1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/PriorityQueue.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/RegisterClassInfo.h"
24 #include "llvm/CodeGen/ScheduleDFS.h"
25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/GraphWriter.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include <queue>
33
34 using namespace llvm;
35
36 #define DEBUG_TYPE "misched"
37
38 namespace llvm {
39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
40 cl::desc("Force top-down list scheduling"));
41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
42 cl::desc("Force bottom-up list scheduling"));
43 cl::opt<bool>
44 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
45 cl::desc("Print critical path length to stdout"));
46 }
47
48 #ifndef NDEBUG
49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
50 cl::desc("Pop up a window to show MISched dags after they are processed"));
51
52 /// In some situations a few uninteresting nodes depend on nearly all other
53 /// nodes in the graph, provide a cutoff to hide them.
54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
55 cl::desc("Hide nodes with more predecessor/successor than cutoff"));
56
57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
58 cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
59
60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
61 cl::desc("Only schedule this function"));
62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
63 cl::desc("Only schedule this MBB#"));
64 #else
65 static bool ViewMISchedDAGs = false;
66 #endif // NDEBUG
67
68 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
69 cl::desc("Enable register pressure scheduling."), cl::init(true));
70
71 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
72 cl::desc("Enable cyclic critical path analysis."), cl::init(true));
73
74 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
75 cl::desc("Enable load clustering."), cl::init(true));
76
77 // Experimental heuristics
78 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
79 cl::desc("Enable scheduling for macro fusion."), cl::init(true));
80
81 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
82 cl::desc("Verify machine instrs before and after machine scheduling"));
83
84 // DAG subtrees must have at least this many nodes.
85 static const unsigned MinSubtreeSize = 8;
86
87 // Pin the vtables to this file.
anchor()88 void MachineSchedStrategy::anchor() {}
anchor()89 void ScheduleDAGMutation::anchor() {}
90
91 //===----------------------------------------------------------------------===//
92 // Machine Instruction Scheduling Pass and Registry
93 //===----------------------------------------------------------------------===//
94
MachineSchedContext()95 MachineSchedContext::MachineSchedContext():
96 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
97 RegClassInfo = new RegisterClassInfo();
98 }
99
~MachineSchedContext()100 MachineSchedContext::~MachineSchedContext() {
101 delete RegClassInfo;
102 }
103
104 namespace {
105 /// Base class for a machine scheduler class that can run at any point.
106 class MachineSchedulerBase : public MachineSchedContext,
107 public MachineFunctionPass {
108 public:
MachineSchedulerBase(char & ID)109 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
110
111 void print(raw_ostream &O, const Module* = nullptr) const override;
112
113 protected:
114 void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags);
115 };
116
117 /// MachineScheduler runs after coalescing and before register allocation.
118 class MachineScheduler : public MachineSchedulerBase {
119 public:
120 MachineScheduler();
121
122 void getAnalysisUsage(AnalysisUsage &AU) const override;
123
124 bool runOnMachineFunction(MachineFunction&) override;
125
126 static char ID; // Class identification, replacement for typeinfo
127
128 protected:
129 ScheduleDAGInstrs *createMachineScheduler();
130 };
131
132 /// PostMachineScheduler runs after shortly before code emission.
133 class PostMachineScheduler : public MachineSchedulerBase {
134 public:
135 PostMachineScheduler();
136
137 void getAnalysisUsage(AnalysisUsage &AU) const override;
138
139 bool runOnMachineFunction(MachineFunction&) override;
140
141 static char ID; // Class identification, replacement for typeinfo
142
143 protected:
144 ScheduleDAGInstrs *createPostMachineScheduler();
145 };
146 } // namespace
147
148 char MachineScheduler::ID = 0;
149
150 char &llvm::MachineSchedulerID = MachineScheduler::ID;
151
152 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler",
153 "Machine Instruction Scheduler", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)154 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
155 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
156 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
157 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler",
158 "Machine Instruction Scheduler", false, false)
159
160 MachineScheduler::MachineScheduler()
161 : MachineSchedulerBase(ID) {
162 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
163 }
164
getAnalysisUsage(AnalysisUsage & AU) const165 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
166 AU.setPreservesCFG();
167 AU.addRequiredID(MachineDominatorsID);
168 AU.addRequired<MachineLoopInfo>();
169 AU.addRequired<AAResultsWrapperPass>();
170 AU.addRequired<TargetPassConfig>();
171 AU.addRequired<SlotIndexes>();
172 AU.addPreserved<SlotIndexes>();
173 AU.addRequired<LiveIntervals>();
174 AU.addPreserved<LiveIntervals>();
175 MachineFunctionPass::getAnalysisUsage(AU);
176 }
177
178 char PostMachineScheduler::ID = 0;
179
180 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
181
182 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
183 "PostRA Machine Instruction Scheduler", false, false)
184
PostMachineScheduler()185 PostMachineScheduler::PostMachineScheduler()
186 : MachineSchedulerBase(ID) {
187 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
188 }
189
getAnalysisUsage(AnalysisUsage & AU) const190 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
191 AU.setPreservesCFG();
192 AU.addRequiredID(MachineDominatorsID);
193 AU.addRequired<MachineLoopInfo>();
194 AU.addRequired<TargetPassConfig>();
195 MachineFunctionPass::getAnalysisUsage(AU);
196 }
197
198 MachinePassRegistry MachineSchedRegistry::Registry;
199
200 /// A dummy default scheduler factory indicates whether the scheduler
201 /// is overridden on the command line.
useDefaultMachineSched(MachineSchedContext * C)202 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
203 return nullptr;
204 }
205
206 /// MachineSchedOpt allows command line selection of the scheduler.
207 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
208 RegisterPassParser<MachineSchedRegistry> >
209 MachineSchedOpt("misched",
210 cl::init(&useDefaultMachineSched), cl::Hidden,
211 cl::desc("Machine instruction scheduler to use"));
212
213 static MachineSchedRegistry
214 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
215 useDefaultMachineSched);
216
217 static cl::opt<bool> EnableMachineSched(
218 "enable-misched",
219 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
220 cl::Hidden);
221
222 /// Forward declare the standard machine scheduler. This will be used as the
223 /// default scheduler if the target does not set a default.
224 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
225 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
226
227 /// Decrement this iterator until reaching the top or a non-debug instr.
228 static MachineBasicBlock::const_iterator
priorNonDebug(MachineBasicBlock::const_iterator I,MachineBasicBlock::const_iterator Beg)229 priorNonDebug(MachineBasicBlock::const_iterator I,
230 MachineBasicBlock::const_iterator Beg) {
231 assert(I != Beg && "reached the top of the region, cannot decrement");
232 while (--I != Beg) {
233 if (!I->isDebugValue())
234 break;
235 }
236 return I;
237 }
238
239 /// Non-const version.
240 static MachineBasicBlock::iterator
priorNonDebug(MachineBasicBlock::iterator I,MachineBasicBlock::const_iterator Beg)241 priorNonDebug(MachineBasicBlock::iterator I,
242 MachineBasicBlock::const_iterator Beg) {
243 return const_cast<MachineInstr*>(
244 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
245 }
246
247 /// If this iterator is a debug value, increment until reaching the End or a
248 /// non-debug instruction.
249 static MachineBasicBlock::const_iterator
nextIfDebug(MachineBasicBlock::const_iterator I,MachineBasicBlock::const_iterator End)250 nextIfDebug(MachineBasicBlock::const_iterator I,
251 MachineBasicBlock::const_iterator End) {
252 for(; I != End; ++I) {
253 if (!I->isDebugValue())
254 break;
255 }
256 return I;
257 }
258
259 /// Non-const version.
260 static MachineBasicBlock::iterator
nextIfDebug(MachineBasicBlock::iterator I,MachineBasicBlock::const_iterator End)261 nextIfDebug(MachineBasicBlock::iterator I,
262 MachineBasicBlock::const_iterator End) {
263 // Cast the return value to nonconst MachineInstr, then cast to an
264 // instr_iterator, which does not check for null, finally return a
265 // bundle_iterator.
266 return MachineBasicBlock::instr_iterator(
267 const_cast<MachineInstr*>(
268 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
269 }
270
271 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
createMachineScheduler()272 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
273 // Select the scheduler, or set the default.
274 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
275 if (Ctor != useDefaultMachineSched)
276 return Ctor(this);
277
278 // Get the default scheduler set by the target for this function.
279 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
280 if (Scheduler)
281 return Scheduler;
282
283 // Default to GenericScheduler.
284 return createGenericSchedLive(this);
285 }
286
287 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
288 /// the caller. We don't have a command line option to override the postRA
289 /// scheduler. The Target must configure it.
createPostMachineScheduler()290 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
291 // Get the postRA scheduler set by the target for this function.
292 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
293 if (Scheduler)
294 return Scheduler;
295
296 // Default to GenericScheduler.
297 return createGenericSchedPostRA(this);
298 }
299
300 /// Top-level MachineScheduler pass driver.
301 ///
302 /// Visit blocks in function order. Divide each block into scheduling regions
303 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
304 /// consistent with the DAG builder, which traverses the interior of the
305 /// scheduling regions bottom-up.
306 ///
307 /// This design avoids exposing scheduling boundaries to the DAG builder,
308 /// simplifying the DAG builder's support for "special" target instructions.
309 /// At the same time the design allows target schedulers to operate across
310 /// scheduling boundaries, for example to bundle the boudary instructions
311 /// without reordering them. This creates complexity, because the target
312 /// scheduler must update the RegionBegin and RegionEnd positions cached by
313 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
314 /// design would be to split blocks at scheduling boundaries, but LLVM has a
315 /// general bias against block splitting purely for implementation simplicity.
runOnMachineFunction(MachineFunction & mf)316 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
317 if (EnableMachineSched.getNumOccurrences()) {
318 if (!EnableMachineSched)
319 return false;
320 } else if (!mf.getSubtarget().enableMachineScheduler())
321 return false;
322
323 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
324
325 // Initialize the context of the pass.
326 MF = &mf;
327 MLI = &getAnalysis<MachineLoopInfo>();
328 MDT = &getAnalysis<MachineDominatorTree>();
329 PassConfig = &getAnalysis<TargetPassConfig>();
330 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
331
332 LIS = &getAnalysis<LiveIntervals>();
333
334 if (VerifyScheduling) {
335 DEBUG(LIS->dump());
336 MF->verify(this, "Before machine scheduling.");
337 }
338 RegClassInfo->runOnMachineFunction(*MF);
339
340 // Instantiate the selected scheduler for this target, function, and
341 // optimization level.
342 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
343 scheduleRegions(*Scheduler, false);
344
345 DEBUG(LIS->dump());
346 if (VerifyScheduling)
347 MF->verify(this, "After machine scheduling.");
348 return true;
349 }
350
runOnMachineFunction(MachineFunction & mf)351 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
352 if (skipOptnoneFunction(*mf.getFunction()))
353 return false;
354
355 if (!mf.getSubtarget().enablePostRAScheduler()) {
356 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
357 return false;
358 }
359 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
360
361 // Initialize the context of the pass.
362 MF = &mf;
363 PassConfig = &getAnalysis<TargetPassConfig>();
364
365 if (VerifyScheduling)
366 MF->verify(this, "Before post machine scheduling.");
367
368 // Instantiate the selected scheduler for this target, function, and
369 // optimization level.
370 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
371 scheduleRegions(*Scheduler, true);
372
373 if (VerifyScheduling)
374 MF->verify(this, "After post machine scheduling.");
375 return true;
376 }
377
378 /// Return true of the given instruction should not be included in a scheduling
379 /// region.
380 ///
381 /// MachineScheduler does not currently support scheduling across calls. To
382 /// handle calls, the DAG builder needs to be modified to create register
383 /// anti/output dependencies on the registers clobbered by the call's regmask
384 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
385 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
386 /// the boundary, but there would be no benefit to postRA scheduling across
387 /// calls this late anyway.
isSchedBoundary(MachineBasicBlock::iterator MI,MachineBasicBlock * MBB,MachineFunction * MF,const TargetInstrInfo * TII)388 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
389 MachineBasicBlock *MBB,
390 MachineFunction *MF,
391 const TargetInstrInfo *TII) {
392 return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF);
393 }
394
395 /// Main driver for both MachineScheduler and PostMachineScheduler.
scheduleRegions(ScheduleDAGInstrs & Scheduler,bool FixKillFlags)396 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler,
397 bool FixKillFlags) {
398 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
399
400 // Visit all machine basic blocks.
401 //
402 // TODO: Visit blocks in global postorder or postorder within the bottom-up
403 // loop tree. Then we can optionally compute global RegPressure.
404 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
405 MBB != MBBEnd; ++MBB) {
406
407 Scheduler.startBlock(&*MBB);
408
409 #ifndef NDEBUG
410 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
411 continue;
412 if (SchedOnlyBlock.getNumOccurrences()
413 && (int)SchedOnlyBlock != MBB->getNumber())
414 continue;
415 #endif
416
417 // Break the block into scheduling regions [I, RegionEnd), and schedule each
418 // region as soon as it is discovered. RegionEnd points the scheduling
419 // boundary at the bottom of the region. The DAG does not include RegionEnd,
420 // but the region does (i.e. the next RegionEnd is above the previous
421 // RegionBegin). If the current block has no terminator then RegionEnd ==
422 // MBB->end() for the bottom region.
423 //
424 // The Scheduler may insert instructions during either schedule() or
425 // exitRegion(), even for empty regions. So the local iterators 'I' and
426 // 'RegionEnd' are invalid across these calls.
427 //
428 // MBB::size() uses instr_iterator to count. Here we need a bundle to count
429 // as a single instruction.
430 unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end());
431 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
432 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
433
434 // Avoid decrementing RegionEnd for blocks with no terminator.
435 if (RegionEnd != MBB->end() ||
436 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) {
437 --RegionEnd;
438 // Count the boundary instruction.
439 --RemainingInstrs;
440 }
441
442 // The next region starts above the previous region. Look backward in the
443 // instruction stream until we find the nearest boundary.
444 unsigned NumRegionInstrs = 0;
445 MachineBasicBlock::iterator I = RegionEnd;
446 for(;I != MBB->begin(); --I, --RemainingInstrs) {
447 if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII))
448 break;
449 if (!I->isDebugValue())
450 ++NumRegionInstrs;
451 }
452 // Notify the scheduler of the region, even if we may skip scheduling
453 // it. Perhaps it still needs to be bundled.
454 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
455
456 // Skip empty scheduling regions (0 or 1 schedulable instructions).
457 if (I == RegionEnd || I == std::prev(RegionEnd)) {
458 // Close the current region. Bundle the terminator if needed.
459 // This invalidates 'RegionEnd' and 'I'.
