1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineLoopInfo.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetLowering.h"
47 #include "llvm/Target/TargetSubtargetInfo.h"
48 #include <algorithm>
49 using namespace llvm;
50
51 #define DEBUG_TYPE "block-placement"
52
53 STATISTIC(NumCondBranches, "Number of conditional branches");
54 STATISTIC(NumUncondBranches, "Number of unconditional branches");
55 STATISTIC(CondBranchTakenFreq,
56 "Potential frequency of taking conditional branches");
57 STATISTIC(UncondBranchTakenFreq,
58 "Potential frequency of taking unconditional branches");
59
60 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
61 cl::desc("Force the alignment of all "
62 "blocks in the function."),
63 cl::init(0), cl::Hidden);
64
65 // FIXME: Find a good default for this flag and remove the flag.
66 static cl::opt<unsigned> ExitBlockBias(
67 "block-placement-exit-block-bias",
68 cl::desc("Block frequency percentage a loop exit block needs "
69 "over the original exit to be considered the new exit."),
70 cl::init(0), cl::Hidden);
71
72 static cl::opt<bool> OutlineOptionalBranches(
73 "outline-optional-branches",
74 cl::desc("Put completely optional branches, i.e. branches with a common "
75 "post dominator, out of line."),
76 cl::init(false), cl::Hidden);
77
78 static cl::opt<unsigned> OutlineOptionalThreshold(
79 "outline-optional-threshold",
80 cl::desc("Don't outline optional branches that are a single block with an "
81 "instruction count below this threshold"),
82 cl::init(4), cl::Hidden);
83
84 static cl::opt<unsigned> LoopToColdBlockRatio(
85 "loop-to-cold-block-ratio",
86 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
87 "(frequency of block) is greater than this ratio"),
88 cl::init(5), cl::Hidden);
89
90 static cl::opt<bool>
91 PreciseRotationCost("precise-rotation-cost",
92 cl::desc("Model the cost of loop rotation more "
93 "precisely by using profile data."),
94 cl::init(false), cl::Hidden);
95
96 static cl::opt<unsigned> MisfetchCost(
97 "misfetch-cost",
98 cl::desc("Cost that models the probablistic risk of an instruction "
99 "misfetch due to a jump comparing to falling through, whose cost "
100 "is zero."),
101 cl::init(1), cl::Hidden);
102
103 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
104 cl::desc("Cost of jump instructions."),
105 cl::init(1), cl::Hidden);
106
107 namespace {
108 class BlockChain;
109 /// \brief Type for our function-wide basic block -> block chain mapping.
110 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
111 }
112
113 namespace {
114 /// \brief A chain of blocks which will be laid out contiguously.
115 ///
116 /// This is the datastructure representing a chain of consecutive blocks that
117 /// are profitable to layout together in order to maximize fallthrough
118 /// probabilities and code locality. We also can use a block chain to represent
119 /// a sequence of basic blocks which have some external (correctness)
120 /// requirement for sequential layout.
121 ///
122 /// Chains can be built around a single basic block and can be merged to grow
123 /// them. They participate in a block-to-chain mapping, which is updated
124 /// automatically as chains are merged together.
125 class BlockChain {
126 /// \brief The sequence of blocks belonging to this chain.
127 ///
128 /// This is the sequence of blocks for a particular chain. These will be laid
129 /// out in-order within the function.
130 SmallVector<MachineBasicBlock *, 4> Blocks;
131
132 /// \brief A handle to the function-wide basic block to block chain mapping.
133 ///
134 /// This is retained in each block chain to simplify the computation of child
135 /// block chains for SCC-formation and iteration. We store the edges to child
136 /// basic blocks, and map them back to their associated chains using this
137 /// structure.
138 BlockToChainMapType &BlockToChain;
139
140 public:
141 /// \brief Construct a new BlockChain.
142 ///
143 /// This builds a new block chain representing a single basic block in the
144 /// function. It also registers itself as the chain that block participates
145 /// in with the BlockToChain mapping.
BlockChain(BlockToChainMapType & BlockToChain,MachineBasicBlock * BB)146 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
147 : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
148 assert(BB && "Cannot create a chain with a null basic block");
149 BlockToChain[BB] = this;
150 }
151
152 /// \brief Iterator over blocks within the chain.
153 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
154
155 /// \brief Beginning of blocks within the chain.
begin()156 iterator begin() { return Blocks.begin(); }
157
158 /// \brief End of blocks within the chain.
end()159 iterator end() { return Blocks.end(); }
160
161 /// \brief Merge a block chain into this one.
162 ///
163 /// This routine merges a block chain into this one. It takes care of forming
164 /// a contiguous sequence of basic blocks, updating the edge list, and
165 /// updating the block -> chain mapping. It does not free or tear down the
166 /// old chain, but the old chain's block list is no longer valid.
merge(MachineBasicBlock * BB,BlockChain * Chain)167 void merge(MachineBasicBlock *BB, BlockChain *Chain) {
168 assert(BB);
169 assert(!Blocks.empty());
170
171 // Fast path in case we don't have a chain already.
172 if (!Chain) {
173 assert(!BlockToChain[BB]);
174 Blocks.push_back(BB);
175 BlockToChain[BB] = this;
176 return;
177 }
178
179 assert(BB == *Chain->begin());
180 assert(Chain->begin() != Chain->end());
181
182 // Update the incoming blocks to point to this chain, and add them to the
183 // chain structure.
184 for (MachineBasicBlock *ChainBB : *Chain) {
185 Blocks.push_back(ChainBB);
186 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
187 BlockToChain[ChainBB] = this;
188 }
189 }
190
191 #ifndef NDEBUG
192 /// \brief Dump the blocks in this chain.
dump()193 LLVM_DUMP_METHOD void dump() {
194 for (MachineBasicBlock *MBB : *this)
195 MBB->dump();
196 }
197 #endif // NDEBUG
198
199 /// \brief Count of predecessors within the loop currently being processed.
200 ///
201 /// This count is updated at each loop we process to represent the number of
202 /// in-loop predecessors of this chain.
203 unsigned LoopPredecessors;
204 };
205 }
206
207 namespace {
208 class MachineBlockPlacement : public MachineFunctionPass {
209 /// \brief A typedef for a block filter set.
210 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
211
212 /// \brief A handle to the branch probability pass.
213 const MachineBranchProbabilityInfo *MBPI;
214
215 /// \brief A handle to the function-wide block frequency pass.
216 const MachineBlockFrequencyInfo *MBFI;
217
218 /// \brief A handle to the loop info.
219 const MachineLoopInfo *MLI;
220
221 /// \brief A handle to the target's instruction info.
222 const TargetInstrInfo *TII;
223
224 /// \brief A handle to the target's lowering info.
225 const TargetLoweringBase *TLI;
226
227 /// \brief A handle to the post dominator tree.
228 MachineDominatorTree *MDT;
229
230 /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
231 /// all terminators of the MachineFunction.
