1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RAGreedy function pass for register allocation in
11 // optimized builds.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/Passes.h"
16 #include "AllocationOrder.h"
17 #include "InterferenceCache.h"
18 #include "LiveDebugVariables.h"
19 #include "RegAllocBase.h"
20 #include "SpillPlacement.h"
21 #include "Spiller.h"
22 #include "SplitKit.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/CalcSpillWeights.h"
26 #include "llvm/CodeGen/EdgeBundles.h"
27 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
28 #include "llvm/CodeGen/LiveRangeEdit.h"
29 #include "llvm/CodeGen/LiveRegMatrix.h"
30 #include "llvm/CodeGen/LiveStackAnalysis.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineLoopInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/RegAllocRegistry.h"
37 #include "llvm/CodeGen/RegisterClassInfo.h"
38 #include "llvm/CodeGen/VirtRegMap.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/PassAnalysisSupport.h"
41 #include "llvm/Support/BranchProbability.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Timer.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetSubtargetInfo.h"
48 #include <queue>
49
50 using namespace llvm;
51
52 #define DEBUG_TYPE "regalloc"
53
54 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
55 STATISTIC(NumLocalSplits, "Number of split local live ranges");
56 STATISTIC(NumEvicted, "Number of interferences evicted");
57
58 static cl::opt<SplitEditor::ComplementSpillMode>
59 SplitSpillMode("split-spill-mode", cl::Hidden,
60 cl::desc("Spill mode for splitting live ranges"),
61 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
62 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
63 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
64 clEnumValEnd),
65 cl::init(SplitEditor::SM_Partition));
66
67 static cl::opt<unsigned>
68 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
69 cl::desc("Last chance recoloring max depth"),
70 cl::init(5));
71
72 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
73 "lcr-max-interf", cl::Hidden,
74 cl::desc("Last chance recoloring maximum number of considered"
75 " interference at a time"),
76 cl::init(8));
77
78 static cl::opt<bool>
79 ExhaustiveSearch("exhaustive-register-search", cl::NotHidden,
80 cl::desc("Exhaustive Search for registers bypassing the depth "
81 "and interference cutoffs of last chance recoloring"));
82
83 static cl::opt<bool> EnableLocalReassignment(
84 "enable-local-reassign", cl::Hidden,
85 cl::desc("Local reassignment can yield better allocation decisions, but "
86 "may be compile time intensive"),
87 cl::init(false));
88
89 static cl::opt<bool> EnableDeferredSpilling(
90 "enable-deferred-spilling", cl::Hidden,
91 cl::desc("Instead of spilling a variable right away, defer the actual "
92 "code insertion to the end of the allocation. That way the "
93 "allocator might still find a suitable coloring for this "
94 "variable because of other evicted variables."),
95 cl::init(false));
96
97 // FIXME: Find a good default for this flag and remove the flag.
98 static cl::opt<unsigned>
99 CSRFirstTimeCost("regalloc-csr-first-time-cost",
100 cl::desc("Cost for first time use of callee-saved register."),
101 cl::init(0), cl::Hidden);
102
103 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
104 createGreedyRegisterAllocator);
105
106 namespace {
107 class RAGreedy : public MachineFunctionPass,
108 public RegAllocBase,
109 private LiveRangeEdit::Delegate {
110 // Convenient shortcuts.
111 typedef std::priority_queue<std::pair<unsigned, unsigned> > PQueue;
112 typedef SmallPtrSet<LiveInterval *, 4> SmallLISet;
113 typedef SmallSet<unsigned, 16> SmallVirtRegSet;
114
115 // context
116 MachineFunction *MF;
117
118 // Shortcuts to some useful interface.
119 const TargetInstrInfo *TII;
120 const TargetRegisterInfo *TRI;
121 RegisterClassInfo RCI;
122
123 // analyses
124 SlotIndexes *Indexes;
125 MachineBlockFrequencyInfo *MBFI;
126 MachineDominatorTree *DomTree;
127 MachineLoopInfo *Loops;
128 EdgeBundles *Bundles;
129 SpillPlacement *SpillPlacer;
130 LiveDebugVariables *DebugVars;
131
132 // state
133 std::unique_ptr<Spiller> SpillerInstance;
134 PQueue Queue;
135 unsigned NextCascade;
136
137 // Live ranges pass through a number of stages as we try to allocate them.
138 // Some of the stages may also create new live ranges:
139 //
140 // - Region splitting.
141 // - Per-block splitting.
142 // - Local splitting.
143 // - Spilling.
144 //
145 // Ranges produced by one of the stages skip the previous stages when they are
146 // dequeued. This improves performance because we can skip interference checks
147 // that are unlikely to give any results. It also guarantees that the live
148 // range splitting algorithm terminates, something that is otherwise hard to
149 // ensure.
150 enum LiveRangeStage {
151 /// Newly created live range that has never been queued.
152 RS_New,
153
154 /// Only attempt assignment and eviction. Then requeue as RS_Split.
155 RS_Assign,
156
157 /// Attempt live range splitting if assignment is impossible.
158 RS_Split,
159
160 /// Attempt more aggressive live range splitting that is guaranteed to make
161 /// progress. This is used for split products that may not be making
162 /// progress.
163 RS_Split2,
164
165 /// Live range will be spilled. No more splitting will be attempted.
166 RS_Spill,
167
168
169 /// Live range is in memory. Because of other evictions, it might get moved
170 /// in a register in the end.
171 RS_Memory,
172
173 /// There is nothing more we can do to this live range. Abort compilation
174 /// if it can't be assigned.
175 RS_Done
176 };
177
178 // Enum CutOffStage to keep a track whether the register allocation failed
179 // because of the cutoffs encountered in last chance recoloring.
180 // Note: This is used as bitmask. New value should be next power of 2.
181 enum CutOffStage {
182 // No cutoffs encountered
183 CO_None = 0,
184
185 // lcr-max-depth cutoff encountered
186 CO_Depth = 1,
187
188 // lcr-max-interf cutoff encountered
189 CO_Interf = 2
190 };
191
192 uint8_t CutOffInfo;
193
194 #ifndef NDEBUG
195 static const char *const StageName[];
196 #endif
197
198 // RegInfo - Keep additional information about each live range.
199 struct RegInfo {
200 LiveRangeStage Stage;
201
202 // Cascade - Eviction loop prevention. See canEvictInterference().
203 unsigned Cascade;
204
RegInfo__anon4e4d313f0111::RAGreedy::RegInfo205 RegInfo() : Stage(RS_New), Cascade(0) {}
206 };
207
208 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
209
getStage(const LiveInterval & VirtReg) const210 LiveRangeStage getStage(const LiveInterval &VirtReg) const {
211 return ExtraRegInfo[VirtReg.reg].Stage;
212 }
213
setStage(const LiveInterval & VirtReg,LiveRangeStage Stage)214 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
215 ExtraRegInfo.resize(MRI->getNumVirtRegs());
216 ExtraRegInfo[VirtReg.reg].Stage = Stage;
217 }
218
219 template<typename Iterator>
setStage(Iterator Begin,Iterator End,LiveRangeStage NewStage)220 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
221 ExtraRegInfo.resize(MRI->getNumVirtRegs());
222 for (;Begin != End; ++Begin) {
223 unsigned Reg = *Begin;
224 if (ExtraRegInfo[Reg].Stage == RS_New)
225 ExtraRegInfo[Reg].Stage = NewStage;
226 }
227 }
228
229 /// Cost of evicting interference.
230 struct EvictionCost {
231 unsigned BrokenHints; ///< Total number of broken hints.
232 float MaxWeight; ///< Maximum spill weight evicted.
233
EvictionCost__anon4e4d313f0111::RAGreedy::EvictionCost234 EvictionCost(): BrokenHints(0), MaxWeight(0) {}
235
isMax__anon4e4d313f0111::RAGreedy::EvictionCost236 bool isMax() const { return BrokenHints == ~0u; }
237
setMax__anon4e4d313f0111::RAGreedy::EvictionCost238 void setMax() { BrokenHints = ~0u; }
239
setBrokenHints__anon4e4d313f0111::RAGreedy::EvictionCost240 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
241
operator <__anon4e4d313f0111::RAGreedy::EvictionCost242 bool operator<(const EvictionCost &O) const {
243 return std::tie(BrokenHints, MaxWeight) <
244 std::tie(O.BrokenHints, O.MaxWeight);
245 }
246 };
247
248 // splitting state.
249 std::unique_ptr<SplitAnalysis> SA;
250 std::unique_ptr<SplitEditor> SE;
251
252 /// Cached per-block interference maps
253 InterferenceCache IntfCache;
254
255 /// All basic blocks where the current register has uses.
256 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
257
258 /// Global live range splitting candidate info.
259 struct GlobalSplitCandidate {
260 // Register intended for assignment, or 0.
261 unsigned PhysReg;
262
263 // SplitKit interval index for this candidate.
264 unsigned IntvIdx;
265
266 // Interference for PhysReg.
267 InterferenceCache::Cursor Intf;
268
269 // Bundles where this candidate should be live.
270 BitVector LiveBundles;
271 SmallVector<unsigned, 8> ActiveBlocks;
272
reset__anon4e4d313f0111::RAGreedy::GlobalSplitCandidate273 void reset(InterferenceCache &Cache, unsigned Reg) {
274 PhysReg = Reg;
275 IntvIdx = 0;
276 Intf.setPhysReg(Cache, Reg);
277 LiveBundles.clear();
278 ActiveBlocks.clear();
279 }
280
281 // Set B[i] = C for every live bundle where B[i] was NoCand.
getBundles__anon4e4d313f0111::RAGreedy::GlobalSplitCandidate282 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
283 unsigned Count = 0;
284 for (int i = LiveBundles.find_first(); i >= 0;
285 i = LiveBundles.find_next(i))
286 if (B[i] == NoCand) {
287 B[i] = C;
288 Count++;
289 }
290 return Count;
291 }
292 };
293
294 /// Candidate info for each PhysReg in AllocationOrder.
295 /// This vector never shrinks, but grows to the size of the largest register
296 /// class.
297 SmallVector<GlobalSplitCandidate, 32> GlobalCand;
298
299 enum : unsigned { NoCand = ~0u };
300
301 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
302 /// NoCand which indicates the stack interval.
303 SmallVector<unsigned, 32> BundleCand;
304
305 /// Callee-save register cost, calculated once per machine function.
306 BlockFrequency CSRCost;
307
308 /// Run or not the local reassignment heuristic. This information is
309 /// obtained from the TargetSubtargetInfo.
310 bool EnableLocalReassign;
311
312 /// Set of broken hints that may be reconciled later because of eviction.
313 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
314
315 public:
316 RAGreedy();
317
318 /// Return the pass name.
getPassName() const319 const char* getPassName() const override {
320 return "Greedy Register Allocator";
321 }
322
323 /// RAGreedy analysis usage.
324 void getAnalysisUsage(AnalysisUsage &AU) const override;
325 void releaseMemory() override;
spiller()326 Spiller &spiller() override { return *SpillerInstance; }
327 void enqueue(LiveInterval *LI) override;
328 LiveInterval *dequeue() override;
329 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
330 void aboutToRemoveInterval(LiveInterval &) override;
331
332 /// Perform register allocation.