460 Scheduler.exitRegion();
461 continue;
462 }
463 DEBUG(dbgs() << "********** MI Scheduling **********\n");
464 DEBUG(dbgs() << MF->getName()
465 << ":BB#" << MBB->getNumber() << " " << MBB->getName()
466 << "\n From: " << *I << " To: ";
467 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
468 else dbgs() << "End";
469 dbgs() << " RegionInstrs: " << NumRegionInstrs
470 << " Remaining: " << RemainingInstrs << "\n");
471 if (DumpCriticalPathLength) {
472 errs() << MF->getName();
473 errs() << ":BB# " << MBB->getNumber();
474 errs() << " " << MBB->getName() << " \n";
475 }
476
477 // Schedule a region: possibly reorder instructions.
478 // This invalidates 'RegionEnd' and 'I'.
479 Scheduler.schedule();
480
481 // Close the current region.
482 Scheduler.exitRegion();
483
484 // Scheduling has invalidated the current iterator 'I'. Ask the
485 // scheduler for the top of it's scheduled region.
486 RegionEnd = Scheduler.begin();
487 }
488 assert(RemainingInstrs == 0 && "Instruction count mismatch!");
489 Scheduler.finishBlock();
490 // FIXME: Ideally, no further passes should rely on kill flags. However,
491 // thumb2 size reduction is currently an exception, so the PostMIScheduler
492 // needs to do this.
493 if (FixKillFlags)
494 Scheduler.fixupKills(&*MBB);
495 }
496 Scheduler.finalizeSchedule();
497 }
498
print(raw_ostream & O,const Module * m) const499 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
500 // unimplemented
501 }
502
503 LLVM_DUMP_METHOD
dump()504 void ReadyQueue::dump() {
505 dbgs() << "Queue " << Name << ": ";
506 for (unsigned i = 0, e = Queue.size(); i < e; ++i)
507 dbgs() << Queue[i]->NodeNum << " ";
508 dbgs() << "\n";
509 }
510
511 //===----------------------------------------------------------------------===//
512 // ScheduleDAGMI - Basic machine instruction scheduling. This is
513 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
514 // virtual registers.
515 // ===----------------------------------------------------------------------===/
516
517 // Provide a vtable anchor.
~ScheduleDAGMI()518 ScheduleDAGMI::~ScheduleDAGMI() {
519 }
520
canAddEdge(SUnit * SuccSU,SUnit * PredSU)521 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
522 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
523 }
524
addEdge(SUnit * SuccSU,const SDep & PredDep)525 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
526 if (SuccSU != &ExitSU) {
527 // Do not use WillCreateCycle, it assumes SD scheduling.
528 // If Pred is reachable from Succ, then the edge creates a cycle.
529 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
530 return false;
531 Topo.AddPred(SuccSU, PredDep.getSUnit());
532 }
533 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
534 // Return true regardless of whether a new edge needed to be inserted.
535 return true;
536 }
537
538 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
539 /// NumPredsLeft reaches zero, release the successor node.
540 ///
541 /// FIXME: Adjust SuccSU height based on MinLatency.
releaseSucc(SUnit * SU,SDep * SuccEdge)542 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
543 SUnit *SuccSU = SuccEdge->getSUnit();
544
545 if (SuccEdge->isWeak()) {
546 --SuccSU->WeakPredsLeft;
547 if (SuccEdge->isCluster())
548 NextClusterSucc = SuccSU;
549 return;
550 }
551 #ifndef NDEBUG
552 if (SuccSU->NumPredsLeft == 0) {
553 dbgs() << "*** Scheduling failed! ***\n";
554 SuccSU->dump(this);
555 dbgs() << " has been released too many times!\n";
556 llvm_unreachable(nullptr);
557 }
558 #endif
559 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
560 // CurrCycle may have advanced since then.
561 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
562 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
563
564 --SuccSU->NumPredsLeft;
565 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
566 SchedImpl->releaseTopNode(SuccSU);
567 }
568
569 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
releaseSuccessors(SUnit * SU)570 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
571 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
572 I != E; ++I) {
573 releaseSucc(SU, &*I);
574 }
575 }
576
577 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
578 /// NumSuccsLeft reaches zero, release the predecessor node.
579 ///
580 /// FIXME: Adjust PredSU height based on MinLatency.
releasePred(SUnit * SU,SDep * PredEdge)581 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
582 SUnit *PredSU = PredEdge->getSUnit();
583
584 if (PredEdge->isWeak()) {
585 --PredSU->WeakSuccsLeft;
586 if (PredEdge->isCluster())
587 NextClusterPred = PredSU;
588 return;
589 }
590 #ifndef NDEBUG
591 if (PredSU->NumSuccsLeft == 0) {
592 dbgs() << "*** Scheduling failed! ***\n";
593 PredSU->dump(this);
594 dbgs() << " has been released too many times!\n";
595 llvm_unreachable(nullptr);
596 }
597 #endif
598 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
599 // CurrCycle may have advanced since then.
600 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
601 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
602
603 --PredSU->NumSuccsLeft;
604 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
605 SchedImpl->releaseBottomNode(PredSU);
606 }
607
608 /// releasePredecessors - Call releasePred on each of SU's predecessors.
releasePredecessors(SUnit * SU)609 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
610 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
611 I != E; ++I) {
612 releasePred(SU, &*I);
613 }
614 }
615
616 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
617 /// crossing a scheduling boundary. [begin, end) includes all instructions in
618 /// the region, including the boundary itself and single-instruction regions
619 /// that don't get scheduled.
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned regioninstrs)620 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
621 MachineBasicBlock::iterator begin,
622 MachineBasicBlock::iterator end,
623 unsigned regioninstrs)
624 {
625 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
626
627 SchedImpl->initPolicy(begin, end, regioninstrs);
628 }
629
630 /// This is normally called from the main scheduler loop but may also be invoked
631 /// by the scheduling strategy to perform additional code motion.
moveInstruction(MachineInstr * MI,MachineBasicBlock::iterator InsertPos)632 void ScheduleDAGMI::moveInstruction(
633 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
634 // Advance RegionBegin if the first instruction moves down.
635 if (&*RegionBegin == MI)
636 ++RegionBegin;
637
638 // Update the instruction stream.
639 BB->splice(InsertPos, BB, MI);
640
641 // Update LiveIntervals
642 if (LIS)
643 LIS->handleMove(MI, /*UpdateFlags=*/true);
644
645 // Recede RegionBegin if an instruction moves above the first.
646 if (RegionBegin == InsertPos)
647 RegionBegin = MI;
648 }
649
checkSchedLimit()650 bool ScheduleDAGMI::checkSchedLimit() {
651 #ifndef NDEBUG
652 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
653 CurrentTop = CurrentBottom;
654 return false;
655 }
656 ++NumInstrsScheduled;
657 #endif
658 return true;
659 }
660
661 /// Per-region scheduling driver, called back from
662 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
663 /// does not consider liveness or register pressure. It is useful for PostRA
664 /// scheduling and potentially other custom schedulers.
schedule()665 void ScheduleDAGMI::schedule() {
666 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
667 DEBUG(SchedImpl->dumpPolicy());
668
669 // Build the DAG.
670 buildSchedGraph(AA);
671
672 Topo.InitDAGTopologicalSorting();
673
674 postprocessDAG();
675
676 SmallVector<SUnit*, 8> TopRoots, BotRoots;
677 findRootsAndBiasEdges(TopRoots, BotRoots);
678
679 // Initialize the strategy before modifying the DAG.
680 // This may initialize a DFSResult to be used for queue priority.
681 SchedImpl->initialize(this);
682
683 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
684 SUnits[su].dumpAll(this));
685 if (ViewMISchedDAGs) viewGraph();
686
687 // Initialize ready queues now that the DAG and priority data are finalized.
688 initQueues(TopRoots, BotRoots);
689
690 bool IsTopNode = false;
691 while (true) {
692 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
693 SUnit *SU = SchedImpl->pickNode(IsTopNode);
694 if (!SU) break;
695
696 assert(!SU->isScheduled && "Node already scheduled");
697 if (!checkSchedLimit())
698 break;
699
700 MachineInstr *MI = SU->getInstr();
701 if (IsTopNode) {
702 assert(SU->isTopReady() && "node still has unscheduled dependencies");
703 if (&*CurrentTop == MI)
704 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
705 else
706 moveInstruction(MI, CurrentTop);
707 }
708 else {
709 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
710 MachineBasicBlock::iterator priorII =
711 priorNonDebug(CurrentBottom, CurrentTop);
712 if (&*priorII == MI)
713 CurrentBottom = priorII;
714 else {
715 if (&*CurrentTop == MI)
716 CurrentTop = nextIfDebug(++CurrentTop, priorII);
717 moveInstruction(MI, CurrentBottom);
718 CurrentBottom = MI;
719 }
720 }
721 // Notify the scheduling strategy before updating the DAG.
722 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
723 // runs, it can then use the accurate ReadyCycle time to determine whether
724 // newly released nodes can move to the readyQ.
725 SchedImpl->schedNode(SU, IsTopNode);
726
727 updateQueues(SU, IsTopNode);
728 }
729 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
730
731 placeDebugValues();
732
733 DEBUG({
734 unsigned BBNum = begin()->getParent()->getNumber();
735 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
736 dumpSchedule();
737 dbgs() << '\n';
738 });
739 }
740
741 /// Apply each ScheduleDAGMutation step in order.
postprocessDAG()742 void ScheduleDAGMI::postprocessDAG() {
743 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
744 Mutations[i]->apply(this);
745 }
746 }
747
748 void ScheduleDAGMI::
findRootsAndBiasEdges(SmallVectorImpl<SUnit * > & TopRoots,SmallVectorImpl<SUnit * > & BotRoots)749 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
750 SmallVectorImpl<SUnit*> &BotRoots) {
751 for (std::vector<SUnit>::iterator
752 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
753 SUnit *SU = &(*I);
754 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
755
756 // Order predecessors so DFSResult follows the critical path.
757 SU->biasCriticalPath();
758
759 // A SUnit is ready to top schedule if it has no predecessors.
760 if (!I->NumPredsLeft)
761 TopRoots.push_back(SU);
762 // A SUnit is ready to bottom schedule if it has no successors.
763 if (!I->NumSuccsLeft)
764 BotRoots.push_back(SU);
765 }
766 ExitSU.biasCriticalPath();
767 }
768
769 /// Identify DAG roots and setup scheduler queues.
initQueues(ArrayRef<SUnit * > TopRoots,ArrayRef<SUnit * > BotRoots)770 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
771 ArrayRef<SUnit*> BotRoots) {
772 NextClusterSucc = nullptr;
773 NextClusterPred = nullptr;
774
775 // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
776 //
777 // Nodes with unreleased weak edges can still be roots.
778 // Release top roots in forward order.
779 for (SmallVectorImpl<SUnit*>::const_iterator
780 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
781 SchedImpl->releaseTopNode(*I);
782 }
783 // Release bottom roots in reverse order so the higher priority nodes appear
784 // first. This is more natural and slightly more efficient.
785 for (SmallVectorImpl<SUnit*>::const_reverse_iterator
786 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
787 SchedImpl->releaseBottomNode(*I);
788 }
789
790 releaseSuccessors(&EntrySU);
791 releasePredecessors(&ExitSU);
792
793 SchedImpl->registerRoots();
794
795 // Advance past initial DebugValues.
796 CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
797 CurrentBottom = RegionEnd;
798 }
799
800 /// Update scheduler queues after scheduling an instruction.
updateQueues(SUnit * SU,bool IsTopNode)801 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
802 // Release dependent instructions for scheduling.
803 if (IsTopNode)
804 releaseSuccessors(SU);
805 else
806 releasePredecessors(SU);
807
808 SU->isScheduled = true;
809 }
810
811 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
placeDebugValues()812 void ScheduleDAGMI::placeDebugValues() {
813 // If first instruction was a DBG_VALUE then put it back.
814 if (FirstDbgValue) {
815 BB->splice(RegionBegin, BB, FirstDbgValue);
816 RegionBegin = FirstDbgValue;
817 }
818
819 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
820 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
821 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
822 MachineInstr *DbgValue = P.first;
823 MachineBasicBlock::iterator OrigPrevMI = P.second;
824 if (&*RegionBegin == DbgValue)
825 ++RegionBegin;
826 BB->splice(++OrigPrevMI, BB, DbgValue);
827 if (OrigPrevMI == std::prev(RegionEnd))
828 RegionEnd = DbgValue;
829 }
830 DbgValues.clear();
831 FirstDbgValue = nullptr;
832 }
833
834 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpSchedule() const835 void ScheduleDAGMI::dumpSchedule() const {
836 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
837 if (SUnit *SU = getSUnit(&(*MI)))
838 SU->dump(this);
839 else
840 dbgs() << "Missing SUnit\n";
841 }
842 }
843 #endif
844
845 //===----------------------------------------------------------------------===//
846 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
847 // preservation.
848 //===----------------------------------------------------------------------===//
849
~ScheduleDAGMILive()850 ScheduleDAGMILive::~ScheduleDAGMILive() {
851 delete DFSResult;
852 }
853
854 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
855 /// crossing a scheduling boundary. [begin, end) includes all instructions in
856 /// the region, including the boundary itself and single-instruction regions
857 /// that don't get scheduled.
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned regioninstrs)858 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
859 MachineBasicBlock::iterator begin,
860 MachineBasicBlock::iterator end,
861 unsigned regioninstrs)
862 {
863 // ScheduleDAGMI initializes SchedImpl's per-region policy.
864 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
865
866 // For convenience remember the end of the liveness region.
867 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
868
869 SUPressureDiffs.clear();
870
871 ShouldTrackPressure = SchedImpl->shouldTrackPressure();
872 }
873
874 // Setup the register pressure trackers for the top scheduled top and bottom
875 // scheduled regions.
initRegPressure()876 void ScheduleDAGMILive::initRegPressure() {
877 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
878 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
879
880 // Close the RPTracker to finalize live ins.
881 RPTracker.closeRegion();
882
883 DEBUG(RPTracker.dump());
884
885 // Initialize the live ins and live outs.
886 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
887 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
888
889 // Close one end of the tracker so we can call
890 // getMaxUpward/DownwardPressureDelta before advancing across any
891 // instructions. This converts currently live regs into live ins/outs.
892 TopRPTracker.closeTop();
893 BotRPTracker.closeBottom();
894
895 BotRPTracker.initLiveThru(RPTracker);
896 if (!BotRPTracker.getLiveThru().empty()) {
897 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
898 DEBUG(dbgs() << "Live Thru: ";
899 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
900 };
901
902 // For each live out vreg reduce the pressure change associated with other
903 // uses of the same vreg below the live-out reaching def.
904 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
905
906 // Account for liveness generated by the region boundary.