232 SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
233
234 /// \brief Allocator and owner of BlockChain structures.
235 ///
236 /// We build BlockChains lazily while processing the loop structure of
237 /// a function. To reduce malloc traffic, we allocate them using this
238 /// slab-like allocator, and destroy them after the pass completes. An
239 /// important guarantee is that this allocator produces stable pointers to
240 /// the chains.
241 SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
242
243 /// \brief Function wide BasicBlock to BlockChain mapping.
244 ///
245 /// This mapping allows efficiently moving from any given basic block to the
246 /// BlockChain it participates in, if any. We use it to, among other things,
247 /// allow implicitly defining edges between chains as the existing edges
248 /// between basic blocks.
249 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
250
251 void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
252 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
253 const BlockFilterSet *BlockFilter = nullptr);
254 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
255 BlockChain &Chain,
256 const BlockFilterSet *BlockFilter);
257 MachineBasicBlock *
258 selectBestCandidateBlock(BlockChain &Chain,
259 SmallVectorImpl<MachineBasicBlock *> &WorkList,
260 const BlockFilterSet *BlockFilter);
261 MachineBasicBlock *
262 getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain,
263 MachineFunction::iterator &PrevUnplacedBlockIt,
264 const BlockFilterSet *BlockFilter);
265 void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
266 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
267 const BlockFilterSet *BlockFilter = nullptr);
268 MachineBasicBlock *findBestLoopTop(MachineLoop &L,
269 const BlockFilterSet &LoopBlockSet);
270 MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L,
271 const BlockFilterSet &LoopBlockSet);
272 BlockFilterSet collectLoopBlockSet(MachineFunction &F, MachineLoop &L);
273 void buildLoopChains(MachineFunction &F, MachineLoop &L);
274 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
275 const BlockFilterSet &LoopBlockSet);
276 void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L,
277 const BlockFilterSet &LoopBlockSet);
278 void buildCFGChains(MachineFunction &F);
279
280 public:
281 static char ID; // Pass identification, replacement for typeid
MachineBlockPlacement()282 MachineBlockPlacement() : MachineFunctionPass(ID) {
283 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
284 }
285
286 bool runOnMachineFunction(MachineFunction &F) override;
287
getAnalysisUsage(AnalysisUsage & AU) const288 void getAnalysisUsage(AnalysisUsage &AU) const override {
289 AU.addRequired<MachineBranchProbabilityInfo>();
290 AU.addRequired<MachineBlockFrequencyInfo>();
291 AU.addRequired<MachineDominatorTree>();
292 AU.addRequired<MachineLoopInfo>();
293 MachineFunctionPass::getAnalysisUsage(AU);
294 }
295 };
296 }
297
298 char MachineBlockPlacement::ID = 0;
299 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
300 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
301 "Branch Probability Basic Block Placement", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)302 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
303 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
304 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
305 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
306 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
307 "Branch Probability Basic Block Placement", false, false)
308
309 #ifndef NDEBUG
310 /// \brief Helper to print the name of a MBB.
311 ///
312 /// Only used by debug logging.
313 static std::string getBlockName(MachineBasicBlock *BB) {
314 std::string Result;
315 raw_string_ostream OS(Result);
316 OS << "BB#" << BB->getNumber();
317 OS << " (derived from LLVM BB '" << BB->getName() << "')";
318 OS.flush();
319 return Result;
320 }
321
322 /// \brief Helper to print the number of a MBB.
323 ///
324 /// Only used by debug logging.
getBlockNum(MachineBasicBlock * BB)325 static std::string getBlockNum(MachineBasicBlock *BB) {
326 std::string Result;
327 raw_string_ostream OS(Result);
328 OS << "BB#" << BB->getNumber();
329 OS.flush();
330 return Result;
331 }
332 #endif
333
334 /// \brief Mark a chain's successors as having one fewer preds.
335 ///
336 /// When a chain is being merged into the "placed" chain, this routine will
337 /// quickly walk the successors of each block in the chain and mark them as
338 /// having one fewer active predecessor. It also adds any successors of this
339 /// chain which reach the zero-predecessor state to the worklist passed in.
markChainSuccessors(BlockChain & Chain,MachineBasicBlock * LoopHeaderBB,SmallVectorImpl<MachineBasicBlock * > & BlockWorkList,const BlockFilterSet * BlockFilter)340 void MachineBlockPlacement::markChainSuccessors(
341 BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
342 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
343 const BlockFilterSet *BlockFilter) {
344 // Walk all the blocks in this chain, marking their successors as having
345 // a predecessor placed.
346 for (MachineBasicBlock *MBB : Chain) {
347 // Add any successors for which this is the only un-placed in-loop
348 // predecessor to the worklist as a viable candidate for CFG-neutral
349 // placement. No subsequent placement of this block will violate the CFG
350 // shape, so we get to use heuristics to choose a favorable placement.
351 for (MachineBasicBlock *Succ : MBB->successors()) {
352 if (BlockFilter && !BlockFilter->count(Succ))
353 continue;
354 BlockChain &SuccChain = *BlockToChain[Succ];
355 // Disregard edges within a fixed chain, or edges to the loop header.
356 if (&Chain == &SuccChain || Succ == LoopHeaderBB)
357 continue;
358
359 // This is a cross-chain edge that is within the loop, so decrement the
360 // loop predecessor count of the destination chain.
361 if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
362 BlockWorkList.push_back(*SuccChain.begin());
363 }
364 }
365 }
366
367 /// \brief Select the best successor for a block.
368 ///
369 /// This looks across all successors of a particular block and attempts to
370 /// select the "best" one to be the layout successor. It only considers direct
371 /// successors which also pass the block filter. It will attempt to avoid
372 /// breaking CFG structure, but cave and break such structures in the case of
373 /// very hot successor edges.
374 ///
375 /// \returns The best successor block found, or null if none are viable.
376 MachineBasicBlock *
selectBestSuccessor(MachineBasicBlock * BB,BlockChain & Chain,const BlockFilterSet * BlockFilter)377 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
378 BlockChain &Chain,
379 const BlockFilterSet *BlockFilter) {
380 const BranchProbability HotProb(4, 5); // 80%
381
382 MachineBasicBlock *BestSucc = nullptr;
383 auto BestProb = BranchProbability::getZero();
384
385 // Adjust edge probabilities by excluding edges pointing to blocks that is
386 // either not in BlockFilter or is already in the current chain. Consider the
387 // following CFG:
388 //
389 // --->A
390 // | / \
391 // | B C
392 // | \ / \
393 // ----D E
394 //
395 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
396 // A->C is chosen as a fall-through, D won't be selected as a successor of C
397 // due to CFG constraint (the probability of C->D is not greater than
398 // HotProb). If we exclude E that is not in BlockFilter when calculating the
399 // probability of C->D, D will be selected and we will get A C D B as the
400 // layout of this loop.
