnamedAddrLoc) ||
4413 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4414 BuiltinLoc) ||
4415 (EatIfPresent(lltok::kw_section) &&
4416 ParseStringConstant(Section)) ||
4417 parseOptionalComdat(FunctionName, C) ||
4418 ParseOptionalAlignment(Alignment) ||
4419 (EatIfPresent(lltok::kw_gc) &&
4420 ParseStringConstant(GC)) ||
4421 (EatIfPresent(lltok::kw_prefix) &&
4422 ParseGlobalTypeAndValue(Prefix)) ||
4423 (EatIfPresent(lltok::kw_prologue) &&
4424 ParseGlobalTypeAndValue(Prologue)) ||
4425 (EatIfPresent(lltok::kw_personality) &&
4426 ParseGlobalTypeAndValue(PersonalityFn)))
4427 return true;
4428
4429 if (FuncAttrs.contains(Attribute::Builtin))
4430 return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4431
4432 // If the alignment was parsed as an attribute, move to the alignment field.
4433 if (FuncAttrs.hasAlignmentAttr()) {
4434 Alignment = FuncAttrs.getAlignment();
4435 FuncAttrs.removeAttribute(Attribute::Alignment);
4436 }
4437
4438 // Okay, if we got here, the function is syntactically valid. Convert types
4439 // and do semantic checks.
4440 std::vector<Type*> ParamTypeList;
4441 SmallVector<AttributeSet, 8> Attrs;
4442
4443 if (RetAttrs.hasAttributes())
4444 Attrs.push_back(AttributeSet::get(RetType->getContext(),
4445 AttributeSet::ReturnIndex,
4446 RetAttrs));
4447
4448 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4449 ParamTypeList.push_back(ArgList[i].Ty);
4450 if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4451 AttrBuilder B(ArgList[i].Attrs, i + 1);
4452 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4453 }
4454 }
4455
4456 if (FuncAttrs.hasAttributes())
4457 Attrs.push_back(AttributeSet::get(RetType->getContext(),
4458 AttributeSet::FunctionIndex,
4459 FuncAttrs));
4460
4461 AttributeSet PAL = AttributeSet::get(Context, Attrs);
4462
4463 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4464 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4465
4466 FunctionType *FT =
4467 FunctionType::get(RetType, ParamTypeList, isVarArg);
4468 PointerType *PFT = PointerType::getUnqual(FT);
4469
4470 Fn = nullptr;
4471 if (!FunctionName.empty()) {
4472 // If this was a definition of a forward reference, remove the definition
4473 // from the forward reference table and fill in the forward ref.
4474 auto FRVI = ForwardRefVals.find(FunctionName);
4475 if (FRVI != ForwardRefVals.end()) {
4476 Fn = M->getFunction(FunctionName);
4477 if (!Fn)
4478 return Error(FRVI->second.second, "invalid forward reference to "
4479 "function as global value!");
4480 if (Fn->getType() != PFT)
4481 return Error(FRVI->second.second, "invalid forward reference to "
4482 "function '" + FunctionName + "' with wrong type!");
4483
4484 ForwardRefVals.erase(FRVI);
4485 } else if ((Fn = M->getFunction(FunctionName))) {
4486 // Reject redefinitions.
4487 return Error(NameLoc, "invalid redefinition of function '" +
4488 FunctionName + "'");
4489 } else if (M->getNamedValue(FunctionName)) {
4490 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4491 }
4492
4493 } else {
4494 // If this is a definition of a forward referenced function, make sure the
4495 // types agree.
4496 auto I = ForwardRefValIDs.find(NumberedVals.size());
4497 if (I != ForwardRefValIDs.end()) {
4498 Fn = cast<Function>(I->second.first);
4499 if (Fn->getType() != PFT)
4500 return Error(NameLoc, "type of definition and forward reference of '@" +
4501 Twine(NumberedVals.size()) + "' disagree");
4502 ForwardRefValIDs.erase(I);
4503 }
4504 }
4505
4506 if (!Fn)
4507 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
4508 else // Move the forward-reference to the correct spot in the module.
4509 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
4510
4511 if (FunctionName.empty())
4512 NumberedVals.push_back(Fn);
4513
4514 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
4515 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
4516 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
4517 Fn->setCallingConv(CC);
4518 Fn->setAttributes(PAL);
4519 Fn->setUnnamedAddr(UnnamedAddr);
4520 Fn->setAlignment(Alignment);
4521 Fn->setSection(Section);
4522 Fn->setComdat(C);
4523 Fn->setPersonalityFn(PersonalityFn);
4524 if (!GC.empty()) Fn->setGC(GC.c_str());
4525 Fn->setPrefixData(Prefix);
4526 Fn->setPrologueData(Prologue);
4527 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
4528
4529 // Add all of the arguments we parsed to the function.
4530 Function::arg_iterator ArgIt = Fn->arg_begin();
4531 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
4532 // If the argument has a name, insert it into the argument symbol table.
4533 if (ArgList[i].Name.empty()) continue;
4534
4535 // Set the name, if it conflicted, it will be auto-renamed.
4536 ArgIt->setName(ArgList[i].Name);
4537
4538 if (ArgIt->getName() != ArgList[i].Name)
4539 return Error(ArgList[i].Loc, "redefinition of argument '%" +
4540 ArgList[i].Name + "'");
4541 }
4542
4543 if (isDefine)
4544 return false;
4545
4546 // Check the declaration has no block address forward references.
4547 ValID ID;
4548 if (FunctionName.empty()) {
4549 ID.Kind = ValID::t_GlobalID;
4550 ID.UIntVal = NumberedVals.size() - 1;
4551 } else {
4552 ID.Kind = ValID::t_GlobalName;
4553 ID.StrVal = FunctionName;
4554 }
4555 auto Blocks = ForwardRefBlockAddresses.find(ID);
4556 if (Blocks != ForwardRefBlockAddresses.end())
4557 return Error(Blocks->first.Loc,
4558 "cannot take blockaddress inside a declaration");
4559 return false;
4560 }
4561
resolveForwardRefBlockAddresses()4562 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
4563 ValID ID;
4564 if (FunctionNumber == -1) {
4565 ID.Kind = ValID::t_GlobalName;
4566 ID.StrVal = F.getName();
4567 } else {
4568 ID.Kind = ValID::t_GlobalID;
4569 ID.UIntVal = FunctionNumber;
4570 }
4571
4572 auto Blocks = P.ForwardRefBlockAddresses.find(ID);
4573 if (Blocks == P.ForwardRefBlockAddresses.end())
4574 return false;
4575
4576 for (const auto &I : Blocks->second) {
4577 const ValID &BBID = I.first;
4578 GlobalValue *GV = I.second;
4579
4580 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
4581 "Expected local id or name");
4582 BasicBlock *BB;
4583 if (BBID.Kind == ValID::t_LocalName)
4584 BB = GetBB(BBID.StrVal, BBID.Loc);
4585 else
4586 BB = GetBB(BBID.UIntVal, BBID.Loc);
4587 if (!BB)
4588 return P.Error(BBID.Loc, "referenced value is not a basic block");
4589
4590 GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
4591 GV->eraseFromParent();
4592 }
4593
4594 P.ForwardRefBlockAddresses.erase(Blocks);
4595 return false;
4596 }
4597
4598 /// ParseFunctionBody
4599 /// ::= '{' BasicBlock+ UseListOrderDirective* '}'
ParseFunctionBody(Function & Fn)4600 bool LLParser::ParseFunctionBody(Function &Fn) {
4601 if (Lex.getKind() != lltok::lbrace)
4602 return TokError("expected '{' in function body");
4603 Lex.Lex(); // eat the {.
4604
4605 int FunctionNumber = -1;
4606 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
4607
4608 PerFunctionState PFS(*this, Fn, FunctionNumber);
4609
4610 // Resolve block addresses and allow basic blocks to be forward-declared
4611 // within this function.
4612 if (PFS.resolveForwardRefBlockAddresses())
4613 return true;
4614 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
4615
4616 // We need at least one basic block.