907 if (LiveRegionEnd != RegionEnd) {
908 SmallVector<unsigned, 8> LiveUses;
909 BotRPTracker.recede(&LiveUses);
910 updatePressureDiffs(LiveUses);
911 }
912
913 DEBUG(
914 dbgs() << "Top Pressure:\n";
915 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
916 dbgs() << "Bottom Pressure:\n";
917 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
918 );
919
920 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
921
922 // Cache the list of excess pressure sets in this region. This will also track
923 // the max pressure in the scheduled code for these sets.
924 RegionCriticalPSets.clear();
925 const std::vector<unsigned> &RegionPressure =
926 RPTracker.getPressure().MaxSetPressure;
927 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
928 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
929 if (RegionPressure[i] > Limit) {
930 DEBUG(dbgs() << TRI->getRegPressureSetName(i)
931 << " Limit " << Limit
932 << " Actual " << RegionPressure[i] << "\n");
933 RegionCriticalPSets.push_back(PressureChange(i));
934 }
935 }
936 DEBUG(dbgs() << "Excess PSets: ";
937 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
938 dbgs() << TRI->getRegPressureSetName(
939 RegionCriticalPSets[i].getPSet()) << " ";
940 dbgs() << "\n");
941 }
942
943 void ScheduleDAGMILive::
updateScheduledPressure(const SUnit * SU,const std::vector<unsigned> & NewMaxPressure)944 updateScheduledPressure(const SUnit *SU,
945 const std::vector<unsigned> &NewMaxPressure) {
946 const PressureDiff &PDiff = getPressureDiff(SU);
947 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
948 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
949 I != E; ++I) {
950 if (!I->isValid())
951 break;
952 unsigned ID = I->getPSet();
953 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
954 ++CritIdx;
955 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
956 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
957 && NewMaxPressure[ID] <= INT16_MAX)
958 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
959 }
960 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
961 if (NewMaxPressure[ID] >= Limit - 2) {
962 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": "
963 << NewMaxPressure[ID]
964 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit
965 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
966 }
967 }
968 }
969
970 /// Update the PressureDiff array for liveness after scheduling this
971 /// instruction.
updatePressureDiffs(ArrayRef<unsigned> LiveUses)972 void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) {
973 for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) {
974 /// FIXME: Currently assuming single-use physregs.
975 unsigned Reg = LiveUses[LUIdx];
976 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
977 if (!TRI->isVirtualRegister(Reg))
978 continue;
979
980 // This may be called before CurrentBottom has been initialized. However,
981 // BotRPTracker must have a valid position. We want the value live into the
982 // instruction or live out of the block, so ask for the previous
983 // instruction's live-out.
984 const LiveInterval &LI = LIS->getInterval(Reg);
985 VNInfo *VNI;
986 MachineBasicBlock::const_iterator I =
987 nextIfDebug(BotRPTracker.getPos(), BB->end());
988 if (I == BB->end())
989 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
990 else {
991 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I));
992 VNI = LRQ.valueIn();
993 }
994 // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
995 assert(VNI && "No live value at use.");
996 for (const VReg2SUnit &V2SU
997 : make_range(VRegUses.find(Reg), VRegUses.end())) {
998 SUnit *SU = V2SU.SU;
999 // If this use comes before the reaching def, it cannot be a last use, so
1000 // descrease its pressure change.
1001 if (!SU->isScheduled && SU != &ExitSU) {
1002 LiveQueryResult LRQ
1003 = LI.Query(LIS->getInstructionIndex(SU->getInstr()));
1004 if (LRQ.valueIn() == VNI) {
1005 PressureDiff &PDiff = getPressureDiff(SU);
1006 PDiff.addPressureChange(Reg, true, &MRI);
1007 DEBUG(
1008 dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") "
1009 << *SU->getInstr();
1010 dbgs() << " to ";
1011 PDiff.dump(*TRI);
1012 );
1013 }
1014 }
1015 }
1016 }
1017 }
1018
1019 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1020 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1021 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1022 ///
1023 /// This is a skeletal driver, with all the functionality pushed into helpers,
1024 /// so that it can be easily extended by experimental schedulers. Generally,
1025 /// implementing MachineSchedStrategy should be sufficient to implement a new
1026 /// scheduling algorithm. However, if a scheduler further subclasses
1027 /// ScheduleDAGMILive then it will want to override this virtual method in order
1028 /// to update any specialized state.
schedule()1029 void ScheduleDAGMILive::schedule() {
1030 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1031 DEBUG(SchedImpl->dumpPolicy());
1032 buildDAGWithRegPressure();
1033
1034 Topo.InitDAGTopologicalSorting();
1035
1036 postprocessDAG();
1037
1038 SmallVector<SUnit*, 8> TopRoots, BotRoots;
1039 findRootsAndBiasEdges(TopRoots, BotRoots);
1040
1041 // Initialize the strategy before modifying the DAG.
1042 // This may initialize a DFSResult to be used for queue priority.
1043 SchedImpl->initialize(this);
1044
1045 DEBUG(
1046 for (const SUnit &SU : SUnits) {
1047 SU.dumpAll(this);
1048 if (ShouldTrackPressure) {
1049 dbgs() << " Pressure Diff : ";
1050 getPressureDiff(&SU).dump(*TRI);
1051 }
1052 dbgs() << '\n';
1053 }
1054 );
1055 if (ViewMISchedDAGs) viewGraph();
1056
1057 // Initialize ready queues now that the DAG and priority data are finalized.
1058 initQueues(TopRoots, BotRoots);
1059
1060 if (ShouldTrackPressure) {
1061 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1062 TopRPTracker.setPos(CurrentTop);
1063 }
1064
1065 bool IsTopNode = false;
1066 while (true) {
1067 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1068 SUnit *SU = SchedImpl->pickNode(IsTopNode);
1069 if (!SU) break;
1070
1071 assert(!SU->isScheduled && "Node already scheduled");
1072 if (!checkSchedLimit())
1073 break;
1074
1075 scheduleMI(SU, IsTopNode);
1076
1077 if (DFSResult) {
1078 unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1079 if (!ScheduledTrees.test(SubtreeID)) {
1080 ScheduledTrees.set(SubtreeID);
1081 DFSResult->scheduleTree(SubtreeID);
1082 SchedImpl->scheduleTree(SubtreeID);
1083 }
1084 }
1085
1086 // Notify the scheduling strategy after updating the DAG.
1087 SchedImpl->schedNode(SU, IsTopNode);
1088
1089 updateQueues(SU, IsTopNode);
1090 }
1091 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1092
1093 placeDebugValues();
1094
1095 DEBUG({
1096 unsigned BBNum = begin()->getParent()->getNumber();
1097 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
1098 dumpSchedule();
1099 dbgs() << '\n';
1100 });
1101 }
1102
1103 /// Build the DAG and setup three register pressure trackers.
buildDAGWithRegPressure()1104 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1105 if (!ShouldTrackPressure) {
1106 RPTracker.reset();
1107 RegionCriticalPSets.clear();
1108 buildSchedGraph(AA);
1109 return;
1110 }
1111
1112 // Initialize the register pressure tracker used by buildSchedGraph.
1113 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1114 /*TrackUntiedDefs=*/true);
1115
1116 // Account for liveness generate by the region boundary.
1117 if (LiveRegionEnd != RegionEnd)
1118 RPTracker.recede();
1119
1120 // Build the DAG, and compute current register pressure.
1121 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs);
1122
1123 // Initialize top/bottom trackers after computing region pressure.
1124 initRegPressure();
1125 }
1126
computeDFSResult()1127 void ScheduleDAGMILive::computeDFSResult() {
1128 if (!DFSResult)
1129 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1130 DFSResult->clear();
1131 ScheduledTrees.clear();
1132 DFSResult->resize(SUnits.size());
1133 DFSResult->compute(SUnits);
1134 ScheduledTrees.resize(DFSResult->getNumSubtrees());
1135 }
1136
1137 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1138 /// only provides the critical path for single block loops. To handle loops that
1139 /// span blocks, we could use the vreg path latencies provided by
1140 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1141 /// available for use in the scheduler.
1142 ///
1143 /// The cyclic path estimation identifies a def-use pair that crosses the back
1144 /// edge and considers the depth and height of the nodes. For example, consider
1145 /// the following instruction sequence where each instruction has unit latency
1146 /// and defines an epomymous virtual register:
1147 ///
1148 /// a->b(a,c)->c(b)->d(c)->exit
1149 ///
1150 /// The cyclic critical path is a two cycles: b->c->b
1151 /// The acyclic critical path is four cycles: a->b->c->d->exit
1152 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1153 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1154 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1155 /// LiveInDepth = depth(b) = len(a->b) = 1
1156 ///
1157 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1158 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1159 /// CyclicCriticalPath = min(2, 2) = 2
1160 ///
1161 /// This could be relevant to PostRA scheduling, but is currently implemented
1162 /// assuming LiveIntervals.
computeCyclicCriticalPath()1163 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1164 // This only applies to single block loop.
1165 if (!BB->isSuccessor(BB))
1166 return 0;
1167
1168 unsigned MaxCyclicLatency = 0;
1169 // Visit each live out vreg def to find def/use pairs that cross iterations.
1170 ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs;
1171 for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end();
1172 RI != RE; ++RI) {
1173 unsigned Reg = *RI;
1174 if (!TRI->isVirtualRegister(Reg))
1175 continue;
1176 const LiveInterval &LI = LIS->getInterval(Reg);
1177 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1178 if (!DefVNI)
1179 continue;
1180
1181 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1182 const SUnit *DefSU = getSUnit(DefMI);
1183 if (!DefSU)
1184 continue;
1185
1186 unsigned LiveOutHeight = DefSU->getHeight();
1187 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1188 // Visit all local users of the vreg def.
1189 for (const VReg2SUnit &V2SU
1190 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1191 SUnit *SU = V2SU.SU;
1192 if (SU == &ExitSU)
1193 continue;
1194
1195 // Only consider uses of the phi.
1196 LiveQueryResult LRQ =
1197 LI.Query(LIS->getInstructionIndex(SU->getInstr()));
1198 if (!LRQ.valueIn()->isPHIDef())
1199 continue;
1200
1201 // Assume that a path spanning two iterations is a cycle, which could
1202 // overestimate in strange cases. This allows cyclic latency to be
1203 // estimated as the minimum slack of the vreg's depth or height.
1204 unsigned CyclicLatency = 0;
1205 if (LiveOutDepth > SU->getDepth())
1206 CyclicLatency = LiveOutDepth - SU->getDepth();
1207
1208 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1209 if (LiveInHeight > LiveOutHeight) {
1210 if (LiveInHeight - LiveOutHeight < CyclicLatency)
1211 CyclicLatency = LiveInHeight - LiveOutHeight;
1212 }
1213 else
1214 CyclicLatency = 0;
1215
1216 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1217 << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1218 if (CyclicLatency > MaxCyclicLatency)
1219 MaxCyclicLatency = CyclicLatency;
1220 }
1221 }
1222 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1223 return MaxCyclicLatency;
1224 }
1225
1226 /// Move an instruction and update register pressure.
scheduleMI(SUnit * SU,bool IsTopNode)1227 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1228 // Move the instruction to its new location in the instruction stream.
1229 MachineInstr *MI = SU->getInstr();
1230
1231 if (IsTopNode) {
1232 assert(SU->isTopReady() && "node still has unscheduled dependencies");
1233 if (&*CurrentTop == MI)
1234 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1235 else {
1236 moveInstruction(MI, CurrentTop);
1237 TopRPTracker.setPos(MI);
1238 }
1239
1240 if (ShouldTrackPressure) {
1241 // Update top scheduled pressure.
1242 TopRPTracker.advance();
1243 assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1244 DEBUG(
1245 dbgs() << "Top Pressure:\n";
1246 dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI);
1247 );
1248
1249 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1250 }
1251 }
1252 else {
1253 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1254 MachineBasicBlock::iterator priorII =
1255 priorNonDebug(CurrentBottom, CurrentTop);
1256 if (&*priorII == MI)
1257 CurrentBottom = priorII;
1258 else {
1259 if (&*CurrentTop == MI) {
1260 CurrentTop = nextIfDebug(++CurrentTop, priorII);
1261 TopRPTracker.setPos(CurrentTop);
1262 }
1263 moveInstruction(MI, CurrentBottom);
1264 CurrentBottom = MI;
1265 }
1266 if (ShouldTrackPressure) {
1267 // Update bottom scheduled pressure.
1268 SmallVector<unsigned, 8> LiveUses;
1269 BotRPTracker.recede(&LiveUses);
1270 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1271 DEBUG(
1272 dbgs() << "Bottom Pressure:\n";
1273 dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);
1274 );
1275
1276 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1277 updatePressureDiffs(LiveUses);
1278 }
1279 }
1280 }
1281
1282 //===----------------------------------------------------------------------===//
1283 // LoadClusterMutation - DAG post-processing to cluster loads.
1284 //===----------------------------------------------------------------------===//
1285
1286 namespace {
1287 /// \brief Post-process the DAG to create cluster edges between neighboring
1288 /// loads.
1289 class LoadClusterMutation : public ScheduleDAGMutation {
1290 struct LoadInfo {
1291 SUnit *SU;
1292 unsigned BaseReg;
1293 unsigned Offset;
LoadInfo__anond1ea022a0211::LoadClusterMutation::LoadInfo1294 LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
1295 : SU(su), BaseReg(reg), Offset(ofs) {}
1296
operator <__anond1ea022a0211::LoadClusterMutation::LoadInfo1297 bool operator<(const LoadInfo &RHS) const {
1298 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
1299 }
1300 };
1301
1302 const TargetInstrInfo *TII;
1303 const TargetRegisterInfo *TRI;
1304 public:
LoadClusterMutation(const TargetInstrInfo * tii,const TargetRegisterInfo * tri)1305 LoadClusterMutation(const TargetInstrInfo *tii,
1306 const TargetRegisterInfo *tri)
1307 : TII(tii), TRI(tri) {}
1308
1309 void apply(ScheduleDAGMI *DAG) override;
1310 protected:
1311 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
1312 };
1313 } // anonymous
1314
clusterNeighboringLoads(ArrayRef<SUnit * > Loads,ScheduleDAGMI * DAG)1315 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
1316 ScheduleDAGMI *DAG) {
1317 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
1318 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
1319 SUnit *SU = Loads[Idx];
1320 unsigned BaseReg;
1321 unsigned Offset;
1322 if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
1323 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
1324 }
1325 if (LoadRecords.size() < 2)
1326 return;
1327 std::sort(LoadRecords.begin(), LoadRecords.end());
1328 unsigned ClusterLength = 1;
1329 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
1330 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
1331 ClusterLength = 1;
1332 continue;
1333 }
1334
1335 SUnit *SUa = LoadRecords[Idx].SU;
1336 SUnit *SUb = LoadRecords[Idx+1].SU;
1337 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
1338 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1339
1340 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
1341 << SUb->NodeNum << ")\n");
1342 // Copy successor edges from SUa to SUb. Interleaving computation
1343 // dependent on SUa can prevent load combining due to register reuse.