401 auto AdjustedSumProb = BranchProbability::getOne();
402 SmallVector<MachineBasicBlock *, 4> Successors;
403 for (MachineBasicBlock *Succ : BB->successors()) {
404 bool SkipSucc = false;
405 if (BlockFilter && !BlockFilter->count(Succ)) {
406 SkipSucc = true;
407 } else {
408 BlockChain *SuccChain = BlockToChain[Succ];
409 if (SuccChain == &Chain) {
410 DEBUG(dbgs() << " " << getBlockName(Succ)
411 << " -> Already merged!\n");
412 SkipSucc = true;
413 } else if (Succ != *SuccChain->begin()) {
414 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n");
415 continue;
416 }
417 }
418 if (SkipSucc)
419 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
420 else
421 Successors.push_back(Succ);
422 }
423
424 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
425 for (MachineBasicBlock *Succ : Successors) {
426 BranchProbability SuccProb;
427 uint32_t SuccProbN = MBPI->getEdgeProbability(BB, Succ).getNumerator();
428 uint32_t SuccProbD = AdjustedSumProb.getNumerator();
429 if (SuccProbN >= SuccProbD)
430 SuccProb = BranchProbability::getOne();
431 else
432 SuccProb = BranchProbability(SuccProbN, SuccProbD);
433
434 // If we outline optional branches, look whether Succ is unavoidable, i.e.
435 // dominates all terminators of the MachineFunction. If it does, other
436 // successors must be optional. Don't do this for cold branches.
437 if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() &&
438 UnavoidableBlocks.count(Succ) > 0) {
439 auto HasShortOptionalBranch = [&]() {
440 for (MachineBasicBlock *Pred : Succ->predecessors()) {
441 // Check whether there is an unplaced optional branch.
442 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
443 BlockToChain[Pred] == &Chain)
444 continue;
445 // Check whether the optional branch has exactly one BB.
446 if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
447 continue;
448 // Check whether the optional branch is small.
449 if (Pred->size() < OutlineOptionalThreshold)
450 return true;
451 }
452 return false;
453 };
454 if (!HasShortOptionalBranch())
455 return Succ;
456 }
457
458 // Only consider successors which are either "hot", or wouldn't violate
459 // any CFG constraints.
460 BlockChain &SuccChain = *BlockToChain[Succ];
461 if (SuccChain.LoopPredecessors != 0) {
462 if (SuccProb < HotProb) {
463 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
464 << " (prob) (CFG conflict)\n");
465 continue;
466 }
467
468 // Make sure that a hot successor doesn't have a globally more
469 // important predecessor.
470 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
471 BlockFrequency CandidateEdgeFreq =
472 MBFI->getBlockFreq(BB) * RealSuccProb * HotProb.getCompl();
473 bool BadCFGConflict = false;
474 for (MachineBasicBlock *Pred : Succ->predecessors()) {
475 if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
476 BlockToChain[Pred] == &Chain)
477 continue;
478 BlockFrequency PredEdgeFreq =
479 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
480 if (PredEdgeFreq >= CandidateEdgeFreq) {
481 BadCFGConflict = true;
482 break;
483 }
484 }
485 if (BadCFGConflict) {
486 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
487 << " (prob) (non-cold CFG conflict)\n");
488 continue;
489 }
490 }
491
492 DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb
493 << " (prob)"
494 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
495 << "\n");
496 if (BestSucc && BestProb >= SuccProb)
497 continue;
498 BestSucc = Succ;
499 BestProb = SuccProb;
500 }
501 return BestSucc;
502 }
503
504 /// \brief Select the best block from a worklist.
505 ///
506 /// This looks through the provided worklist as a list of candidate basic
507 /// blocks and select the most profitable one to place. The definition of
508 /// profitable only really makes sense in the context of a loop. This returns
509 /// the most frequently visited block in the worklist, which in the case of
510 /// a loop, is the one most desirable to be physically close to the rest of the
511 /// loop body in order to improve icache behavior.
512 ///
513 /// \returns The best block found, or null if none are viable.
selectBestCandidateBlock(BlockChain & Chain,SmallVectorImpl<MachineBasicBlock * > & WorkList,const BlockFilterSet * BlockFilter)514 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
515 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
516 const BlockFilterSet *BlockFilter) {
517 // Once we need to walk the worklist looking for a candidate, cleanup the
518 // worklist of already placed entries.
519 // FIXME: If this shows up on profiles, it could be folded (at the cost of
520 // some code complexity) into the loop below.
521 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
522 [&](MachineBasicBlock *BB) {
523 return BlockToChain.lookup(BB) == &Chain;
524 }),
525 WorkList.end());
526
527 MachineBasicBlock *BestBlock = nullptr;
528 BlockFrequency BestFreq;
529 for (MachineBasicBlock *MBB : WorkList) {
530 BlockChain &SuccChain = *BlockToChain[MBB];
531 if (&SuccChain == &Chain) {
532 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> Already merged!\n");
533 continue;
534 }
535 assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
536
537 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
538 DEBUG(dbgs() << " " << getBlockName(MBB) << " -> ";
539 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
540 if (BestBlock && BestFreq >= CandidateFreq)
541 continue;
542 BestBlock = MBB;
543 BestFreq = CandidateFreq;
544 }
545 return BestBlock;
546 }
547
548 /// \brief Retrieve the first unplaced basic block.
549 ///
550 /// This routine is called when we are unable to use the CFG to walk through
551 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
552 /// We walk through the function's blocks in order, starting from the
553 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
554 /// re-scanning the entire sequence on repeated calls to this routine.
getFirstUnplacedBlock(MachineFunction & F,const BlockChain & PlacedChain,MachineFunction::iterator & PrevUnplacedBlockIt,const BlockFilterSet * BlockFilter)555 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
556 MachineFunction &F, const BlockChain &PlacedChain,
557 MachineFunction::iterator &PrevUnplacedBlockIt,
558 const BlockFilterSet *BlockFilter) {
559 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
560 ++I) {
561 if (BlockFilter && !BlockFilter->count(&*I))
562 continue;
563 if (BlockToChain[&*I] != &PlacedChain) {
564 PrevUnplacedBlockIt = I;
565 // Now select the head of the chain to which the unplaced block belongs
566 // as the block to place. This will force the entire chain to be placed,
567 // and satisfies the requirements of merging chains.
568 return *BlockToChain[&*I]->begin();
569 }
570 }
571 return nullptr;
572 }
573
buildChain(MachineBasicBlock * BB,BlockChain & Chain,SmallVectorImpl<MachineBasicBlock * > & BlockWorkList,const BlockFilterSet * BlockFilter)574 void MachineBlockPlacement::buildChain(
575 MachineBasicBlock *BB, BlockChain &Chain,
576 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
577 const BlockFilterSet *BlockFilter) {
578 assert(BB);
579 assert(BlockToChain[BB] == &Chain);
580 MachineFunction &F = *BB->getParent();
581 MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
582
583 MachineBasicBlock *LoopHeaderBB = BB;
584 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
585 BB = *std::prev(Chain.end());
586 for (;;) {
587 assert(BB);
588 assert(BlockToChain[BB] == &Chain);
589 assert(*std::prev(Chain.end()) == BB);
590
591 // Look for the best viable successor if there is one to place immediately
592 // after this block.