4617 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
4618 return TokError("function body requires at least one basic block");
4619
4620 while (Lex.getKind() != lltok::rbrace &&
4621 Lex.getKind() != lltok::kw_uselistorder)
4622 if (ParseBasicBlock(PFS)) return true;
4623
4624 while (Lex.getKind() != lltok::rbrace)
4625 if (ParseUseListOrder(&PFS))
4626 return true;
4627
4628 // Eat the }.
4629 Lex.Lex();
4630
4631 // Verify function is ok.
4632 return PFS.FinishFunction();
4633 }
4634
4635 /// ParseBasicBlock
4636 /// ::= LabelStr? Instruction*
ParseBasicBlock(PerFunctionState & PFS)4637 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
4638 // If this basic block starts out with a name, remember it.
4639 std::string Name;
4640 LocTy NameLoc = Lex.getLoc();
4641 if (Lex.getKind() == lltok::LabelStr) {
4642 Name = Lex.getStrVal();
4643 Lex.Lex();
4644 }
4645
4646 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
4647 if (!BB)
4648 return Error(NameLoc,
4649 "unable to create block named '" + Name + "'");
4650
4651 std::string NameStr;
4652
4653 // Parse the instructions in this block until we get a terminator.
4654 Instruction *Inst;
4655 do {
4656 // This instruction may have three possibilities for a name: a) none
4657 // specified, b) name specified "%foo =", c) number specified: "%4 =".
4658 LocTy NameLoc = Lex.getLoc();
4659 int NameID = -1;
4660 NameStr = "";
4661
4662 if (Lex.getKind() == lltok::LocalVarID) {
4663 NameID = Lex.getUIntVal();
4664 Lex.Lex();
4665 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
4666 return true;
4667 } else if (Lex.getKind() == lltok::LocalVar) {
4668 NameStr = Lex.getStrVal();
4669 Lex.Lex();
4670 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
4671 return true;
4672 }
4673
4674 switch (ParseInstruction(Inst, BB, PFS)) {
4675 default: llvm_unreachable("Unknown ParseInstruction result!");
4676 case InstError: return true;
4677 case InstNormal:
4678 BB->getInstList().push_back(Inst);
4679
4680 // With a normal result, we check to see if the instruction is followed by
4681 // a comma and metadata.
4682 if (EatIfPresent(lltok::comma))
4683 if (ParseInstructionMetadata(*Inst))
4684 return true;
4685 break;
4686 case InstExtraComma:
4687 BB->getInstList().push_back(Inst);
4688
4689 // If the instruction parser ate an extra comma at the end of it, it
4690 // *must* be followed by metadata.
4691 if (ParseInstructionMetadata(*Inst))
4692 return true;
4693 break;
4694 }
4695
4696 // Set the name on the instruction.
4697 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
4698 } while (!isa<TerminatorInst>(Inst));
4699
4700 return false;
4701 }
4702
4703 //===----------------------------------------------------------------------===//
4704 // Instruction Parsing.
4705 //===----------------------------------------------------------------------===//
4706
4707 /// ParseInstruction - Parse one of the many different instructions.
4708 ///
ParseInstruction(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)4709 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
4710 PerFunctionState &PFS) {
4711 lltok::Kind Token = Lex.getKind();
4712 if (Token == lltok::Eof)
4713 return TokError("found end of file when expecting more instructions");
4714 LocTy Loc = Lex.getLoc();
4715 unsigned KeywordVal = Lex.getUIntVal();
4716 Lex.Lex(); // Eat the keyword.
4717
4718 switch (Token) {
4719 default: return Error(Loc, "expected instruction opcode");
4720 // Terminator Instructions.
4721 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
4722 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
4723 case lltok::kw_br: return ParseBr(Inst, PFS);
4724 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
4725 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS);
4726 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
4727 case lltok::kw_resume: return ParseResume(Inst, PFS);
4728 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS);
4729 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS);
4730 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
4731 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS);
4732 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS);
4733 // Binary Operators.
4734 case lltok::kw_add:
4735 case lltok::kw_sub:
4736 case lltok::kw_mul:
4737 case lltok::kw_shl: {
4738 bool NUW = EatIfPresent(lltok::kw_nuw);
4739 bool NSW = EatIfPresent(lltok::kw_nsw);
4740 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
4741
4742 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4743
4744 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
4745 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
4746 return false;
4747 }
4748 case lltok::kw_fadd:
4749 case lltok::kw_fsub:
4750 case lltok::kw_fmul:
4751 case lltok::kw_fdiv:
4752 case lltok::kw_frem: {
4753 FastMathFlags FMF = EatFastMathFlagsIfPresent();
4754 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
4755 if (Res != 0)
4756 return Res;
4757 if (FMF.any())
4758 Inst->setFastMathFlags(FMF);
4759 return 0;
4760 }
4761
4762 case lltok::kw_sdiv:
4763 case lltok::kw_udiv:
4764 case lltok::kw_lshr:
4765 case lltok::kw_ashr: {
4766 bool Exact = EatIfPresent(lltok::kw_exact);
4767
4768 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4769 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
4770 return false;
4771 }
4772
4773 case lltok::kw_urem:
4774 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
4775 case lltok::kw_and:
4776 case lltok::kw_or:
4777 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
4778 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal);
4779 case lltok::kw_fcmp: {
4780 FastMathFlags FMF = EatFastMathFlagsIfPresent();
4781 int Res = ParseCompare(Inst, PFS, KeywordVal);
4782 if (Res != 0)
4783 return Res;
4784 if (FMF.any())
4785 Inst->setFastMathFlags(FMF);
4786 return 0;
4787 }
4788
4789 // Casts.
4790 case lltok::kw_trunc:
4791 case lltok::kw_zext:
4792 case lltok::kw_sext:
4793 case lltok::kw_fptrunc:
4794 case lltok::kw_fpext:
4795 case lltok::kw_bitcast:
4796 case lltok::kw_addrspacecast:
4797 case lltok::kw_uitofp:
4798 case lltok::kw_sitofp:
4799 case lltok::kw_fptoui:
4800 case lltok::kw_fptosi:
4801 case lltok::kw_inttoptr:
4802 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
4803 // Other.
4804 case lltok::kw_select: return ParseSelect(Inst, PFS);
4805 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
4806 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
4807 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
4808 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
4809 case lltok::kw_phi: return ParsePHI(Inst, PFS);
4810 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS);
4811 // Call.
4812 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None);
4813 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail);
4814 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
4815 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
4816 // Memory.
4817 case lltok::kw_alloca: return ParseAlloc(Inst, PFS);
4818 case lltok::kw_load: return ParseLoad(Inst, PFS);
4819 case lltok::kw_store: return ParseStore(Inst, PFS);
4820 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS);
4821 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS);
4822 case lltok::kw_fence: return ParseFence(Inst, PFS);
4823 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
4824 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
4825 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
4826 }
4827 }
4828
4829 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
ParseCmpPredicate(unsigned & P,unsigned Opc)4830 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
4831 if (Opc == Instruction::FCmp) {
4832 switch (Lex.getKind()) {
4833 default: return TokError("expected fcmp predicate (e.g. 'oeq')");
4834 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
4835 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
4836 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
4837 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
4838 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
4839 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
4840 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
4841 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
4842 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
4843 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
4844 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
4845 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
4846 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
4847 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
4848 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
4849 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
4850 }
4851 } else {
4852 switch (Lex.getKind()) {
4853 default: return TokError("expected icmp predicate (e.g. 'eq')");
4854 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
4855 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
4856 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
4857 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
4858 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
4859 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
4860 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
4861 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
4862 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
4863 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
4864 }
4865 }
4866 Lex.Lex();
4867 return false;
4868 }
4869
4870 //===----------------------------------------------------------------------===//
4871 // Terminator Instructions.
4872 //===----------------------------------------------------------------------===//
4873
4874 /// ParseRet - Parse a return instruction.