1344 // Predecessor edges do not need to be copied from SUb to SUa since nearby
1345 // loads should have effectively the same inputs.
1346 for (SUnit::const_succ_iterator
1347 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
1348 if (SI->getSUnit() == SUb)
1349 continue;
1350 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
1351 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
1352 }
1353 ++ClusterLength;
1354 }
1355 else
1356 ClusterLength = 1;
1357 }
1358 }
1359
1360 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
apply(ScheduleDAGMI * DAG)1361 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
1362 // Map DAG NodeNum to store chain ID.
1363 DenseMap<unsigned, unsigned> StoreChainIDs;
1364 // Map each store chain to a set of dependent loads.
1365 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1366 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1367 SUnit *SU = &DAG->SUnits[Idx];
1368 if (!SU->getInstr()->mayLoad())
1369 continue;
1370 unsigned ChainPredID = DAG->SUnits.size();
1371 for (SUnit::const_pred_iterator
1372 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1373 if (PI->isCtrl()) {
1374 ChainPredID = PI->getSUnit()->NodeNum;
1375 break;
1376 }
1377 }
1378 // Check if this chain-like pred has been seen
1379 // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
1380 unsigned NumChains = StoreChainDependents.size();
1381 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1382 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1383 if (Result.second)
1384 StoreChainDependents.resize(NumChains + 1);
1385 StoreChainDependents[Result.first->second].push_back(SU);
1386 }
1387 // Iterate over the store chains.
1388 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
1389 clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
1390 }
1391
1392 //===----------------------------------------------------------------------===//
1393 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
1394 //===----------------------------------------------------------------------===//
1395
1396 namespace {
1397 /// \brief Post-process the DAG to create cluster edges between instructions
1398 /// that may be fused by the processor into a single operation.
1399 class MacroFusion : public ScheduleDAGMutation {
1400 const TargetInstrInfo &TII;
1401 const TargetRegisterInfo &TRI;
1402 public:
MacroFusion(const TargetInstrInfo & TII,const TargetRegisterInfo & TRI)1403 MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI)
1404 : TII(TII), TRI(TRI) {}
1405
1406 void apply(ScheduleDAGMI *DAG) override;
1407 };
1408 } // anonymous
1409
1410 /// Returns true if \p MI reads a register written by \p Other.
HasDataDep(const TargetRegisterInfo & TRI,const MachineInstr & MI,const MachineInstr & Other)1411 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI,
1412 const MachineInstr &Other) {
1413 for (const MachineOperand &MO : MI.uses()) {
1414 if (!MO.isReg() || !MO.readsReg())
1415 continue;
1416
1417 unsigned Reg = MO.getReg();
1418 if (Other.modifiesRegister(Reg, &TRI))
1419 return true;
1420 }
1421 return false;
1422 }
1423
1424 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
1425 /// fused operations.
apply(ScheduleDAGMI * DAG)1426 void MacroFusion::apply(ScheduleDAGMI *DAG) {
1427 // For now, assume targets can only fuse with the branch.
1428 SUnit &ExitSU = DAG->ExitSU;
1429 MachineInstr *Branch = ExitSU.getInstr();
1430 if (!Branch)
1431 return;
1432
1433 for (SUnit &SU : DAG->SUnits) {
1434 // SUnits with successors can't be schedule in front of the ExitSU.
1435 if (!SU.Succs.empty())
1436 continue;
1437 // We only care if the node writes to a register that the branch reads.
1438 MachineInstr *Pred = SU.getInstr();
1439 if (!HasDataDep(TRI, *Branch, *Pred))
1440 continue;
1441
1442 if (!TII.shouldScheduleAdjacent(Pred, Branch))
1443 continue;
1444
1445 // Create a single weak edge from SU to ExitSU. The only effect is to cause
1446 // bottom-up scheduling to heavily prioritize the clustered SU. There is no
1447 // need to copy predecessor edges from ExitSU to SU, since top-down
1448 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
1449 // of SU, we could create an artificial edge from the deepest root, but it
1450 // hasn't been needed yet.
1451 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster));
1452 (void)Success;
1453 assert(Success && "No DAG nodes should be reachable from ExitSU");
1454
1455 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n");
1456 break;
1457 }
1458 }
1459
1460 //===----------------------------------------------------------------------===//
1461 // CopyConstrain - DAG post-processing to encourage copy elimination.
1462 //===----------------------------------------------------------------------===//
1463
1464 namespace {
1465 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
1466 /// the one use that defines the copy's source vreg, most likely an induction
1467 /// variable increment.
1468 class CopyConstrain : public ScheduleDAGMutation {
1469 // Transient state.
1470 SlotIndex RegionBeginIdx;
1471 // RegionEndIdx is the slot index of the last non-debug instruction in the
1472 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1473 SlotIndex RegionEndIdx;
1474 public:
CopyConstrain(const TargetInstrInfo *,const TargetRegisterInfo *)1475 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1476
1477 void apply(ScheduleDAGMI *DAG) override;
1478
1479 protected:
1480 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1481 };
1482 } // anonymous
1483
1484 /// constrainLocalCopy handles two possibilities:
1485 /// 1) Local src:
1486 /// I0: = dst
1487 /// I1: src = ...
1488 /// I2: = dst
1489 /// I3: dst = src (copy)
1490 /// (create pred->succ edges I0->I1, I2->I1)
1491 ///
1492 /// 2) Local copy:
1493 /// I0: dst = src (copy)
1494 /// I1: = dst
1495 /// I2: src = ...
1496 /// I3: = dst
1497 /// (create pred->succ edges I1->I2, I3->I2)
1498 ///
1499 /// Although the MachineScheduler is currently constrained to single blocks,
1500 /// this algorithm should handle extended blocks. An EBB is a set of
1501 /// contiguously numbered blocks such that the previous block in the EBB is
1502 /// always the single predecessor.
constrainLocalCopy(SUnit * CopySU,ScheduleDAGMILive * DAG)1503 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1504 LiveIntervals *LIS = DAG->getLIS();
1505 MachineInstr *Copy = CopySU->getInstr();
1506
1507 // Check for pure vreg copies.
1508 unsigned SrcReg = Copy->getOperand(1).getReg();
1509 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1510 return;
1511
1512 unsigned DstReg = Copy->getOperand(0).getReg();
1513 if (!TargetRegisterInfo::isVirtualRegister(DstReg))
1514 return;
1515
1516 // Check if either the dest or source is local. If it's live across a back
1517 // edge, it's not local. Note that if both vregs are live across the back
1518 // edge, we cannot successfully contrain the copy without cyclic scheduling.
1519 // If both the copy's source and dest are local live intervals, then we
1520 // should treat the dest as the global for the purpose of adding
1521 // constraints. This adds edges from source's other uses to the copy.
1522 unsigned LocalReg = SrcReg;
1523 unsigned GlobalReg = DstReg;
1524 LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1525 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1526 LocalReg = DstReg;
1527 GlobalReg = SrcReg;
1528 LocalLI = &LIS->getInterval(LocalReg);
1529 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1530 return;
1531 }
1532 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1533
1534 // Find the global segment after the start of the local LI.
1535 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1536 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1537 // local live range. We could create edges from other global uses to the local
1538 // start, but the coalescer should have already eliminated these cases, so
1539 // don't bother dealing with it.
1540 if (GlobalSegment == GlobalLI->end())
1541 return;
1542
1543 // If GlobalSegment is killed at the LocalLI->start, the call to find()
1544 // returned the next global segment. But if GlobalSegment overlaps with
1545 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1546 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1547 if (GlobalSegment->contains(LocalLI->beginIndex()))
1548 ++GlobalSegment;
1549
1550 if (GlobalSegment == GlobalLI->end())
1551 return;
1552
1553 // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1554 if (GlobalSegment != GlobalLI->begin()) {
1555 // Two address defs have no hole.
1556 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1557 GlobalSegment->start)) {
1558 return;
1559 }
1560 // If the prior global segment may be defined by the same two-address
1561 // instruction that also defines LocalLI, then can't make a hole here.
1562 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1563 LocalLI->beginIndex())) {
1564 return;
1565 }
1566 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1567 // it would be a disconnected component in the live range.
1568 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1569 "Disconnected LRG within the scheduling region.");
1570 }
1571 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1572 if (!GlobalDef)
1573 return;
1574
1575 SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1576 if (!GlobalSU)
1577 return;
1578
1579 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1580 // constraining the uses of the last local def to precede GlobalDef.
1581 SmallVector<SUnit*,8> LocalUses;
1582 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1583 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1584 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1585 for (SUnit::const_succ_iterator
1586 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1587 I != E; ++I) {
1588 if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1589 continue;
1590 if (I->getSUnit() == GlobalSU)
1591 continue;
1592 if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1593 return;
1594 LocalUses.push_back(I->getSUnit());
1595 }
1596 // Open the top of the GlobalLI hole by constraining any earlier global uses
1597 // to precede the start of LocalLI.
1598 SmallVector<SUnit*,8> GlobalUses;
1599 MachineInstr *FirstLocalDef =
1600 LIS->getInstructionFromIndex(LocalLI->beginIndex());
1601 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1602 for (SUnit::const_pred_iterator
1603 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1604 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1605 continue;
1606 if (I->getSUnit() == FirstLocalSU)
1607 continue;
1608 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1609 return;
1610 GlobalUses.push_back(I->getSUnit());
1611 }
1612 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1613 // Add the weak edges.
1614 for (SmallVectorImpl<SUnit*>::const_iterator
1615 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1616 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU("
1617 << GlobalSU->NodeNum << ")\n");
1618 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1619 }
1620 for (SmallVectorImpl<SUnit*>::const_iterator
1621 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1622 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU("
1623 << FirstLocalSU->NodeNum << ")\n");
1624 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1625 }
1626 }
1627
1628 /// \brief Callback from DAG postProcessing to create weak edges to encourage
1629 /// copy elimination.
apply(ScheduleDAGMI * DAG)1630 void CopyConstrain::apply(ScheduleDAGMI *DAG) {
1631 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1632
1633 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1634 if (FirstPos == DAG->end())
1635 return;
1636 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
1637 RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1638 &*priorNonDebug(DAG->end(), DAG->begin()));
1639
1640 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1641 SUnit *SU = &DAG->SUnits[Idx];
1642 if (!SU->getInstr()->isCopy())
1643 continue;
1644
1645 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
1646 }
1647 }
1648
1649 //===----------------------------------------------------------------------===//
1650 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1651 // and possibly other custom schedulers.
1652 //===----------------------------------------------------------------------===//
1653
1654 static const unsigned InvalidCycle = ~0U;
1655
~SchedBoundary()1656 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1657
reset()1658 void SchedBoundary::reset() {
1659 // A new HazardRec is created for each DAG and owned by SchedBoundary.
1660 // Destroying and reconstructing it is very expensive though. So keep
1661 // invalid, placeholder HazardRecs.
1662 if (HazardRec && HazardRec->isEnabled()) {
1663 delete HazardRec;
1664 HazardRec = nullptr;
1665 }
1666 Available.clear();
1667 Pending.clear();
1668 CheckPending = false;
1669 NextSUs.clear();
1670 CurrCycle = 0;
1671 CurrMOps = 0;
1672 MinReadyCycle = UINT_MAX;
1673 ExpectedLatency = 0;
1674 DependentLatency = 0;
1675 RetiredMOps = 0;
1676 MaxExecutedResCount = 0;
1677 ZoneCritResIdx = 0;
1678 IsResourceLimited = false;
1679 ReservedCycles.clear();
1680 #ifndef NDEBUG
1681 // Track the maximum number of stall cycles that could arise either from the
1682 // latency of a DAG edge or the number of cycles that a processor resource is
1683 // reserved (SchedBoundary::ReservedCycles).
1684 MaxObservedStall = 0;
1685 #endif
1686 // Reserve a zero-count for invalid CritResIdx.
1687 ExecutedResCounts.resize(1);
1688 assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1689 }
1690
1691 void SchedRemainder::
init(ScheduleDAGMI * DAG,const TargetSchedModel * SchedModel)1692 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1693 reset();
1694 if (!SchedModel->hasInstrSchedModel())
1695 return;
1696 RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1697 for (std::vector<SUnit>::iterator
1698 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1699 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1700 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1701 * SchedModel->getMicroOpFactor();
1702 for (TargetSchedModel::ProcResIter
1703 PI = SchedModel->getWriteProcResBegin(SC),
1704 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1705 unsigned PIdx = PI->ProcResourceIdx;
1706 unsigned Factor = SchedModel->getResourceFactor(PIdx);
1707 RemainingCounts[PIdx] += (Factor * PI->Cycles);
1708 }
1709 }
1710 }
1711
1712 void SchedBoundary::
init(ScheduleDAGMI * dag,const TargetSchedModel * smodel,SchedRemainder * rem)1713 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1714 reset();
1715 DAG = dag;
1716 SchedModel = smodel;
1717 Rem = rem;
1718 if (SchedModel->hasInstrSchedModel()) {
1719 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1720 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1721 }
1722 }
1723
1724 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1725 /// these "soft stalls" differently than the hard stall cycles based on CPU
1726 /// resources and computed by checkHazard(). A fully in-order model
1727 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1728 /// available for scheduling until they are ready. However, a weaker in-order
1729 /// model may use this for heuristics. For example, if a processor has in-order
1730 /// behavior when reading certain resources, this may come into play.
getLatencyStallCycles(SUnit * SU)1731 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1732 if (!SU->isUnbuffered)
1733 return 0;
1734
1735 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1736 if (ReadyCycle > CurrCycle)
1737 return ReadyCycle - CurrCycle;
1738 return 0;
1739 }
1740
1741 /// Compute the next cycle at which the given processor resource can be
1742 /// scheduled.
1743 unsigned SchedBoundary::
getNextResourceCycle(unsigned PIdx,unsigned Cycles)1744 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1745 unsigned NextUnreserved = ReservedCycles[PIdx];
1746 // If this resource has never been used, always return cycle zero.
1747 if (NextUnreserved == InvalidCycle)
1748 return 0;
1749 // For bottom-up scheduling add the cycles needed for the current operation.
1750 if (!isTop())
1751 NextUnreserved += Cycles;
1752 return NextUnreserved;
1753 }
1754
1755 /// Does this SU have a hazard within the current instruction group.
1756 ///
1757 /// The scheduler supports two modes of hazard recognition. The first is the
1758 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1759 /// supports highly complicated in-order reservation tables
1760 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1761 ///
1762 /// The second is a streamlined mechanism that checks for hazards based on
1763 /// simple counters that the scheduler itself maintains. It explicitly checks
1764 /// for instruction dispatch limitations, including the number of micro-ops that
1765 /// can dispatch per cycle.