593 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
594
595 // If an immediate successor isn't available, look for the best viable
596 // block among those we've identified as not violating the loop's CFG at
597 // this point. This won't be a fallthrough, but it will increase locality.
598 if (!BestSucc)
599 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
600
601 if (!BestSucc) {
602 BestSucc =
603 getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter);
604 if (!BestSucc)
605 break;
606
607 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
608 "layout successor until the CFG reduces\n");
609 }
610
611 // Place this block, updating the datastructures to reflect its placement.
612 BlockChain &SuccChain = *BlockToChain[BestSucc];
613 // Zero out LoopPredecessors for the successor we're about to merge in case
614 // we selected a successor that didn't fit naturally into the CFG.
615 SuccChain.LoopPredecessors = 0;
616 DEBUG(dbgs() << "Merging from " << getBlockNum(BB) << " to "
617 << getBlockNum(BestSucc) << "\n");
618 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
619 Chain.merge(BestSucc, &SuccChain);
620 BB = *std::prev(Chain.end());
621 }
622
623 DEBUG(dbgs() << "Finished forming chain for header block "
624 << getBlockNum(*Chain.begin()) << "\n");
625 }
626
627 /// \brief Find the best loop top block for layout.
628 ///
629 /// Look for a block which is strictly better than the loop header for laying
630 /// out at the top of the loop. This looks for one and only one pattern:
631 /// a latch block with no conditional exit. This block will cause a conditional
632 /// jump around it or will be the bottom of the loop if we lay it out in place,
633 /// but if it it doesn't end up at the bottom of the loop for any reason,
634 /// rotation alone won't fix it. Because such a block will always result in an
635 /// unconditional jump (for the backedge) rotating it in front of the loop
636 /// header is always profitable.
637 MachineBasicBlock *
findBestLoopTop(MachineLoop & L,const BlockFilterSet & LoopBlockSet)638 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
639 const BlockFilterSet &LoopBlockSet) {
640 // Check that the header hasn't been fused with a preheader block due to
641 // crazy branches. If it has, we need to start with the header at the top to
642 // prevent pulling the preheader into the loop body.
643 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
644 if (!LoopBlockSet.count(*HeaderChain.begin()))
645 return L.getHeader();
646
647 DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
648 << "\n");
649
650 BlockFrequency BestPredFreq;
651 MachineBasicBlock *BestPred = nullptr;
652 for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
653 if (!LoopBlockSet.count(Pred))
654 continue;
655 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", "
656 << Pred->succ_size() << " successors, ";
657 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
658 if (Pred->succ_size() > 1)
659 continue;
660
661 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
662 if (!BestPred || PredFreq > BestPredFreq ||
663 (!(PredFreq < BestPredFreq) &&
664 Pred->isLayoutSuccessor(L.getHeader()))) {
665 BestPred = Pred;
666 BestPredFreq = PredFreq;
667 }
668 }
669
670 // If no direct predecessor is fine, just use the loop header.
671 if (!BestPred)
672 return L.getHeader();
673
674 // Walk backwards through any straight line of predecessors.
675 while (BestPred->pred_size() == 1 &&
676 (*BestPred->pred_begin())->succ_size() == 1 &&
677 *BestPred->pred_begin() != L.getHeader())
678 BestPred = *BestPred->pred_begin();
679
680 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
681 return BestPred;
682 }
683
684 /// \brief Find the best loop exiting block for layout.
685 ///
686 /// This routine implements the logic to analyze the loop looking for the best
687 /// block to layout at the top of the loop. Typically this is done to maximize
688 /// fallthrough opportunities.
689 MachineBasicBlock *
findBestLoopExit(MachineFunction & F,MachineLoop & L,const BlockFilterSet & LoopBlockSet)690 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L,
691 const BlockFilterSet &LoopBlockSet) {
692 // We don't want to layout the loop linearly in all cases. If the loop header
693 // is just a normal basic block in the loop, we want to look for what block
694 // within the loop is the best one to layout at the top. However, if the loop
695 // header has be pre-merged into a chain due to predecessors not having
696 // analyzable branches, *and* the predecessor it is merged with is *not* part
697 // of the loop, rotating the header into the middle of the loop will create
698 // a non-contiguous range of blocks which is Very Bad. So start with the
699 // header and only rotate if safe.
700 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
701 if (!LoopBlockSet.count(*HeaderChain.begin()))
702 return nullptr;
703
704 BlockFrequency BestExitEdgeFreq;
705 unsigned BestExitLoopDepth = 0;
706 MachineBasicBlock *ExitingBB = nullptr;
707 // If there are exits to outer loops, loop rotation can severely limit
708 // fallthrough opportunites unless it selects such an exit. Keep a set of
709 // blocks where rotating to exit with that block will reach an outer loop.
710 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
711
712 DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
713 << "\n");
714 for (MachineBasicBlock *MBB : L.getBlocks()) {
715 BlockChain &Chain = *BlockToChain[MBB];
716 // Ensure that this block is at the end of a chain; otherwise it could be
717 // mid-way through an inner loop or a successor of an unanalyzable branch.
718 if (MBB != *std::prev(Chain.end()))
719 continue;
720
721 // Now walk the successors. We need to establish whether this has a viable
722 // exiting successor and whether it has a viable non-exiting successor.
723 // We store the old exiting state and restore it if a viable looping
724 // successor isn't found.
725 MachineBasicBlock *OldExitingBB = ExitingBB;
726 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
727 bool HasLoopingSucc = false;
728 for (MachineBasicBlock *Succ : MBB->successors()) {
729 if (Succ->isEHPad())
730 continue;
731 if (Succ == MBB)
732 continue;
733 BlockChain &SuccChain = *BlockToChain[Succ];
734 // Don't split chains, either this chain or the successor's chain.
735 if (&Chain == &SuccChain) {
736 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
737 << getBlockName(Succ) << " (chain conflict)\n");
738 continue;
739 }
740
741 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
742 if (LoopBlockSet.count(Succ)) {
743 DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> "
744 << getBlockName(Succ) << " (" << SuccProb << ")\n");
745 HasLoopingSucc = true;
746 continue;
747 }
748
749 unsigned SuccLoopDepth = 0;
750 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
751 SuccLoopDepth = ExitLoop->getLoopDepth();
752 if (ExitLoop->contains(&L))
753 BlocksExitingToOuterLoop.insert(MBB);
754 }
755
756 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
757 DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
758 << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
759 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
760 // Note that we bias this toward an existing layout successor to retain
761 // incoming order in the absence of better information. The exit must have
762 // a frequency higher than the current exit before we consider breaking
763 // the layout.