4875 /// ::= 'ret' void (',' !dbg, !1)*
4876 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
ParseRet(Instruction * & Inst,BasicBlock * BB,PerFunctionState & PFS)4877 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
4878 PerFunctionState &PFS) {
4879 SMLoc TypeLoc = Lex.getLoc();
4880 Type *Ty = nullptr;
4881 if (ParseType(Ty, true /*void allowed*/)) return true;
4882
4883 Type *ResType = PFS.getFunction().getReturnType();
4884
4885 if (Ty->isVoidTy()) {
4886 if (!ResType->isVoidTy())
4887 return Error(TypeLoc, "value doesn't match function result type '" +
4888 getTypeString(ResType) + "'");
4889
4890 Inst = ReturnInst::Create(Context);
4891 return false;
4892 }
4893
4894 Value *RV;
4895 if (ParseValue(Ty, RV, PFS)) return true;
4896
4897 if (ResType != RV->getType())
4898 return Error(TypeLoc, "value doesn't match function result type '" +
4899 getTypeString(ResType) + "'");
4900
4901 Inst = ReturnInst::Create(Context, RV);
4902 return false;
4903 }
4904
4905
4906 /// ParseBr
4907 /// ::= 'br' TypeAndValue
4908 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseBr(Instruction * & Inst,PerFunctionState & PFS)4909 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
4910 LocTy Loc, Loc2;
4911 Value *Op0;
4912 BasicBlock *Op1, *Op2;
4913 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
4914
4915 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
4916 Inst = BranchInst::Create(BB);
4917 return false;
4918 }
4919
4920 if (Op0->getType() != Type::getInt1Ty(Context))
4921 return Error(Loc, "branch condition must have 'i1' type");
4922
4923 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
4924 ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
4925 ParseToken(lltok::comma, "expected ',' after true destination") ||
4926 ParseTypeAndBasicBlock(Op2, Loc2, PFS))
4927 return true;
4928
4929 Inst = BranchInst::Create(Op1, Op2, Op0);
4930 return false;
4931 }
4932
4933 /// ParseSwitch
4934 /// Instruction
4935 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
4936 /// JumpTable
4937 /// ::= (TypeAndValue ',' TypeAndValue)*
ParseSwitch(Instruction * & Inst,PerFunctionState & PFS)4938 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
4939 LocTy CondLoc, BBLoc;
4940 Value *Cond;
4941 BasicBlock *DefaultBB;
4942 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
4943 ParseToken(lltok::comma, "expected ',' after switch condition") ||
4944 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
4945 ParseToken(lltok::lsquare, "expected '[' with switch table"))
4946 return true;
4947
4948 if (!Cond->getType()->isIntegerTy())
4949 return Error(CondLoc, "switch condition must have integer type");
4950
4951 // Parse the jump table pairs.
4952 SmallPtrSet<Value*, 32> SeenCases;
4953 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
4954 while (Lex.getKind() != lltok::rsquare) {
4955 Value *Constant;
4956 BasicBlock *DestBB;
4957
4958 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
4959 ParseToken(lltok::comma, "expected ',' after case value") ||
4960 ParseTypeAndBasicBlock(DestBB, PFS))
4961 return true;
4962
4963 if (!SeenCases.insert(Constant).second)
4964 return Error(CondLoc, "duplicate case value in switch");
4965 if (!isa<ConstantInt>(Constant))
4966 return Error(CondLoc, "case value is not a constant integer");
4967
4968 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
4969 }
4970
4971 Lex.Lex(); // Eat the ']'.
4972
4973 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
4974 for (unsigned i = 0, e = Table.size(); i != e; ++i)
4975 SI->addCase(Table[i].first, Table[i].second);
4976 Inst = SI;
4977 return false;
4978 }
4979
4980 /// ParseIndirectBr
4981 /// Instruction
4982 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
ParseIndirectBr(Instruction * & Inst,PerFunctionState & PFS)4983 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
4984 LocTy AddrLoc;
4985 Value *Address;
4986 if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
4987 ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
4988 ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
4989 return true;
4990
4991 if (!Address->getType()->isPointerTy())
4992 return Error(AddrLoc, "indirectbr address must have pointer type");
4993
4994 // Parse the destination list.
4995 SmallVector<BasicBlock*, 16> DestList;
4996
4997 if (Lex.getKind() != lltok::rsquare) {
4998 BasicBlock *DestBB;
4999 if (ParseTypeAndBasicBlock(DestBB, PFS))
5000 return true;
5001 DestList.push_back(DestBB);
5002
5003 while (EatIfPresent(lltok::comma)) {
5004 if (ParseTypeAndBasicBlock(DestBB, PFS))
5005 return true;
5006 DestList.push_back(DestBB);
5007 }
5008 }
5009
5010 if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5011 return true;
5012
5013 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5014 for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5015 IBI->addDestination(DestList[i]);
5016 Inst = IBI;
5017 return false;
5018 }
5019
5020
5021 /// ParseInvoke
5022 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5023 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
ParseInvoke(Instruction * & Inst,PerFunctionState & PFS)5024 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5025 LocTy CallLoc = Lex.getLoc();
5026 AttrBuilder RetAttrs, FnAttrs;
5027 std::vector<unsigned> FwdRefAttrGrps;
5028 LocTy NoBuiltinLoc;
5029 unsigned CC;
5030 Type *RetType = nullptr;
5031 LocTy RetTypeLoc;
5032 ValID CalleeID;
5033 SmallVector<ParamInfo, 16> ArgList;
5034 SmallVector<OperandBundleDef, 2> BundleList;
5035
5036 BasicBlock *NormalBB, *UnwindBB;
5037 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5038 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5039 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5040 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5041 NoBuiltinLoc) ||
5042 ParseOptionalOperandBundles(BundleList, PFS) ||
5043 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5044 ParseTypeAndBasicBlock(NormalBB, PFS) ||
5045 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5046 ParseTypeAndBasicBlock(UnwindBB, PFS))
5047 return true;
5048
5049 // If RetType is a non-function pointer type, then this is the short syntax
5050 // for the call, which means that RetType is just the return type. Infer the
5051 // rest of the function argument types from the arguments that are present.
5052 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5053 if (!Ty) {
5054 // Pull out the types of all of the arguments...
5055 std::vector<Type*> ParamTypes;
5056 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5057 ParamTypes.push_back(ArgList[i].V->getType());
5058
5059 if (!FunctionType::isValidReturnType(RetType))
5060 return Error(RetTypeLoc, "Invalid result type for LLVM function");
5061
5062 Ty = FunctionType::get(RetType, ParamTypes, false);
5063 }
5064
5065 CalleeID.FTy = Ty;
5066
5067 // Look up the callee.
5068 Value *Callee;
5069 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5070 return true;
5071
5072 // Set up the Attribute for the function.
5073 SmallVector<AttributeSet, 8> Attrs;
5074 if (RetAttrs.hasAttributes())
5075 Attrs.push_back(AttributeSet::get(RetType->getContext(),
5076 AttributeSet::ReturnIndex,
5077 RetAttrs));
5078
5079 SmallVector<Value*, 8> Args;
5080
5081 // Loop through FunctionType's arguments and ensure they are specified
5082 // correctly. Also, gather any parameter attributes.