333 bool runOnMachineFunction(MachineFunction &mf) override;
334
335 static char ID;
336
337 private:
338 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
339 SmallVirtRegSet &, unsigned = 0);
340
341 bool LRE_CanEraseVirtReg(unsigned) override;
342 void LRE_WillShrinkVirtReg(unsigned) override;
343 void LRE_DidCloneVirtReg(unsigned, unsigned) override;
344 void enqueue(PQueue &CurQueue, LiveInterval *LI);
345 LiveInterval *dequeue(PQueue &CurQueue);
346
347 BlockFrequency calcSpillCost();
348 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
349 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
350 void growRegion(GlobalSplitCandidate &Cand);
351 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&);
352 bool calcCompactRegion(GlobalSplitCandidate&);
353 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
354 void calcGapWeights(unsigned, SmallVectorImpl<float>&);
355 unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg);
356 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
357 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
358 void evictInterference(LiveInterval&, unsigned,
359 SmallVectorImpl<unsigned>&);
360 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
361 SmallLISet &RecoloringCandidates,
362 const SmallVirtRegSet &FixedRegisters);
363
364 unsigned tryAssign(LiveInterval&, AllocationOrder&,
365 SmallVectorImpl<unsigned>&);
366 unsigned tryEvict(LiveInterval&, AllocationOrder&,
367 SmallVectorImpl<unsigned>&, unsigned = ~0u);
368 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
369 SmallVectorImpl<unsigned>&);
370 /// Calculate cost of region splitting.
371 unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
372 AllocationOrder &Order,
373 BlockFrequency &BestCost,
374 unsigned &NumCands, bool IgnoreCSR);
375 /// Perform region splitting.
376 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
377 bool HasCompact,
378 SmallVectorImpl<unsigned> &NewVRegs);
379 /// Check other options before using a callee-saved register for the first
380 /// time.
381 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
382 unsigned PhysReg, unsigned &CostPerUseLimit,
383 SmallVectorImpl<unsigned> &NewVRegs);
384 void initializeCSRCost();
385 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
386 SmallVectorImpl<unsigned>&);
387 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
388 SmallVectorImpl<unsigned>&);
389 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
390 SmallVectorImpl<unsigned>&);
391 unsigned trySplit(LiveInterval&, AllocationOrder&,
392 SmallVectorImpl<unsigned>&);
393 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
394 SmallVectorImpl<unsigned> &,
395 SmallVirtRegSet &, unsigned);
396 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
397 SmallVirtRegSet &, unsigned);
398 void tryHintRecoloring(LiveInterval &);
399 void tryHintsRecoloring();
400
401 /// Model the information carried by one end of a copy.
402 struct HintInfo {
403 /// The frequency of the copy.
404 BlockFrequency Freq;
405 /// The virtual register or physical register.
406 unsigned Reg;
407 /// Its currently assigned register.
408 /// In case of a physical register Reg == PhysReg.
409 unsigned PhysReg;
HintInfo__anon4e4d313f0111::RAGreedy::HintInfo410 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
411 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
412 };
413 typedef SmallVector<HintInfo, 4> HintsInfo;
414 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
415 void collectHintInfo(unsigned, HintsInfo &);
416
417 bool isUnusedCalleeSavedReg(unsigned PhysReg) const;
418 };
419 } // end anonymous namespace
420
421 char RAGreedy::ID = 0;
422
423 #ifndef NDEBUG
424 const char *const RAGreedy::StageName[] = {
425 "RS_New",
426 "RS_Assign",
427 "RS_Split",
428 "RS_Split2",
429 "RS_Spill",
430 "RS_Memory",
431 "RS_Done"
432 };
433 #endif
434
435 // Hysteresis to use when comparing floats.
436 // This helps stabilize decisions based on float comparisons.
437 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
438
439
createGreedyRegisterAllocator()440 FunctionPass* llvm::createGreedyRegisterAllocator() {
441 return new RAGreedy();
442 }
443
RAGreedy()444 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
445 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
446 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
447 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
448 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
449 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
450 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
451 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
452 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
453 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
454 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
455 initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
456 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
457 initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
458 }
459
getAnalysisUsage(AnalysisUsage & AU) const460 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
461 AU.setPreservesCFG();
462 AU.addRequired<MachineBlockFrequencyInfo>();
463 AU.addPreserved<MachineBlockFrequencyInfo>();
464 AU.addRequired<AAResultsWrapperPass>();
465 AU.addPreserved<AAResultsWrapperPass>();
466 AU.addRequired<LiveIntervals>();
467 AU.addPreserved<LiveIntervals>();
468 AU.addRequired<SlotIndexes>();
469 AU.addPreserved<SlotIndexes>();
470 AU.addRequired<LiveDebugVariables>();
471 AU.addPreserved<LiveDebugVariables>();
472 AU.addRequired<LiveStacks>();
473 AU.addPreserved<LiveStacks>();
474 AU.addRequired<MachineDominatorTree>();
475 AU.addPreserved<MachineDominatorTree>();
476 AU.addRequired<MachineLoopInfo>();
477 AU.addPreserved<MachineLoopInfo>();
478 AU.addRequired<VirtRegMap>();
479 AU.addPreserved<VirtRegMap>();
480 AU.addRequired<LiveRegMatrix>();
481 AU.addPreserved<LiveRegMatrix>();
482 AU.addRequired<EdgeBundles>();
483 AU.addRequired<SpillPlacement>();
484 MachineFunctionPass::getAnalysisUsage(AU);
485 }
486
487
488 //===----------------------------------------------------------------------===//
489 // LiveRangeEdit delegate methods
490 //===----------------------------------------------------------------------===//
491
LRE_CanEraseVirtReg(unsigned VirtReg)492 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
493 if (VRM->hasPhys(VirtReg)) {
494 LiveInterval &LI = LIS->getInterval(VirtReg);
495 Matrix->unassign(LI);
496 aboutToRemoveInterval(LI);
497 return true;
498 }
499 // Unassigned virtreg is probably in the priority queue.
500 // RegAllocBase will erase it after dequeueing.
501 return false;
502 }
503
LRE_WillShrinkVirtReg(unsigned VirtReg)504 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
505 if (!VRM->hasPhys(VirtReg))
506 return;
507
508 // Register is assigned, put it back on the queue for reassignment.
509 LiveInterval &LI = LIS->getInterval(VirtReg);
510 Matrix->unassign(LI);
511 enqueue(&LI);
512 }
513
LRE_DidCloneVirtReg(unsigned New,unsigned Old)514 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
515 // Cloning a register we haven't even heard about yet? Just ignore it.
516 if (!ExtraRegInfo.inBounds(Old))
517 return;
518
519 // LRE may clone a virtual register because dead code elimination causes it to
520 // be split into connected components. The new components are much smaller
521 // than the original, so they should get a new chance at being assigned.
522 // same stage as the parent.
523 ExtraRegInfo[Old].Stage = RS_Assign;
524 ExtraRegInfo.grow(New);
525 ExtraRegInfo[New] = ExtraRegInfo[Old];
526 }
527
releaseMemory()528 void RAGreedy::releaseMemory() {
529 SpillerInstance.reset();
530 ExtraRegInfo.clear();
531 GlobalCand.clear();
532 }
533
enqueue(LiveInterval * LI)534 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
535
enqueue(PQueue & CurQueue,LiveInterval * LI)536 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
537 // Prioritize live ranges by size, assigning larger ranges first.
538 // The queue holds (size, reg) pairs.
539 const unsigned Size = LI->getSize();
540 const unsigned Reg = LI->reg;
541 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
542 "Can only enqueue virtual registers");
543 unsigned Prio;
544
545 ExtraRegInfo.grow(Reg);
546 if (ExtraRegInfo[Reg].Stage == RS_New)
547 ExtraRegInfo[Reg].Stage = RS_Assign;
548
549 if (ExtraRegInfo[Reg].Stage == RS_Split) {
550 // Unsplit ranges that couldn't be allocated immediately are deferred until
551 // everything else has been allocated.
552 Prio = Size;
553 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
554 // Memory operand should be considered last.
555 // Change the priority such that Memory operand are assigned in
556 // the reverse order that they came in.
557 // TODO: Make this a member variable and probably do something about hints.
558 static unsigned MemOp = 0;
559 Prio = MemOp++;
560 } else {
561 // Giant live ranges fall back to the global assignment heuristic, which
562 // prevents excessive spilling in pathological cases.
563 bool ReverseLocal = TRI->reverseLocalAssignment();
564 const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
565 bool ForceGlobal = !ReverseLocal &&
566 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
567
568 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
569 LIS->intervalIsInOneMBB(*LI)) {
570 // Allocate original local ranges in linear instruction order. Since they
571 // are singly defined, this produces optimal coloring in the absence of
572 // global interference and other constraints.
573 if (!ReverseLocal)
574 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
575 else {
576 // Allocating bottom up may allow many short LRGs to be assigned first
577 // to one of the cheap registers. This could be much faster for very
578 // large blocks on targets with many physical registers.
579 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
580 }
581 Prio |= RC.AllocationPriority << 24;
582 } else {
583 // Allocate global and split ranges in long->short order. Long ranges that
584 // don't fit should be spilled (or split) ASAP so they don't create
585 // interference. Mark a bit to prioritize global above local ranges.
586 Prio = (1u << 29) + Size;
587 }
588 // Mark a higher bit to prioritize global and local above RS_Split.
589 Prio |= (1u << 31);
590
591 // Boost ranges that have a physical register hint.
592 if (VRM->hasKnownPreference(Reg))
593 Prio |= (1u << 30);
594 }
595 // The virtual register number is a tie breaker for same-sized ranges.
596 // Give lower vreg numbers higher priority to assign them first.
597 CurQueue.push(std::make_pair(Prio, ~Reg));
598 }
599
dequeue()600 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
601
dequeue(PQueue & CurQueue)602 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
603 if (CurQueue.empty())
604 return nullptr;
605 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
606 CurQueue.pop();
607 return LI;
608 }
609
610
611 //===----------------------------------------------------------------------===//
612 // Direct Assignment
613 //===----------------------------------------------------------------------===//
614
615 /// tryAssign - Try to assign VirtReg to an available register.
tryAssign(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<unsigned> & NewVRegs)616 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
617 AllocationOrder &Order,
618 SmallVectorImpl<unsigned> &NewVRegs) {
619 Order.rewind();
620 unsigned PhysReg;
621 while ((PhysReg = Order.next()))
622 if (!Matrix->checkInterference(VirtReg, PhysReg))
623 break;
624 if (!PhysReg || Order.isHint())
625 return PhysReg;
626
627 // PhysReg is available, but there may be a better choice.
628
629 // If we missed a simple hint, try to cheaply evict interference from the
630 // preferred register.
631 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
632 if (Order.isHint(Hint)) {
633 DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
634 EvictionCost MaxCost;
635 MaxCost.setBrokenHints(1);
636 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
637 evictInterference(VirtReg, Hint, NewVRegs);
638 return Hint;
639 }
640 }
641
642 // Try to evict interference from a cheaper alternative.
643 unsigned Cost = TRI->getCostPerUse(PhysReg);
644
645 // Most registers have 0 additional cost.
646 if (!Cost)
647 return PhysReg;
648
649 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
650 << '\n');
651 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
652 return CheapReg ? CheapReg : PhysReg;
653 }
654
655
656 //===----------------------------------------------------------------------===//
657 // Interference eviction
658 //===----------------------------------------------------------------------===//
659
canReassign(LiveInterval & VirtReg,unsigned PrevReg)660 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
661 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
662 unsigned PhysReg;
663 while ((PhysReg = Order.next())) {
664 if (PhysReg == PrevReg)
665 continue;
666
667 MCRegUnitIterator Units(PhysReg, TRI);
668 for (; Units.isValid(); ++Units) {
669 // Instantiate a "subquery", not to be confused with the Queries array.
