1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
11 //
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time. For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
19 //
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support. In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
24 //
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated. Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time. Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
33 //
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators. More complicated operations currently require
38 // target-specific code.
39 //
40 //===----------------------------------------------------------------------===//
41
42 #include "llvm/CodeGen/Analysis.h"
43 #include "llvm/ADT/Optional.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/Analysis/BranchProbabilityInfo.h"
46 #include "llvm/Analysis/Loads.h"
47 #include "llvm/Analysis/TargetLibraryInfo.h"
48 #include "llvm/CodeGen/Analysis.h"
49 #include "llvm/CodeGen/FastISel.h"
50 #include "llvm/CodeGen/FunctionLoweringInfo.h"
51 #include "llvm/CodeGen/MachineFrameInfo.h"
52 #include "llvm/CodeGen/MachineInstrBuilder.h"
53 #include "llvm/CodeGen/MachineModuleInfo.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DebugInfo.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/GlobalVariable.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Mangler.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetInstrInfo.h"
68 #include "llvm/Target/TargetLowering.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetSubtargetInfo.h"
71 using namespace llvm;
72
73 #define DEBUG_TYPE "isel"
74
75 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
76 "target-independent selector");
77 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
78 "target-specific selector");
79 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
80
setAttributes(ImmutableCallSite * CS,unsigned AttrIdx)81 void FastISel::ArgListEntry::setAttributes(ImmutableCallSite *CS,
82 unsigned AttrIdx) {
83 IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt);
84 IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
85 IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg);
86 IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
87 IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest);
88 IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
89 IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
90 IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
91 Alignment = CS->getParamAlignment(AttrIdx);
92 }
93
94 /// Set the current block to which generated machine instructions will be
95 /// appended, and clear the local CSE map.
startNewBlock()96 void FastISel::startNewBlock() {
97 LocalValueMap.clear();
98
99 // Instructions are appended to FuncInfo.MBB. If the basic block already
100 // contains labels or copies, use the last instruction as the last local
101 // value.
102 EmitStartPt = nullptr;
103 if (!FuncInfo.MBB->empty())
104 EmitStartPt = &FuncInfo.MBB->back();
105 LastLocalValue = EmitStartPt;
106 }
107
lowerArguments()108 bool FastISel::lowerArguments() {
109 if (!FuncInfo.CanLowerReturn)
110 // Fallback to SDISel argument lowering code to deal with sret pointer
111 // parameter.
112 return false;
113
114 if (!fastLowerArguments())
115 return false;
116
117 // Enter arguments into ValueMap for uses in non-entry BBs.
118 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
119 E = FuncInfo.Fn->arg_end();
120 I != E; ++I) {
121 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(&*I);
122 assert(VI != LocalValueMap.end() && "Missed an argument?");
123 FuncInfo.ValueMap[&*I] = VI->second;
124 }
125 return true;
126 }
127
flushLocalValueMap()128 void FastISel::flushLocalValueMap() {
129 LocalValueMap.clear();
130 LastLocalValue = EmitStartPt;
131 recomputeInsertPt();
132 SavedInsertPt = FuncInfo.InsertPt;
133 }
134
hasTrivialKill(const Value * V)135 bool FastISel::hasTrivialKill(const Value *V) {
136 // Don't consider constants or arguments to have trivial kills.
137 const Instruction *I = dyn_cast<Instruction>(V);
138 if (!I)
139 return false;
140
141 // No-op casts are trivially coalesced by fast-isel.
142 if (const auto *Cast = dyn_cast<CastInst>(I))
143 if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) &&
144 !hasTrivialKill(Cast->getOperand(0)))
145 return false;
146
147 // Even the value might have only one use in the LLVM IR, it is possible that
148 // FastISel might fold the use into another instruction and now there is more
149 // than one use at the Machine Instruction level.
150 unsigned Reg = lookUpRegForValue(V);
151 if (Reg && !MRI.use_empty(Reg))
152 return false;
153
154 // GEPs with all zero indices are trivially coalesced by fast-isel.
155 if (const auto *GEP = dyn_cast<GetElementPtrInst>(I))
156 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
157 return false;
158
159 // Only instructions with a single use in the same basic block are considered
160 // to have trivial kills.
161 return I->hasOneUse() &&
162 !(I->getOpcode() == Instruction::BitCast ||
163 I->getOpcode() == Instruction::PtrToInt ||
164 I->getOpcode() == Instruction::IntToPtr) &&
165 cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
166 }
167
getRegForValue(const Value * V)168 unsigned FastISel::getRegForValue(const Value *V) {
169 EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
170 // Don't handle non-simple values in FastISel.
171 if (!RealVT.isSimple())
172 return 0;
173
174 // Ignore illegal types. We must do this before looking up the value
175 // in ValueMap because Arguments are given virtual registers regardless
176 // of whether FastISel can handle them.
177 MVT VT = RealVT.getSimpleVT();
178 if (!TLI.isTypeLegal(VT)) {
179 // Handle integer promotions, though, because they're common and easy.
180 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
181 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
182 else
183 return 0;
184 }
185
186 // Look up the value to see if we already have a register for it.
187 unsigned Reg = lookUpRegForValue(V);
188 if (Reg)
189 return Reg;
190
191 // In bottom-up mode, just create the virtual register which will be used
192 // to hold the value. It will be materialized later.
193 if (isa<Instruction>(V) &&
194 (!isa<AllocaInst>(V) ||
195 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
196 return FuncInfo.InitializeRegForValue(V);
197
198 SavePoint SaveInsertPt = enterLocalValueArea();
199
200 // Materialize the value in a register. Emit any instructions in the
201 // local value area.
202 Reg = materializeRegForValue(V, VT);
203
204 leaveLocalValueArea(SaveInsertPt);
205
206 return Reg;
207 }
208
materializeConstant(const Value * V,MVT VT)209 unsigned FastISel::materializeConstant(const Value *V, MVT VT) {
210 unsigned Reg = 0;
211 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
212 if (CI->getValue().getActiveBits() <= 64)
213 Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
214 } else if (isa<AllocaInst>(V))
215 Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
216 else if (isa<ConstantPointerNull>(V))
217 // Translate this as an integer zero so that it can be
218 // local-CSE'd with actual integer zeros.