5083 FunctionType::param_iterator I = Ty->param_begin();
5084 FunctionType::param_iterator E = Ty->param_end();
5085 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5086 Type *ExpectedTy = nullptr;
5087 if (I != E) {
5088 ExpectedTy = *I++;
5089 } else if (!Ty->isVarArg()) {
5090 return Error(ArgList[i].Loc, "too many arguments specified");
5091 }
5092
5093 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5094 return Error(ArgList[i].Loc, "argument is not of expected type '" +
5095 getTypeString(ExpectedTy) + "'");
5096 Args.push_back(ArgList[i].V);
5097 if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5098 AttrBuilder B(ArgList[i].Attrs, i + 1);
5099 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5100 }
5101 }
5102
5103 if (I != E)
5104 return Error(CallLoc, "not enough parameters specified for call");
5105
5106 if (FnAttrs.hasAttributes()) {
5107 if (FnAttrs.hasAlignmentAttr())
5108 return Error(CallLoc, "invoke instructions may not have an alignment");
5109
5110 Attrs.push_back(AttributeSet::get(RetType->getContext(),
5111 AttributeSet::FunctionIndex,
5112 FnAttrs));
5113 }
5114
5115 // Finish off the Attribute and check them
5116 AttributeSet PAL = AttributeSet::get(Context, Attrs);
5117
5118 InvokeInst *II =
5119 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5120 II->setCallingConv(CC);
5121 II->setAttributes(PAL);
5122 ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5123 Inst = II;
5124 return false;
5125 }
5126
5127 /// ParseResume
5128 /// ::= 'resume' TypeAndValue
ParseResume(Instruction * & Inst,PerFunctionState & PFS)5129 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5130 Value *Exn; LocTy ExnLoc;
5131 if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5132 return true;
5133
5134 ResumeInst *RI = ResumeInst::Create(Exn);
5135 Inst = RI;
5136 return false;
5137 }
5138
ParseExceptionArgs(SmallVectorImpl<Value * > & Args,PerFunctionState & PFS)5139 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5140 PerFunctionState &PFS) {
5141 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5142 return true;
5143
5144 while (Lex.getKind() != lltok::rsquare) {
5145 // If this isn't the first argument, we need a comma.
5146 if (!Args.empty() &&
5147 ParseToken(lltok::comma, "expected ',' in argument list"))
5148 return true;
5149
5150 // Parse the argument.
5151 LocTy ArgLoc;
5152 Type *ArgTy = nullptr;
5153 if (ParseType(ArgTy, ArgLoc))
5154 return true;
5155
5156 Value *V;
5157 if (ArgTy->isMetadataTy()) {
5158 if (ParseMetadataAsValue(V, PFS))
5159 return true;
5160 } else {
5161 if (ParseValue(ArgTy, V, PFS))
5162 return true;
5163 }
5164 Args.push_back(V);
5165 }
5166
5167 Lex.Lex(); // Lex the ']'.
5168 return false;
5169 }
5170
5171 /// ParseCleanupRet
5172 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
ParseCleanupRet(Instruction * & Inst,PerFunctionState & PFS)5173 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5174 Value *CleanupPad = nullptr;
5175
5176 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5177 return true;
5178
5179 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5180 return true;
5181
5182 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5183 return true;
5184
5185 BasicBlock *UnwindBB = nullptr;
5186 if (Lex.getKind() == lltok::kw_to) {
5187 Lex.Lex();
5188 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5189 return true;
5190 } else {
5191 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5192 return true;
5193 }
5194 }
5195
5196 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5197 return false;
5198 }
5199
5200 /// ParseCatchRet
5201 /// ::= 'catchret' from Parent Value 'to' TypeAndValue
ParseCatchRet(Instruction * & Inst,PerFunctionState & PFS)5202 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5203 Value *CatchPad = nullptr;
5204
5205 if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5206 return true;
5207
5208 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5209 return true;
5210
5211 BasicBlock *BB;
5212 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5213 ParseTypeAndBasicBlock(BB, PFS))
5214 return true;
5215
5216 Inst = CatchReturnInst::Create(CatchPad, BB);
5217 return false;
5218 }
5219
5220 /// ParseCatchSwitch
5221 /// ::= 'catchswitch' within Parent
ParseCatchSwitch(Instruction * & Inst,PerFunctionState & PFS)5222 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5223 Value *ParentPad;
5224 LocTy BBLoc;
5225
5226 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5227 return true;
5228
5229 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5230 Lex.getKind() != lltok::LocalVarID)
5231 return TokError("expected scope value for catchswitch");
5232
5233 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5234 return true;
5235
5236 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5237 return true;
5238
5239 SmallVector<BasicBlock *, 32> Table;
5240 do {
5241 BasicBlock *DestBB;
5242 if (ParseTypeAndBasicBlock(DestBB, PFS))
5243 return true;
5244 Table.push_back(DestBB);
5245 } while (EatIfPresent(lltok::comma));
5246
5247 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5248 return true;
5249
5250 if (ParseToken(lltok::kw_unwind,
5251 "expected 'unwind' after catchswitch scope"))
5252 return true;
5253
5254 BasicBlock *UnwindBB = nullptr;
5255 if (EatIfPresent(lltok::kw_to)) {
5256 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5257 return true;
5258 } else {
5259 if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5260 return true;
5261 }
5262
5263 auto *CatchSwitch =
5264 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5265 for (BasicBlock *DestBB : Table)
5266 CatchSwitch->addHandler(DestBB);
5267 Inst = CatchSwitch;
5268 return false;
5269 }
5270
5271 /// ParseCatchPad
5272 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
ParseCatchPad(Instruction * & Inst,PerFunctionState & PFS)5273 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5274 Value *CatchSwitch = nullptr;
5275
5276 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5277 return true;
5278
5279 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5280 return TokError("expected scope value for catchpad");
5281
5282 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5283 return true;
5284
5285 SmallVector<Value *, 8> Args;
5286 if (ParseExceptionArgs(Args, PFS))
5287 return true;
5288
5289 Inst = CatchPadInst::Create(CatchSwitch, Args);
5290 return false;
5291 }
5292
5293 /// ParseCleanupPad
5294 /// ::= 'cleanuppad' within Parent ParamList
ParseCleanupPad(Instruction * & Inst,PerFunctionState & PFS)5295 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5296 Value *ParentPad = nullptr;
5297
5298 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5299 return true;
5300
5301 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5302 Lex.getKind() != lltok::LocalVarID)
5303 return TokError("expected scope value for cleanuppad");
5304
5305 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5306 return true;
5307
5308 SmallVector<Value *, 8> Args;
5309 if (ParseExceptionArgs(Args, PFS))
5310 return true;
5311
5312 Inst = CleanupPadInst::Create(ParentPad, Args);
5313 return false;
5314 }
5315
5316 //===----------------------------------------------------------------------===//
5317 // Binary Operators.
5318 //===----------------------------------------------------------------------===//
5319
5320 /// ParseArithmetic
5321 /// ::= ArithmeticOps TypeAndValue ',' Value
5322 ///
5323 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
5324 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
ParseArithmetic(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc,unsigned OperandType)5325 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5326 unsigned Opc, unsigned OperandType) {
5327 LocTy Loc; Value *LHS, *RHS;
5328 if (ParseTypeAndValue(LHS, Loc, PFS) ||
5329 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5330 ParseValue(LHS->getType(), RHS, PFS))
5331 return true;
5332
5333 bool Valid;
5334 switch (OperandType) {
5335 default: llvm_unreachable("Unknown operand type!");
5336 case 0: // int or FP.
5337 Valid = LHS->getType()->isIntOrIntVectorTy() ||
5338 LHS->getType()->isFPOrFPVectorTy();
5339 break;
5340 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5341 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5342 }
5343
5344 if (!Valid)
5345 return Error(Loc, "invalid operand type for instruction");
5346
5347 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5348 return false;
5349 }
5350
5351 /// ParseLogical
5352 /// ::= ArithmeticOps TypeAndValue ',' Value {
ParseLogical(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)5353 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5354 unsigned Opc) {
5355 LocTy Loc; Value *LHS, *RHS;
5356 if (ParseTypeAndValue(LHS, Loc, PFS) ||
5357 ParseToken(lltok::comma, "expected ',' in logical operation") ||
5358 ParseValue(LHS->getType(), RHS, PFS))
5359 return true;
5360
5361 if (!LHS->getType()->isIntOrIntVectorTy())
5362 return Error(Loc,"instruction requires integer or integer vector operands");
5363
5364 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5365 return false;
5366 }
5367
5368
5369 /// ParseCompare
5370 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
5371 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
ParseCompare(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)5372 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5373 unsigned Opc) {
5374 // Parse the integer/fp comparison predicate.