670 LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]);
671 if (subQ.checkInterference())
672 break;
673 }
674 // If no units have interference, break out with the current PhysReg.
675 if (!Units.isValid())
676 break;
677 }
678 if (PhysReg)
679 DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
680 << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI)
681 << '\n');
682 return PhysReg;
683 }
684
685 /// shouldEvict - determine if A should evict the assigned live range B. The
686 /// eviction policy defined by this function together with the allocation order
687 /// defined by enqueue() decides which registers ultimately end up being split
688 /// and spilled.
689 ///
690 /// Cascade numbers are used to prevent infinite loops if this function is a
691 /// cyclic relation.
692 ///
693 /// @param A The live range to be assigned.
694 /// @param IsHint True when A is about to be assigned to its preferred
695 /// register.
696 /// @param B The live range to be evicted.
697 /// @param BreaksHint True when B is already assigned to its preferred register.
shouldEvict(LiveInterval & A,bool IsHint,LiveInterval & B,bool BreaksHint)698 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
699 LiveInterval &B, bool BreaksHint) {
700 bool CanSplit = getStage(B) < RS_Spill;
701
702 // Be fairly aggressive about following hints as long as the evictee can be
703 // split.
704 if (CanSplit && IsHint && !BreaksHint)
705 return true;
706
707 if (A.weight > B.weight) {
708 DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
709 return true;
710 }
711 return false;
712 }
713
714 /// canEvictInterference - Return true if all interferences between VirtReg and
715 /// PhysReg can be evicted.
716 ///
717 /// @param VirtReg Live range that is about to be assigned.
718 /// @param PhysReg Desired register for assignment.
719 /// @param IsHint True when PhysReg is VirtReg's preferred register.
720 /// @param MaxCost Only look for cheaper candidates and update with new cost
721 /// when returning true.
722 /// @returns True when interference can be evicted cheaper than MaxCost.
canEvictInterference(LiveInterval & VirtReg,unsigned PhysReg,bool IsHint,EvictionCost & MaxCost)723 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
724 bool IsHint, EvictionCost &MaxCost) {
725 // It is only possible to evict virtual register interference.
726 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
727 return false;
728
729 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
730
731 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
732 // involved in an eviction before. If a cascade number was assigned, deny
733 // evicting anything with the same or a newer cascade number. This prevents
734 // infinite eviction loops.
735 //
736 // This works out so a register without a cascade number is allowed to evict
737 // anything, and it can be evicted by anything.
738 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
739 if (!Cascade)
740 Cascade = NextCascade;
741
742 EvictionCost Cost;
743 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
744 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
745 // If there is 10 or more interferences, chances are one is heavier.
746 if (Q.collectInterferingVRegs(10) >= 10)
747 return false;
748
749 // Check if any interfering live range is heavier than MaxWeight.
750 for (unsigned i = Q.interferingVRegs().size(); i; --i) {
751 LiveInterval *Intf = Q.interferingVRegs()[i - 1];
752 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
753 "Only expecting virtual register interference from query");
754 // Never evict spill products. They cannot split or spill.
755 if (getStage(*Intf) == RS_Done)
756 return false;
757 // Once a live range becomes small enough, it is urgent that we find a
758 // register for it. This is indicated by an infinite spill weight. These
759 // urgent live ranges get to evict almost anything.
760 //
761 // Also allow urgent evictions of unspillable ranges from a strictly
762 // larger allocation order.
763 bool Urgent = !VirtReg.isSpillable() &&
764 (Intf->isSpillable() ||
765 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
766 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
767 // Only evict older cascades or live ranges without a cascade.
768 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
769 if (Cascade <= IntfCascade) {
770 if (!Urgent)
771 return false;
772 // We permit breaking cascades for urgent evictions. It should be the
773 // last resort, though, so make it really expensive.
774 Cost.BrokenHints += 10;
775 }
776 // Would this break a satisfied hint?
777 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
778 // Update eviction cost.
779 Cost.BrokenHints += BreaksHint;
780 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
781 // Abort if this would be too expensive.
782 if (!(Cost < MaxCost))
783 return false;
784 if (Urgent)
785 continue;
786 // Apply the eviction policy for non-urgent evictions.
787 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
788 return false;
789 // If !MaxCost.isMax(), then we're just looking for a cheap register.
790 // Evicting another local live range in this case could lead to suboptimal
791 // coloring.
792 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
793 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
794 return false;
795 }
796 }
797 }
798 MaxCost = Cost;
799 return true;
800 }
801
802 /// evictInterference - Evict any interferring registers that prevent VirtReg
803 /// from being assigned to Physreg. This assumes that canEvictInterference
804 /// returned true.
evictInterference(LiveInterval & VirtReg,unsigned PhysReg,SmallVectorImpl<unsigned> & NewVRegs)805 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
806 SmallVectorImpl<unsigned> &NewVRegs) {
807 // Make sure that VirtReg has a cascade number, and assign that cascade
808 // number to every evicted register. These live ranges than then only be
809 // evicted by a newer cascade, preventing infinite loops.
810 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
811 if (!Cascade)
812 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
813
814 DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
815 << " interference: Cascade " << Cascade << '\n');
816
817 // Collect all interfering virtregs first.
818 SmallVector<LiveInterval*, 8> Intfs;
819 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
820 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
821 assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
822 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
823 Intfs.append(IVR.begin(), IVR.end());
824 }
825
826 // Evict them second. This will invalidate the queries.
827 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
828 LiveInterval *Intf = Intfs[i];
829 // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
830 if (!VRM->hasPhys(Intf->reg))
831 continue;
832 Matrix->unassign(*Intf);
833 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
834 VirtReg.isSpillable() < Intf->isSpillable()) &&
835 "Cannot decrease cascade number, illegal eviction");
836 ExtraRegInfo[Intf->reg].Cascade = Cascade;
837 ++NumEvicted;
838 NewVRegs.push_back(Intf->reg);
839 }
840 }
841
842 /// Returns true if the given \p PhysReg is a callee saved register and has not
843 /// been used for allocation yet.
isUnusedCalleeSavedReg(unsigned PhysReg) const844 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const {
845 unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
846 if (CSR == 0)
847 return false;
848
849 return !Matrix->isPhysRegUsed(PhysReg);
850 }
851
852 /// tryEvict - Try to evict all interferences for a physreg.
853 /// @param VirtReg Currently unassigned virtual register.
854 /// @param Order Physregs to try.
855 /// @return Physreg to assign VirtReg, or 0.
tryEvict(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<unsigned> & NewVRegs,unsigned CostPerUseLimit)856 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
857 AllocationOrder &Order,
858 SmallVectorImpl<unsigned> &NewVRegs,
859 unsigned CostPerUseLimit) {
860 NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
861
862 // Keep track of the cheapest interference seen so far.
863 EvictionCost BestCost;
864 BestCost.setMax();
865 unsigned BestPhys = 0;
866 unsigned OrderLimit = Order.getOrder().size();
867
868 // When we are just looking for a reduced cost per use, don't break any
869 // hints, and only evict smaller spill weights.
870 if (CostPerUseLimit < ~0u) {
871 BestCost.BrokenHints = 0;
872 BestCost.MaxWeight = VirtReg.weight;
873
874 // Check of any registers in RC are below CostPerUseLimit.
875 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
876 unsigned MinCost = RegClassInfo.getMinCost(RC);
877 if (MinCost >= CostPerUseLimit) {
878 DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost
879 << ", no cheaper registers to be found.\n");
880 return 0;
881 }
882
883 // It is normal for register classes to have a long tail of registers with
884 // the same cost. We don't need to look at them if they're too expensive.
885 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
886 OrderLimit = RegClassInfo.getLastCostChange(RC);
887 DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n");
888 }
889 }
890
891 Order.rewind();
892 while (unsigned PhysReg = Order.next(OrderLimit)) {
893 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
894 continue;
895 // The first use of a callee-saved register in a function has cost 1.
896 // Don't start using a CSR when the CostPerUseLimit is low.
897 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
898 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
899 << PrintReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
900 << '\n');
901 continue;
902 }
903
904 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
905 continue;
906
907 // Best so far.
908 BestPhys = PhysReg;
909
910 // Stop if the hint can be used.
911 if (Order.isHint())
912 break;
913 }
914
915 if (!BestPhys)
916 return 0;
917
918 evictInterference(VirtReg, BestPhys, NewVRegs);
919 return BestPhys;
920 }
921
922
923 //===----------------------------------------------------------------------===//
924 // Region Splitting
925 //===----------------------------------------------------------------------===//
926
927 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
928 /// interference pattern in Physreg and its aliases. Add the constraints to
929 /// SpillPlacement and return the static cost of this split in Cost, assuming
930 /// that all preferences in SplitConstraints are met.
931 /// Return false if there are no bundles with positive bias.
addSplitConstraints(InterferenceCache::Cursor Intf,BlockFrequency & Cost)932 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
933 BlockFrequency &Cost) {
934 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
935
936 // Reset interference dependent info.
937 SplitConstraints.resize(UseBlocks.size());
938 BlockFrequency StaticCost = 0;
939 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
940 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
941 SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
942
943 BC.Number = BI.MBB->getNumber();
944 Intf.moveToBlock(BC.Number);
945 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
946 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
947 BC.ChangesValue = BI.FirstDef.isValid();
948
949 if (!Intf.hasInterference())
950 continue;
951
952 // Number of spill code instructions to insert.
953 unsigned Ins = 0;
954
955 // Interference for the live-in value.
956 if (BI.LiveIn) {
957 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
958 BC.Entry = SpillPlacement::MustSpill, ++Ins;
959 else if (Intf.first() < BI.FirstInstr)
960 BC.Entry = SpillPlacement::PrefSpill, ++Ins;
961 else if (Intf.first() < BI.LastInstr)
962 ++Ins;
963 }
964
965 // Interference for the live-out value.
966 if (BI.LiveOut) {
967 if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
968 BC.Exit = SpillPlacement::MustSpill, ++Ins;
969 else if (Intf.last() > BI.LastInstr)
970 BC.Exit = SpillPlacement::PrefSpill, ++Ins;
971 else if (Intf.last() > BI.FirstInstr)
972 ++Ins;
973 }
974
975 // Accumulate the total frequency of inserted spill code.
976 while (Ins--)
977 StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
978 }
979 Cost = StaticCost;
980
981 // Add constraints for use-blocks. Note that these are the only constraints
982 // that may add a positive bias, it is downhill from here.
983 SpillPlacer->addConstraints(SplitConstraints);
984 return SpillPlacer->scanActiveBundles();
985 }
986
987
988 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
989 /// live-through blocks in Blocks.
addThroughConstraints(InterferenceCache::Cursor Intf,ArrayRef<unsigned> Blocks)990 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
991 ArrayRef<unsigned> Blocks) {
992 const unsigned GroupSize = 8;
993 SpillPlacement::BlockConstraint BCS[GroupSize];
994 unsigned TBS[GroupSize];
995 unsigned B = 0, T = 0;
996
997 for (unsigned i = 0; i != Blocks.size(); ++i) {
998 unsigned Number = Blocks[i];
999 Intf.moveToBlock(Number);
1000
1001 if (!Intf.hasInterference()) {
1002 assert(T < GroupSize && "Array overflow");
1003 TBS[T] = Number;
1004 if (++T == GroupSize) {
1005 SpillPlacer->addLinks(makeArrayRef(TBS, T));
1006 T = 0;
1007 }
1008 continue;
1009 }
1010
1011 assert(B < GroupSize && "Array overflow");
1012 BCS[B].Number = Number;
1013
1014 // Interference for the live-in value.