764 BranchProbability Bias(100 - ExitBlockBias, 100);
765 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
766 ExitEdgeFreq > BestExitEdgeFreq ||
767 (MBB->isLayoutSuccessor(Succ) &&
768 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
769 BestExitEdgeFreq = ExitEdgeFreq;
770 ExitingBB = MBB;
771 }
772 }
773
774 if (!HasLoopingSucc) {
775 // Restore the old exiting state, no viable looping successor was found.
776 ExitingBB = OldExitingBB;
777 BestExitEdgeFreq = OldBestExitEdgeFreq;
778 continue;
779 }
780 }
781 // Without a candidate exiting block or with only a single block in the
782 // loop, just use the loop header to layout the loop.
783 if (!ExitingBB || L.getNumBlocks() == 1)
784 return nullptr;
785
786 // Also, if we have exit blocks which lead to outer loops but didn't select
787 // one of them as the exiting block we are rotating toward, disable loop
788 // rotation altogether.
789 if (!BlocksExitingToOuterLoop.empty() &&
790 !BlocksExitingToOuterLoop.count(ExitingBB))
791 return nullptr;
792
793 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n");
794 return ExitingBB;
795 }
796
797 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
798 ///
799 /// Once we have built a chain, try to rotate it to line up the hot exit block
800 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
801 /// branches. For example, if the loop has fallthrough into its header and out
802 /// of its bottom already, don't rotate it.
rotateLoop(BlockChain & LoopChain,MachineBasicBlock * ExitingBB,const BlockFilterSet & LoopBlockSet)803 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
804 MachineBasicBlock *ExitingBB,
805 const BlockFilterSet &LoopBlockSet) {
806 if (!ExitingBB)
807 return;
808
809 MachineBasicBlock *Top = *LoopChain.begin();
810 bool ViableTopFallthrough = false;
811 for (MachineBasicBlock *Pred : Top->predecessors()) {
812 BlockChain *PredChain = BlockToChain[Pred];
813 if (!LoopBlockSet.count(Pred) &&
814 (!PredChain || Pred == *std::prev(PredChain->end()))) {
815 ViableTopFallthrough = true;
816 break;
817 }
818 }
819
820 // If the header has viable fallthrough, check whether the current loop
821 // bottom is a viable exiting block. If so, bail out as rotating will
822 // introduce an unnecessary branch.
823 if (ViableTopFallthrough) {
824 MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
825 for (MachineBasicBlock *Succ : Bottom->successors()) {
826 BlockChain *SuccChain = BlockToChain[Succ];
827 if (!LoopBlockSet.count(Succ) &&
828 (!SuccChain || Succ == *SuccChain->begin()))
829 return;
830 }
831 }
832
833 BlockChain::iterator ExitIt =
834 std::find(LoopChain.begin(), LoopChain.end(), ExitingBB);
835 if (ExitIt == LoopChain.end())
836 return;
837
838 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
839 }
840
841 /// \brief Attempt to rotate a loop based on profile data to reduce branch cost.
842 ///
843 /// With profile data, we can determine the cost in terms of missed fall through
844 /// opportunities when rotating a loop chain and select the best rotation.
845 /// Basically, there are three kinds of cost to consider for each rotation:
846 /// 1. The possibly missed fall through edge (if it exists) from BB out of
847 /// the loop to the loop header.
848 /// 2. The possibly missed fall through edges (if they exist) from the loop
849 /// exits to BB out of the loop.
850 /// 3. The missed fall through edge (if it exists) from the last BB to the
851 /// first BB in the loop chain.
852 /// Therefore, the cost for a given rotation is the sum of costs listed above.
853 /// We select the best rotation with the smallest cost.
rotateLoopWithProfile(BlockChain & LoopChain,MachineLoop & L,const BlockFilterSet & LoopBlockSet)854 void MachineBlockPlacement::rotateLoopWithProfile(
855 BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) {
856 auto HeaderBB = L.getHeader();
857 auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB);
858 auto RotationPos = LoopChain.end();
859
860 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
861
862 // A utility lambda that scales up a block frequency by dividing it by a
863 // branch probability which is the reciprocal of the scale.
864 auto ScaleBlockFrequency = [](BlockFrequency Freq,
865 unsigned Scale) -> BlockFrequency {
866 if (Scale == 0)
867 return 0;
868 // Use operator / between BlockFrequency and BranchProbability to implement
869 // saturating multiplication.
870 return Freq / BranchProbability(1, Scale);
871 };
872
873 // Compute the cost of the missed fall-through edge to the loop header if the
874 // chain head is not the loop header. As we only consider natural loops with
875 // single header, this computation can be done only once.
876 BlockFrequency HeaderFallThroughCost(0);
877 for (auto *Pred : HeaderBB->predecessors()) {
878 BlockChain *PredChain = BlockToChain[Pred];
879 if (!LoopBlockSet.count(Pred) &&
880 (!PredChain || Pred == *std::prev(PredChain->end()))) {
881 auto EdgeFreq =
882 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB);
883 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
884 // If the predecessor has only an unconditional jump to the header, we
885 // need to consider the cost of this jump.
886 if (Pred->succ_size() == 1)
887 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
888 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
889 }
890 }
891
892 // Here we collect all exit blocks in the loop, and for each exit we find out
893 // its hottest exit edge. For each loop rotation, we define the loop exit cost
894 // as the sum of frequencies of exit edges we collect here, excluding the exit
895 // edge from the tail of the loop chain.
896 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
897 for (auto BB : LoopChain) {
898 auto LargestExitEdgeProb = BranchProbability::getZero();
899 for (auto *Succ : BB->successors()) {
900 BlockChain *SuccChain = BlockToChain[Succ];
901 if (!LoopBlockSet.count(Succ) &&
902 (!SuccChain || Succ == *SuccChain->begin())) {
903 auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
904 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
905 }
906 }
907 if (LargestExitEdgeProb > BranchProbability::getZero()) {
908 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
909 ExitsWithFreq.emplace_back(BB, ExitFreq);
910 }
911 }
912
913 // In this loop we iterate every block in the loop chain and calculate the
914 // cost assuming the block is the head of the loop chain. When the loop ends,
915 // we should have found the best candidate as the loop chain's head.
916 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
917 EndIter = LoopChain.end();
918 Iter != EndIter; Iter++, TailIter++) {
919 // TailIter is used to track the tail of the loop chain if the block we are
920 // checking (pointed by Iter) is the head of the chain.
921 if (TailIter == LoopChain.end())
922 TailIter = LoopChain.begin();
923
924 auto TailBB = *TailIter;
925
926 // Calculate the cost by putting this BB to the top.
927 BlockFrequency Cost = 0;
928
929 // If the current BB is the loop header, we need to take into account the
930 // cost of the missed fall through edge from outside of the loop to the
931 // header.
932 if (Iter != HeaderIter)
933 Cost += HeaderFallThroughCost;
934
935 // Collect the loop exit cost by summing up frequencies of all exit edges
936 // except the one from the chain tail.