219 Reg = getRegForValue(
220 Constant::getNullValue(DL.getIntPtrType(V->getContext())));
221 else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
222 if (CF->isNullValue())
223 Reg = fastMaterializeFloatZero(CF);
224 else
225 // Try to emit the constant directly.
226 Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
227
228 if (!Reg) {
229 // Try to emit the constant by using an integer constant with a cast.
230 const APFloat &Flt = CF->getValueAPF();
231 EVT IntVT = TLI.getPointerTy(DL);
232
233 uint64_t x[2];
234 uint32_t IntBitWidth = IntVT.getSizeInBits();
235 bool isExact;
236 (void)Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
237 APFloat::rmTowardZero, &isExact);
238 if (isExact) {
239 APInt IntVal(IntBitWidth, x);
240
241 unsigned IntegerReg =
242 getRegForValue(ConstantInt::get(V->getContext(), IntVal));
243 if (IntegerReg != 0)
244 Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg,
245 /*Kill=*/false);
246 }
247 }
248 } else if (const auto *Op = dyn_cast<Operator>(V)) {
249 if (!selectOperator(Op, Op->getOpcode()))
250 if (!isa<Instruction>(Op) ||
251 !fastSelectInstruction(cast<Instruction>(Op)))
252 return 0;
253 Reg = lookUpRegForValue(Op);
254 } else if (isa<UndefValue>(V)) {
255 Reg = createResultReg(TLI.getRegClassFor(VT));
256 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
257 TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
258 }
259 return Reg;
260 }
261
262 /// Helper for getRegForValue. This function is called when the value isn't
263 /// already available in a register and must be materialized with new
264 /// instructions.
materializeRegForValue(const Value * V,MVT VT)265 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
266 unsigned Reg = 0;
267 // Give the target-specific code a try first.
268 if (isa<Constant>(V))
269 Reg = fastMaterializeConstant(cast<Constant>(V));
270
271 // If target-specific code couldn't or didn't want to handle the value, then
272 // give target-independent code a try.
273 if (!Reg)
274 Reg = materializeConstant(V, VT);
275
276 // Don't cache constant materializations in the general ValueMap.
277 // To do so would require tracking what uses they dominate.
278 if (Reg) {
279 LocalValueMap[V] = Reg;
280 LastLocalValue = MRI.getVRegDef(Reg);
281 }
282 return Reg;
283 }
284
lookUpRegForValue(const Value * V)285 unsigned FastISel::lookUpRegForValue(const Value *V) {
286 // Look up the value to see if we already have a register for it. We
287 // cache values defined by Instructions across blocks, and other values
288 // only locally. This is because Instructions already have the SSA
289 // def-dominates-use requirement enforced.
290 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
291 if (I != FuncInfo.ValueMap.end())
292 return I->second;
293 return LocalValueMap[V];
294 }
295
updateValueMap(const Value * I,unsigned Reg,unsigned NumRegs)296 void FastISel::updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
297 if (!isa<Instruction>(I)) {
298 LocalValueMap[I] = Reg;
299 return;
300 }
301
302 unsigned &AssignedReg = FuncInfo.ValueMap[I];
303 if (AssignedReg == 0)
304 // Use the new register.
305 AssignedReg = Reg;
306 else if (Reg != AssignedReg) {
307 // Arrange for uses of AssignedReg to be replaced by uses of Reg.
308 for (unsigned i = 0; i < NumRegs; i++)
309 FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
310
311 AssignedReg = Reg;
312 }
313 }
314
getRegForGEPIndex(const Value * Idx)315 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
316 unsigned IdxN = getRegForValue(Idx);
317 if (IdxN == 0)
318 // Unhandled operand. Halt "fast" selection and bail.
319 return std::pair<unsigned, bool>(0, false);
320
321 bool IdxNIsKill = hasTrivialKill(Idx);
322
323 // If the index is smaller or larger than intptr_t, truncate or extend it.
324 MVT PtrVT = TLI.getPointerTy(DL);
325 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
326 if (IdxVT.bitsLT(PtrVT)) {
327 IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN,
328 IdxNIsKill);
329 IdxNIsKill = true;
330 } else if (IdxVT.bitsGT(PtrVT)) {
331 IdxN =
332 fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN, IdxNIsKill);
333 IdxNIsKill = true;
334 }
335 return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
336 }
337
recomputeInsertPt()338 void FastISel::recomputeInsertPt() {
339 if (getLastLocalValue()) {
340 FuncInfo.InsertPt = getLastLocalValue();
341 FuncInfo.MBB = FuncInfo.InsertPt->getParent();
342 ++FuncInfo.InsertPt;
343 } else
344 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
345
346 // Now skip past any EH_LABELs, which must remain at the beginning.
347 while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
348 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
349 ++FuncInfo.InsertPt;
350 }
351
removeDeadCode(MachineBasicBlock::iterator I,MachineBasicBlock::iterator E)352 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
353 MachineBasicBlock::iterator E) {
354 assert(I && E && std::distance(I, E) > 0 && "Invalid iterator!");
355 while (I != E) {
356 MachineInstr *Dead = &*I;
357 ++I;
358 Dead->eraseFromParent();
359 ++NumFastIselDead;
360 }
361 recomputeInsertPt();
362 }
363
enterLocalValueArea()364 FastISel::SavePoint FastISel::enterLocalValueArea() {
365 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
366 DebugLoc OldDL = DbgLoc;
367 recomputeInsertPt();
368 DbgLoc = DebugLoc();
369 SavePoint SP = {OldInsertPt, OldDL};
370 return SP;
371 }
372
leaveLocalValueArea(SavePoint OldInsertPt)373 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
374 if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
375 LastLocalValue = std::prev(FuncInfo.InsertPt);
376
377 // Restore the previous insert position.