1015 if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1016 BCS[B].Entry = SpillPlacement::MustSpill;
1017 else
1018 BCS[B].Entry = SpillPlacement::PrefSpill;
1019
1020 // Interference for the live-out value.
1021 if (Intf.last() >= SA->getLastSplitPoint(Number))
1022 BCS[B].Exit = SpillPlacement::MustSpill;
1023 else
1024 BCS[B].Exit = SpillPlacement::PrefSpill;
1025
1026 if (++B == GroupSize) {
1027 SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1028 B = 0;
1029 }
1030 }
1031
1032 SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1033 SpillPlacer->addLinks(makeArrayRef(TBS, T));
1034 }
1035
growRegion(GlobalSplitCandidate & Cand)1036 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1037 // Keep track of through blocks that have not been added to SpillPlacer.
1038 BitVector Todo = SA->getThroughBlocks();
1039 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1040 unsigned AddedTo = 0;
1041 #ifndef NDEBUG
1042 unsigned Visited = 0;
1043 #endif
1044
1045 for (;;) {
1046 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1047 // Find new through blocks in the periphery of PrefRegBundles.
1048 for (int i = 0, e = NewBundles.size(); i != e; ++i) {
1049 unsigned Bundle = NewBundles[i];
1050 // Look at all blocks connected to Bundle in the full graph.
1051 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1052 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1053 I != E; ++I) {
1054 unsigned Block = *I;
1055 if (!Todo.test(Block))
1056 continue;
1057 Todo.reset(Block);
1058 // This is a new through block. Add it to SpillPlacer later.
1059 ActiveBlocks.push_back(Block);
1060 #ifndef NDEBUG
1061 ++Visited;
1062 #endif
1063 }
1064 }
1065 // Any new blocks to add?
1066 if (ActiveBlocks.size() == AddedTo)
1067 break;
1068
1069 // Compute through constraints from the interference, or assume that all
1070 // through blocks prefer spilling when forming compact regions.
1071 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1072 if (Cand.PhysReg)
1073 addThroughConstraints(Cand.Intf, NewBlocks);
1074 else
1075 // Provide a strong negative bias on through blocks to prevent unwanted
1076 // liveness on loop backedges.
1077 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1078 AddedTo = ActiveBlocks.size();
1079
1080 // Perhaps iterating can enable more bundles?
1081 SpillPlacer->iterate();
1082 }
1083 DEBUG(dbgs() << ", v=" << Visited);
1084 }
1085
1086 /// calcCompactRegion - Compute the set of edge bundles that should be live
1087 /// when splitting the current live range into compact regions. Compact
1088 /// regions can be computed without looking at interference. They are the
1089 /// regions formed by removing all the live-through blocks from the live range.
1090 ///
1091 /// Returns false if the current live range is already compact, or if the
1092 /// compact regions would form single block regions anyway.
calcCompactRegion(GlobalSplitCandidate & Cand)1093 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1094 // Without any through blocks, the live range is already compact.
1095 if (!SA->getNumThroughBlocks())
1096 return false;
1097
1098 // Compact regions don't correspond to any physreg.
1099 Cand.reset(IntfCache, 0);
1100
1101 DEBUG(dbgs() << "Compact region bundles");
1102
1103 // Use the spill placer to determine the live bundles. GrowRegion pretends
1104 // that all the through blocks have interference when PhysReg is unset.
1105 SpillPlacer->prepare(Cand.LiveBundles);
1106
1107 // The static split cost will be zero since Cand.Intf reports no interference.
1108 BlockFrequency Cost;
1109 if (!addSplitConstraints(Cand.Intf, Cost)) {
1110 DEBUG(dbgs() << ", none.\n");
1111 return false;
1112 }
1113
1114 growRegion(Cand);
1115 SpillPlacer->finish();
1116
1117 if (!Cand.LiveBundles.any()) {
1118 DEBUG(dbgs() << ", none.\n");
1119 return false;
1120 }
1121
1122 DEBUG({
1123 for (int i = Cand.LiveBundles.find_first(); i>=0;
1124 i = Cand.LiveBundles.find_next(i))
1125 dbgs() << " EB#" << i;
1126 dbgs() << ".\n";
1127 });
1128 return true;
1129 }
1130
1131 /// calcSpillCost - Compute how expensive it would be to split the live range in
1132 /// SA around all use blocks instead of forming bundle regions.
calcSpillCost()1133 BlockFrequency RAGreedy::calcSpillCost() {
1134 BlockFrequency Cost = 0;
1135 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1136 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1137 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1138 unsigned Number = BI.MBB->getNumber();
1139 // We normally only need one spill instruction - a load or a store.
1140 Cost += SpillPlacer->getBlockFrequency(Number);
1141
1142 // Unless the value is redefined in the block.
1143 if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1144 Cost += SpillPlacer->getBlockFrequency(Number);
1145 }
1146 return Cost;
1147 }
1148
1149 /// calcGlobalSplitCost - Return the global split cost of following the split
1150 /// pattern in LiveBundles. This cost should be added to the local cost of the
1151 /// interference pattern in SplitConstraints.
1152 ///
calcGlobalSplitCost(GlobalSplitCandidate & Cand)1153 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
1154 BlockFrequency GlobalCost = 0;
1155 const BitVector &LiveBundles = Cand.LiveBundles;
1156 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1157 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1158 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1159 SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1160 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)];
1161 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
1162 unsigned Ins = 0;
1163
1164 if (BI.LiveIn)
1165 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1166 if (BI.LiveOut)
1167 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1168 while (Ins--)
1169 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1170 }
1171
1172 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1173 unsigned Number = Cand.ActiveBlocks[i];
1174 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)];
1175 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
1176 if (!RegIn && !RegOut)
1177 continue;
1178 if (RegIn && RegOut) {
1179 // We need double spill code if this block has interference.
1180 Cand.Intf.moveToBlock(Number);
1181 if (Cand.Intf.hasInterference()) {
1182 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1183 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1184 }
1185 continue;
1186 }
1187 // live-in / stack-out or stack-in live-out.
1188 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1189 }
1190 return GlobalCost;
1191 }
1192
1193 /// splitAroundRegion - Split the current live range around the regions
1194 /// determined by BundleCand and GlobalCand.
1195 ///
1196 /// Before calling this function, GlobalCand and BundleCand must be initialized
1197 /// so each bundle is assigned to a valid candidate, or NoCand for the
1198 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
1199 /// objects must be initialized for the current live range, and intervals
1200 /// created for the used candidates.
1201 ///
1202 /// @param LREdit The LiveRangeEdit object handling the current split.
1203 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1204 /// must appear in this list.
splitAroundRegion(LiveRangeEdit & LREdit,ArrayRef<unsigned> UsedCands)1205 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1206 ArrayRef<unsigned> UsedCands) {
1207 // These are the intervals created for new global ranges. We may create more
1208 // intervals for local ranges.
1209 const unsigned NumGlobalIntvs = LREdit.size();
1210 DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
1211 assert(NumGlobalIntvs && "No global intervals configured");
1212
1213 // Isolate even single instructions when dealing with a proper sub-class.
1214 // That guarantees register class inflation for the stack interval because it
1215 // is all copies.
1216 unsigned Reg = SA->getParent().reg;
1217 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1218
1219 // First handle all the blocks with uses.
1220 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1221 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1222 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1223 unsigned Number = BI.MBB->getNumber();
1224 unsigned IntvIn = 0, IntvOut = 0;
1225 SlotIndex IntfIn, IntfOut;
1226 if (BI.LiveIn) {
1227 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1228 if (CandIn != NoCand) {
1229 GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1230 IntvIn = Cand.IntvIdx;
1231 Cand.Intf.moveToBlock(Number);
1232 IntfIn = Cand.Intf.first();
1233 }
1234 }
1235 if (BI.LiveOut) {
1236 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1237 if (CandOut != NoCand) {
1238 GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1239 IntvOut = Cand.IntvIdx;
1240 Cand.Intf.moveToBlock(Number);
1241 IntfOut = Cand.Intf.last();
1242 }
1243 }
1244
1245 // Create separate intervals for isolated blocks with multiple uses.
1246 if (!IntvIn && !IntvOut) {
1247 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
1248 if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1249 SE->splitSingleBlock(BI);
1250 continue;
1251 }
1252
1253 if (IntvIn && IntvOut)
1254 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1255 else if (IntvIn)
1256 SE->splitRegInBlock(BI, IntvIn, IntfIn);
1257 else
1258 SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1259 }
1260
1261 // Handle live-through blocks. The relevant live-through blocks are stored in
1262 // the ActiveBlocks list with each candidate. We need to filter out
1263 // duplicates.
1264 BitVector Todo = SA->getThroughBlocks();
1265 for (unsigned c = 0; c != UsedCands.size(); ++c) {
1266 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1267 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1268 unsigned Number = Blocks[i];
1269 if (!Todo.test(Number))
1270 continue;
1271 Todo.reset(Number);
1272
1273 unsigned IntvIn = 0, IntvOut = 0;
1274 SlotIndex IntfIn, IntfOut;
1275
1276 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1277 if (CandIn != NoCand) {
1278 GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1279 IntvIn = Cand.IntvIdx;
1280 Cand.Intf.moveToBlock(Number);
1281 IntfIn = Cand.Intf.first();
1282 }
1283
1284 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1285 if (CandOut != NoCand) {
1286 GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1287 IntvOut = Cand.IntvIdx;
1288 Cand.Intf.moveToBlock(Number);
1289 IntfOut = Cand.Intf.last();
1290 }
1291 if (!IntvIn && !IntvOut)
1292 continue;
1293 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1294 }
1295 }
1296
1297 ++NumGlobalSplits;
1298
1299 SmallVector<unsigned, 8> IntvMap;
1300 SE->finish(&IntvMap);
1301 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1302
1303 ExtraRegInfo.resize(MRI->getNumVirtRegs());
1304 unsigned OrigBlocks = SA->getNumLiveBlocks();
1305
1306 // Sort out the new intervals created by splitting. We get four kinds:
1307 // - Remainder intervals should not be split again.
1308 // - Candidate intervals can be assigned to Cand.PhysReg.
1309 // - Block-local splits are candidates for local splitting.
1310 // - DCE leftovers should go back on the queue.
1311 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1312 LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1313
1314 // Ignore old intervals from DCE.
1315 if (getStage(Reg) != RS_New)
1316 continue;
1317
1318 // Remainder interval. Don't try splitting again, spill if it doesn't
1319 // allocate.
1320 if (IntvMap[i] == 0) {
1321 setStage(Reg, RS_Spill);
1322 continue;
1323 }
1324
1325 // Global intervals. Allow repeated splitting as long as the number of live
1326 // blocks is strictly decreasing.
1327 if (IntvMap[i] < NumGlobalIntvs) {
1328 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1329 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1330 << " blocks as original.\n");
1331 // Don't allow repeated splitting as a safe guard against looping.
1332 setStage(Reg, RS_Split2);
1333 }
1334 continue;
1335 }
1336
1337 // Other intervals are treated as new. This includes local intervals created
1338 // for blocks with multiple uses, and anything created by DCE.
1339 }
1340
1341 if (VerifyEnabled)
1342 MF->verify(this, "After splitting live range around region");
1343 }
1344
tryRegionSplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<unsigned> & NewVRegs)1345 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1346 SmallVectorImpl<unsigned> &NewVRegs) {
1347 unsigned NumCands = 0;
1348 BlockFrequency BestCost;
1349
1350 // Check if we can split this live range around a compact region.