937 for (auto &ExitWithFreq : ExitsWithFreq)
938 if (TailBB != ExitWithFreq.first)
939 Cost += ExitWithFreq.second;
940
941 // The cost of breaking the once fall-through edge from the tail to the top
942 // of the loop chain. Here we need to consider three cases:
943 // 1. If the tail node has only one successor, then we will get an
944 // additional jmp instruction. So the cost here is (MisfetchCost +
945 // JumpInstCost) * tail node frequency.
946 // 2. If the tail node has two successors, then we may still get an
947 // additional jmp instruction if the layout successor after the loop
948 // chain is not its CFG successor. Note that the more frequently executed
949 // jmp instruction will be put ahead of the other one. Assume the
950 // frequency of those two branches are x and y, where x is the frequency
951 // of the edge to the chain head, then the cost will be
952 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
953 // 3. If the tail node has more than two successors (this rarely happens),
954 // we won't consider any additional cost.
955 if (TailBB->isSuccessor(*Iter)) {
956 auto TailBBFreq = MBFI->getBlockFreq(TailBB);
957 if (TailBB->succ_size() == 1)
958 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
959 MisfetchCost + JumpInstCost);
960 else if (TailBB->succ_size() == 2) {
961 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
962 auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
963 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
964 ? TailBBFreq * TailToHeadProb.getCompl()
965 : TailToHeadFreq;
966 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
967 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
968 }
969 }
970
971 DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockNum(*Iter)
972 << " to the top: " << Cost.getFrequency() << "\n");
973
974 if (Cost < SmallestRotationCost) {
975 SmallestRotationCost = Cost;
976 RotationPos = Iter;
977 }
978 }
979
980 if (RotationPos != LoopChain.end()) {
981 DEBUG(dbgs() << "Rotate loop by making " << getBlockNum(*RotationPos)
982 << " to the top\n");
983 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
984 }
985 }
986
987 /// \brief Collect blocks in the given loop that are to be placed.
988 ///
989 /// When profile data is available, exclude cold blocks from the returned set;
990 /// otherwise, collect all blocks in the loop.
991 MachineBlockPlacement::BlockFilterSet
collectLoopBlockSet(MachineFunction & F,MachineLoop & L)992 MachineBlockPlacement::collectLoopBlockSet(MachineFunction &F, MachineLoop &L) {
993 BlockFilterSet LoopBlockSet;
994
995 // Filter cold blocks off from LoopBlockSet when profile data is available.
996 // Collect the sum of frequencies of incoming edges to the loop header from
997 // outside. If we treat the loop as a super block, this is the frequency of
998 // the loop. Then for each block in the loop, we calculate the ratio between
999 // its frequency and the frequency of the loop block. When it is too small,
1000 // don't add it to the loop chain. If there are outer loops, then this block
1001 // will be merged into the first outer loop chain for which this block is not
1002 // cold anymore. This needs precise profile data and we only do this when
1003 // profile data is available.
1004 if (F.getFunction()->getEntryCount()) {
1005 BlockFrequency LoopFreq(0);
1006 for (auto LoopPred : L.getHeader()->predecessors())
1007 if (!L.contains(LoopPred))
1008 LoopFreq += MBFI->getBlockFreq(LoopPred) *
1009 MBPI->getEdgeProbability(LoopPred, L.getHeader());
1010
1011 for (MachineBasicBlock *LoopBB : L.getBlocks()) {
1012 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
1013 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
1014 continue;
1015 LoopBlockSet.insert(LoopBB);
1016 }
1017 } else
1018 LoopBlockSet.insert(L.block_begin(), L.block_end());
1019
1020 return LoopBlockSet;
1021 }
1022
1023 /// \brief Forms basic block chains from the natural loop structures.
1024 ///
1025 /// These chains are designed to preserve the existing *structure* of the code
1026 /// as much as possible. We can then stitch the chains together in a way which
1027 /// both preserves the topological structure and minimizes taken conditional
1028 /// branches.
buildLoopChains(MachineFunction & F,MachineLoop & L)1029 void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
1030 MachineLoop &L) {
1031 // First recurse through any nested loops, building chains for those inner
1032 // loops.
1033 for (MachineLoop *InnerLoop : L)
1034 buildLoopChains(F, *InnerLoop);
1035
1036 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
1037 BlockFilterSet LoopBlockSet = collectLoopBlockSet(F, L);
1038
1039 // Check if we have profile data for this function. If yes, we will rotate
1040 // this loop by modeling costs more precisely which requires the profile data
1041 // for better layout.
1042 bool RotateLoopWithProfile =
1043 PreciseRotationCost && F.getFunction()->getEntryCount();
1044
1045 // First check to see if there is an obviously preferable top block for the
1046 // loop. This will default to the header, but may end up as one of the
1047 // predecessors to the header if there is one which will result in strictly
1048 // fewer branches in the loop body.
1049 // When we use profile data to rotate the loop, this is unnecessary.
1050 MachineBasicBlock *LoopTop =
1051 RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet);
1052
1053 // If we selected just the header for the loop top, look for a potentially
1054 // profitable exit block in the event that rotating the loop can eliminate
1055 // branches by placing an exit edge at the bottom.
1056 MachineBasicBlock *ExitingBB = nullptr;
1057 if (!RotateLoopWithProfile && LoopTop == L.getHeader())
1058 ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
1059
1060 BlockChain &LoopChain = *BlockToChain[LoopTop];
1061
1062 // FIXME: This is a really lame way of walking the chains in the loop: we
1063 // walk the blocks, and use a set to prevent visiting a particular chain
1064 // twice.
1065 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1066 assert(LoopChain.LoopPredecessors == 0);
1067 UpdatedPreds.insert(&LoopChain);
1068
1069 for (MachineBasicBlock *LoopBB : LoopBlockSet) {
1070 BlockChain &Chain = *BlockToChain[LoopBB];
1071 if (!UpdatedPreds.insert(&Chain).second)
1072 continue;
1073
1074 assert(Chain.LoopPredecessors == 0);
1075 for (MachineBasicBlock *ChainBB : Chain) {
1076 assert(BlockToChain[ChainBB] == &Chain);
1077 for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1078 if (BlockToChain[Pred] == &Chain || !LoopBlockSet.count(Pred))
1079 continue;
1080 ++Chain.LoopPredecessors;
1081 }
1082 }
1083
1084 if (Chain.LoopPredecessors == 0)
1085 BlockWorkList.push_back(*Chain.begin());
1086 }
1087
1088 buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet);
1089
1090 if (RotateLoopWithProfile)
1091 rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
1092 else
1093 rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
1094
1095 DEBUG({
1096 // Crash at the end so we get all of the debugging output first.