378 FuncInfo.InsertPt = OldInsertPt.InsertPt;
379 DbgLoc = OldInsertPt.DL;
380 }
381
selectBinaryOp(const User * I,unsigned ISDOpcode)382 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
383 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
384 if (VT == MVT::Other || !VT.isSimple())
385 // Unhandled type. Halt "fast" selection and bail.
386 return false;
387
388 // We only handle legal types. For example, on x86-32 the instruction
389 // selector contains all of the 64-bit instructions from x86-64,
390 // under the assumption that i64 won't be used if the target doesn't
391 // support it.
392 if (!TLI.isTypeLegal(VT)) {
393 // MVT::i1 is special. Allow AND, OR, or XOR because they
394 // don't require additional zeroing, which makes them easy.
395 if (VT == MVT::i1 && (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
396 ISDOpcode == ISD::XOR))
397 VT = TLI.getTypeToTransformTo(I->getContext(), VT);
398 else
399 return false;
400 }
401
402 // Check if the first operand is a constant, and handle it as "ri". At -O0,
403 // we don't have anything that canonicalizes operand order.
404 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
405 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
406 unsigned Op1 = getRegForValue(I->getOperand(1));
407 if (!Op1)
408 return false;
409 bool Op1IsKill = hasTrivialKill(I->getOperand(1));
410
411 unsigned ResultReg =
412 fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, Op1IsKill,
413 CI->getZExtValue(), VT.getSimpleVT());
414 if (!ResultReg)
415 return false;
416
417 // We successfully emitted code for the given LLVM Instruction.
418 updateValueMap(I, ResultReg);
419 return true;
420 }
421
422 unsigned Op0 = getRegForValue(I->getOperand(0));
423 if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
424 return false;
425 bool Op0IsKill = hasTrivialKill(I->getOperand(0));
426
427 // Check if the second operand is a constant and handle it appropriately.
428 if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
429 uint64_t Imm = CI->getSExtValue();
430
431 // Transform "sdiv exact X, 8" -> "sra X, 3".
432 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
433 cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
434 Imm = Log2_64(Imm);
435 ISDOpcode = ISD::SRA;
436 }
437
438 // Transform "urem x, pow2" -> "and x, pow2-1".
439 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
440 isPowerOf2_64(Imm)) {
441 --Imm;
442 ISDOpcode = ISD::AND;
443 }
444
445 unsigned ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
446 Op0IsKill, Imm, VT.getSimpleVT());
447 if (!ResultReg)
448 return false;
449
450 // We successfully emitted code for the given LLVM Instruction.
451 updateValueMap(I, ResultReg);
452 return true;
453 }
454
455 // Check if the second operand is a constant float.
456 if (const auto *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
457 unsigned ResultReg = fastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
458 ISDOpcode, Op0, Op0IsKill, CF);
459 if (ResultReg) {
460 // We successfully emitted code for the given LLVM Instruction.
461 updateValueMap(I, ResultReg);
462 return true;
463 }
464 }
465
466 unsigned Op1 = getRegForValue(I->getOperand(1));
467 if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
468 return false;
469 bool Op1IsKill = hasTrivialKill(I->getOperand(1));
470
471 // Now we have both operands in registers. Emit the instruction.
472 unsigned ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
473 ISDOpcode, Op0, Op0IsKill, Op1, Op1IsKill);
474 if (!ResultReg)
475 // Target-specific code wasn't able to find a machine opcode for
476 // the given ISD opcode and type. Halt "fast" selection and bail.
477 return false;
478
479 // We successfully emitted code for the given LLVM Instruction.
480 updateValueMap(I, ResultReg);
481 return true;
482 }
483
selectGetElementPtr(const User * I)484 bool FastISel::selectGetElementPtr(const User *I) {
485 unsigned N = getRegForValue(I->getOperand(0));
486 if (!N) // Unhandled operand. Halt "fast" selection and bail.
487 return false;
488 bool NIsKill = hasTrivialKill(I->getOperand(0));
489
490 // Keep a running tab of the total offset to coalesce multiple N = N + Offset
491 // into a single N = N + TotalOffset.
492 uint64_t TotalOffs = 0;
493 // FIXME: What's a good SWAG number for MaxOffs?
494 uint64_t MaxOffs = 2048;
495 Type *Ty = I->getOperand(0)->getType();
496 MVT VT = TLI.getPointerTy(DL);
497 for (GetElementPtrInst::const_op_iterator OI = I->op_begin() + 1,
498 E = I->op_end();
499 OI != E; ++OI) {
500 const Value *Idx = *OI;
501 if (auto *StTy = dyn_cast<StructType>(Ty)) {
502 uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
503 if (Field) {
504 // N = N + Offset
505 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
506 if (TotalOffs >= MaxOffs) {
507 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
508 if (!N) // Unhandled operand. Halt "fast" selection and bail.
509 return false;
510 NIsKill = true;
511 TotalOffs = 0;
512 }
513 }
514 Ty = StTy->getElementType(Field);
515 } else {
516 Ty = cast<SequentialType>(Ty)->getElementType();
517
518 // If this is a constant subscript, handle it quickly.
519 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
520 if (CI->isZero())
521 continue;
522 // N = N + Offset
523 uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
524 TotalOffs += DL.getTypeAllocSize(Ty) * IdxN;
525 if (TotalOffs >= MaxOffs) {
526 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
527 if (!N) // Unhandled operand. Halt "fast" selection and bail.
528 return false;
529 NIsKill = true;
530 TotalOffs = 0;
531 }
532 continue;
533 }
534 if (TotalOffs) {
535 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
536 if (!N) // Unhandled operand. Halt "fast" selection and bail.