1351 bool HasCompact = calcCompactRegion(GlobalCand.front());
1352 if (HasCompact) {
1353 // Yes, keep GlobalCand[0] as the compact region candidate.
1354 NumCands = 1;
1355 BestCost = BlockFrequency::getMaxFrequency();
1356 } else {
1357 // No benefit from the compact region, our fallback will be per-block
1358 // splitting. Make sure we find a solution that is cheaper than spilling.
1359 BestCost = calcSpillCost();
1360 DEBUG(dbgs() << "Cost of isolating all blocks = ";
1361 MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1362 }
1363
1364 unsigned BestCand =
1365 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1366 false/*IgnoreCSR*/);
1367
1368 // No solutions found, fall back to single block splitting.
1369 if (!HasCompact && BestCand == NoCand)
1370 return 0;
1371
1372 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1373 }
1374
calculateRegionSplitCost(LiveInterval & VirtReg,AllocationOrder & Order,BlockFrequency & BestCost,unsigned & NumCands,bool IgnoreCSR)1375 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1376 AllocationOrder &Order,
1377 BlockFrequency &BestCost,
1378 unsigned &NumCands,
1379 bool IgnoreCSR) {
1380 unsigned BestCand = NoCand;
1381 Order.rewind();
1382 while (unsigned PhysReg = Order.next()) {
1383 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1384 continue;
1385
1386 // Discard bad candidates before we run out of interference cache cursors.
1387 // This will only affect register classes with a lot of registers (>32).
1388 if (NumCands == IntfCache.getMaxCursors()) {
1389 unsigned WorstCount = ~0u;
1390 unsigned Worst = 0;
1391 for (unsigned i = 0; i != NumCands; ++i) {
1392 if (i == BestCand || !GlobalCand[i].PhysReg)
1393 continue;
1394 unsigned Count = GlobalCand[i].LiveBundles.count();
1395 if (Count < WorstCount)
1396 Worst = i, WorstCount = Count;
1397 }
1398 --NumCands;
1399 GlobalCand[Worst] = GlobalCand[NumCands];
1400 if (BestCand == NumCands)
1401 BestCand = Worst;
1402 }
1403
1404 if (GlobalCand.size() <= NumCands)
1405 GlobalCand.resize(NumCands+1);
1406 GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1407 Cand.reset(IntfCache, PhysReg);
1408
1409 SpillPlacer->prepare(Cand.LiveBundles);
1410 BlockFrequency Cost;
1411 if (!addSplitConstraints(Cand.Intf, Cost)) {
1412 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1413 continue;
1414 }
1415 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = ";
1416 MBFI->printBlockFreq(dbgs(), Cost));
1417 if (Cost >= BestCost) {
1418 DEBUG({
1419 if (BestCand == NoCand)
1420 dbgs() << " worse than no bundles\n";
1421 else
1422 dbgs() << " worse than "
1423 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1424 });
1425 continue;
1426 }
1427 growRegion(Cand);
1428
1429 SpillPlacer->finish();
1430
1431 // No live bundles, defer to splitSingleBlocks().
1432 if (!Cand.LiveBundles.any()) {
1433 DEBUG(dbgs() << " no bundles.\n");
1434 continue;
1435 }
1436
1437 Cost += calcGlobalSplitCost(Cand);
1438 DEBUG({
1439 dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost)
1440 << " with bundles";
1441 for (int i = Cand.LiveBundles.find_first(); i>=0;
1442 i = Cand.LiveBundles.find_next(i))
1443 dbgs() << " EB#" << i;
1444 dbgs() << ".\n";
1445 });
1446 if (Cost < BestCost) {
1447 BestCand = NumCands;
1448 BestCost = Cost;
1449 }
1450 ++NumCands;
1451 }
1452 return BestCand;
1453 }
1454
doRegionSplit(LiveInterval & VirtReg,unsigned BestCand,bool HasCompact,SmallVectorImpl<unsigned> & NewVRegs)1455 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1456 bool HasCompact,
1457 SmallVectorImpl<unsigned> &NewVRegs) {
1458 SmallVector<unsigned, 8> UsedCands;
1459 // Prepare split editor.
1460 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1461 SE->reset(LREdit, SplitSpillMode);
1462
1463 // Assign all edge bundles to the preferred candidate, or NoCand.
1464 BundleCand.assign(Bundles->getNumBundles(), NoCand);
1465
1466 // Assign bundles for the best candidate region.
1467 if (BestCand != NoCand) {
1468 GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1469 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1470 UsedCands.push_back(BestCand);
1471 Cand.IntvIdx = SE->openIntv();
1472 DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
1473 << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1474 (void)B;
1475 }
1476 }
1477
1478 // Assign bundles for the compact region.
1479 if (HasCompact) {
1480 GlobalSplitCandidate &Cand = GlobalCand.front();
1481 assert(!Cand.PhysReg && "Compact region has no physreg");
1482 if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1483 UsedCands.push_back(0);
1484 Cand.IntvIdx = SE->openIntv();
1485 DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
1486 << Cand.IntvIdx << ".\n");
1487 (void)B;
1488 }
1489 }
1490
1491 splitAroundRegion(LREdit, UsedCands);
1492 return 0;
1493 }
1494
1495
1496 //===----------------------------------------------------------------------===//
1497 // Per-Block Splitting
1498 //===----------------------------------------------------------------------===//
1499
1500 /// tryBlockSplit - Split a global live range around every block with uses. This
1501 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1502 /// they don't allocate.
tryBlockSplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<unsigned> & NewVRegs)1503 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1504 SmallVectorImpl<unsigned> &NewVRegs) {
1505 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1506 unsigned Reg = VirtReg.reg;
1507 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1508 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1509 SE->reset(LREdit, SplitSpillMode);
1510 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1511 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1512 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1513 if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1514 SE->splitSingleBlock(BI);
1515 }
1516 // No blocks were split.
1517 if (LREdit.empty())
1518 return 0;
1519
1520 // We did split for some blocks.
1521 SmallVector<unsigned, 8> IntvMap;
1522 SE->finish(&IntvMap);
1523
1524 // Tell LiveDebugVariables about the new ranges.
1525 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1526
1527 ExtraRegInfo.resize(MRI->getNumVirtRegs());
1528
1529 // Sort out the new intervals created by splitting. The remainder interval
1530 // goes straight to spilling, the new local ranges get to stay RS_New.
1531 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1532 LiveInterval &LI = LIS->getInterval(LREdit.get(i));
1533 if (getStage(LI) == RS_New && IntvMap[i] == 0)
1534 setStage(LI, RS_Spill);
1535 }
1536
1537 if (VerifyEnabled)
1538 MF->verify(this, "After splitting live range around basic blocks");
1539 return 0;
1540 }
1541
1542
1543 //===----------------------------------------------------------------------===//
1544 // Per-Instruction Splitting
1545 //===----------------------------------------------------------------------===//
1546
1547 /// Get the number of allocatable registers that match the constraints of \p Reg
1548 /// on \p MI and that are also in \p SuperRC.
getNumAllocatableRegsForConstraints(const MachineInstr * MI,unsigned Reg,const TargetRegisterClass * SuperRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI,const RegisterClassInfo & RCI)1549 static unsigned getNumAllocatableRegsForConstraints(
1550 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
1551 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1552 const RegisterClassInfo &RCI) {
1553 assert(SuperRC && "Invalid register class");
1554
1555 const TargetRegisterClass *ConstrainedRC =
1556 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1557 /* ExploreBundle */ true);
1558 if (!ConstrainedRC)
1559 return 0;
1560 return RCI.getNumAllocatableRegs(ConstrainedRC);
1561 }
1562
1563 /// tryInstructionSplit - Split a live range around individual instructions.
1564 /// This is normally not worthwhile since the spiller is doing essentially the
1565 /// same thing. However, when the live range is in a constrained register
1566 /// class, it may help to insert copies such that parts of the live range can
1567 /// be moved to a larger register class.
1568 ///
1569 /// This is similar to spilling to a larger register class.
1570 unsigned
tryInstructionSplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<unsigned> & NewVRegs)1571 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1572 SmallVectorImpl<unsigned> &NewVRegs) {
1573 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
1574 // There is no point to this if there are no larger sub-classes.
1575 if (!RegClassInfo.isProperSubClass(CurRC))
1576 return 0;
1577
1578 // Always enable split spill mode, since we're effectively spilling to a
1579 // register.
1580 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1581 SE->reset(LREdit, SplitEditor::SM_Size);
1582
1583 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1584 if (Uses.size() <= 1)
1585 return 0;
1586
1587 DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
1588
1589 const TargetRegisterClass *SuperRC =
1590 TRI->getLargestLegalSuperClass(CurRC, *MF);
1591 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
1592 // Split around every non-copy instruction if this split will relax
1593 // the constraints on the virtual register.
1594 // Otherwise, splitting just inserts uncoalescable copies that do not help
1595 // the allocation.
1596 for (unsigned i = 0; i != Uses.size(); ++i) {
1597 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
1598 if (MI->isFullCopy() ||
1599 SuperRCNumAllocatableRegs ==
1600 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
1601 TRI, RCI)) {
1602 DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI);
1603 continue;
1604 }
1605 SE->openIntv();
1606 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
1607 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]);
1608 SE->useIntv(SegStart, SegStop);
1609 }
1610
1611 if (LREdit.empty()) {
1612 DEBUG(dbgs() << "All uses were copies.\n");
1613 return 0;
1614 }
1615
1616 SmallVector<unsigned, 8> IntvMap;
1617 SE->finish(&IntvMap);
1618 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1619 ExtraRegInfo.resize(MRI->getNumVirtRegs());
1620
1621 // Assign all new registers to RS_Spill. This was the last chance.
1622 setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1623 return 0;
1624 }
1625
1626
1627 //===----------------------------------------------------------------------===//
1628 // Local Splitting
1629 //===----------------------------------------------------------------------===//
1630
1631
1632 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1633 /// in order to use PhysReg between two entries in SA->UseSlots.
1634 ///
1635 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1636 ///
calcGapWeights(unsigned PhysReg,SmallVectorImpl<float> & GapWeight)1637 void RAGreedy::calcGapWeights(unsigned PhysReg,
1638 SmallVectorImpl<float> &GapWeight) {
1639 assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1640 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1641 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1642 const unsigned NumGaps = Uses.size()-1;
1643
1644 // Start and end points for the interference check.
1645 SlotIndex StartIdx =
1646 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1647 SlotIndex StopIdx =
1648 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1649
1650 GapWeight.assign(NumGaps, 0.0f);
1651
1652 // Add interference from each overlapping register.
1653 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1654 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1655 .checkInterference())
1656 continue;
1657
1658 // We know that VirtReg is a continuous interval from FirstInstr to
1659 // LastInstr, so we don't need InterferenceQuery.
1660 //
1661 // Interference that overlaps an instruction is counted in both gaps
1662 // surrounding the instruction. The exception is interference before
1663 // StartIdx and after StopIdx.
1664 //
1665 LiveIntervalUnion::SegmentIter IntI =
1666 Matrix->getLiveUnions()[*Units] .find(StartIdx);
1667 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1668 // Skip the gaps before IntI.
1669 while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1670 if (++Gap == NumGaps)
1671 break;
1672 if (Gap == NumGaps)
1673 break;
1674
1675 // Update the gaps covered by IntI.
1676 const float weight = IntI.value()->weight;
1677 for (; Gap != NumGaps; ++Gap) {
1678 GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1679 if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1680 break;
1681 }
1682 if (Gap == NumGaps)
1683 break;
1684 }
1685 }
1686
1687 // Add fixed interference.