1766 ///
1767 /// TODO: Also check whether the SU must start a new group.
checkHazard(SUnit * SU)1768 bool SchedBoundary::checkHazard(SUnit *SU) {
1769 if (HazardRec->isEnabled()
1770 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1771 return true;
1772 }
1773 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1774 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1775 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="
1776 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1777 return true;
1778 }
1779 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1780 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1781 for (TargetSchedModel::ProcResIter
1782 PI = SchedModel->getWriteProcResBegin(SC),
1783 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1784 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
1785 if (NRCycle > CurrCycle) {
1786 #ifndef NDEBUG
1787 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
1788 #endif
1789 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") "
1790 << SchedModel->getResourceName(PI->ProcResourceIdx)
1791 << "=" << NRCycle << "c\n");
1792 return true;
1793 }
1794 }
1795 }
1796 return false;
1797 }
1798
1799 // Find the unscheduled node in ReadySUs with the highest latency.
1800 unsigned SchedBoundary::
findMaxLatency(ArrayRef<SUnit * > ReadySUs)1801 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1802 SUnit *LateSU = nullptr;
1803 unsigned RemLatency = 0;
1804 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1805 I != E; ++I) {
1806 unsigned L = getUnscheduledLatency(*I);
1807 if (L > RemLatency) {
1808 RemLatency = L;
1809 LateSU = *I;
1810 }
1811 }
1812 if (LateSU) {
1813 DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1814 << LateSU->NodeNum << ") " << RemLatency << "c\n");
1815 }
1816 return RemLatency;
1817 }
1818
1819 // Count resources in this zone and the remaining unscheduled
1820 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1821 // resource index, or zero if the zone is issue limited.
1822 unsigned SchedBoundary::
getOtherResourceCount(unsigned & OtherCritIdx)1823 getOtherResourceCount(unsigned &OtherCritIdx) {
1824 OtherCritIdx = 0;
1825 if (!SchedModel->hasInstrSchedModel())
1826 return 0;
1827
1828 unsigned OtherCritCount = Rem->RemIssueCount
1829 + (RetiredMOps * SchedModel->getMicroOpFactor());
1830 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: "
1831 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1832 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1833 PIdx != PEnd; ++PIdx) {
1834 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1835 if (OtherCount > OtherCritCount) {
1836 OtherCritCount = OtherCount;
1837 OtherCritIdx = PIdx;
1838 }
1839 }
1840 if (OtherCritIdx) {
1841 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: "
1842 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1843 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
1844 }
1845 return OtherCritCount;
1846 }
1847
releaseNode(SUnit * SU,unsigned ReadyCycle)1848 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
1849 assert(SU->getInstr() && "Scheduled SUnit must have instr");
1850
1851 #ifndef NDEBUG
1852 // ReadyCycle was been bumped up to the CurrCycle when this node was
1853 // scheduled, but CurrCycle may have been eagerly advanced immediately after
1854 // scheduling, so may now be greater than ReadyCycle.
1855 if (ReadyCycle > CurrCycle)
1856 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
1857 #endif
1858
1859 if (ReadyCycle < MinReadyCycle)
1860 MinReadyCycle = ReadyCycle;
1861
1862 // Check for interlocks first. For the purpose of other heuristics, an
1863 // instruction that cannot issue appears as if it's not in the ReadyQueue.
1864 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1865 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
1866 Pending.push(SU);
1867 else
1868 Available.push(SU);
1869
1870 // Record this node as an immediate dependent of the scheduled node.
1871 NextSUs.insert(SU);
1872 }
1873
releaseTopNode(SUnit * SU)1874 void SchedBoundary::releaseTopNode(SUnit *SU) {
1875 if (SU->isScheduled)
1876 return;
1877
1878 releaseNode(SU, SU->TopReadyCycle);
1879 }
1880
releaseBottomNode(SUnit * SU)1881 void SchedBoundary::releaseBottomNode(SUnit *SU) {
1882 if (SU->isScheduled)
1883 return;
1884
1885 releaseNode(SU, SU->BotReadyCycle);
1886 }
1887
1888 /// Move the boundary of scheduled code by one cycle.
bumpCycle(unsigned NextCycle)1889 void SchedBoundary::bumpCycle(unsigned NextCycle) {
1890 if (SchedModel->getMicroOpBufferSize() == 0) {
1891 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1892 if (MinReadyCycle > NextCycle)
1893 NextCycle = MinReadyCycle;
1894 }
1895 // Update the current micro-ops, which will issue in the next cycle.
1896 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
1897 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
1898
1899 // Decrement DependentLatency based on the next cycle.
1900 if ((NextCycle - CurrCycle) > DependentLatency)
1901 DependentLatency = 0;
1902 else
1903 DependentLatency -= (NextCycle - CurrCycle);
1904
1905 if (!HazardRec->isEnabled()) {
1906 // Bypass HazardRec virtual calls.
1907 CurrCycle = NextCycle;
1908 }
1909 else {
1910 // Bypass getHazardType calls in case of long latency.
1911 for (; CurrCycle != NextCycle; ++CurrCycle) {
1912 if (isTop())
1913 HazardRec->AdvanceCycle();
1914 else
1915 HazardRec->RecedeCycle();
1916 }
1917 }
1918 CheckPending = true;
1919 unsigned LFactor = SchedModel->getLatencyFactor();
1920 IsResourceLimited =
1921 (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1922 > (int)LFactor;
1923
1924 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
1925 }
1926
incExecutedResources(unsigned PIdx,unsigned Count)1927 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
1928 ExecutedResCounts[PIdx] += Count;
1929 if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
1930 MaxExecutedResCount = ExecutedResCounts[PIdx];
1931 }
1932
1933 /// Add the given processor resource to this scheduled zone.
1934 ///
1935 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
1936 /// during which this resource is consumed.
1937 ///
1938 /// \return the next cycle at which the instruction may execute without
1939 /// oversubscribing resources.
1940 unsigned SchedBoundary::
countResource(unsigned PIdx,unsigned Cycles,unsigned NextCycle)1941 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
1942 unsigned Factor = SchedModel->getResourceFactor(PIdx);
1943 unsigned Count = Factor * Cycles;
1944 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx)
1945 << " +" << Cycles << "x" << Factor << "u\n");
1946
1947 // Update Executed resources counts.
1948 incExecutedResources(PIdx, Count);
1949 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
1950 Rem->RemainingCounts[PIdx] -= Count;
1951
1952 // Check if this resource exceeds the current critical resource. If so, it
1953 // becomes the critical resource.
1954 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
1955 ZoneCritResIdx = PIdx;
1956 DEBUG(dbgs() << " *** Critical resource "
1957 << SchedModel->getResourceName(PIdx) << ": "
1958 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
1959 }
1960 // For reserved resources, record the highest cycle using the resource.
1961 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
1962 if (NextAvailable > CurrCycle) {
1963 DEBUG(dbgs() << " Resource conflict: "
1964 << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
1965 << NextAvailable << "\n");
1966 }
1967 return NextAvailable;
1968 }
1969
1970 /// Move the boundary of scheduled code by one SUnit.
bumpNode(SUnit * SU)1971 void SchedBoundary::bumpNode(SUnit *SU) {
1972 // Update the reservation table.
1973 if (HazardRec->isEnabled()) {
1974 if (!isTop() && SU->isCall) {
1975 // Calls are scheduled with their preceding instructions. For bottom-up
1976 // scheduling, clear the pipeline state before emitting.
1977 HazardRec->Reset();
1978 }
1979 HazardRec->EmitInstruction(SU);
1980 }
1981 // checkHazard should prevent scheduling multiple instructions per cycle that
1982 // exceed the issue width.
1983 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1984 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
1985 assert(
1986 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
1987 "Cannot schedule this instruction's MicroOps in the current cycle.");
1988
1989 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1990 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n");
1991
1992 unsigned NextCycle = CurrCycle;
1993 switch (SchedModel->getMicroOpBufferSize()) {
1994 case 0:
1995 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
1996 break;
1997 case 1:
1998 if (ReadyCycle > NextCycle) {
1999 NextCycle = ReadyCycle;
2000 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n");
2001 }
2002 break;
2003 default:
2004 // We don't currently model the OOO reorder buffer, so consider all
2005 // scheduled MOps to be "retired". We do loosely model in-order resource
2006 // latency. If this instruction uses an in-order resource, account for any
2007 // likely stall cycles.
2008 if (SU->isUnbuffered && ReadyCycle > NextCycle)
2009 NextCycle = ReadyCycle;
2010 break;
2011 }
2012 RetiredMOps += IncMOps;
2013
2014 // Update resource counts and critical resource.
2015 if (SchedModel->hasInstrSchedModel()) {
2016 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2017 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2018 Rem->RemIssueCount -= DecRemIssue;
2019 if (ZoneCritResIdx) {
2020 // Scale scheduled micro-ops for comparing with the critical resource.
2021 unsigned ScaledMOps =
2022 RetiredMOps * SchedModel->getMicroOpFactor();
2023
2024 // If scaled micro-ops are now more than the previous critical resource by
2025 // a full cycle, then micro-ops issue becomes critical.
2026 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2027 >= (int)SchedModel->getLatencyFactor()) {
2028 ZoneCritResIdx = 0;
2029 DEBUG(dbgs() << " *** Critical resource NumMicroOps: "
2030 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
2031 }
2032 }
2033 for (TargetSchedModel::ProcResIter
2034 PI = SchedModel->getWriteProcResBegin(SC),
2035 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2036 unsigned RCycle =
2037 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2038 if (RCycle > NextCycle)
2039 NextCycle = RCycle;
2040 }
2041 if (SU->hasReservedResource) {
2042 // For reserved resources, record the highest cycle using the resource.
2043 // For top-down scheduling, this is the cycle in which we schedule this
2044 // instruction plus the number of cycles the operations reserves the
2045 // resource. For bottom-up is it simply the instruction's cycle.
2046 for (TargetSchedModel::ProcResIter
2047 PI = SchedModel->getWriteProcResBegin(SC),
2048 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2049 unsigned PIdx = PI->ProcResourceIdx;
2050 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2051 if (isTop()) {
2052 ReservedCycles[PIdx] =
2053 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2054 }
2055 else
2056 ReservedCycles[PIdx] = NextCycle;
2057 }
2058 }
2059 }
2060 }
2061 // Update ExpectedLatency and DependentLatency.
2062 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2063 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2064 if (SU->getDepth() > TopLatency) {
2065 TopLatency = SU->getDepth();
2066 DEBUG(dbgs() << " " << Available.getName()
2067 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
2068 }
2069 if (SU->getHeight() > BotLatency) {
2070 BotLatency = SU->getHeight();
2071 DEBUG(dbgs() << " " << Available.getName()
2072 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
2073 }
2074 // If we stall for any reason, bump the cycle.
2075 if (NextCycle > CurrCycle) {
2076 bumpCycle(NextCycle);
2077 }
2078 else {
2079 // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2080 // resource limited. If a stall occurred, bumpCycle does this.
2081 unsigned LFactor = SchedModel->getLatencyFactor();
2082 IsResourceLimited =
2083 (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2084 > (int)LFactor;
2085 }
2086 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2087 // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2088 // one cycle. Since we commonly reach the max MOps here, opportunistically
2089 // bump the cycle to avoid uselessly checking everything in the readyQ.
2090 CurrMOps += IncMOps;
2091 while (CurrMOps >= SchedModel->getIssueWidth()) {
2092 DEBUG(dbgs() << " *** Max MOps " << CurrMOps
2093 << " at cycle " << CurrCycle << '\n');
2094 bumpCycle(++NextCycle);
2095 }
2096 DEBUG(dumpScheduledState());
2097 }
2098
2099 /// Release pending ready nodes in to the available queue. This makes them
2100 /// visible to heuristics.
releasePending()2101 void SchedBoundary::releasePending() {
2102 // If the available queue is empty, it is safe to reset MinReadyCycle.
2103 if (Available.empty())
2104 MinReadyCycle = UINT_MAX;
2105
2106 // Check to see if any of the pending instructions are ready to issue. If
2107 // so, add them to the available queue.
2108 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2109 for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2110 SUnit *SU = *(Pending.begin()+i);
2111 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2112
2113 if (ReadyCycle < MinReadyCycle)
2114 MinReadyCycle = ReadyCycle;
2115
2116 if (!IsBuffered && ReadyCycle > CurrCycle)
2117 continue;
2118
2119 if (checkHazard(SU))
2120 continue;
2121
2122 Available.push(SU);
2123 Pending.remove(Pending.begin()+i);
2124 --i; --e;
2125 }
2126 DEBUG(if (!Pending.empty()) Pending.dump());
2127 CheckPending = false;
2128 }
2129
2130 /// Remove SU from the ready set for this boundary.
removeReady(SUnit * SU)2131 void SchedBoundary::removeReady(SUnit *SU) {
2132 if (Available.isInQueue(SU))
2133 Available.remove(Available.find(SU));
2134 else {
2135 assert(Pending.isInQueue(SU) && "bad ready count");
2136 Pending.remove(Pending.find(SU));
2137 }
2138 }
2139
2140 /// If this queue only has one ready candidate, return it. As a side effect,
2141 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2142 /// one node is ready. If multiple instructions are ready, return NULL.
pickOnlyChoice()2143 SUnit *SchedBoundary::pickOnlyChoice() {
2144 if (CheckPending)
2145 releasePending();
2146
2147 if (CurrMOps > 0) {
2148 // Defer any ready instrs that now have a hazard.
2149 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2150 if (checkHazard(*I)) {
2151 Pending.push(*I);
2152 I = Available.remove(I);
2153 continue;
2154 }
2155 ++I;
2156 }
2157 }
2158 for (unsigned i = 0; Available.empty(); ++i) {
2159 // FIXME: Re-enable assert once PR20057 is resolved.
2160 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2161 // "permanent hazard");
2162 (void)i;
2163 bumpCycle(CurrCycle + 1);
2164 releasePending();
2165 }
2166 if (Available.size() == 1)
2167 return *Available.begin();
2168 return nullptr;
2169 }
2170
2171 #ifndef NDEBUG
2172 // This is useful information to dump after bumpNode.