5375 LocTy Loc;
5376 unsigned Pred;
5377 Value *LHS, *RHS;
5378 if (ParseCmpPredicate(Pred, Opc) ||
5379 ParseTypeAndValue(LHS, Loc, PFS) ||
5380 ParseToken(lltok::comma, "expected ',' after compare value") ||
5381 ParseValue(LHS->getType(), RHS, PFS))
5382 return true;
5383
5384 if (Opc == Instruction::FCmp) {
5385 if (!LHS->getType()->isFPOrFPVectorTy())
5386 return Error(Loc, "fcmp requires floating point operands");
5387 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5388 } else {
5389 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5390 if (!LHS->getType()->isIntOrIntVectorTy() &&
5391 !LHS->getType()->getScalarType()->isPointerTy())
5392 return Error(Loc, "icmp requires integer operands");
5393 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5394 }
5395 return false;
5396 }
5397
5398 //===----------------------------------------------------------------------===//
5399 // Other Instructions.
5400 //===----------------------------------------------------------------------===//
5401
5402
5403 /// ParseCast
5404 /// ::= CastOpc TypeAndValue 'to' Type
ParseCast(Instruction * & Inst,PerFunctionState & PFS,unsigned Opc)5405 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5406 unsigned Opc) {
5407 LocTy Loc;
5408 Value *Op;
5409 Type *DestTy = nullptr;
5410 if (ParseTypeAndValue(Op, Loc, PFS) ||
5411 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5412 ParseType(DestTy))
5413 return true;
5414
5415 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5416 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5417 return Error(Loc, "invalid cast opcode for cast from '" +
5418 getTypeString(Op->getType()) + "' to '" +
5419 getTypeString(DestTy) + "'");
5420 }
5421 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5422 return false;
5423 }
5424
5425 /// ParseSelect
5426 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseSelect(Instruction * & Inst,PerFunctionState & PFS)5427 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
5428 LocTy Loc;
5429 Value *Op0, *Op1, *Op2;
5430 if (ParseTypeAndValue(Op0, Loc, PFS) ||
5431 ParseToken(lltok::comma, "expected ',' after select condition") ||
5432 ParseTypeAndValue(Op1, PFS) ||
5433 ParseToken(lltok::comma, "expected ',' after select value") ||
5434 ParseTypeAndValue(Op2, PFS))
5435 return true;
5436
5437 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
5438 return Error(Loc, Reason);
5439
5440 Inst = SelectInst::Create(Op0, Op1, Op2);
5441 return false;
5442 }
5443
5444 /// ParseVA_Arg
5445 /// ::= 'va_arg' TypeAndValue ',' Type
ParseVA_Arg(Instruction * & Inst,PerFunctionState & PFS)5446 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
5447 Value *Op;
5448 Type *EltTy = nullptr;
5449 LocTy TypeLoc;
5450 if (ParseTypeAndValue(Op, PFS) ||
5451 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
5452 ParseType(EltTy, TypeLoc))
5453 return true;
5454
5455 if (!EltTy->isFirstClassType())
5456 return Error(TypeLoc, "va_arg requires operand with first class type");
5457
5458 Inst = new VAArgInst(Op, EltTy);
5459 return false;
5460 }
5461
5462 /// ParseExtractElement
5463 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
ParseExtractElement(Instruction * & Inst,PerFunctionState & PFS)5464 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
5465 LocTy Loc;
5466 Value *Op0, *Op1;
5467 if (ParseTypeAndValue(Op0, Loc, PFS) ||
5468 ParseToken(lltok::comma, "expected ',' after extract value") ||
5469 ParseTypeAndValue(Op1, PFS))
5470 return true;
5471
5472 if (!ExtractElementInst::isValidOperands(Op0, Op1))
5473 return Error(Loc, "invalid extractelement operands");
5474
5475 Inst = ExtractElementInst::Create(Op0, Op1);
5476 return false;
5477 }
5478
5479 /// ParseInsertElement
5480 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseInsertElement(Instruction * & Inst,PerFunctionState & PFS)5481 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
5482 LocTy Loc;
5483 Value *Op0, *Op1, *Op2;
5484 if (ParseTypeAndValue(Op0, Loc, PFS) ||
5485 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5486 ParseTypeAndValue(Op1, PFS) ||
5487 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5488 ParseTypeAndValue(Op2, PFS))
5489 return true;
5490
5491 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
5492 return Error(Loc, "invalid insertelement operands");
5493
5494 Inst = InsertElementInst::Create(Op0, Op1, Op2);
5495 return false;
5496 }
5497
5498 /// ParseShuffleVector
5499 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
ParseShuffleVector(Instruction * & Inst,PerFunctionState & PFS)5500 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
5501 LocTy Loc;
5502 Value *Op0, *Op1, *Op2;
5503 if (ParseTypeAndValue(Op0, Loc, PFS) ||
5504 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
5505 ParseTypeAndValue(Op1, PFS) ||
5506 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
5507 ParseTypeAndValue(Op2, PFS))
5508 return true;
5509
5510 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
5511 return Error(Loc, "invalid shufflevector operands");
5512
5513 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
5514 return false;
5515 }
5516
5517 /// ParsePHI
5518 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
ParsePHI(Instruction * & Inst,PerFunctionState & PFS)5519 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
5520 Type *Ty = nullptr; LocTy TypeLoc;
5521 Value *Op0, *Op1;
5522
5523 if (ParseType(Ty, TypeLoc) ||
5524 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5525 ParseValue(Ty, Op0, PFS) ||
5526 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5527 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5528 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5529 return true;
5530
5531 bool AteExtraComma = false;
5532 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
5533 while (1) {
5534 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
5535
5536 if (!EatIfPresent(lltok::comma))
5537 break;
5538
5539 if (Lex.getKind() == lltok::MetadataVar) {
5540 AteExtraComma = true;
5541 break;
5542 }
5543
5544 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5545 ParseValue(Ty, Op0, PFS) ||
5546 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5547 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5548 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5549 return true;
5550 }
5551
5552 if (!Ty->isFirstClassType())
5553 return Error(TypeLoc, "phi node must have first class type");
5554
5555 PHINode *PN = PHINode::Create(Ty, PHIVals.size());
5556 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
5557 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
5558 Inst = PN;
5559 return AteExtraComma ? InstExtraComma : InstNormal;
5560 }
5561
5562 /// ParseLandingPad
5563 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
5564 /// Clause
5565 /// ::= 'catch' TypeAndValue
5566 /// ::= 'filter'
5567 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
ParseLandingPad(Instruction * & Inst,PerFunctionState & PFS)5568 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
5569 Type *Ty = nullptr; LocTy TyLoc;
5570
5571 if (ParseType(Ty, TyLoc))
5572 return true;
5573
5574 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
5575 LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
5576
5577 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
5578 LandingPadInst::ClauseType CT;
5579 if (EatIfPresent(lltok::kw_catch))
5580 CT = LandingPadInst::Catch;
5581 else if (EatIfPresent(lltok::kw_filter))
5582 CT = LandingPadInst::Filter;
5583 else
5584 return TokError("expected 'catch' or 'filter' clause type");
5585
5586 Value *V;
5587 LocTy VLoc;
5588 if (ParseTypeAndValue(V, VLoc, PFS))
5589 return true;
5590
5591 // A 'catch' type expects a non-array constant. A filter clause expects an
5592 // array constant.