537 return false;
538 NIsKill = true;
539 TotalOffs = 0;
540 }
541
542 // N = N + Idx * ElementSize;
543 uint64_t ElementSize = DL.getTypeAllocSize(Ty);
544 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
545 unsigned IdxN = Pair.first;
546 bool IdxNIsKill = Pair.second;
547 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
548 return false;
549
550 if (ElementSize != 1) {
551 IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
552 if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
553 return false;
554 IdxNIsKill = true;
555 }
556 N = fastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
557 if (!N) // Unhandled operand. Halt "fast" selection and bail.
558 return false;
559 }
560 }
561 if (TotalOffs) {
562 N = fastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
563 if (!N) // Unhandled operand. Halt "fast" selection and bail.
564 return false;
565 }
566
567 // We successfully emitted code for the given LLVM Instruction.
568 updateValueMap(I, N);
569 return true;
570 }
571
addStackMapLiveVars(SmallVectorImpl<MachineOperand> & Ops,const CallInst * CI,unsigned StartIdx)572 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
573 const CallInst *CI, unsigned StartIdx) {
574 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) {
575 Value *Val = CI->getArgOperand(i);
576 // Check for constants and encode them with a StackMaps::ConstantOp prefix.
577 if (const auto *C = dyn_cast<ConstantInt>(Val)) {
578 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
579 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
580 } else if (isa<ConstantPointerNull>(Val)) {
581 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
582 Ops.push_back(MachineOperand::CreateImm(0));
583 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
584 // Values coming from a stack location also require a sepcial encoding,
585 // but that is added later on by the target specific frame index
586 // elimination implementation.
587 auto SI = FuncInfo.StaticAllocaMap.find(AI);
588 if (SI != FuncInfo.StaticAllocaMap.end())
589 Ops.push_back(MachineOperand::CreateFI(SI->second));
590 else
591 return false;
592 } else {
593 unsigned Reg = getRegForValue(Val);
594 if (!Reg)
595 return false;
596 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
597 }
598 }
599 return true;
600 }
601
selectStackmap(const CallInst * I)602 bool FastISel::selectStackmap(const CallInst *I) {
603 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
604 // [live variables...])
605 assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
606 "Stackmap cannot return a value.");
607
608 // The stackmap intrinsic only records the live variables (the arguments
609 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
610 // intrinsic, this won't be lowered to a function call. This means we don't
611 // have to worry about calling conventions and target-specific lowering code.
612 // Instead we perform the call lowering right here.
613 //
614 // CALLSEQ_START(0...)
615 // STACKMAP(id, nbytes, ...)
616 // CALLSEQ_END(0, 0)
617 //
618 SmallVector<MachineOperand, 32> Ops;
619
620 // Add the <id> and <numBytes> constants.
621 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
622 "Expected a constant integer.");
623 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
624 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
625
626 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
627 "Expected a constant integer.");
628 const auto *NumBytes =
629 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
630 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
631
632 // Push live variables for the stack map (skipping the first two arguments
633 // <id> and <numBytes>).
634 if (!addStackMapLiveVars(Ops, I, 2))
635 return false;
636
637 // We are not adding any register mask info here, because the stackmap doesn't
638 // clobber anything.
639
640 // Add scratch registers as implicit def and early clobber.
641 CallingConv::ID CC = I->getCallingConv();
642 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
643 for (unsigned i = 0; ScratchRegs[i]; ++i)
644 Ops.push_back(MachineOperand::CreateReg(
645 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
646 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
647
648 // Issue CALLSEQ_START
649 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
650 auto Builder =
651 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown));
652 const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
653 for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
654 Builder.addImm(0);
655
656 // Issue STACKMAP.
657 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
658 TII.get(TargetOpcode::STACKMAP));
659 for (auto const &MO : Ops)
660 MIB.addOperand(MO);
661
662 // Issue CALLSEQ_END
663 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
664 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
665 .addImm(0)
666 .addImm(0);
667
668 // Inform the Frame Information that we have a stackmap in this function.
669 FuncInfo.MF->getFrameInfo()->setHasStackMap();
670
671 return true;
672 }
673
674 /// \brief Lower an argument list according to the target calling convention.
675 ///
676 /// This is a helper for lowering intrinsics that follow a target calling
677 /// convention or require stack pointer adjustment. Only a subset of the
678 /// intrinsic's operands need to participate in the calling convention.
lowerCallOperands(const CallInst * CI,unsigned ArgIdx,unsigned NumArgs,const Value * Callee,bool ForceRetVoidTy,CallLoweringInfo & CLI)679 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
680 unsigned NumArgs, const Value *Callee,
681 bool ForceRetVoidTy, CallLoweringInfo &CLI) {
682 ArgListTy Args;
683 Args.reserve(NumArgs);
684
685 // Populate the argument list.
686 // Attributes for args start at offset 1, after the return attribute.
687 ImmutableCallSite CS(CI);
688 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
689 ArgI != ArgE; ++ArgI) {
690 Value *V = CI->getOperand(ArgI);
691
692 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
693
694 ArgListEntry Entry;
695 Entry.Val = V;
696 Entry.Ty = V->getType();
697 Entry.setAttributes(&CS, AttrI);
698 Args.push_back(Entry);
699 }
700
701 Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
702 : CI->getType();
703 CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
704
705 return lowerCallTo(CLI);
706 }
707
setCallee(const DataLayout & DL,MCContext & Ctx,CallingConv::ID CC,Type * ResultTy,const char * Target,ArgListTy && ArgsList,unsigned FixedArgs)708 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
709 const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
710 const char *Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
711 SmallString<32> MangledName;
712 Mangler::getNameWithPrefix(MangledName, Target, DL);
713 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
714 return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
715 }
716
selectPatchpoint(const CallInst * I)717 bool FastISel::selectPatchpoint(const CallInst *I) {
718 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
719 // i32 <numBytes>,
720 // i8* <target>,
721 // i32 <numArgs>,
722 // [Args...],
723 // [live variables...])