1688 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1689 const LiveRange &LR = LIS->getRegUnit(*Units);
1690 LiveRange::const_iterator I = LR.find(StartIdx);
1691 LiveRange::const_iterator E = LR.end();
1692
1693 // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1694 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1695 while (Uses[Gap+1].getBoundaryIndex() < I->start)
1696 if (++Gap == NumGaps)
1697 break;
1698 if (Gap == NumGaps)
1699 break;
1700
1701 for (; Gap != NumGaps; ++Gap) {
1702 GapWeight[Gap] = llvm::huge_valf;
1703 if (Uses[Gap+1].getBaseIndex() >= I->end)
1704 break;
1705 }
1706 if (Gap == NumGaps)
1707 break;
1708 }
1709 }
1710 }
1711
1712 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1713 /// basic block.
1714 ///
tryLocalSplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<unsigned> & NewVRegs)1715 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1716 SmallVectorImpl<unsigned> &NewVRegs) {
1717 assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1718 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1719
1720 // Note that it is possible to have an interval that is live-in or live-out
1721 // while only covering a single block - A phi-def can use undef values from
1722 // predecessors, and the block could be a single-block loop.
1723 // We don't bother doing anything clever about such a case, we simply assume
1724 // that the interval is continuous from FirstInstr to LastInstr. We should
1725 // make sure that we don't do anything illegal to such an interval, though.
1726
1727 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1728 if (Uses.size() <= 2)
1729 return 0;
1730 const unsigned NumGaps = Uses.size()-1;
1731
1732 DEBUG({
1733 dbgs() << "tryLocalSplit: ";
1734 for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1735 dbgs() << ' ' << Uses[i];
1736 dbgs() << '\n';
1737 });
1738
1739 // If VirtReg is live across any register mask operands, compute a list of
1740 // gaps with register masks.
1741 SmallVector<unsigned, 8> RegMaskGaps;
1742 if (Matrix->checkRegMaskInterference(VirtReg)) {
1743 // Get regmask slots for the whole block.
1744 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1745 DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1746 // Constrain to VirtReg's live range.
1747 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
1748 Uses.front().getRegSlot()) - RMS.begin();
1749 unsigned re = RMS.size();
1750 for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
1751 // Look for Uses[i] <= RMS <= Uses[i+1].
1752 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
1753 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
1754 continue;
1755 // Skip a regmask on the same instruction as the last use. It doesn't
1756 // overlap the live range.
1757 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
1758 break;
1759 DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
1760 RegMaskGaps.push_back(i);
1761 // Advance ri to the next gap. A regmask on one of the uses counts in
1762 // both gaps.
1763 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
1764 ++ri;
1765 }
1766 DEBUG(dbgs() << '\n');
1767 }
1768
1769 // Since we allow local split results to be split again, there is a risk of
1770 // creating infinite loops. It is tempting to require that the new live
1771 // ranges have less instructions than the original. That would guarantee
1772 // convergence, but it is too strict. A live range with 3 instructions can be
1773 // split 2+3 (including the COPY), and we want to allow that.
1774 //
1775 // Instead we use these rules:
1776 //
1777 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1778 // noop split, of course).
1779 // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1780 // the new ranges must have fewer instructions than before the split.
1781 // 3. New ranges with the same number of instructions are marked RS_Split2,
1782 // smaller ranges are marked RS_New.
1783 //
1784 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1785 // excessive splitting and infinite loops.
1786 //
1787 bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
1788
1789 // Best split candidate.
1790 unsigned BestBefore = NumGaps;
1791 unsigned BestAfter = 0;
1792 float BestDiff = 0;
1793
1794 const float blockFreq =
1795 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1796 (1.0f / MBFI->getEntryFreq());
1797 SmallVector<float, 8> GapWeight;
1798
1799 Order.rewind();
1800 while (unsigned PhysReg = Order.next()) {
1801 // Keep track of the largest spill weight that would need to be evicted in
1802 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1803 calcGapWeights(PhysReg, GapWeight);
1804
1805 // Remove any gaps with regmask clobbers.
1806 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1807 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
1808 GapWeight[RegMaskGaps[i]] = llvm::huge_valf;
1809
1810 // Try to find the best sequence of gaps to close.
1811 // The new spill weight must be larger than any gap interference.
1812
1813 // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1814 unsigned SplitBefore = 0, SplitAfter = 1;
1815
1816 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1817 // It is the spill weight that needs to be evicted.
1818 float MaxGap = GapWeight[0];
1819
1820 for (;;) {
1821 // Live before/after split?
1822 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1823 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1824
1825 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1826 << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1827 << " i=" << MaxGap);
1828
1829 // Stop before the interval gets so big we wouldn't be making progress.
1830 if (!LiveBefore && !LiveAfter) {
1831 DEBUG(dbgs() << " all\n");
1832 break;
1833 }
1834 // Should the interval be extended or shrunk?
1835 bool Shrink = true;
1836
1837 // How many gaps would the new range have?
1838 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1839
1840 // Legally, without causing looping?
1841 bool Legal = !ProgressRequired || NewGaps < NumGaps;
1842
1843 if (Legal && MaxGap < llvm::huge_valf) {
1844 // Estimate the new spill weight. Each instruction reads or writes the
1845 // register. Conservatively assume there are no read-modify-write
1846 // instructions.
1847 //
1848 // Try to guess the size of the new interval.
1849 const float EstWeight = normalizeSpillWeight(
1850 blockFreq * (NewGaps + 1),
1851 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1852 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1853 1);
1854 // Would this split be possible to allocate?
1855 // Never allocate all gaps, we wouldn't be making progress.
1856 DEBUG(dbgs() << " w=" << EstWeight);
1857 if (EstWeight * Hysteresis >= MaxGap) {
1858 Shrink = false;
1859 float Diff = EstWeight - MaxGap;
1860 if (Diff > BestDiff) {
1861 DEBUG(dbgs() << " (best)");
1862 BestDiff = Hysteresis * Diff;
1863 BestBefore = SplitBefore;
1864 BestAfter = SplitAfter;
1865 }
1866 }
1867 }
1868
1869 // Try to shrink.
1870 if (Shrink) {
1871 if (++SplitBefore < SplitAfter) {
1872 DEBUG(dbgs() << " shrink\n");
1873 // Recompute the max when necessary.
1874 if (GapWeight[SplitBefore - 1] >= MaxGap) {
1875 MaxGap = GapWeight[SplitBefore];
1876 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1877 MaxGap = std::max(MaxGap, GapWeight[i]);
1878 }
1879 continue;
1880 }
1881 MaxGap = 0;
1882 }
1883
1884 // Try to extend the interval.
1885 if (SplitAfter >= NumGaps) {
1886 DEBUG(dbgs() << " end\n");
1887 break;
1888 }
1889
1890 DEBUG(dbgs() << " extend\n");
1891 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1892 }
1893 }
1894
1895 // Didn't find any candidates?
1896 if (BestBefore == NumGaps)
1897 return 0;
1898
1899 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1900 << '-' << Uses[BestAfter] << ", " << BestDiff
1901 << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1902
1903 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
1904 SE->reset(LREdit);
1905
1906 SE->openIntv();
1907 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1908 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
1909 SE->useIntv(SegStart, SegStop);
1910 SmallVector<unsigned, 8> IntvMap;
1911 SE->finish(&IntvMap);
1912 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1913
1914 // If the new range has the same number of instructions as before, mark it as
1915 // RS_Split2 so the next split will be forced to make progress. Otherwise,
1916 // leave the new intervals as RS_New so they can compete.
1917 bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1918 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1919 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1920 if (NewGaps >= NumGaps) {
1921 DEBUG(dbgs() << "Tagging non-progress ranges: ");
1922 assert(!ProgressRequired && "Didn't make progress when it was required.");
1923 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1924 if (IntvMap[i] == 1) {
1925 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
1926 DEBUG(dbgs() << PrintReg(LREdit.get(i)));
1927 }
1928 DEBUG(dbgs() << '\n');
1929 }
1930 ++NumLocalSplits;
1931
1932 return 0;
1933 }
1934
1935 //===----------------------------------------------------------------------===//
1936 // Live Range Splitting
1937 //===----------------------------------------------------------------------===//
1938
1939 /// trySplit - Try to split VirtReg or one of its interferences, making it
1940 /// assignable.
1941 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
trySplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<unsigned> & NewVRegs)1942 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1943 SmallVectorImpl<unsigned>&NewVRegs) {
1944 // Ranges must be Split2 or less.
1945 if (getStage(VirtReg) >= RS_Spill)
1946 return 0;
1947
1948 // Local intervals are handled separately.
1949 if (LIS->intervalIsInOneMBB(VirtReg)) {
1950 NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1951 SA->analyze(&VirtReg);
1952 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1953 if (PhysReg || !NewVRegs.empty())
1954 return PhysReg;
1955 return tryInstructionSplit(VirtReg, Order, NewVRegs);
1956 }
1957
1958 NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1959
1960 SA->analyze(&VirtReg);
1961
1962 // FIXME: SplitAnalysis may repair broken live ranges coming from the
1963 // coalescer. That may cause the range to become allocatable which means that
1964 // tryRegionSplit won't be making progress. This check should be replaced with
1965 // an assertion when the coalescer is fixed.
1966 if (SA->didRepairRange()) {
1967 // VirtReg has changed, so all cached queries are invalid.
1968 Matrix->invalidateVirtRegs();
1969 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1970 return PhysReg;
1971 }
1972
1973 // First try to split around a region spanning multiple blocks. RS_Split2
1974 // ranges already made dubious progress with region splitting, so they go
1975 // straight to single block splitting.
1976 if (getStage(VirtReg) < RS_Split2) {
1977 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1978 if (PhysReg || !NewVRegs.empty())
1979 return PhysReg;
1980 }
1981
1982 // Then isolate blocks.
1983 return tryBlockSplit(VirtReg, Order, NewVRegs);
1984 }
1985
1986 //===----------------------------------------------------------------------===//
1987 // Last Chance Recoloring
1988 //===----------------------------------------------------------------------===//
1989
1990 /// mayRecolorAllInterferences - Check if the virtual registers that
1991 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
1992 /// recolored to free \p PhysReg.
1993 /// When true is returned, \p RecoloringCandidates has been augmented with all
1994 /// the live intervals that need to be recolored in order to free \p PhysReg
1995 /// for \p VirtReg.
1996 /// \p FixedRegisters contains all the virtual registers that cannot be
1997 /// recolored.
1998 bool
mayRecolorAllInterferences(unsigned PhysReg,LiveInterval & VirtReg,SmallLISet & RecoloringCandidates,const SmallVirtRegSet & FixedRegisters)1999 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2000 SmallLISet &RecoloringCandidates,
2001 const SmallVirtRegSet &FixedRegisters) {
2002 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2003
2004 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2005 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2006 // If there is LastChanceRecoloringMaxInterference or more interferences,
2007 // chances are one would not be recolorable.
2008 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2009 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2010 DEBUG(dbgs() << "Early abort: too many interferences.\n");
2011 CutOffInfo |= CO_Interf;
2012 return false;
2013 }
2014 for (unsigned i = Q.interferingVRegs().size(); i; --i) {
2015 LiveInterval *Intf = Q.interferingVRegs()[i - 1];
2016 // If Intf is done and sit on the same register class as VirtReg,
2017 // it would not be recolorable as it is in the same state as VirtReg.