5593 if (CT == LandingPadInst::Catch) {
5594 if (isa<ArrayType>(V->getType()))
5595 Error(VLoc, "'catch' clause has an invalid type");
5596 } else {
5597 if (!isa<ArrayType>(V->getType()))
5598 Error(VLoc, "'filter' clause has an invalid type");
5599 }
5600
5601 Constant *CV = dyn_cast<Constant>(V);
5602 if (!CV)
5603 return Error(VLoc, "clause argument must be a constant");
5604 LP->addClause(CV);
5605 }
5606
5607 Inst = LP.release();
5608 return false;
5609 }
5610
5611 /// ParseCall
5612 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv
5613 /// OptionalAttrs Type Value ParameterList OptionalAttrs
5614 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
5615 /// OptionalAttrs Type Value ParameterList OptionalAttrs
5616 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
5617 /// OptionalAttrs Type Value ParameterList OptionalAttrs
5618 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv
5619 /// OptionalAttrs Type Value ParameterList OptionalAttrs
ParseCall(Instruction * & Inst,PerFunctionState & PFS,CallInst::TailCallKind TCK)5620 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
5621 CallInst::TailCallKind TCK) {
5622 AttrBuilder RetAttrs, FnAttrs;
5623 std::vector<unsigned> FwdRefAttrGrps;
5624 LocTy BuiltinLoc;
5625 unsigned CC;
5626 Type *RetType = nullptr;
5627 LocTy RetTypeLoc;
5628 ValID CalleeID;
5629 SmallVector<ParamInfo, 16> ArgList;
5630 SmallVector<OperandBundleDef, 2> BundleList;
5631 LocTy CallLoc = Lex.getLoc();
5632
5633 if (TCK != CallInst::TCK_None &&
5634 ParseToken(lltok::kw_call,
5635 "expected 'tail call', 'musttail call', or 'notail call'"))
5636 return true;
5637
5638 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5639
5640 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5641 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5642 ParseValID(CalleeID) ||
5643 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
5644 PFS.getFunction().isVarArg()) ||
5645 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
5646 ParseOptionalOperandBundles(BundleList, PFS))
5647 return true;
5648
5649 if (FMF.any() && !RetType->isFPOrFPVectorTy())
5650 return Error(CallLoc, "fast-math-flags specified for call without "
5651 "floating-point scalar or vector return type");
5652
5653 // If RetType is a non-function pointer type, then this is the short syntax
5654 // for the call, which means that RetType is just the return type. Infer the
5655 // rest of the function argument types from the arguments that are present.
5656 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5657 if (!Ty) {
5658 // Pull out the types of all of the arguments...
5659 std::vector<Type*> ParamTypes;
5660 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5661 ParamTypes.push_back(ArgList[i].V->getType());
5662
5663 if (!FunctionType::isValidReturnType(RetType))
5664 return Error(RetTypeLoc, "Invalid result type for LLVM function");
5665
5666 Ty = FunctionType::get(RetType, ParamTypes, false);
5667 }
5668
5669 CalleeID.FTy = Ty;
5670
5671 // Look up the callee.
5672 Value *Callee;
5673 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5674 return true;
5675
5676 // Set up the Attribute for the function.
5677 SmallVector<AttributeSet, 8> Attrs;
5678 if (RetAttrs.hasAttributes())
5679 Attrs.push_back(AttributeSet::get(RetType->getContext(),
5680 AttributeSet::ReturnIndex,
5681 RetAttrs));
5682
5683 SmallVector<Value*, 8> Args;
5684
5685 // Loop through FunctionType's arguments and ensure they are specified
5686 // correctly. Also, gather any parameter attributes.
5687 FunctionType::param_iterator I = Ty->param_begin();
5688 FunctionType::param_iterator E = Ty->param_end();
5689 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5690 Type *ExpectedTy = nullptr;
5691 if (I != E) {
5692 ExpectedTy = *I++;
5693 } else if (!Ty->isVarArg()) {
5694 return Error(ArgList[i].Loc, "too many arguments specified");
5695 }
5696
5697 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5698 return Error(ArgList[i].Loc, "argument is not of expected type '" +
5699 getTypeString(ExpectedTy) + "'");
5700 Args.push_back(ArgList[i].V);
5701 if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5702 AttrBuilder B(ArgList[i].Attrs, i + 1);
5703 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5704 }
5705 }
5706
5707 if (I != E)
5708 return Error(CallLoc, "not enough parameters specified for call");
5709
5710 if (FnAttrs.hasAttributes()) {
5711 if (FnAttrs.hasAlignmentAttr())
5712 return Error(CallLoc, "call instructions may not have an alignment");
5713
5714 Attrs.push_back(AttributeSet::get(RetType->getContext(),
5715 AttributeSet::FunctionIndex,
5716 FnAttrs));
5717 }
5718
5719 // Finish off the Attribute and check them
5720 AttributeSet PAL = AttributeSet::get(Context, Attrs);
5721
5722 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
5723 CI->setTailCallKind(TCK);
5724 CI->setCallingConv(CC);
5725 if (FMF.any())
5726 CI->setFastMathFlags(FMF);
5727 CI->setAttributes(PAL);
5728 ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
5729 Inst = CI;
5730 return false;
5731 }
5732
5733 //===----------------------------------------------------------------------===//
5734 // Memory Instructions.
5735 //===----------------------------------------------------------------------===//
5736
5737 /// ParseAlloc
5738 /// ::= 'alloca' 'inalloca'? Type (',' TypeAndValue)? (',' 'align' i32)?
ParseAlloc(Instruction * & Inst,PerFunctionState & PFS)5739 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
5740 Value *Size = nullptr;
5741 LocTy SizeLoc, TyLoc;
5742 unsigned Alignment = 0;
5743 Type *Ty = nullptr;
5744
5745 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
5746
5747 if (ParseType(Ty, TyLoc)) return true;
5748
5749 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
5750 return Error(TyLoc, "invalid type for alloca");
5751
5752 bool AteExtraComma = false;
5753 if (EatIfPresent(lltok::comma)) {
5754 if (Lex.getKind() == lltok::kw_align) {
5755 if (ParseOptionalAlignment(Alignment)) return true;
5756 } else if (Lex.getKind() == lltok::MetadataVar) {
5757 AteExtraComma = true;
5758 } else {
5759 if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
5760 ParseOptionalCommaAlign(Alignment, AteExtraComma))
5761 return true;
5762 }
5763 }
5764
5765 if (Size && !Size->getType()->isIntegerTy())
5766 return Error(SizeLoc, "element count must have integer type");
5767
5768 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment);
5769 AI->setUsedWithInAlloca(IsInAlloca);
5770 Inst = AI;
5771 return AteExtraComma ? InstExtraComma : InstNormal;
5772 }
5773
5774 /// ParseLoad
5775 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
5776 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue
5777 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
ParseLoad(Instruction * & Inst,PerFunctionState & PFS)5778 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
5779 Value *Val; LocTy Loc;
5780 unsigned Alignment = 0;
5781 bool AteExtraComma = false;
5782 bool isAtomic = false;
5783 AtomicOrdering Ordering = NotAtomic;
5784 SynchronizationScope Scope = CrossThread;
5785
5786 if (Lex.getKind() == lltok::kw_atomic) {
5787 isAtomic = true;
5788 Lex.Lex();
5789 }
5790
5791 bool isVolatile = false;
5792 if (Lex.getKind() == lltok::kw_volatile) {
5793 isVolatile = true;
5794 Lex.Lex();
5795 }
5796
5797 Type *Ty;
5798 LocTy ExplicitTypeLoc = Lex.getLoc();
5799 if (ParseType(Ty) ||
5800 ParseToken(lltok::comma, "expected comma after load's type") ||
5801 ParseTypeAndValue(Val, Loc, PFS) ||
5802 ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
5803 ParseOptionalCommaAlign(Alignment, AteExtraComma))
5804 return true;
5805
5806 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
5807 return Error(Loc, "load operand must be a pointer to a first class type");
5808 if (isAtomic && !Alignment)
5809 return Error(Loc, "atomic load must have explicit non-zero alignment");
5810 if (Ordering == Release || Ordering == AcquireRelease)
5811 return Error(Loc, "atomic load cannot use Release ordering");
5812
5813 if (Ty != cast<PointerType>(Val->getType())->getElementType())
5814 return Error(ExplicitTypeLoc,
5815 "explicit pointee type doesn't match operand's pointee type");
5816
5817 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope);
5818 return AteExtraComma ? InstExtraComma : InstNormal;
5819 }
5820
5821 /// ParseStore
5822
5823 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