724 CallingConv::ID CC = I->getCallingConv();
725 bool IsAnyRegCC = CC == CallingConv::AnyReg;
726 bool HasDef = !I->getType()->isVoidTy();
727 Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
728
729 // Get the real number of arguments participating in the call <numArgs>
730 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
731 "Expected a constant integer.");
732 const auto *NumArgsVal =
733 cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
734 unsigned NumArgs = NumArgsVal->getZExtValue();
735
736 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
737 // This includes all meta-operands up to but not including CC.
738 unsigned NumMetaOpers = PatchPointOpers::CCPos;
739 assert(I->getNumArgOperands() >= NumMetaOpers + NumArgs &&
740 "Not enough arguments provided to the patchpoint intrinsic");
741
742 // For AnyRegCC the arguments are lowered later on manually.
743 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
744 CallLoweringInfo CLI;
745 CLI.setIsPatchPoint();
746 if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
747 return false;
748
749 assert(CLI.Call && "No call instruction specified.");
750
751 SmallVector<MachineOperand, 32> Ops;
752
753 // Add an explicit result reg if we use the anyreg calling convention.
754 if (IsAnyRegCC && HasDef) {
755 assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
756 CLI.ResultReg = createResultReg(TLI.getRegClassFor(MVT::i64));
757 CLI.NumResultRegs = 1;
758 Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*IsDef=*/true));
759 }
760
761 // Add the <id> and <numBytes> constants.
762 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
763 "Expected a constant integer.");
764 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
765 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
766
767 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
768 "Expected a constant integer.");
769 const auto *NumBytes =
770 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
771 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
772
773 // Add the call target.
774 if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
775 uint64_t CalleeConstAddr =
776 cast<ConstantInt>(C->getOperand(0))->getZExtValue();
777 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
778 } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
779 if (C->getOpcode() == Instruction::IntToPtr) {
780 uint64_t CalleeConstAddr =
781 cast<ConstantInt>(C->getOperand(0))->getZExtValue();
782 Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
783 } else
784 llvm_unreachable("Unsupported ConstantExpr.");
785 } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
786 Ops.push_back(MachineOperand::CreateGA(GV, 0));
787 } else if (isa<ConstantPointerNull>(Callee))
788 Ops.push_back(MachineOperand::CreateImm(0));
789 else
790 llvm_unreachable("Unsupported callee address.");
791
792 // Adjust <numArgs> to account for any arguments that have been passed on
793 // the stack instead.
794 unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
795 Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
796
797 // Add the calling convention
798 Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
799
800 // Add the arguments we omitted previously. The register allocator should
801 // place these in any free register.
802 if (IsAnyRegCC) {
803 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
804 unsigned Reg = getRegForValue(I->getArgOperand(i));
805 if (!Reg)
806 return false;
807 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
808 }
809 }
810
811 // Push the arguments from the call instruction.
812 for (auto Reg : CLI.OutRegs)
813 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false));
814
815 // Push live variables for the stack map.
816 if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
817 return false;
818
819 // Push the register mask info.
820 Ops.push_back(MachineOperand::CreateRegMask(
821 TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
822
823 // Add scratch registers as implicit def and early clobber.
824 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
825 for (unsigned i = 0; ScratchRegs[i]; ++i)
826 Ops.push_back(MachineOperand::CreateReg(
827 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false,
828 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true));
829
830 // Add implicit defs (return values).
831 for (auto Reg : CLI.InRegs)
832 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/true,
833 /*IsImpl=*/true));
834
835 // Insert the patchpoint instruction before the call generated by the target.
836 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, DbgLoc,
837 TII.get(TargetOpcode::PATCHPOINT));
838
839 for (auto &MO : Ops)
840 MIB.addOperand(MO);
841
842 MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
843
844 // Delete the original call instruction.
845 CLI.Call->eraseFromParent();
846
847 // Inform the Frame Information that we have a patchpoint in this function.
848 FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
849
850 if (CLI.NumResultRegs)
851 updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
852 return true;
853 }
854
855 /// Returns an AttributeSet representing the attributes applied to the return
856 /// value of the given call.
getReturnAttrs(FastISel::CallLoweringInfo & CLI)857 static AttributeSet getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
858 SmallVector<Attribute::AttrKind, 2> Attrs;
859 if (CLI.RetSExt)
860 Attrs.push_back(Attribute::SExt);
861 if (CLI.RetZExt)
862 Attrs.push_back(Attribute::ZExt);
863 if (CLI.IsInReg)
864 Attrs.push_back(Attribute::InReg);
865
866 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
867 Attrs);
868 }
869
lowerCallTo(const CallInst * CI,const char * SymName,unsigned NumArgs)870 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
871 unsigned NumArgs) {
872 MCContext &Ctx = MF->getContext();
873 SmallString<32> MangledName;
874 Mangler::getNameWithPrefix(MangledName, SymName, DL);
875 MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
876 return lowerCallTo(CI, Sym, NumArgs);
877 }
878
lowerCallTo(const CallInst * CI,MCSymbol * Symbol,unsigned NumArgs)879 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
880 unsigned NumArgs) {
881 ImmutableCallSite CS(CI);
882
883 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
884 FunctionType *FTy = cast<FunctionType>(PT->getElementType());
885 Type *RetTy = FTy->getReturnType();
886
887 ArgListTy Args;
888 Args.reserve(NumArgs);
889
890 // Populate the argument list.
891 // Attributes for args start at offset 1, after the return attribute.
892 for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
893 Value *V = CI->getOperand(ArgI);
894
895 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
896
897 ArgListEntry Entry;
898 Entry.Val = V;
899 Entry.Ty = V->getType();
900 Entry.setAttributes(&CS, ArgI + 1);
901 Args.push_back(Entry);
902 }
903
904 CallLoweringInfo CLI;
905 CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), CS, NumArgs);
906
907 return lowerCallTo(CLI);
908 }
909
lowerCallTo(CallLoweringInfo & CLI)910 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
911 // Handle the incoming return values from the call.
912 CLI.clearIns();
913 SmallVector<EVT, 4> RetTys;
914 ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
915
916 SmallVector<ISD::OutputArg, 4> Outs;
917 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
918
919 bool CanLowerReturn = TLI.CanLowerReturn(
920 CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext());
921
922 // FIXME: sret demotion isn't supported yet - bail out.