2173 // Note that the Queue contents are more useful before pickNodeFromQueue.
dumpScheduledState()2174 void SchedBoundary::dumpScheduledState() {
2175 unsigned ResFactor;
2176 unsigned ResCount;
2177 if (ZoneCritResIdx) {
2178 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2179 ResCount = getResourceCount(ZoneCritResIdx);
2180 }
2181 else {
2182 ResFactor = SchedModel->getMicroOpFactor();
2183 ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
2184 }
2185 unsigned LFactor = SchedModel->getLatencyFactor();
2186 dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2187 << " Retired: " << RetiredMOps;
2188 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c";
2189 dbgs() << "\n Critical: " << ResCount / LFactor << "c, "
2190 << ResCount / ResFactor << " "
2191 << SchedModel->getResourceName(ZoneCritResIdx)
2192 << "\n ExpectedLatency: " << ExpectedLatency << "c\n"
2193 << (IsResourceLimited ? " - Resource" : " - Latency")
2194 << " limited.\n";
2195 }
2196 #endif
2197
2198 //===----------------------------------------------------------------------===//
2199 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2200 //===----------------------------------------------------------------------===//
2201
2202 void GenericSchedulerBase::SchedCandidate::
initResourceDelta(const ScheduleDAGMI * DAG,const TargetSchedModel * SchedModel)2203 initResourceDelta(const ScheduleDAGMI *DAG,
2204 const TargetSchedModel *SchedModel) {
2205 if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2206 return;
2207
2208 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2209 for (TargetSchedModel::ProcResIter
2210 PI = SchedModel->getWriteProcResBegin(SC),
2211 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2212 if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2213 ResDelta.CritResources += PI->Cycles;
2214 if (PI->ProcResourceIdx == Policy.DemandResIdx)
2215 ResDelta.DemandedResources += PI->Cycles;
2216 }
2217 }
2218
2219 /// Set the CandPolicy given a scheduling zone given the current resources and
2220 /// latencies inside and outside the zone.
setPolicy(CandPolicy & Policy,bool IsPostRA,SchedBoundary & CurrZone,SchedBoundary * OtherZone)2221 void GenericSchedulerBase::setPolicy(CandPolicy &Policy,
2222 bool IsPostRA,
2223 SchedBoundary &CurrZone,
2224 SchedBoundary *OtherZone) {
2225 // Apply preemptive heuristics based on the total latency and resources
2226 // inside and outside this zone. Potential stalls should be considered before
2227 // following this policy.
2228
2229 // Compute remaining latency. We need this both to determine whether the
2230 // overall schedule has become latency-limited and whether the instructions
2231 // outside this zone are resource or latency limited.
2232 //
2233 // The "dependent" latency is updated incrementally during scheduling as the
2234 // max height/depth of scheduled nodes minus the cycles since it was
2235 // scheduled:
2236 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2237 //
2238 // The "independent" latency is the max ready queue depth:
2239 // ILat = max N.depth for N in Available|Pending
2240 //
2241 // RemainingLatency is the greater of independent and dependent latency.
2242 unsigned RemLatency = CurrZone.getDependentLatency();
2243 RemLatency = std::max(RemLatency,
2244 CurrZone.findMaxLatency(CurrZone.Available.elements()));
2245 RemLatency = std::max(RemLatency,
2246 CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2247
2248 // Compute the critical resource outside the zone.
2249 unsigned OtherCritIdx = 0;
2250 unsigned OtherCount =
2251 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2252
2253 bool OtherResLimited = false;
2254 if (SchedModel->hasInstrSchedModel()) {
2255 unsigned LFactor = SchedModel->getLatencyFactor();
2256 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
2257 }
2258 // Schedule aggressively for latency in PostRA mode. We don't check for
2259 // acyclic latency during PostRA, and highly out-of-order processors will
2260 // skip PostRA scheduling.
2261 if (!OtherResLimited) {
2262 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2263 Policy.ReduceLatency |= true;
2264 DEBUG(dbgs() << " " << CurrZone.Available.getName()
2265 << " RemainingLatency " << RemLatency << " + "
2266 << CurrZone.getCurrCycle() << "c > CritPath "
2267 << Rem.CriticalPath << "\n");
2268 }
2269 }
2270 // If the same resource is limiting inside and outside the zone, do nothing.
2271 if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2272 return;
2273
2274 DEBUG(
2275 if (CurrZone.isResourceLimited()) {
2276 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: "
2277 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
2278 << "\n";
2279 }
2280 if (OtherResLimited)
2281 dbgs() << " RemainingLimit: "
2282 << SchedModel->getResourceName(OtherCritIdx) << "\n";
2283 if (!CurrZone.isResourceLimited() && !OtherResLimited)
2284 dbgs() << " Latency limited both directions.\n");
2285
2286 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2287 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2288
2289 if (OtherResLimited)
2290 Policy.DemandResIdx = OtherCritIdx;
2291 }
2292
2293 #ifndef NDEBUG
getReasonStr(GenericSchedulerBase::CandReason Reason)2294 const char *GenericSchedulerBase::getReasonStr(
2295 GenericSchedulerBase::CandReason Reason) {
2296 switch (Reason) {
2297 case NoCand: return "NOCAND ";
2298 case PhysRegCopy: return "PREG-COPY";
2299 case RegExcess: return "REG-EXCESS";
2300 case RegCritical: return "REG-CRIT ";
2301 case Stall: return "STALL ";
2302 case Cluster: return "CLUSTER ";
2303 case Weak: return "WEAK ";
2304 case RegMax: return "REG-MAX ";
2305 case ResourceReduce: return "RES-REDUCE";
2306 case ResourceDemand: return "RES-DEMAND";
2307 case TopDepthReduce: return "TOP-DEPTH ";
2308 case TopPathReduce: return "TOP-PATH ";
2309 case BotHeightReduce:return "BOT-HEIGHT";
2310 case BotPathReduce: return "BOT-PATH ";
2311 case NextDefUse: return "DEF-USE ";
2312 case NodeOrder: return "ORDER ";
2313 };
2314 llvm_unreachable("Unknown reason!");
2315 }
2316
traceCandidate(const SchedCandidate & Cand)2317 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2318 PressureChange P;
2319 unsigned ResIdx = 0;
2320 unsigned Latency = 0;
2321 switch (Cand.Reason) {
2322 default:
2323 break;
2324 case RegExcess:
2325 P = Cand.RPDelta.Excess;
2326 break;
2327 case RegCritical:
2328 P = Cand.RPDelta.CriticalMax;
2329 break;
2330 case RegMax:
2331 P = Cand.RPDelta.CurrentMax;
2332 break;
2333 case ResourceReduce:
2334 ResIdx = Cand.Policy.ReduceResIdx;
2335 break;
2336 case ResourceDemand:
2337 ResIdx = Cand.Policy.DemandResIdx;
2338 break;
2339 case TopDepthReduce:
2340 Latency = Cand.SU->getDepth();
2341 break;
2342 case TopPathReduce:
2343 Latency = Cand.SU->getHeight();
2344 break;
2345 case BotHeightReduce:
2346 Latency = Cand.SU->getHeight();
2347 break;
2348 case BotPathReduce:
2349 Latency = Cand.SU->getDepth();
2350 break;
2351 }
2352 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2353 if (P.isValid())
2354 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2355 << ":" << P.getUnitInc() << " ";
2356 else
2357 dbgs() << " ";
2358 if (ResIdx)
2359 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2360 else
2361 dbgs() << " ";
2362 if (Latency)
2363 dbgs() << " " << Latency << " cycles ";
2364 else
2365 dbgs() << " ";
2366 dbgs() << '\n';
2367 }
2368 #endif
2369
2370 /// Return true if this heuristic determines order.
tryLess(int TryVal,int CandVal,GenericSchedulerBase::SchedCandidate & TryCand,GenericSchedulerBase::SchedCandidate & Cand,GenericSchedulerBase::CandReason Reason)2371 static bool tryLess(int TryVal, int CandVal,
2372 GenericSchedulerBase::SchedCandidate &TryCand,
2373 GenericSchedulerBase::SchedCandidate &Cand,
2374 GenericSchedulerBase::CandReason Reason) {
2375 if (TryVal < CandVal) {
2376 TryCand.Reason = Reason;
2377 return true;
2378 }
2379 if (TryVal > CandVal) {
2380 if (Cand.Reason > Reason)
2381 Cand.Reason = Reason;
2382 return true;
2383 }
2384 Cand.setRepeat(Reason);
2385 return false;
2386 }
2387
tryGreater(int TryVal,int CandVal,GenericSchedulerBase::SchedCandidate & TryCand,GenericSchedulerBase::SchedCandidate & Cand,GenericSchedulerBase::CandReason Reason)2388 static bool tryGreater(int TryVal, int CandVal,
2389 GenericSchedulerBase::SchedCandidate &TryCand,
2390 GenericSchedulerBase::SchedCandidate &Cand,
2391 GenericSchedulerBase::CandReason Reason) {
2392 if (TryVal > CandVal) {
2393 TryCand.Reason = Reason;
2394 return true;
2395 }
2396 if (TryVal < CandVal) {
2397 if (Cand.Reason > Reason)
2398 Cand.Reason = Reason;
2399 return true;
2400 }
2401 Cand.setRepeat(Reason);
2402 return false;
2403 }
2404
tryLatency(GenericSchedulerBase::SchedCandidate & TryCand,GenericSchedulerBase::SchedCandidate & Cand,SchedBoundary & Zone)2405 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2406 GenericSchedulerBase::SchedCandidate &Cand,
2407 SchedBoundary &Zone) {
2408 if (Zone.isTop()) {
2409 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2410 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2411 TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2412 return true;
2413 }
2414 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2415 TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2416 return true;
2417 }
2418 else {
2419 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2420 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2421 TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2422 return true;
2423 }
2424 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2425 TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2426 return true;
2427 }
2428 return false;
2429 }
2430
tracePick(const GenericSchedulerBase::SchedCandidate & Cand,bool IsTop)2431 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand,
2432 bool IsTop) {
2433 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2434 << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n');
2435 }
2436
initialize(ScheduleDAGMI * dag)2437 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2438 assert(dag->hasVRegLiveness() &&
2439 "(PreRA)GenericScheduler needs vreg liveness");
2440 DAG = static_cast<ScheduleDAGMILive*>(dag);
2441 SchedModel = DAG->getSchedModel();
2442 TRI = DAG->TRI;
2443
2444 Rem.init(DAG, SchedModel);
2445 Top.init(DAG, SchedModel, &Rem);
2446 Bot.init(DAG, SchedModel, &Rem);
2447
2448 // Initialize resource counts.
2449
2450 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2451 // are disabled, then these HazardRecs will be disabled.
2452 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2453 if (!Top.HazardRec) {
2454 Top.HazardRec =
2455 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2456 Itin, DAG);
2457 }
2458 if (!Bot.HazardRec) {
2459 Bot.HazardRec =
2460 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2461 Itin, DAG);
2462 }
2463 }
2464
2465 /// Initialize the per-region scheduling policy.
initPolicy(MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,unsigned NumRegionInstrs)2466 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2467 MachineBasicBlock::iterator End,
2468 unsigned NumRegionInstrs) {
2469 const MachineFunction &MF = *Begin->getParent()->getParent();
2470 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2471
2472 // Avoid setting up the register pressure tracker for small regions to save
2473 // compile time. As a rough heuristic, only track pressure when the number of
2474 // schedulable instructions exceeds half the integer register file.
2475 RegionPolicy.ShouldTrackPressure = true;
2476 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2477 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2478 if (TLI->isTypeLegal(LegalIntVT)) {
2479 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2480 TLI->getRegClassFor(LegalIntVT));
2481 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2482 }
2483 }
2484
2485 // For generic targets, we default to bottom-up, because it's simpler and more
2486 // compile-time optimizations have been implemented in that direction.
2487 RegionPolicy.OnlyBottomUp = true;
2488
2489 // Allow the subtarget to override default policy.
2490 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End,
2491 NumRegionInstrs);
2492
2493 // After subtarget overrides, apply command line options.
2494 if (!EnableRegPressure)
2495 RegionPolicy.ShouldTrackPressure = false;
2496
2497 // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2498 // e.g. -misched-bottomup=false allows scheduling in both directions.
2499 assert((!ForceTopDown || !ForceBottomUp) &&
2500 "-misched-topdown incompatible with -misched-bottomup");
2501 if (ForceBottomUp.getNumOccurrences() > 0) {
2502 RegionPolicy.OnlyBottomUp = ForceBottomUp;
2503 if (RegionPolicy.OnlyBottomUp)
2504 RegionPolicy.OnlyTopDown = false;
2505 }
2506 if (ForceTopDown.getNumOccurrences() > 0) {
2507 RegionPolicy.OnlyTopDown = ForceTopDown;
2508 if (RegionPolicy.OnlyTopDown)
2509 RegionPolicy.OnlyBottomUp = false;
2510 }
2511 }
2512
dumpPolicy()2513 void GenericScheduler::dumpPolicy() {
2514 dbgs() << "GenericScheduler RegionPolicy: "
2515 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2516 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2517 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2518 << "\n";
2519 }
2520
2521 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2522 /// critical path by more cycles than it takes to drain the instruction buffer.
2523 /// We estimate an upper bounds on in-flight instructions as:
2524 ///
2525 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2526 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2527 /// InFlightResources = InFlightIterations * LoopResources
2528 ///
2529 /// TODO: Check execution resources in addition to IssueCount.
checkAcyclicLatency()2530 void GenericScheduler::checkAcyclicLatency() {
2531 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2532 return;
2533
2534 // Scaled number of cycles per loop iteration.
2535 unsigned IterCount =
2536 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2537 Rem.RemIssueCount);
2538 // Scaled acyclic critical path.
2539 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2540 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2541 unsigned InFlightCount =
2542 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2543 unsigned BufferLimit =
2544 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2545
2546 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2547
2548 DEBUG(dbgs() << "IssueCycles="
2549 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2550 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2551 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
2552 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2553 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2554 if (Rem.IsAcyclicLatencyLimited)
2555 dbgs() << " ACYCLIC LATENCY LIMIT\n");
2556 }
2557
registerRoots()2558 void GenericScheduler::registerRoots() {
2559 Rem.CriticalPath = DAG->ExitSU.getDepth();
2560
2561 // Some roots may not feed into ExitSU. Check all of them in case.
2562 for (std::vector<SUnit*>::const_iterator
2563 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
2564 if ((*I)->getDepth() > Rem.CriticalPath)
2565 Rem.CriticalPath = (*I)->getDepth();
2566 }
2567 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2568 if (DumpCriticalPathLength) {
2569 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2570 }
2571
2572 if (EnableCyclicPath) {
2573 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2574 checkAcyclicLatency();
2575 }
2576 }
2577
tryPressure(const PressureChange & TryP,const PressureChange & CandP,GenericSchedulerBase::SchedCandidate & TryCand,GenericSchedulerBase::SchedCandidate & Cand,GenericSchedulerBase::CandReason Reason,const TargetRegisterInfo * TRI,const MachineFunction & MF)2578 static bool tryPressure(const PressureChange &TryP,
2579 const PressureChange &CandP,
2580 GenericSchedulerBase::SchedCandidate &TryCand,
2581 GenericSchedulerBase::SchedCandidate &Cand,
2582 GenericSchedulerBase::CandReason Reason,
2583 const TargetRegisterInfo *TRI,
2584 const MachineFunction &MF) {
2585 unsigned TryPSet = TryP.getPSetOrMax();
2586 unsigned CandPSet = CandP.getPSetOrMax();
2587 // If both candidates affect the same set, go with the smallest increase.