5824 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
5825 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
ParseStore(Instruction * & Inst,PerFunctionState & PFS)5826 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
5827 Value *Val, *Ptr; LocTy Loc, PtrLoc;
5828 unsigned Alignment = 0;
5829 bool AteExtraComma = false;
5830 bool isAtomic = false;
5831 AtomicOrdering Ordering = NotAtomic;
5832 SynchronizationScope Scope = CrossThread;
5833
5834 if (Lex.getKind() == lltok::kw_atomic) {
5835 isAtomic = true;
5836 Lex.Lex();
5837 }
5838
5839 bool isVolatile = false;
5840 if (Lex.getKind() == lltok::kw_volatile) {
5841 isVolatile = true;
5842 Lex.Lex();
5843 }
5844
5845 if (ParseTypeAndValue(Val, Loc, PFS) ||
5846 ParseToken(lltok::comma, "expected ',' after store operand") ||
5847 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5848 ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
5849 ParseOptionalCommaAlign(Alignment, AteExtraComma))
5850 return true;
5851
5852 if (!Ptr->getType()->isPointerTy())
5853 return Error(PtrLoc, "store operand must be a pointer");
5854 if (!Val->getType()->isFirstClassType())
5855 return Error(Loc, "store operand must be a first class value");
5856 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
5857 return Error(Loc, "stored value and pointer type do not match");
5858 if (isAtomic && !Alignment)
5859 return Error(Loc, "atomic store must have explicit non-zero alignment");
5860 if (Ordering == Acquire || Ordering == AcquireRelease)
5861 return Error(Loc, "atomic store cannot use Acquire ordering");
5862
5863 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
5864 return AteExtraComma ? InstExtraComma : InstNormal;
5865 }
5866
5867 /// ParseCmpXchg
5868 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
5869 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
ParseCmpXchg(Instruction * & Inst,PerFunctionState & PFS)5870 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
5871 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
5872 bool AteExtraComma = false;
5873 AtomicOrdering SuccessOrdering = NotAtomic;
5874 AtomicOrdering FailureOrdering = NotAtomic;
5875 SynchronizationScope Scope = CrossThread;
5876 bool isVolatile = false;
5877 bool isWeak = false;
5878
5879 if (EatIfPresent(lltok::kw_weak))
5880 isWeak = true;
5881
5882 if (EatIfPresent(lltok::kw_volatile))
5883 isVolatile = true;
5884
5885 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5886 ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
5887 ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
5888 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
5889 ParseTypeAndValue(New, NewLoc, PFS) ||
5890 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) ||
5891 ParseOrdering(FailureOrdering))
5892 return true;
5893
5894 if (SuccessOrdering == Unordered || FailureOrdering == Unordered)
5895 return TokError("cmpxchg cannot be unordered");
5896 if (SuccessOrdering < FailureOrdering)
5897 return TokError("cmpxchg must be at least as ordered on success as failure");
5898 if (FailureOrdering == Release || FailureOrdering == AcquireRelease)
5899 return TokError("cmpxchg failure ordering cannot include release semantics");
5900 if (!Ptr->getType()->isPointerTy())
5901 return Error(PtrLoc, "cmpxchg operand must be a pointer");
5902 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
5903 return Error(CmpLoc, "compare value and pointer type do not match");
5904 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
5905 return Error(NewLoc, "new value and pointer type do not match");
5906 if (!New->getType()->isIntegerTy())
5907 return Error(NewLoc, "cmpxchg operand must be an integer");
5908 unsigned Size = New->getType()->getPrimitiveSizeInBits();
5909 if (Size < 8 || (Size & (Size - 1)))
5910 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
5911 " integer");
5912
5913 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
5914 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope);
5915 CXI->setVolatile(isVolatile);
5916 CXI->setWeak(isWeak);
5917 Inst = CXI;
5918 return AteExtraComma ? InstExtraComma : InstNormal;
5919 }
5920
5921 /// ParseAtomicRMW
5922 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
5923 /// 'singlethread'? AtomicOrdering
ParseAtomicRMW(Instruction * & Inst,PerFunctionState & PFS)5924 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
5925 Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
5926 bool AteExtraComma = false;
5927 AtomicOrdering Ordering = NotAtomic;
5928 SynchronizationScope Scope = CrossThread;
5929 bool isVolatile = false;
5930 AtomicRMWInst::BinOp Operation;
5931
5932 if (EatIfPresent(lltok::kw_volatile))
5933 isVolatile = true;
5934
5935 switch (Lex.getKind()) {
5936 default: return TokError("expected binary operation in atomicrmw");
5937 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
5938 case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
5939 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
5940 case lltok::kw_and: Operation = AtomicRMWInst::And; break;
5941 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
5942 case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
5943 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
5944 case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
5945 case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
5946 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
5947 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
5948 }
5949 Lex.Lex(); // Eat the operation.
5950
5951 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5952 ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
5953 ParseTypeAndValue(Val, ValLoc, PFS) ||
5954 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
5955 return true;
5956
5957 if (Ordering == Unordered)
5958 return TokError("atomicrmw cannot be unordered");
5959 if (!Ptr->getType()->isPointerTy())
5960 return Error(PtrLoc, "atomicrmw operand must be a pointer");
5961 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
5962 return Error(ValLoc, "atomicrmw value and pointer type do not match");
5963 if (!Val->getType()->isIntegerTy())
5964 return Error(ValLoc, "atomicrmw operand must be an integer");
5965 unsigned Size = Val->getType()->getPrimitiveSizeInBits();
5966 if (Size < 8 || (Size & (Size - 1)))
5967 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
5968 " integer");
5969
5970 AtomicRMWInst *RMWI =
5971 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
5972 RMWI->setVolatile(isVolatile);
5973 Inst = RMWI;
5974 return AteExtraComma ? InstExtraComma : InstNormal;
5975 }
5976
5977 /// ParseFence
5978 /// ::= 'fence' 'singlethread'? AtomicOrdering
ParseFence(Instruction * & Inst,PerFunctionState & PFS)5979 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
5980 AtomicOrdering Ordering = NotAtomic;
5981 SynchronizationScope Scope = CrossThread;
5982 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
5983 return true;
5984
5985 if (Ordering == Unordered)
5986 return TokError("fence cannot be unordered");
5987 if (Ordering == Monotonic)
5988 return TokError("fence cannot be monotonic");
5989
5990 Inst = new FenceInst(Context, Ordering, Scope);
5991 return InstNormal;
5992 }
5993
5994 /// ParseGetElementPtr
5995 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
ParseGetElementPtr(Instruction * & Inst,PerFunctionState & PFS)5996 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
5997 Value *Ptr = nullptr;
5998 Value *Val = nullptr;
5999 LocTy Loc, EltLoc;
6000
6001 bool InBounds = EatIfPresent(lltok::kw_inbounds);
6002
6003 Type *Ty = nullptr;
6004 LocTy ExplicitTypeLoc = Lex.getLoc();
6005 if (ParseType(Ty) ||
6006 ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6007 ParseTypeAndValue(Ptr, Loc, PFS))
6008 return true;
6009
6010 Type *BaseType = Ptr->getType();
6011 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6012 if (!BasePointerType)
6013 return Error(Loc, "base of getelementptr must be a pointer");
6014
6015 if (Ty != BasePointerType->getElementType())
6016 return Error(ExplicitTypeLoc,
6017 "explicit pointee type doesn't match operand's pointee type");
6018
6019 SmallVector<Value*, 16> Indices;
6020 bool AteExtraComma = false;
6021 // GEP returns a vector of pointers if at least one of parameters is a vector.
6022 // All vector parameters should have the same vector width.
6023 unsigned GEPWidth = BaseType->isVectorTy() ?