923 if (!CanLowerReturn)
924 return false;
925
926 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
927 EVT VT = RetTys[I];
928 MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
929 unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
930 for (unsigned i = 0; i != NumRegs; ++i) {
931 ISD::InputArg MyFlags;
932 MyFlags.VT = RegisterVT;
933 MyFlags.ArgVT = VT;
934 MyFlags.Used = CLI.IsReturnValueUsed;
935 if (CLI.RetSExt)
936 MyFlags.Flags.setSExt();
937 if (CLI.RetZExt)
938 MyFlags.Flags.setZExt();
939 if (CLI.IsInReg)
940 MyFlags.Flags.setInReg();
941 CLI.Ins.push_back(MyFlags);
942 }
943 }
944
945 // Handle all of the outgoing arguments.
946 CLI.clearOuts();
947 for (auto &Arg : CLI.getArgs()) {
948 Type *FinalType = Arg.Ty;
949 if (Arg.IsByVal)
950 FinalType = cast<PointerType>(Arg.Ty)->getElementType();
951 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
952 FinalType, CLI.CallConv, CLI.IsVarArg);
953
954 ISD::ArgFlagsTy Flags;
955 if (Arg.IsZExt)
956 Flags.setZExt();
957 if (Arg.IsSExt)
958 Flags.setSExt();
959 if (Arg.IsInReg)
960 Flags.setInReg();
961 if (Arg.IsSRet)
962 Flags.setSRet();
963 if (Arg.IsByVal)
964 Flags.setByVal();
965 if (Arg.IsInAlloca) {
966 Flags.setInAlloca();
967 // Set the byval flag for CCAssignFn callbacks that don't know about
968 // inalloca. This way we can know how many bytes we should've allocated
969 // and how many bytes a callee cleanup function will pop. If we port
970 // inalloca to more targets, we'll have to add custom inalloca handling in
971 // the various CC lowering callbacks.
972 Flags.setByVal();
973 }
974 if (Arg.IsByVal || Arg.IsInAlloca) {
975 PointerType *Ty = cast<PointerType>(Arg.Ty);
976 Type *ElementTy = Ty->getElementType();
977 unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
978 // For ByVal, alignment should come from FE. BE will guess if this info is
979 // not there, but there are cases it cannot get right.
980 unsigned FrameAlign = Arg.Alignment;
981 if (!FrameAlign)
982 FrameAlign = TLI.getByValTypeAlignment(ElementTy, DL);
983 Flags.setByValSize(FrameSize);
984 Flags.setByValAlign(FrameAlign);
985 }
986 if (Arg.IsNest)
987 Flags.setNest();
988 if (NeedsRegBlock)
989 Flags.setInConsecutiveRegs();
990 unsigned OriginalAlignment = DL.getABITypeAlignment(Arg.Ty);
991 Flags.setOrigAlign(OriginalAlignment);
992
993 CLI.OutVals.push_back(Arg.Val);
994 CLI.OutFlags.push_back(Flags);
995 }
996
997 if (!fastLowerCall(CLI))
998 return false;
999
1000 // Set all unused physreg defs as dead.
1001 assert(CLI.Call && "No call instruction specified.");
1002 CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1003
1004 if (CLI.NumResultRegs && CLI.CS)
1005 updateValueMap(CLI.CS->getInstruction(), CLI.ResultReg, CLI.NumResultRegs);
1006
1007 return true;
1008 }
1009
lowerCall(const CallInst * CI)1010 bool FastISel::lowerCall(const CallInst *CI) {
1011 ImmutableCallSite CS(CI);
1012
1013 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1014 FunctionType *FuncTy = cast<FunctionType>(PT->getElementType());
1015 Type *RetTy = FuncTy->getReturnType();
1016
1017 ArgListTy Args;
1018 ArgListEntry Entry;
1019 Args.reserve(CS.arg_size());
1020
1021 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1022 i != e; ++i) {
1023 Value *V = *i;
1024
1025 // Skip empty types
1026 if (V->getType()->isEmptyTy())
1027 continue;
1028
1029 Entry.Val = V;
1030 Entry.Ty = V->getType();
1031
1032 // Skip the first return-type Attribute to get to params.
1033 Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
1034 Args.push_back(Entry);
1035 }
1036
1037 // Check if target-independent constraints permit a tail call here.
1038 // Target-dependent constraints are checked within fastLowerCall.
1039 bool IsTailCall = CI->isTailCall();
1040 if (IsTailCall && !isInTailCallPosition(CS, TM))
1041 IsTailCall = false;
1042
1043 CallLoweringInfo CLI;
1044 CLI.setCallee(RetTy, FuncTy, CI->getCalledValue(), std::move(Args), CS)
1045 .setTailCall(IsTailCall);
1046
1047 return lowerCallTo(CLI);
1048 }
1049
selectCall(const User * I)1050 bool FastISel::selectCall(const User *I) {
1051 const CallInst *Call = cast<CallInst>(I);
1052
1053 // Handle simple inline asms.
1054 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
1055 // If the inline asm has side effects, then make sure that no local value
1056 // lives across by flushing the local value map.
1057 if (IA->hasSideEffects())
1058 flushLocalValueMap();
1059
1060 // Don't attempt to handle constraints.
1061 if (!IA->getConstraintString().empty())
1062 return false;
1063
1064 unsigned ExtraInfo = 0;
1065 if (IA->hasSideEffects())
1066 ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1067 if (IA->isAlignStack())
1068 ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1069
1070 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1071 TII.get(TargetOpcode::INLINEASM))
1072 .addExternalSymbol(IA->getAsmString().c_str())
1073 .addImm(ExtraInfo);
1074 return true;
1075 }
1076
1077 MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
1078 ComputeUsesVAFloatArgument(*Call, &MMI);
1079
1080 // Handle intrinsic function calls.