2588 if (TryPSet == CandPSet) {
2589 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2590 Reason);
2591 }
2592 // If one candidate decreases and the other increases, go with it.
2593 // Invalid candidates have UnitInc==0.
2594 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2595 Reason)) {
2596 return true;
2597 }
2598
2599 int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) :
2600 std::numeric_limits<int>::max();
2601
2602 int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) :
2603 std::numeric_limits<int>::max();
2604
2605 // If the candidates are decreasing pressure, reverse priority.
2606 if (TryP.getUnitInc() < 0)
2607 std::swap(TryRank, CandRank);
2608 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2609 }
2610
getWeakLeft(const SUnit * SU,bool isTop)2611 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2612 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2613 }
2614
2615 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2616 /// their physreg def/use.
2617 ///
2618 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2619 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2620 /// with the operation that produces or consumes the physreg. We'll do this when
2621 /// regalloc has support for parallel copies.
biasPhysRegCopy(const SUnit * SU,bool isTop)2622 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2623 const MachineInstr *MI = SU->getInstr();
2624 if (!MI->isCopy())
2625 return 0;
2626
2627 unsigned ScheduledOper = isTop ? 1 : 0;
2628 unsigned UnscheduledOper = isTop ? 0 : 1;
2629 // If we have already scheduled the physreg produce/consumer, immediately
2630 // schedule the copy.
2631 if (TargetRegisterInfo::isPhysicalRegister(
2632 MI->getOperand(ScheduledOper).getReg()))
2633 return 1;
2634 // If the physreg is at the boundary, defer it. Otherwise schedule it
2635 // immediately to free the dependent. We can hoist the copy later.
2636 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2637 if (TargetRegisterInfo::isPhysicalRegister(
2638 MI->getOperand(UnscheduledOper).getReg()))
2639 return AtBoundary ? -1 : 1;
2640 return 0;
2641 }
2642
2643 /// Apply a set of heursitics to a new candidate. Heuristics are currently
2644 /// hierarchical. This may be more efficient than a graduated cost model because
2645 /// we don't need to evaluate all aspects of the model for each node in the
2646 /// queue. But it's really done to make the heuristics easier to debug and
2647 /// statistically analyze.
2648 ///
2649 /// \param Cand provides the policy and current best candidate.
2650 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2651 /// \param Zone describes the scheduled zone that we are extending.
2652 /// \param RPTracker describes reg pressure within the scheduled zone.
2653 /// \param TempTracker is a scratch pressure tracker to reuse in queries.
tryCandidate(SchedCandidate & Cand,SchedCandidate & TryCand,SchedBoundary & Zone,const RegPressureTracker & RPTracker,RegPressureTracker & TempTracker)2654 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2655 SchedCandidate &TryCand,
2656 SchedBoundary &Zone,
2657 const RegPressureTracker &RPTracker,
2658 RegPressureTracker &TempTracker) {
2659
2660 if (DAG->isTrackingPressure()) {
2661 // Always initialize TryCand's RPDelta.
2662 if (Zone.isTop()) {
2663 TempTracker.getMaxDownwardPressureDelta(
2664 TryCand.SU->getInstr(),
2665 TryCand.RPDelta,
2666 DAG->getRegionCriticalPSets(),
2667 DAG->getRegPressure().MaxSetPressure);
2668 }
2669 else {
2670 if (VerifyScheduling) {
2671 TempTracker.getMaxUpwardPressureDelta(
2672 TryCand.SU->getInstr(),
2673 &DAG->getPressureDiff(TryCand.SU),
2674 TryCand.RPDelta,
2675 DAG->getRegionCriticalPSets(),
2676 DAG->getRegPressure().MaxSetPressure);
2677 }
2678 else {
2679 RPTracker.getUpwardPressureDelta(
2680 TryCand.SU->getInstr(),
2681 DAG->getPressureDiff(TryCand.SU),
2682 TryCand.RPDelta,
2683 DAG->getRegionCriticalPSets(),
2684 DAG->getRegPressure().MaxSetPressure);
2685 }
2686 }
2687 }
2688 DEBUG(if (TryCand.RPDelta.Excess.isValid())
2689 dbgs() << " Try SU(" << TryCand.SU->NodeNum << ") "
2690 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
2691 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
2692
2693 // Initialize the candidate if needed.
2694 if (!Cand.isValid()) {
2695 TryCand.Reason = NodeOrder;
2696 return;
2697 }
2698
2699 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
2700 biasPhysRegCopy(Cand.SU, Zone.isTop()),
2701 TryCand, Cand, PhysRegCopy))
2702 return;
2703
2704 // Avoid exceeding the target's limit.
2705 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2706 Cand.RPDelta.Excess,
2707 TryCand, Cand, RegExcess, TRI,
2708 DAG->MF))
2709 return;
2710
2711 // Avoid increasing the max critical pressure in the scheduled region.
2712 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2713 Cand.RPDelta.CriticalMax,
2714 TryCand, Cand, RegCritical, TRI,
2715 DAG->MF))
2716 return;
2717
2718 // For loops that are acyclic path limited, aggressively schedule for latency.
2719 // This can result in very long dependence chains scheduled in sequence, so
2720 // once every cycle (when CurrMOps == 0), switch to normal heuristics.
2721 if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps()
2722 && tryLatency(TryCand, Cand, Zone))
2723 return;
2724
2725 // Prioritize instructions that read unbuffered resources by stall cycles.
2726 if (tryLess(Zone.getLatencyStallCycles(TryCand.SU),
2727 Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2728 return;
2729
2730 // Keep clustered nodes together to encourage downstream peephole
2731 // optimizations which may reduce resource requirements.
2732 //
2733 // This is a best effort to set things up for a post-RA pass. Optimizations
2734 // like generating loads of multiple registers should ideally be done within
2735 // the scheduler pass by combining the loads during DAG postprocessing.
2736 const SUnit *NextClusterSU =
2737 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2738 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
2739 TryCand, Cand, Cluster))
2740 return;
2741
2742 // Weak edges are for clustering and other constraints.
2743 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
2744 getWeakLeft(Cand.SU, Zone.isTop()),
2745 TryCand, Cand, Weak)) {
2746 return;
2747 }
2748 // Avoid increasing the max pressure of the entire region.
2749 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2750 Cand.RPDelta.CurrentMax,
2751 TryCand, Cand, RegMax, TRI,
2752 DAG->MF))
2753 return;
2754
2755 // Avoid critical resource consumption and balance the schedule.
2756 TryCand.initResourceDelta(DAG, SchedModel);
2757 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2758 TryCand, Cand, ResourceReduce))
2759 return;
2760 if (tryGreater(TryCand.ResDelta.DemandedResources,
2761 Cand.ResDelta.DemandedResources,
2762 TryCand, Cand, ResourceDemand))
2763 return;
2764
2765 // Avoid serializing long latency dependence chains.
2766 // For acyclic path limited loops, latency was already checked above.
2767 if (!RegionPolicy.DisableLatencyHeuristic && Cand.Policy.ReduceLatency &&
2768 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) {
2769 return;
2770 }
2771
2772 // Prefer immediate defs/users of the last scheduled instruction. This is a
2773 // local pressure avoidance strategy that also makes the machine code
2774 // readable.
2775 if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU),
2776 TryCand, Cand, NextDefUse))
2777 return;
2778
2779 // Fall through to original instruction order.
2780 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2781 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2782 TryCand.Reason = NodeOrder;
2783 }
2784 }
2785
2786 /// Pick the best candidate from the queue.
2787 ///
2788 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2789 /// DAG building. To adjust for the current scheduling location we need to
2790 /// maintain the number of vreg uses remaining to be top-scheduled.
pickNodeFromQueue(SchedBoundary & Zone,const RegPressureTracker & RPTracker,SchedCandidate & Cand)2791 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2792 const RegPressureTracker &RPTracker,
2793 SchedCandidate &Cand) {
2794 ReadyQueue &Q = Zone.Available;
2795
2796 DEBUG(Q.dump());
2797
2798 // getMaxPressureDelta temporarily modifies the tracker.
2799 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2800
2801 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2802
2803 SchedCandidate TryCand(Cand.Policy);
2804 TryCand.SU = *I;
2805 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
2806 if (TryCand.Reason != NoCand) {
2807 // Initialize resource delta if needed in case future heuristics query it.
2808 if (TryCand.ResDelta == SchedResourceDelta())
2809 TryCand.initResourceDelta(DAG, SchedModel);
2810 Cand.setBest(TryCand);
2811 DEBUG(traceCandidate(Cand));
2812 }
2813 }
2814 }
2815
2816 /// Pick the best candidate node from either the top or bottom queue.
pickNodeBidirectional(bool & IsTopNode)2817 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
2818 // Schedule as far as possible in the direction of no choice. This is most
2819 // efficient, but also provides the best heuristics for CriticalPSets.
2820 if (SUnit *SU = Bot.pickOnlyChoice()) {
2821 IsTopNode = false;
2822 DEBUG(dbgs() << "Pick Bot ONLY1\n");
2823 return SU;
2824 }
2825 if (SUnit *SU = Top.pickOnlyChoice()) {
2826 IsTopNode = true;
2827 DEBUG(dbgs() << "Pick Top ONLY1\n");
2828 return SU;
2829 }
2830 CandPolicy NoPolicy;
2831 SchedCandidate BotCand(NoPolicy);
2832 SchedCandidate TopCand(NoPolicy);
2833 // Set the bottom-up policy based on the state of the current bottom zone and
2834 // the instructions outside the zone, including the top zone.
2835 setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top);
2836 // Set the top-down policy based on the state of the current top zone and
2837 // the instructions outside the zone, including the bottom zone.
2838 setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot);
2839
2840 // Prefer bottom scheduling when heuristics are silent.
2841 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2842 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2843
2844 // If either Q has a single candidate that provides the least increase in
2845 // Excess pressure, we can immediately schedule from that Q.
2846 //
2847 // RegionCriticalPSets summarizes the pressure within the scheduled region and
2848 // affects picking from either Q. If scheduling in one direction must
2849 // increase pressure for one of the excess PSets, then schedule in that
2850 // direction first to provide more freedom in the other direction.
2851 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
2852 || (BotCand.Reason == RegCritical
2853 && !BotCand.isRepeat(RegCritical)))
2854 {
2855 IsTopNode = false;
2856 tracePick(BotCand, IsTopNode);
2857 return BotCand.SU;
2858 }
2859 // Check if the top Q has a better candidate.
2860 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2861 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2862
2863 // Choose the queue with the most important (lowest enum) reason.
2864 if (TopCand.Reason < BotCand.Reason) {
2865 IsTopNode = true;
2866 tracePick(TopCand, IsTopNode);
2867 return TopCand.SU;
2868 }
2869 // Otherwise prefer the bottom candidate, in node order if all else failed.
2870 IsTopNode = false;
2871 tracePick(BotCand, IsTopNode);
2872 return BotCand.SU;
2873 }
2874
2875 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
pickNode(bool & IsTopNode)2876 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
2877 if (DAG->top() == DAG->bottom()) {
2878 assert(Top.Available.empty() && Top.Pending.empty() &&
2879 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2880 return nullptr;
2881 }
2882 SUnit *SU;
2883 do {
2884 if (RegionPolicy.OnlyTopDown) {
2885 SU = Top.pickOnlyChoice();
2886 if (!SU) {
2887 CandPolicy NoPolicy;
2888 SchedCandidate TopCand(NoPolicy);
2889 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2890 assert(TopCand.Reason != NoCand && "failed to find a candidate");
2891 tracePick(TopCand, true);
2892 SU = TopCand.SU;
2893 }
2894 IsTopNode = true;
2895 }
2896 else if (RegionPolicy.OnlyBottomUp) {
2897 SU = Bot.pickOnlyChoice();
2898 if (!SU) {
2899 CandPolicy NoPolicy;
2900 SchedCandidate BotCand(NoPolicy);
2901 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2902 assert(BotCand.Reason != NoCand && "failed to find a candidate");
2903 tracePick(BotCand, false);
2904 SU = BotCand.SU;
2905 }
2906 IsTopNode = false;
2907 }
2908 else {
2909 SU = pickNodeBidirectional(IsTopNode);
2910 }
2911 } while (SU->isScheduled);
2912
2913 if (SU->isTopReady())
2914 Top.removeReady(SU);
2915 if (SU->isBottomReady())
2916 Bot.removeReady(SU);
2917
2918 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
2919 return SU;
2920 }
2921
reschedulePhysRegCopies(SUnit * SU,bool isTop)2922 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
2923
2924 MachineBasicBlock::iterator InsertPos = SU->getInstr();
2925 if (!isTop)
2926 ++InsertPos;
2927 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
2928
2929 // Find already scheduled copies with a single physreg dependence and move
2930 // them just above the scheduled instruction.
2931 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
2932 I != E; ++I) {
2933 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
2934 continue;
2935 SUnit *DepSU = I->getSUnit();
2936 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
2937 continue;
2938 MachineInstr *Copy = DepSU->getInstr();
2939 if (!Copy->isCopy())
2940 continue;
2941 DEBUG(dbgs() << " Rescheduling physreg copy ";
2942 I->getSUnit()->dump(DAG));
2943 DAG->moveInstruction(Copy, InsertPos);
2944 }
2945 }
2946
2947 /// Update the scheduler's state after scheduling a node. This is the same node
2948 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
2949 /// update it's state based on the current cycle before MachineSchedStrategy
2950 /// does.
2951 ///
2952 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
2953 /// them here. See comments in biasPhysRegCopy.
schedNode(SUnit * SU,bool IsTopNode)2954 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
2955 if (IsTopNode) {
2956 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
2957 Top.bumpNode(SU);
2958 if (SU->hasPhysRegUses)
2959 reschedulePhysRegCopies(SU, true);
2960 }
2961 else {
2962 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
2963 Bot.bumpNode(SU);
2964 if (SU->hasPhysRegDefs)
2965 reschedulePhysRegCopies(SU, false);
2966 }
2967 }
2968
2969 /// Create the standard converging machine scheduler. This will be used as the
2970 /// default scheduler if the target does not set a default.
createGenericSchedLive(MachineSchedContext * C)2971 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
2972 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
2973 // Register DAG post-processors.
2974 //
2975 // FIXME: extend the mutation API to allow earlier mutations to instantiate
2976 // data and pass it to later mutations. Have a single mutation that gathers
2977 // the interesting nodes in one pass.