2018 if ((getStage(*Intf) == RS_Done &&
2019 MRI->getRegClass(Intf->reg) == CurRC) ||
2020 FixedRegisters.count(Intf->reg)) {
2021 DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n");
2022 return false;
2023 }
2024 RecoloringCandidates.insert(Intf);
2025 }
2026 }
2027 return true;
2028 }
2029
2030 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2031 /// its interferences.
2032 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2033 /// virtual register that was using it. The recoloring process may recursively
2034 /// use the last chance recoloring. Therefore, when a virtual register has been
2035 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2036 /// be last-chance-recolored again during this recoloring "session".
2037 /// E.g.,
2038 /// Let
2039 /// vA can use {R1, R2 }
2040 /// vB can use { R2, R3}
2041 /// vC can use {R1 }
2042 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2043 /// instance) and they all interfere.
2044 ///
2045 /// vA is assigned R1
2046 /// vB is assigned R2
2047 /// vC tries to evict vA but vA is already done.
2048 /// Regular register allocation fails.
2049 ///
2050 /// Last chance recoloring kicks in:
2051 /// vC does as if vA was evicted => vC uses R1.
2052 /// vC is marked as fixed.
2053 /// vA needs to find a color.
2054 /// None are available.
2055 /// vA cannot evict vC: vC is a fixed virtual register now.
2056 /// vA does as if vB was evicted => vA uses R2.
2057 /// vB needs to find a color.
2058 /// R3 is available.
2059 /// Recoloring => vC = R1, vA = R2, vB = R3
2060 ///
2061 /// \p Order defines the preferred allocation order for \p VirtReg.
2062 /// \p NewRegs will contain any new virtual register that have been created
2063 /// (split, spill) during the process and that must be assigned.
2064 /// \p FixedRegisters contains all the virtual registers that cannot be
2065 /// recolored.
2066 /// \p Depth gives the current depth of the last chance recoloring.
2067 /// \return a physical register that can be used for VirtReg or ~0u if none
2068 /// exists.
tryLastChanceRecoloring(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<unsigned> & NewVRegs,SmallVirtRegSet & FixedRegisters,unsigned Depth)2069 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2070 AllocationOrder &Order,
2071 SmallVectorImpl<unsigned> &NewVRegs,
2072 SmallVirtRegSet &FixedRegisters,
2073 unsigned Depth) {
2074 DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2075 // Ranges must be Done.
2076 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2077 "Last chance recoloring should really be last chance");
2078 // Set the max depth to LastChanceRecoloringMaxDepth.
2079 // We may want to reconsider that if we end up with a too large search space
2080 // for target with hundreds of registers.
2081 // Indeed, in that case we may want to cut the search space earlier.
2082 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2083 DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2084 CutOffInfo |= CO_Depth;
2085 return ~0u;
2086 }
2087
2088 // Set of Live intervals that will need to be recolored.
2089 SmallLISet RecoloringCandidates;
2090 // Record the original mapping virtual register to physical register in case
2091 // the recoloring fails.
2092 DenseMap<unsigned, unsigned> VirtRegToPhysReg;
2093 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2094 // this recoloring "session".
2095 FixedRegisters.insert(VirtReg.reg);
2096
2097 Order.rewind();
2098 while (unsigned PhysReg = Order.next()) {
2099 DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2100 << PrintReg(PhysReg, TRI) << '\n');
2101 RecoloringCandidates.clear();
2102 VirtRegToPhysReg.clear();
2103
2104 // It is only possible to recolor virtual register interference.
2105 if (Matrix->checkInterference(VirtReg, PhysReg) >
2106 LiveRegMatrix::IK_VirtReg) {
2107 DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n");
2108
2109 continue;
2110 }
2111
2112 // Early give up on this PhysReg if it is obvious we cannot recolor all
2113 // the interferences.
2114 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2115 FixedRegisters)) {
2116 DEBUG(dbgs() << "Some inteferences cannot be recolored.\n");
2117 continue;
2118 }
2119
2120 // RecoloringCandidates contains all the virtual registers that interfer
2121 // with VirtReg on PhysReg (or one of its aliases).
2122 // Enqueue them for recoloring and perform the actual recoloring.
2123 PQueue RecoloringQueue;
2124 for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2125 EndIt = RecoloringCandidates.end();
2126 It != EndIt; ++It) {
2127 unsigned ItVirtReg = (*It)->reg;
2128 enqueue(RecoloringQueue, *It);
2129 assert(VRM->hasPhys(ItVirtReg) &&
2130 "Interferences are supposed to be with allocated vairables");
2131
2132 // Record the current allocation.
2133 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2134 // unset the related struct.
2135 Matrix->unassign(**It);
2136 }
2137
2138 // Do as if VirtReg was assigned to PhysReg so that the underlying
2139 // recoloring has the right information about the interferes and
2140 // available colors.
2141 Matrix->assign(VirtReg, PhysReg);
2142
2143 // Save the current recoloring state.
2144 // If we cannot recolor all the interferences, we will have to start again
2145 // at this point for the next physical register.
2146 SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2147 if (tryRecoloringCandidates(RecoloringQueue, NewVRegs, FixedRegisters,
2148 Depth)) {
2149 // Do not mess up with the global assignment process.
2150 // I.e., VirtReg must be unassigned.
2151 Matrix->unassign(VirtReg);
2152 return PhysReg;
2153 }
2154
2155 DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2156 << PrintReg(PhysReg, TRI) << '\n');
2157
2158 // The recoloring attempt failed, undo the changes.
2159 FixedRegisters = SaveFixedRegisters;
2160 Matrix->unassign(VirtReg);
2161
2162 for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2163 EndIt = RecoloringCandidates.end();
2164 It != EndIt; ++It) {
2165 unsigned ItVirtReg = (*It)->reg;
2166 if (VRM->hasPhys(ItVirtReg))
2167 Matrix->unassign(**It);
2168 unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2169 Matrix->assign(**It, ItPhysReg);
2170 }
2171 }
2172
2173 // Last chance recoloring did not worked either, give up.
2174 return ~0u;
2175 }
2176
2177 /// tryRecoloringCandidates - Try to assign a new color to every register
2178 /// in \RecoloringQueue.
2179 /// \p NewRegs will contain any new virtual register created during the
2180 /// recoloring process.
2181 /// \p FixedRegisters[in/out] contains all the registers that have been
2182 /// recolored.
2183 /// \return true if all virtual registers in RecoloringQueue were successfully
2184 /// recolored, false otherwise.
tryRecoloringCandidates(PQueue & RecoloringQueue,SmallVectorImpl<unsigned> & NewVRegs,SmallVirtRegSet & FixedRegisters,unsigned Depth)2185 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2186 SmallVectorImpl<unsigned> &NewVRegs,
2187 SmallVirtRegSet &FixedRegisters,
2188 unsigned Depth) {
2189 while (!RecoloringQueue.empty()) {
2190 LiveInterval *LI = dequeue(RecoloringQueue);
2191 DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2192 unsigned PhysReg;
2193 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2194 if (PhysReg == ~0u || !PhysReg)
2195 return false;
2196 DEBUG(dbgs() << "Recoloring of " << *LI
2197 << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n');
2198 Matrix->assign(*LI, PhysReg);
2199 FixedRegisters.insert(LI->reg);
2200 }
2201 return true;
2202 }
2203
2204 //===----------------------------------------------------------------------===//
2205 // Main Entry Point
2206 //===----------------------------------------------------------------------===//
2207
selectOrSplit(LiveInterval & VirtReg,SmallVectorImpl<unsigned> & NewVRegs)2208 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2209 SmallVectorImpl<unsigned> &NewVRegs) {
2210 CutOffInfo = CO_None;
2211 LLVMContext &Ctx = MF->getFunction()->getContext();
2212 SmallVirtRegSet FixedRegisters;
2213 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2214 if (Reg == ~0U && (CutOffInfo != CO_None)) {
2215 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2216 if (CutOffEncountered == CO_Depth)
2217 Ctx.emitError("register allocation failed: maximum depth for recoloring "
2218 "reached. Use -fexhaustive-register-search to skip "
2219 "cutoffs");
2220 else if (CutOffEncountered == CO_Interf)
2221 Ctx.emitError("register allocation failed: maximum interference for "
2222 "recoloring reached. Use -fexhaustive-register-search "
2223 "to skip cutoffs");
2224 else if (CutOffEncountered == (CO_Depth | CO_Interf))
2225 Ctx.emitError("register allocation failed: maximum interference and "
2226 "depth for recoloring reached. Use "
2227 "-fexhaustive-register-search to skip cutoffs");
2228 }
2229 return Reg;
2230 }
2231
2232 /// Using a CSR for the first time has a cost because it causes push|pop
2233 /// to be added to prologue|epilogue. Splitting a cold section of the live
2234 /// range can have lower cost than using the CSR for the first time;
2235 /// Spilling a live range in the cold path can have lower cost than using
2236 /// the CSR for the first time. Returns the physical register if we decide
2237 /// to use the CSR; otherwise return 0.
tryAssignCSRFirstTime(LiveInterval & VirtReg,AllocationOrder & Order,unsigned PhysReg,unsigned & CostPerUseLimit,SmallVectorImpl<unsigned> & NewVRegs)2238 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2239 AllocationOrder &Order,
2240 unsigned PhysReg,
2241 unsigned &CostPerUseLimit,
2242 SmallVectorImpl<unsigned> &NewVRegs) {
2243 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2244 // We choose spill over using the CSR for the first time if the spill cost
2245 // is lower than CSRCost.
2246 SA->analyze(&VirtReg);
2247 if (calcSpillCost() >= CSRCost)
2248 return PhysReg;
2249
2250 // We are going to spill, set CostPerUseLimit to 1 to make sure that
2251 // we will not use a callee-saved register in tryEvict.
2252 CostPerUseLimit = 1;
2253 return 0;
2254 }
2255 if (getStage(VirtReg) < RS_Split) {
2256 // We choose pre-splitting over using the CSR for the first time if
2257 // the cost of splitting is lower than CSRCost.
2258 SA->analyze(&VirtReg);
2259 unsigned NumCands = 0;
2260 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2261 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2262 NumCands, true /*IgnoreCSR*/);
2263 if (BestCand == NoCand)
2264 // Use the CSR if we can't find a region split below CSRCost.
2265 return PhysReg;
2266
2267 // Perform the actual pre-splitting.
2268 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2269 return 0;
2270 }
2271 return PhysReg;
2272 }
2273
aboutToRemoveInterval(LiveInterval & LI)2274 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2275 // Do not keep invalid information around.
2276 SetOfBrokenHints.remove(&LI);
2277 }
2278
initializeCSRCost()2279 void RAGreedy::initializeCSRCost() {
2280 // We use the larger one out of the command-line option and the value report
2281 // by TRI.
2282 CSRCost = BlockFrequency(
2283 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2284 if (!CSRCost.getFrequency())
2285 return;
2286
2287 // Raw cost is relative to Entry == 2^14; scale it appropriately.
2288 uint64_t ActualEntry = MBFI->getEntryFreq();
2289 if (!ActualEntry) {
2290 CSRCost = 0;
2291 return;
2292 }
2293 uint64_t FixedEntry = 1 << 14;
2294 if (ActualEntry < FixedEntry)
2295 CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2296 else if (ActualEntry <= UINT32_MAX)
2297 // Invert the fraction and divide.
2298 CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2299 else
2300 // Can't use BranchProbability in general, since it takes 32-bit numbers.
2301 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2302 }
2303
2304 /// \brief Collect the hint info for \p Reg.