1081 if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1082 return selectIntrinsicCall(II);
1083
1084 // Usually, it does not make sense to initialize a value,
1085 // make an unrelated function call and use the value, because
1086 // it tends to be spilled on the stack. So, we move the pointer
1087 // to the last local value to the beginning of the block, so that
1088 // all the values which have already been materialized,
1089 // appear after the call. It also makes sense to skip intrinsics
1090 // since they tend to be inlined.
1091 flushLocalValueMap();
1092
1093 return lowerCall(Call);
1094 }
1095
selectIntrinsicCall(const IntrinsicInst * II)1096 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1097 switch (II->getIntrinsicID()) {
1098 default:
1099 break;
1100 // At -O0 we don't care about the lifetime intrinsics.
1101 case Intrinsic::lifetime_start:
1102 case Intrinsic::lifetime_end:
1103 // The donothing intrinsic does, well, nothing.
1104 case Intrinsic::donothing:
1105 return true;
1106 case Intrinsic::dbg_declare: {
1107 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1108 assert(DI->getVariable() && "Missing variable");
1109 if (!FuncInfo.MF->getMMI().hasDebugInfo()) {
1110 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1111 return true;
1112 }
1113
1114 const Value *Address = DI->getAddress();
1115 if (!Address || isa<UndefValue>(Address)) {
1116 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1117 return true;
1118 }
1119
1120 unsigned Offset = 0;
1121 Optional<MachineOperand> Op;
1122 if (const auto *Arg = dyn_cast<Argument>(Address))
1123 // Some arguments' frame index is recorded during argument lowering.
1124 Offset = FuncInfo.getArgumentFrameIndex(Arg);
1125 if (Offset)
1126 Op = MachineOperand::CreateFI(Offset);
1127 if (!Op)
1128 if (unsigned Reg = lookUpRegForValue(Address))
1129 Op = MachineOperand::CreateReg(Reg, false);
1130
1131 // If we have a VLA that has a "use" in a metadata node that's then used
1132 // here but it has no other uses, then we have a problem. E.g.,
1133 //
1134 // int foo (const int *x) {
1135 // char a[*x];
1136 // return 0;
1137 // }
1138 //
1139 // If we assign 'a' a vreg and fast isel later on has to use the selection
1140 // DAG isel, it will want to copy the value to the vreg. However, there are
1141 // no uses, which goes counter to what selection DAG isel expects.
1142 if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1143 (!isa<AllocaInst>(Address) ||
1144 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1145 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1146 false);
1147
1148 if (Op) {
1149 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1150 "Expected inlined-at fields to agree");
1151 if (Op->isReg()) {
1152 Op->setIsDebug(true);
1153 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1154 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0,
1155 DI->getVariable(), DI->getExpression());
1156 } else
1157 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1158 TII.get(TargetOpcode::DBG_VALUE))
1159 .addOperand(*Op)
1160 .addImm(0)
1161 .addMetadata(DI->getVariable())
1162 .addMetadata(DI->getExpression());
1163 } else {
1164 // We can't yet handle anything else here because it would require
1165 // generating code, thus altering codegen because of debug info.
1166 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1167 }
1168 return true;
1169 }
1170 case Intrinsic::dbg_value: {
1171 // This form of DBG_VALUE is target-independent.
1172 const DbgValueInst *DI = cast<DbgValueInst>(II);
1173 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1174 const Value *V = DI->getValue();
1175 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
1176 "Expected inlined-at fields to agree");
1177 if (!V) {
1178 // Currently the optimizer can produce this; insert an undef to
1179 // help debugging. Probably the optimizer should not do this.
1180 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1181 .addReg(0U)
1182 .addImm(DI->getOffset())
1183 .addMetadata(DI->getVariable())
1184 .addMetadata(DI->getExpression());
1185 } else if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1186 if (CI->getBitWidth() > 64)
1187 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1188 .addCImm(CI)
1189 .addImm(DI->getOffset())
1190 .addMetadata(DI->getVariable())
1191 .addMetadata(DI->getExpression());
1192 else
1193 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1194 .addImm(CI->getZExtValue())
1195 .addImm(DI->getOffset())
1196 .addMetadata(DI->getVariable())
1197 .addMetadata(DI->getExpression());
1198 } else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1199 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1200 .addFPImm(CF)
1201 .addImm(DI->getOffset())
1202 .addMetadata(DI->getVariable())
1203 .addMetadata(DI->getExpression());
1204 } else if (unsigned Reg = lookUpRegForValue(V)) {
1205 // FIXME: This does not handle register-indirect values at offset 0.
1206 bool IsIndirect = DI->getOffset() != 0;
1207 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, Reg,
1208 DI->getOffset(), DI->getVariable(), DI->getExpression());
1209 } else {
1210 // We can't yet handle anything else here because it would require
1211 // generating code, thus altering codegen because of debug info.
1212 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1213 }
1214 return true;
1215 }
1216 case Intrinsic::objectsize: {
1217 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1218 unsigned long long Res = CI->isZero() ? -1ULL : 0;
1219 Constant *ResCI = ConstantInt::get(II->getType(), Res);
1220 unsigned ResultReg = getRegForValue(ResCI);
1221 if (!ResultReg)
1222 return false;
1223 updateValueMap(II, ResultReg);
1224 return true;
1225 }
1226 case Intrinsic::expect: {
1227 unsigned ResultReg = getRegForValue(II->getArgOperand(0));
1228 if (!ResultReg)
1229 return false;
1230 updateValueMap(II, ResultReg);
1231 return true;
1232 }
1233 case Intrinsic::experimental_stackmap:
1234 return selectStackmap(II);
1235 case Intrinsic::experimental_patchpoint_void:
1236 case Intrinsic::experimental_patchpoint_i64:
1237 return selectPatchpoint(II);
1238 }
1239
1240 return fastLowerIntrinsicCall(II);
1241 }
1242
selectCast(const User * I,unsigned Opcode)1243 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1244 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1245 EVT DstVT = TLI.getValueType(DL, I->getType());
1246
1247 if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1248 !DstVT.isSimple())
1249 // Unhandled type. Halt "fast" selection and bail.