6024 BaseType->getVectorNumElements() : 0;
6025
6026 while (EatIfPresent(lltok::comma)) {
6027 if (Lex.getKind() == lltok::MetadataVar) {
6028 AteExtraComma = true;
6029 break;
6030 }
6031 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6032 if (!Val->getType()->getScalarType()->isIntegerTy())
6033 return Error(EltLoc, "getelementptr index must be an integer");
6034
6035 if (Val->getType()->isVectorTy()) {
6036 unsigned ValNumEl = Val->getType()->getVectorNumElements();
6037 if (GEPWidth && GEPWidth != ValNumEl)
6038 return Error(EltLoc,
6039 "getelementptr vector index has a wrong number of elements");
6040 GEPWidth = ValNumEl;
6041 }
6042 Indices.push_back(Val);
6043 }
6044
6045 SmallPtrSet<Type*, 4> Visited;
6046 if (!Indices.empty() && !Ty->isSized(&Visited))
6047 return Error(Loc, "base element of getelementptr must be sized");
6048
6049 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6050 return Error(Loc, "invalid getelementptr indices");
6051 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6052 if (InBounds)
6053 cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6054 return AteExtraComma ? InstExtraComma : InstNormal;
6055 }
6056
6057 /// ParseExtractValue
6058 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
ParseExtractValue(Instruction * & Inst,PerFunctionState & PFS)6059 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6060 Value *Val; LocTy Loc;
6061 SmallVector<unsigned, 4> Indices;
6062 bool AteExtraComma;
6063 if (ParseTypeAndValue(Val, Loc, PFS) ||
6064 ParseIndexList(Indices, AteExtraComma))
6065 return true;
6066
6067 if (!Val->getType()->isAggregateType())
6068 return Error(Loc, "extractvalue operand must be aggregate type");
6069
6070 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6071 return Error(Loc, "invalid indices for extractvalue");
6072 Inst = ExtractValueInst::Create(Val, Indices);
6073 return AteExtraComma ? InstExtraComma : InstNormal;
6074 }
6075
6076 /// ParseInsertValue
6077 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
ParseInsertValue(Instruction * & Inst,PerFunctionState & PFS)6078 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6079 Value *Val0, *Val1; LocTy Loc0, Loc1;
6080 SmallVector<unsigned, 4> Indices;
6081 bool AteExtraComma;
6082 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6083 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6084 ParseTypeAndValue(Val1, Loc1, PFS) ||
6085 ParseIndexList(Indices, AteExtraComma))
6086 return true;
6087
6088 if (!Val0->getType()->isAggregateType())
6089 return Error(Loc0, "insertvalue operand must be aggregate type");
6090
6091 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6092 if (!IndexedType)
6093 return Error(Loc0, "invalid indices for insertvalue");
6094 if (IndexedType != Val1->getType())
6095 return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6096 getTypeString(Val1->getType()) + "' instead of '" +
6097 getTypeString(IndexedType) + "'");
6098 Inst = InsertValueInst::Create(Val0, Val1, Indices);
6099 return AteExtraComma ? InstExtraComma : InstNormal;
6100 }
6101
6102 //===----------------------------------------------------------------------===//
6103 // Embedded metadata.
6104 //===----------------------------------------------------------------------===//
6105
6106 /// ParseMDNodeVector
6107 /// ::= { Element (',' Element)* }
6108 /// Element
6109 /// ::= 'null' | TypeAndValue
ParseMDNodeVector(SmallVectorImpl<Metadata * > & Elts)6110 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6111 if (ParseToken(lltok::lbrace, "expected '{' here"))
6112 return true;
6113
6114 // Check for an empty list.
6115 if (EatIfPresent(lltok::rbrace))
6116 return false;
6117
6118 do {
6119 // Null is a special case since it is typeless.
6120 if (EatIfPresent(lltok::kw_null)) {
6121 Elts.push_back(nullptr);
6122 continue;
6123 }
6124
6125 Metadata *MD;
6126 if (ParseMetadata(MD, nullptr))
6127 return true;
6128 Elts.push_back(MD);
6129 } while (EatIfPresent(lltok::comma));
6130
6131 return ParseToken(lltok::rbrace, "expected end of metadata node");
6132 }
6133
6134 //===----------------------------------------------------------------------===//
6135 // Use-list order directives.
6136 //===----------------------------------------------------------------------===//
sortUseListOrder(Value * V,ArrayRef<unsigned> Indexes,SMLoc Loc)6137 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6138 SMLoc Loc) {
6139 if (V->use_empty())
6140 return Error(Loc, "value has no uses");
6141
6142 unsigned NumUses = 0;
6143 SmallDenseMap<const Use *, unsigned, 16> Order;
6144 for (const Use &U : V->uses()) {
6145 if (++NumUses > Indexes.size())
6146 break;
6147 Order[&U] = Indexes[NumUses - 1];
6148 }
6149 if (NumUses < 2)
6150 return Error(Loc, "value only has one use");
6151 if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6152 return Error(Loc, "wrong number of indexes, expected " +
6153 Twine(std::distance(V->use_begin(), V->use_end())));
6154
6155 V->sortUseList([&](const Use &L, const Use &R) {
6156 return Order.lookup(&L) < Order.lookup(&R);
6157 });
6158 return false;
6159 }
6160
6161 /// ParseUseListOrderIndexes
6162 /// ::= '{' uint32 (',' uint32)+ '}'
ParseUseListOrderIndexes(SmallVectorImpl<unsigned> & Indexes)6163 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6164 SMLoc Loc = Lex.getLoc();
6165 if (ParseToken(lltok::lbrace, "expected '{' here"))
6166 return true;
6167 if (Lex.getKind() == lltok::rbrace)
6168 return Lex.Error("expected non-empty list of uselistorder indexes");
6169
6170 // Use Offset, Max, and IsOrdered to check consistency of indexes. The
6171 // indexes should be distinct numbers in the range [0, size-1], and should
6172 // not be in order.
6173 unsigned Offset = 0;
6174 unsigned Max = 0;
6175 bool IsOrdered = true;
6176 assert(Indexes.empty() && "Expected empty order vector");
6177 do {
6178 unsigned Index;
6179 if (ParseUInt32(Index))
6180 return true;
6181
6182 // Update consistency checks.
6183 Offset += Index - Indexes.size();
6184 Max = std::max(Max, Index);
6185 IsOrdered &= Index == Indexes.size();
6186
6187 Indexes.push_back(Index);
6188 } while (EatIfPresent(lltok::comma));
6189
6190 if (ParseToken(lltok::rbrace, "expected '}' here"))
6191 return true;
6192
6193 if (Indexes.size() < 2)
6194 return Error(Loc, "expected >= 2 uselistorder indexes");
6195 if (Offset != 0 || Max >= Indexes.size())
6196 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6197 if (IsOrdered)
6198 return Error(Loc, "expected uselistorder indexes to change the order");
6199
6200 return false;
6201 }
6202
6203 /// ParseUseListOrder
6204 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes
ParseUseListOrder(PerFunctionState * PFS)6205 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6206 SMLoc Loc = Lex.getLoc();
6207 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6208 return true;
6209
6210 Value *V;
6211 SmallVector<unsigned, 16> Indexes;
6212 if (ParseTypeAndValue(V, PFS) ||
6213 ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6214 ParseUseListOrderIndexes(Indexes))
6215 return true;
6216
6217 return sortUseListOrder(V, Indexes, Loc);
6218 }
6219
6220 /// ParseUseListOrderBB
6221 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
ParseUseListOrderBB()6222 bool LLParser::ParseUseListOrderBB() {
6223 assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6224 SMLoc Loc = Lex.getLoc();
6225 Lex.Lex();
6226
6227 ValID Fn, Label;
6228 SmallVector<unsigned, 16> Indexes;
6229 if (ParseValID(Fn) ||
6230 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6231 ParseValID(Label) ||
6232 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6233 ParseUseListOrderIndexes(Indexes))
6234 return true;
6235
6236 // Check the function.
6237 GlobalValue *GV;
6238 if (Fn.Kind == ValID::t_GlobalName)
6239 GV = M->getNamedValue(Fn.StrVal);
6240 else if (Fn.Kind == ValID::t_GlobalID)
6241 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6242 else
6243 return Error(Fn.Loc, "expected function name in uselistorder_bb");
6244 if (!GV)
6245 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6246 auto *F = dyn_cast<Function>(GV);
6247 if (!F)
6248 return Error(Fn.Loc, "expected function name in uselistorder_bb");
6249 if (F->isDeclaration())
6250 return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6251
6252 // Check the basic block.
6253 if (Label.Kind == ValID::t_LocalID)
6254 return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6255 if (Label.Kind != ValID::t_LocalName)
6256 return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6257 Value *V = F->getValueSymbolTable().lookup(Label.StrVal);
6258 if (!V)
6259 return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6260 if (!isa<BasicBlock>(V))
6261 return Error(Label.Loc, "expected basic block in uselistorder_bb");
6262
6263 return sortUseListOrder(V, Indexes, Loc);
6264 }
6265