2978 DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI));
2979 if (EnableLoadCluster && DAG->TII->enableClusterLoads())
2980 DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI));
2981 if (EnableMacroFusion)
2982 DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI));
2983 return DAG;
2984 }
2985
2986 static MachineSchedRegistry
2987 GenericSchedRegistry("converge", "Standard converging scheduler.",
2988 createGenericSchedLive);
2989
2990 //===----------------------------------------------------------------------===//
2991 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
2992 //===----------------------------------------------------------------------===//
2993
initialize(ScheduleDAGMI * Dag)2994 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
2995 DAG = Dag;
2996 SchedModel = DAG->getSchedModel();
2997 TRI = DAG->TRI;
2998
2999 Rem.init(DAG, SchedModel);
3000 Top.init(DAG, SchedModel, &Rem);
3001 BotRoots.clear();
3002
3003 // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
3004 // or are disabled, then these HazardRecs will be disabled.
3005 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
3006 if (!Top.HazardRec) {
3007 Top.HazardRec =
3008 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
3009 Itin, DAG);
3010 }
3011 }
3012
3013
registerRoots()3014 void PostGenericScheduler::registerRoots() {
3015 Rem.CriticalPath = DAG->ExitSU.getDepth();
3016
3017 // Some roots may not feed into ExitSU. Check all of them in case.
3018 for (SmallVectorImpl<SUnit*>::const_iterator
3019 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
3020 if ((*I)->getDepth() > Rem.CriticalPath)
3021 Rem.CriticalPath = (*I)->getDepth();
3022 }
3023 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
3024 if (DumpCriticalPathLength) {
3025 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
3026 }
3027 }
3028
3029 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
3030 ///
3031 /// \param Cand provides the policy and current best candidate.
3032 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
tryCandidate(SchedCandidate & Cand,SchedCandidate & TryCand)3033 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
3034 SchedCandidate &TryCand) {
3035
3036 // Initialize the candidate if needed.
3037 if (!Cand.isValid()) {
3038 TryCand.Reason = NodeOrder;
3039 return;
3040 }
3041
3042 // Prioritize instructions that read unbuffered resources by stall cycles.
3043 if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3044 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3045 return;
3046
3047 // Avoid critical resource consumption and balance the schedule.
3048 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3049 TryCand, Cand, ResourceReduce))
3050 return;
3051 if (tryGreater(TryCand.ResDelta.DemandedResources,
3052 Cand.ResDelta.DemandedResources,
3053 TryCand, Cand, ResourceDemand))
3054 return;
3055
3056 // Avoid serializing long latency dependence chains.
3057 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3058 return;
3059 }
3060
3061 // Fall through to original instruction order.
3062 if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3063 TryCand.Reason = NodeOrder;
3064 }
3065
pickNodeFromQueue(SchedCandidate & Cand)3066 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3067 ReadyQueue &Q = Top.Available;
3068
3069 DEBUG(Q.dump());
3070
3071 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
3072 SchedCandidate TryCand(Cand.Policy);
3073 TryCand.SU = *I;
3074 TryCand.initResourceDelta(DAG, SchedModel);
3075 tryCandidate(Cand, TryCand);
3076 if (TryCand.Reason != NoCand) {
3077 Cand.setBest(TryCand);
3078 DEBUG(traceCandidate(Cand));
3079 }
3080 }
3081 }
3082
3083 /// Pick the next node to schedule.
pickNode(bool & IsTopNode)3084 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3085 if (DAG->top() == DAG->bottom()) {
3086 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3087 return nullptr;
3088 }
3089 SUnit *SU;
3090 do {
3091 SU = Top.pickOnlyChoice();
3092 if (!SU) {
3093 CandPolicy NoPolicy;
3094 SchedCandidate TopCand(NoPolicy);
3095 // Set the top-down policy based on the state of the current top zone and
3096 // the instructions outside the zone, including the bottom zone.
3097 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3098 pickNodeFromQueue(TopCand);
3099 assert(TopCand.Reason != NoCand && "failed to find a candidate");
3100 tracePick(TopCand, true);
3101 SU = TopCand.SU;
3102 }
3103 } while (SU->isScheduled);
3104
3105 IsTopNode = true;
3106 Top.removeReady(SU);
3107
3108 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3109 return SU;
3110 }
3111
3112 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3113 /// scheduled/remaining flags in the DAG nodes.
schedNode(SUnit * SU,bool IsTopNode)3114 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3115 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3116 Top.bumpNode(SU);
3117 }
3118
3119 /// Create a generic scheduler with no vreg liveness or DAG mutation passes.
createGenericSchedPostRA(MachineSchedContext * C)3120 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
3121 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true);
3122 }
3123
3124 //===----------------------------------------------------------------------===//
3125 // ILP Scheduler. Currently for experimental analysis of heuristics.
3126 //===----------------------------------------------------------------------===//
3127
3128 namespace {
3129 /// \brief Order nodes by the ILP metric.
3130 struct ILPOrder {
3131 const SchedDFSResult *DFSResult;
3132 const BitVector *ScheduledTrees;
3133 bool MaximizeILP;
3134
ILPOrder__anond1ea022a0511::ILPOrder3135 ILPOrder(bool MaxILP)
3136 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
3137
3138 /// \brief Apply a less-than relation on node priority.
3139 ///
3140 /// (Return true if A comes after B in the Q.)
operator ()__anond1ea022a0511::ILPOrder3141 bool operator()(const SUnit *A, const SUnit *B) const {
3142 unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3143 unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3144 if (SchedTreeA != SchedTreeB) {
3145 // Unscheduled trees have lower priority.
3146 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3147 return ScheduledTrees->test(SchedTreeB);
3148
3149 // Trees with shallower connections have have lower priority.
3150 if (DFSResult->getSubtreeLevel(SchedTreeA)
3151 != DFSResult->getSubtreeLevel(SchedTreeB)) {
3152 return DFSResult->getSubtreeLevel(SchedTreeA)
3153 < DFSResult->getSubtreeLevel(SchedTreeB);
3154 }
3155 }
3156 if (MaximizeILP)
3157 return DFSResult->getILP(A) < DFSResult->getILP(B);
3158 else
3159 return DFSResult->getILP(A) > DFSResult->getILP(B);
3160 }
3161 };
3162
3163 /// \brief Schedule based on the ILP metric.
3164 class ILPScheduler : public MachineSchedStrategy {
3165 ScheduleDAGMILive *DAG;
3166 ILPOrder Cmp;
3167
3168 std::vector<SUnit*> ReadyQ;
3169 public:
ILPScheduler(bool MaximizeILP)3170 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
3171
initialize(ScheduleDAGMI * dag)3172 void initialize(ScheduleDAGMI *dag) override {
3173 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3174 DAG = static_cast<ScheduleDAGMILive*>(dag);
3175 DAG->computeDFSResult();
3176 Cmp.DFSResult = DAG->getDFSResult();
3177 Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3178 ReadyQ.clear();
3179 }
3180
registerRoots()3181 void registerRoots() override {
3182 // Restore the heap in ReadyQ with the updated DFS results.
3183 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3184 }
3185
3186 /// Implement MachineSchedStrategy interface.
3187 /// -----------------------------------------
3188
3189 /// Callback to select the highest priority node from the ready Q.
pickNode(bool & IsTopNode)3190 SUnit *pickNode(bool &IsTopNode) override {
3191 if (ReadyQ.empty()) return nullptr;
3192 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3193 SUnit *SU = ReadyQ.back();
3194 ReadyQ.pop_back();
3195 IsTopNode = false;
3196 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
3197 << " ILP: " << DAG->getDFSResult()->getILP(SU)
3198 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
3199 << DAG->getDFSResult()->getSubtreeLevel(
3200 DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
3201 << "Scheduling " << *SU->getInstr());
3202 return SU;
3203 }
3204
3205 /// \brief Scheduler callback to notify that a new subtree is scheduled.
scheduleTree(unsigned SubtreeID)3206 void scheduleTree(unsigned SubtreeID) override {
3207 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3208 }
3209
3210 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3211 /// DFSResults, and resort the priority Q.
schedNode(SUnit * SU,bool IsTopNode)3212 void schedNode(SUnit *SU, bool IsTopNode) override {
3213 assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3214 }
3215
releaseTopNode(SUnit *)3216 void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3217
releaseBottomNode(SUnit * SU)3218 void releaseBottomNode(SUnit *SU) override {
3219 ReadyQ.push_back(SU);
3220 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3221 }
3222 };
3223 } // namespace
3224
createILPMaxScheduler(MachineSchedContext * C)3225 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3226 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
3227 }
createILPMinScheduler(MachineSchedContext * C)3228 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3229 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
3230 }
3231 static MachineSchedRegistry ILPMaxRegistry(
3232 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3233 static MachineSchedRegistry ILPMinRegistry(
3234 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3235
3236 //===----------------------------------------------------------------------===//
3237 // Machine Instruction Shuffler for Correctness Testing
3238 //===----------------------------------------------------------------------===//
3239
3240 #ifndef NDEBUG
3241 namespace {
3242 /// Apply a less-than relation on the node order, which corresponds to the
3243 /// instruction order prior to scheduling. IsReverse implements greater-than.
3244 template<bool IsReverse>
3245 struct SUnitOrder {
operator ()__anond1ea022a0611::SUnitOrder3246 bool operator()(SUnit *A, SUnit *B) const {
3247 if (IsReverse)
3248 return A->NodeNum > B->NodeNum;
3249 else
3250 return A->NodeNum < B->NodeNum;
3251 }
3252 };
3253
3254 /// Reorder instructions as much as possible.
3255 class InstructionShuffler : public MachineSchedStrategy {
3256 bool IsAlternating;
3257 bool IsTopDown;
3258
3259 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3260 // gives nodes with a higher number higher priority causing the latest
3261 // instructions to be scheduled first.
3262 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
3263 TopQ;
3264 // When scheduling bottom-up, use greater-than as the queue priority.
3265 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
3266 BottomQ;
3267 public:
InstructionShuffler(bool alternate,bool topdown)3268 InstructionShuffler(bool alternate, bool topdown)
3269 : IsAlternating(alternate), IsTopDown(topdown) {}
3270
initialize(ScheduleDAGMI *)3271 void initialize(ScheduleDAGMI*) override {
3272 TopQ.clear();
3273 BottomQ.clear();
3274 }
3275
3276 /// Implement MachineSchedStrategy interface.
3277 /// -----------------------------------------
3278
pickNode(bool & IsTopNode)3279 SUnit *pickNode(bool &IsTopNode) override {
3280 SUnit *SU;
3281 if (IsTopDown) {
3282 do {
3283 if (TopQ.empty()) return nullptr;
3284 SU = TopQ.top();
3285 TopQ.pop();
3286 } while (SU->isScheduled);
3287 IsTopNode = true;
3288 }
3289 else {
3290 do {
3291 if (BottomQ.empty()) return nullptr;
3292 SU = BottomQ.top();
3293 BottomQ.pop();
3294 } while (SU->isScheduled);
3295 IsTopNode = false;
3296 }
3297 if (IsAlternating)
3298 IsTopDown = !IsTopDown;
3299 return SU;
3300 }
3301
schedNode(SUnit * SU,bool IsTopNode)3302 void schedNode(SUnit *SU, bool IsTopNode) override {}
3303
releaseTopNode(SUnit * SU)3304 void releaseTopNode(SUnit *SU) override {
3305 TopQ.push(SU);
3306 }
releaseBottomNode(SUnit * SU)3307 void releaseBottomNode(SUnit *SU) override {
3308 BottomQ.push(SU);
3309 }
3310 };
3311 } // namespace
3312
createInstructionShuffler(MachineSchedContext * C)3313 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3314 bool Alternate = !ForceTopDown && !ForceBottomUp;
3315 bool TopDown = !ForceBottomUp;
3316 assert((TopDown || !ForceTopDown) &&
3317 "-misched-topdown incompatible with -misched-bottomup");
3318 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
3319 }
3320 static MachineSchedRegistry ShufflerRegistry(
3321 "shuffle", "Shuffle machine instructions alternating directions",
3322 createInstructionShuffler);
3323 #endif // !NDEBUG
3324
3325 //===----------------------------------------------------------------------===//
3326 // GraphWriter support for ScheduleDAGMILive.
3327 //===----------------------------------------------------------------------===//
3328
3329 #ifndef NDEBUG
3330 namespace llvm {
3331
3332 template<> struct GraphTraits<
3333 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3334
3335 template<>
3336 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3337
DOTGraphTraitsllvm::DOTGraphTraits3338 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3339
getGraphNamellvm::DOTGraphTraits3340 static std::string getGraphName(const ScheduleDAG *G) {
3341 return G->MF.getName();
3342 }
3343
renderGraphFromBottomUpllvm::DOTGraphTraits3344 static bool renderGraphFromBottomUp() {
3345 return true;
3346 }
3347
isNodeHiddenllvm::DOTGraphTraits3348 static bool isNodeHidden(const SUnit *Node) {
3349 if (ViewMISchedCutoff == 0)
3350 return false;
3351 return (Node->Preds.size() > ViewMISchedCutoff
3352 || Node->Succs.size() > ViewMISchedCutoff);
3353 }
3354
3355 /// If you want to override the dot attributes printed for a particular
3356 /// edge, override this method.
getEdgeAttributesllvm::DOTGraphTraits3357 static std::string getEdgeAttributes(const SUnit *Node,
3358 SUnitIterator EI,
3359 const ScheduleDAG *Graph) {
3360 if (EI.isArtificialDep())
3361 return "color=cyan,style=dashed";
3362 if (EI.isCtrlDep())
3363 return "color=blue,style=dashed";
3364 return "";
3365 }
3366
getNodeLabelllvm::DOTGraphTraits3367 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3368 std::string Str;
3369 raw_string_ostream SS(Str);
3370 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3371 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3372 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3373 SS << "SU:" << SU->NodeNum;
3374 if (DFS)
3375 SS << " I:" << DFS->getNumInstrs(SU);
3376 return SS.str();
3377 }
getNodeDescriptionllvm::DOTGraphTraits3378 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3379 return G->getGraphNodeLabel(SU);
3380 }
3381
getNodeAttributesllvm::DOTGraphTraits3382 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3383 std::string Str("shape=Mrecord");
3384 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3385 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3386 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3387 if (DFS) {
3388 Str += ",style=filled,fillcolor=\"#";
3389 Str += DOT::getColorString(DFS->getSubtreeID(N));
3390 Str += '"';
3391 }
3392 return Str;
3393 }
3394 };
3395 } // namespace llvm
3396 #endif // NDEBUG
3397
3398 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3399 /// rendered using 'dot'.
3400 ///
viewGraph(const Twine & Name,const Twine & Title)3401 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3402 #ifndef NDEBUG
3403 ViewGraph(this, Name, false, Title);
3404 #else
3405 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3406 << "systems with Graphviz or gv!\n";
3407 #endif // NDEBUG
3408 }
3409
3410 /// Out-of-line implementation with no arguments is handy for gdb.
viewGraph()3411 void ScheduleDAGMI::viewGraph() {
3412 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3413 }
3414