1097 bool BadLoop = false;
1098 if (LoopChain.LoopPredecessors) {
1099 BadLoop = true;
1100 dbgs() << "Loop chain contains a block without its preds placed!\n"
1101 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
1102 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
1103 }
1104 for (MachineBasicBlock *ChainBB : LoopChain) {
1105 dbgs() << " ... " << getBlockName(ChainBB) << "\n";
1106 if (!LoopBlockSet.erase(ChainBB)) {
1107 // We don't mark the loop as bad here because there are real situations
1108 // where this can occur. For example, with an unanalyzable fallthrough
1109 // from a loop block to a non-loop block or vice versa.
1110 dbgs() << "Loop chain contains a block not contained by the loop!\n"
1111 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
1112 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1113 << " Bad block: " << getBlockName(ChainBB) << "\n";
1114 }
1115 }
1116
1117 if (!LoopBlockSet.empty()) {
1118 BadLoop = true;
1119 for (MachineBasicBlock *LoopBB : LoopBlockSet)
1120 dbgs() << "Loop contains blocks never placed into a chain!\n"
1121 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
1122 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
1123 << " Bad block: " << getBlockName(LoopBB) << "\n";
1124 }
1125 assert(!BadLoop && "Detected problems with the placement of this loop.");
1126 });
1127 }
1128
buildCFGChains(MachineFunction & F)1129 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
1130 // Ensure that every BB in the function has an associated chain to simplify
1131 // the assumptions of the remaining algorithm.
1132 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
1133 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
1134 MachineBasicBlock *BB = &*FI;
1135 BlockChain *Chain =
1136 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
1137 // Also, merge any blocks which we cannot reason about and must preserve
1138 // the exact fallthrough behavior for.
1139 for (;;) {
1140 Cond.clear();
1141 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1142 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
1143 break;
1144
1145 MachineFunction::iterator NextFI = std::next(FI);
1146 MachineBasicBlock *NextBB = &*NextFI;
1147 // Ensure that the layout successor is a viable block, as we know that
1148 // fallthrough is a possibility.
1149 assert(NextFI != FE && "Can't fallthrough past the last block.");
1150 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
1151 << getBlockName(BB) << " -> " << getBlockName(NextBB)
1152 << "\n");
1153 Chain->merge(NextBB, nullptr);
1154 FI = NextFI;
1155 BB = NextBB;
1156 }
1157 }
1158
1159 if (OutlineOptionalBranches) {
1160 // Find the nearest common dominator of all of F's terminators.
1161 MachineBasicBlock *Terminator = nullptr;
1162 for (MachineBasicBlock &MBB : F) {
1163 if (MBB.succ_size() == 0) {
1164 if (Terminator == nullptr)
1165 Terminator = &MBB;
1166 else
1167 Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
1168 }
1169 }
1170
1171 // MBBs dominating this common dominator are unavoidable.
1172 UnavoidableBlocks.clear();
1173 for (MachineBasicBlock &MBB : F) {
1174 if (MDT->dominates(&MBB, Terminator)) {
1175 UnavoidableBlocks.insert(&MBB);
1176 }
1177 }
1178 }
1179
1180 // Build any loop-based chains.
1181 for (MachineLoop *L : *MLI)
1182 buildLoopChains(F, *L);
1183
1184 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
1185
1186 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
1187 for (MachineBasicBlock &MBB : F) {
1188 BlockChain &Chain = *BlockToChain[&MBB];
1189 if (!UpdatedPreds.insert(&Chain).second)
1190 continue;
1191
1192 assert(Chain.LoopPredecessors == 0);
1193 for (MachineBasicBlock *ChainBB : Chain) {
1194 assert(BlockToChain[ChainBB] == &Chain);
1195 for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1196 if (BlockToChain[Pred] == &Chain)
1197 continue;
1198 ++Chain.LoopPredecessors;
1199 }
1200 }
1201
1202 if (Chain.LoopPredecessors == 0)
1203 BlockWorkList.push_back(*Chain.begin());
1204 }
1205
1206 BlockChain &FunctionChain = *BlockToChain[&F.front()];
1207 buildChain(&F.front(), FunctionChain, BlockWorkList);
1208
1209 #ifndef NDEBUG
1210 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
1211 #endif
1212 DEBUG({
1213 // Crash at the end so we get all of the debugging output first.
1214 bool BadFunc = false;
1215 FunctionBlockSetType FunctionBlockSet;
1216 for (MachineBasicBlock &MBB : F)
1217 FunctionBlockSet.insert(&MBB);
1218
1219 for (MachineBasicBlock *ChainBB : FunctionChain)
1220 if (!FunctionBlockSet.erase(ChainBB)) {
1221 BadFunc = true;
1222 dbgs() << "Function chain contains a block not in the function!\n"
1223 << " Bad block: " << getBlockName(ChainBB) << "\n";
1224 }
1225
1226 if (!FunctionBlockSet.empty()) {
1227 BadFunc = true;
1228 for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
1229 dbgs() << "Function contains blocks never placed into a chain!\n"
1230 << " Bad block: " << getBlockName(RemainingBB) << "\n";
1231 }
1232 assert(!BadFunc && "Detected problems with the block placement.");
1233 });
1234
1235 // Splice the blocks into place.
1236 MachineFunction::iterator InsertPos = F.begin();
1237 for (MachineBasicBlock *ChainBB : FunctionChain) {
1238 DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
1239 : " ... ")
1240 << getBlockName(ChainBB) << "\n");
1241 if (InsertPos != MachineFunction::iterator(ChainBB))
1242 F.splice(InsertPos, ChainBB);
1243 else
1244 ++InsertPos;
1245
1246 // Update the terminator of the previous block.
1247 if (ChainBB == *FunctionChain.begin())
1248 continue;
1249 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
1250
1251 // FIXME: It would be awesome of updateTerminator would just return rather
1252 // than assert when the branch cannot be analyzed in order to remove this
1253 // boiler plate.
1254 Cond.clear();
1255 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1256 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1257 // The "PrevBB" is not yet updated to reflect current code layout, so,
1258 // o. it may fall-through to a block without explict "goto" instruction
1259 // before layout, and no longer fall-through it after layout; or
1260 // o. just opposite.
1261 //
1262 // AnalyzeBranch() may return erroneous value for FBB when these two
1263 // situations take place. For the first scenario FBB is mistakenly set
1264 // NULL; for the 2nd scenario, the FBB, which is expected to be NULL,
1265 // is mistakenly pointing to "*BI".
1266 //
1267 bool needUpdateBr = true;
1268 if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
1269 PrevBB->updateTerminator();
1270 needUpdateBr = false;
1271 Cond.clear();
1272 TBB = FBB = nullptr;
1273 if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1274 // FIXME: This should never take place.
1275 TBB = FBB = nullptr;
1276 }
1277 }
1278
1279 // If PrevBB has a two-way branch, try to re-order the branches
1280 // such that we branch to the successor with higher probability first.