2305 /// The results are stored into \p Out.
2306 /// \p Out is not cleared before being populated.
collectHintInfo(unsigned Reg,HintsInfo & Out)2307 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2308 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2309 if (!Instr.isFullCopy())
2310 continue;
2311 // Look for the other end of the copy.
2312 unsigned OtherReg = Instr.getOperand(0).getReg();
2313 if (OtherReg == Reg) {
2314 OtherReg = Instr.getOperand(1).getReg();
2315 if (OtherReg == Reg)
2316 continue;
2317 }
2318 // Get the current assignment.
2319 unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg)
2320 ? OtherReg
2321 : VRM->getPhys(OtherReg);
2322 // Push the collected information.
2323 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2324 OtherPhysReg));
2325 }
2326 }
2327
2328 /// \brief Using the given \p List, compute the cost of the broken hints if
2329 /// \p PhysReg was used.
2330 /// \return The cost of \p List for \p PhysReg.
getBrokenHintFreq(const HintsInfo & List,unsigned PhysReg)2331 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2332 unsigned PhysReg) {
2333 BlockFrequency Cost = 0;
2334 for (const HintInfo &Info : List) {
2335 if (Info.PhysReg != PhysReg)
2336 Cost += Info.Freq;
2337 }
2338 return Cost;
2339 }
2340
2341 /// \brief Using the register assigned to \p VirtReg, try to recolor
2342 /// all the live ranges that are copy-related with \p VirtReg.
2343 /// The recoloring is then propagated to all the live-ranges that have
2344 /// been recolored and so on, until no more copies can be coalesced or
2345 /// it is not profitable.
2346 /// For a given live range, profitability is determined by the sum of the
2347 /// frequencies of the non-identity copies it would introduce with the old
2348 /// and new register.
tryHintRecoloring(LiveInterval & VirtReg)2349 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2350 // We have a broken hint, check if it is possible to fix it by
2351 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2352 // some register and PhysReg may be available for the other live-ranges.
2353 SmallSet<unsigned, 4> Visited;
2354 SmallVector<unsigned, 2> RecoloringCandidates;
2355 HintsInfo Info;
2356 unsigned Reg = VirtReg.reg;
2357 unsigned PhysReg = VRM->getPhys(Reg);
2358 // Start the recoloring algorithm from the input live-interval, then
2359 // it will propagate to the ones that are copy-related with it.
2360 Visited.insert(Reg);
2361 RecoloringCandidates.push_back(Reg);
2362
2363 DEBUG(dbgs() << "Trying to reconcile hints for: " << PrintReg(Reg, TRI) << '('
2364 << PrintReg(PhysReg, TRI) << ")\n");
2365
2366 do {
2367 Reg = RecoloringCandidates.pop_back_val();
2368
2369 // We cannot recolor physcal register.
2370 if (TargetRegisterInfo::isPhysicalRegister(Reg))
2371 continue;
2372
2373 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2374
2375 // Get the live interval mapped with this virtual register to be able
2376 // to check for the interference with the new color.
2377 LiveInterval &LI = LIS->getInterval(Reg);
2378 unsigned CurrPhys = VRM->getPhys(Reg);
2379 // Check that the new color matches the register class constraints and
2380 // that it is free for this live range.
2381 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2382 Matrix->checkInterference(LI, PhysReg)))
2383 continue;
2384
2385 DEBUG(dbgs() << PrintReg(Reg, TRI) << '(' << PrintReg(CurrPhys, TRI)
2386 << ") is recolorable.\n");
2387
2388 // Gather the hint info.
2389 Info.clear();
2390 collectHintInfo(Reg, Info);
2391 // Check if recoloring the live-range will increase the cost of the
2392 // non-identity copies.
2393 if (CurrPhys != PhysReg) {
2394 DEBUG(dbgs() << "Checking profitability:\n");
2395 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2396 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2397 DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2398 << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n');
2399 if (OldCopiesCost < NewCopiesCost) {
2400 DEBUG(dbgs() << "=> Not profitable.\n");
2401 continue;
2402 }
2403 // At this point, the cost is either cheaper or equal. If it is
2404 // equal, we consider this is profitable because it may expose
2405 // more recoloring opportunities.
2406 DEBUG(dbgs() << "=> Profitable.\n");
2407 // Recolor the live-range.
2408 Matrix->unassign(LI);
2409 Matrix->assign(LI, PhysReg);
2410 }
2411 // Push all copy-related live-ranges to keep reconciling the broken
2412 // hints.
2413 for (const HintInfo &HI : Info) {
2414 if (Visited.insert(HI.Reg).second)
2415 RecoloringCandidates.push_back(HI.Reg);
2416 }
2417 } while (!RecoloringCandidates.empty());
2418 }
2419
2420 /// \brief Try to recolor broken hints.
2421 /// Broken hints may be repaired by recoloring when an evicted variable
2422 /// freed up a register for a larger live-range.
2423 /// Consider the following example:
2424 /// BB1:
2425 /// a =
2426 /// b =
2427 /// BB2:
2428 /// ...
2429 /// = b
2430 /// = a
2431 /// Let us assume b gets split:
2432 /// BB1:
2433 /// a =
2434 /// b =
2435 /// BB2:
2436 /// c = b
2437 /// ...
2438 /// d = c
2439 /// = d
2440 /// = a
2441 /// Because of how the allocation work, b, c, and d may be assigned different
2442 /// colors. Now, if a gets evicted later:
2443 /// BB1:
2444 /// a =
2445 /// st a, SpillSlot
2446 /// b =
2447 /// BB2:
2448 /// c = b
2449 /// ...
2450 /// d = c
2451 /// = d
2452 /// e = ld SpillSlot
2453 /// = e
2454 /// This is likely that we can assign the same register for b, c, and d,
2455 /// getting rid of 2 copies.
tryHintsRecoloring()2456 void RAGreedy::tryHintsRecoloring() {
2457 for (LiveInterval *LI : SetOfBrokenHints) {
2458 assert(TargetRegisterInfo::isVirtualRegister(LI->reg) &&
2459 "Recoloring is possible only for virtual registers");
2460 // Some dead defs may be around (e.g., because of debug uses).
2461 // Ignore those.
2462 if (!VRM->hasPhys(LI->reg))
2463 continue;
2464 tryHintRecoloring(*LI);
2465 }
2466 }
2467
selectOrSplitImpl(LiveInterval & VirtReg,SmallVectorImpl<unsigned> & NewVRegs,SmallVirtRegSet & FixedRegisters,unsigned Depth)2468 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
2469 SmallVectorImpl<unsigned> &NewVRegs,
2470 SmallVirtRegSet &FixedRegisters,
2471 unsigned Depth) {
2472 unsigned CostPerUseLimit = ~0u;
2473 // First try assigning a free register.
2474 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
2475 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) {
2476 // When NewVRegs is not empty, we may have made decisions such as evicting
2477 // a virtual register, go with the earlier decisions and use the physical
2478 // register.
2479 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
2480 NewVRegs.empty()) {
2481 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2482 CostPerUseLimit, NewVRegs);
2483 if (CSRReg || !NewVRegs.empty())
2484 // Return now if we decide to use a CSR or create new vregs due to
2485 // pre-splitting.
2486 return CSRReg;
2487 } else
2488 return PhysReg;
2489 }
2490
2491 LiveRangeStage Stage = getStage(VirtReg);
2492 DEBUG(dbgs() << StageName[Stage]
2493 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
2494
2495 // Try to evict a less worthy live range, but only for ranges from the primary
2496 // queue. The RS_Split ranges already failed to do this, and they should not
2497 // get a second chance until they have been split.
2498 if (Stage != RS_Split)
2499 if (unsigned PhysReg =
2500 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) {
2501 unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
2502 // If VirtReg has a hint and that hint is broken record this
2503 // virtual register as a recoloring candidate for broken hint.
2504 // Indeed, since we evicted a variable in its neighborhood it is
2505 // likely we can at least partially recolor some of the
2506 // copy-related live-ranges.
2507 if (Hint && Hint != PhysReg)
2508 SetOfBrokenHints.insert(&VirtReg);
2509 return PhysReg;
2510 }
2511
2512 assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
2513
2514 // The first time we see a live range, don't try to split or spill.
2515 // Wait until the second time, when all smaller ranges have been allocated.
2516 // This gives a better picture of the interference to split around.
2517 if (Stage < RS_Split) {
2518 setStage(VirtReg, RS_Split);
2519 DEBUG(dbgs() << "wait for second round\n");
2520 NewVRegs.push_back(VirtReg.reg);
2521 return 0;
2522 }
2523
2524 // If we couldn't allocate a register from spilling, there is probably some
2525 // invalid inline assembly. The base class wil report it.
2526 if (Stage >= RS_Done || !VirtReg.isSpillable())
2527 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2528 Depth);
2529
2530 // Try splitting VirtReg or interferences.
2531 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
2532 if (PhysReg || !NewVRegs.empty())
2533 return PhysReg;
2534
2535 // Finally spill VirtReg itself.
2536 if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) {
2537 // TODO: This is experimental and in particular, we do not model
2538 // the live range splitting done by spilling correctly.
2539 // We would need a deep integration with the spiller to do the
2540 // right thing here. Anyway, that is still good for early testing.
2541 setStage(VirtReg, RS_Memory);
2542 DEBUG(dbgs() << "Do as if this register is in memory\n");
2543 NewVRegs.push_back(VirtReg.reg);
2544 } else {
2545 NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
2546 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
2547 spiller().spill(LRE);
2548 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2549
2550 if (VerifyEnabled)
2551 MF->verify(this, "After spilling");
2552 }
2553
2554 // The live virtual register requesting allocation was spilled, so tell
2555 // the caller not to allocate anything during this round.
2556 return 0;
2557 }
2558
runOnMachineFunction(MachineFunction & mf)2559 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2560 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2561 << "********** Function: " << mf.getName() << '\n');
2562
2563 MF = &mf;
2564 TRI = MF->getSubtarget().getRegisterInfo();
2565 TII = MF->getSubtarget().getInstrInfo();
2566 RCI.runOnMachineFunction(mf);
2567
2568 EnableLocalReassign = EnableLocalReassignment ||
2569 MF->getSubtarget().enableRALocalReassignment(
2570 MF->getTarget().getOptLevel());
2571
2572 if (VerifyEnabled)
2573 MF->verify(this, "Before greedy register allocator");
2574
2575 RegAllocBase::init(getAnalysis<VirtRegMap>(),
2576 getAnalysis<LiveIntervals>(),
2577 getAnalysis<LiveRegMatrix>());
2578 Indexes = &getAnalysis<SlotIndexes>();
2579 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2580 DomTree = &getAnalysis<MachineDominatorTree>();
2581 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
2582 Loops = &getAnalysis<MachineLoopInfo>();
2583 Bundles = &getAnalysis<EdgeBundles>();
2584 SpillPlacer = &getAnalysis<SpillPlacement>();
2585 DebugVars = &getAnalysis<LiveDebugVariables>();
2586
2587 initializeCSRCost();
2588
2589 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);
2590
2591 DEBUG(LIS->dump());
2592
2593 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2594 SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI));
2595 ExtraRegInfo.clear();
2596 ExtraRegInfo.resize(MRI->getNumVirtRegs());
2597 NextCascade = 1;
2598 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2599 GlobalCand.resize(32); // This will grow as needed.
2600 SetOfBrokenHints.clear();
2601
2602 allocatePhysRegs();
2603 tryHintsRecoloring();
2604 releaseMemory();
2605 return true;
2606 }
2607