1281 if (TBB && !Cond.empty() && FBB &&
1282 MBPI->getEdgeProbability(PrevBB, FBB) >
1283 MBPI->getEdgeProbability(PrevBB, TBB) &&
1284 !TII->ReverseBranchCondition(Cond)) {
1285 DEBUG(dbgs() << "Reverse order of the two branches: "
1286 << getBlockName(PrevBB) << "\n");
1287 DEBUG(dbgs() << " Edge probability: "
1288 << MBPI->getEdgeProbability(PrevBB, FBB) << " vs "
1289 << MBPI->getEdgeProbability(PrevBB, TBB) << "\n");
1290 DebugLoc dl; // FIXME: this is nowhere
1291 TII->RemoveBranch(*PrevBB);
1292 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl);
1293 needUpdateBr = true;
1294 }
1295 if (needUpdateBr)
1296 PrevBB->updateTerminator();
1297 }
1298 }
1299
1300 // Fixup the last block.
1301 Cond.clear();
1302 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1303 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
1304 F.back().updateTerminator();
1305
1306 // Walk through the backedges of the function now that we have fully laid out
1307 // the basic blocks and align the destination of each backedge. We don't rely
1308 // exclusively on the loop info here so that we can align backedges in
1309 // unnatural CFGs and backedges that were introduced purely because of the
1310 // loop rotations done during this layout pass.
1311 // FIXME: Use Function::optForSize().
1312 if (F.getFunction()->hasFnAttribute(Attribute::OptimizeForSize))
1313 return;
1314 if (FunctionChain.begin() == FunctionChain.end())
1315 return; // Empty chain.
1316
1317 const BranchProbability ColdProb(1, 5); // 20%
1318 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F.front());
1319 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1320 for (MachineBasicBlock *ChainBB : FunctionChain) {
1321 if (ChainBB == *FunctionChain.begin())
1322 continue;
1323
1324 // Don't align non-looping basic blocks. These are unlikely to execute
1325 // enough times to matter in practice. Note that we'll still handle
1326 // unnatural CFGs inside of a natural outer loop (the common case) and
1327 // rotated loops.
1328 MachineLoop *L = MLI->getLoopFor(ChainBB);
1329 if (!L)
1330 continue;
1331
1332 unsigned Align = TLI->getPrefLoopAlignment(L);
1333 if (!Align)
1334 continue; // Don't care about loop alignment.
1335
1336 // If the block is cold relative to the function entry don't waste space
1337 // aligning it.
1338 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
1339 if (Freq < WeightedEntryFreq)
1340 continue;
1341
1342 // If the block is cold relative to its loop header, don't align it
1343 // regardless of what edges into the block exist.
1344 MachineBasicBlock *LoopHeader = L->getHeader();
1345 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1346 if (Freq < (LoopHeaderFreq * ColdProb))
1347 continue;
1348
1349 // Check for the existence of a non-layout predecessor which would benefit
1350 // from aligning this block.
1351 MachineBasicBlock *LayoutPred =
1352 &*std::prev(MachineFunction::iterator(ChainBB));
1353
1354 // Force alignment if all the predecessors are jumps. We already checked
1355 // that the block isn't cold above.
1356 if (!LayoutPred->isSuccessor(ChainBB)) {
1357 ChainBB->setAlignment(Align);
1358 continue;
1359 }
1360
1361 // Align this block if the layout predecessor's edge into this block is
1362 // cold relative to the block. When this is true, other predecessors make up
1363 // all of the hot entries into the block and thus alignment is likely to be
1364 // important.
1365 BranchProbability LayoutProb =
1366 MBPI->getEdgeProbability(LayoutPred, ChainBB);
1367 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1368 if (LayoutEdgeFreq <= (Freq * ColdProb))
1369 ChainBB->setAlignment(Align);
1370 }
1371 }
1372
runOnMachineFunction(MachineFunction & F)1373 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
1374 // Check for single-block functions and skip them.
1375 if (std::next(F.begin()) == F.end())
1376 return false;
1377
1378 if (skipOptnoneFunction(*F.getFunction()))
1379 return false;
1380
1381 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1382 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1383 MLI = &getAnalysis<MachineLoopInfo>();
1384 TII = F.getSubtarget().getInstrInfo();
1385 TLI = F.getSubtarget().getTargetLowering();
1386 MDT = &getAnalysis<MachineDominatorTree>();
1387 assert(BlockToChain.empty());
1388
1389 buildCFGChains(F);
1390
1391 BlockToChain.clear();
1392 ChainAllocator.DestroyAll();
1393
1394 if (AlignAllBlock)
1395 // Align all of the blocks in the function to a specific alignment.
1396 for (MachineBasicBlock &MBB : F)
1397 MBB.setAlignment(AlignAllBlock);
1398
1399 // We always return true as we have no way to track whether the final order
1400 // differs from the original order.
1401 return true;
1402 }
1403
1404 namespace {
1405 /// \brief A pass to compute block placement statistics.
1406 ///
1407 /// A separate pass to compute interesting statistics for evaluating block
1408 /// placement. This is separate from the actual placement pass so that they can
1409 /// be computed in the absence of any placement transformations or when using
1410 /// alternative placement strategies.
1411 class MachineBlockPlacementStats : public MachineFunctionPass {
1412 /// \brief A handle to the branch probability pass.
1413 const MachineBranchProbabilityInfo *MBPI;
1414
1415 /// \brief A handle to the function-wide block frequency pass.
1416 const MachineBlockFrequencyInfo *MBFI;
1417
1418 public:
1419 static char ID; // Pass identification, replacement for typeid
MachineBlockPlacementStats()1420 MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1421 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1422 }
1423
1424 bool runOnMachineFunction(MachineFunction &F) override;
1425
getAnalysisUsage(AnalysisUsage & AU) const1426 void getAnalysisUsage(AnalysisUsage &AU) const override {
1427 AU.addRequired<MachineBranchProbabilityInfo>();
1428 AU.addRequired<MachineBlockFrequencyInfo>();
1429 AU.setPreservesAll();
1430 MachineFunctionPass::getAnalysisUsage(AU);
1431 }
1432 };
1433 }
1434
1435 char MachineBlockPlacementStats::ID = 0;
1436 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1437 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1438 "Basic Block Placement Stats", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)1439 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1440 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1441 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1442 "Basic Block Placement Stats", false, false)
1443
1444 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1445 // Check for single-block functions and skip them.
1446 if (std::next(F.begin()) == F.end())
1447 return false;
1448
1449 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1450 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1451
1452 for (MachineBasicBlock &MBB : F) {
1453 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
1454 Statistic &NumBranches =
1455 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
1456 Statistic &BranchTakenFreq =
1457 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
1458 for (MachineBasicBlock *Succ : MBB.successors()) {
1459 // Skip if this successor is a fallthrough.
1460 if (MBB.isLayoutSuccessor(Succ))
1461 continue;
1462
1463 BlockFrequency EdgeFreq =
1464 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
1465 ++NumBranches;
1466 BranchTakenFreq += EdgeFreq.getFrequency();
1467 }
1468 }
1469
1470 return false;
1471 }
1472