1250 return false;
1251
1252 // Check if the destination type is legal.
1253 if (!TLI.isTypeLegal(DstVT))
1254 return false;
1255
1256 // Check if the source operand is legal.
1257 if (!TLI.isTypeLegal(SrcVT))
1258 return false;
1259
1260 unsigned InputReg = getRegForValue(I->getOperand(0));
1261 if (!InputReg)
1262 // Unhandled operand. Halt "fast" selection and bail.
1263 return false;
1264
1265 bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
1266
1267 unsigned ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1268 Opcode, InputReg, InputRegIsKill);
1269 if (!ResultReg)
1270 return false;
1271
1272 updateValueMap(I, ResultReg);
1273 return true;
1274 }
1275
selectBitCast(const User * I)1276 bool FastISel::selectBitCast(const User *I) {
1277 // If the bitcast doesn't change the type, just use the operand value.
1278 if (I->getType() == I->getOperand(0)->getType()) {
1279 unsigned Reg = getRegForValue(I->getOperand(0));
1280 if (!Reg)
1281 return false;
1282 updateValueMap(I, Reg);
1283 return true;
1284 }
1285
1286 // Bitcasts of other values become reg-reg copies or BITCAST operators.
1287 EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1288 EVT DstEVT = TLI.getValueType(DL, I->getType());
1289 if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1290 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1291 // Unhandled type. Halt "fast" selection and bail.
1292 return false;
1293
1294 MVT SrcVT = SrcEVT.getSimpleVT();
1295 MVT DstVT = DstEVT.getSimpleVT();
1296 unsigned Op0 = getRegForValue(I->getOperand(0));
1297 if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1298 return false;
1299 bool Op0IsKill = hasTrivialKill(I->getOperand(0));
1300
1301 // First, try to perform the bitcast by inserting a reg-reg copy.
1302 unsigned ResultReg = 0;
1303 if (SrcVT == DstVT) {
1304 const TargetRegisterClass *SrcClass = TLI.getRegClassFor(SrcVT);
1305 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
1306 // Don't attempt a cross-class copy. It will likely fail.
1307 if (SrcClass == DstClass) {
1308 ResultReg = createResultReg(DstClass);
1309 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1310 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
1311 }
1312 }
1313
1314 // If the reg-reg copy failed, select a BITCAST opcode.
1315 if (!ResultReg)
1316 ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
1317
1318 if (!ResultReg)
1319 return false;
1320
1321 updateValueMap(I, ResultReg);
1322 return true;
1323 }
1324
1325 // Remove local value instructions starting from the instruction after
1326 // SavedLastLocalValue to the current function insert point.
removeDeadLocalValueCode(MachineInstr * SavedLastLocalValue)1327 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1328 {
1329 MachineInstr *CurLastLocalValue = getLastLocalValue();
1330 if (CurLastLocalValue != SavedLastLocalValue) {
1331 // Find the first local value instruction to be deleted.
1332 // This is the instruction after SavedLastLocalValue if it is non-NULL.
1333 // Otherwise it's the first instruction in the block.
1334 MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1335 if (SavedLastLocalValue)
1336 ++FirstDeadInst;
1337 else
1338 FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1339 setLastLocalValue(SavedLastLocalValue);
1340 removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1341 }
1342 }
1343
selectInstruction(const Instruction * I)1344 bool FastISel::selectInstruction(const Instruction *I) {
1345 MachineInstr *SavedLastLocalValue = getLastLocalValue();
1346 // Just before the terminator instruction, insert instructions to
1347 // feed PHI nodes in successor blocks.
1348 if (isa<TerminatorInst>(I))
1349 if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1350 // PHI node handling may have generated local value instructions,
1351 // even though it failed to handle all PHI nodes.
1352 // We remove these instructions because SelectionDAGISel will generate
1353 // them again.
1354 removeDeadLocalValueCode(SavedLastLocalValue);
1355 return false;
1356 }
1357
1358 DbgLoc = I->getDebugLoc();
1359
1360 SavedInsertPt = FuncInfo.InsertPt;
1361
1362 if (const auto *Call = dyn_cast<CallInst>(I)) {
1363 const Function *F = Call->getCalledFunction();
1364 LibFunc::Func Func;
1365
1366 // As a special case, don't handle calls to builtin library functions that
1367 // may be translated directly to target instructions.
1368 if (F && !F->hasLocalLinkage() && F->hasName() &&
1369 LibInfo->getLibFunc(F->getName(), Func) &&
1370 LibInfo->hasOptimizedCodeGen(Func))
1371 return false;
1372
1373 // Don't handle Intrinsic::trap if a trap function is specified.
1374 if (F && F->getIntrinsicID() == Intrinsic::trap &&
1375 Call->hasFnAttr("trap-func-name"))
1376 return false;
1377 }
1378
1379 // First, try doing target-independent selection.
1380 if (!SkipTargetIndependentISel) {
1381 if (selectOperator(I, I->getOpcode())) {
1382 ++NumFastIselSuccessIndependent;
1383 DbgLoc = DebugLoc();
1384 return true;
1385 }
1386 // Remove dead code.
1387 recomputeInsertPt();
1388 if (SavedInsertPt != FuncInfo.InsertPt)
1389 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1390 SavedInsertPt = FuncInfo.InsertPt;
1391 }
1392 // Next, try calling the target to attempt to handle the instruction.
1393 if (fastSelectInstruction(I)) {
1394 ++NumFastIselSuccessTarget;
1395 DbgLoc = DebugLoc();
1396 return true;
1397 }
1398 // Remove dead code.
1399 recomputeInsertPt();
1400 if (SavedInsertPt != FuncInfo.InsertPt)
1401 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1402
1403 DbgLoc = DebugLoc();
1404 // Undo phi node updates, because they will be added again by SelectionDAG.
1405 if (isa<TerminatorInst>(I)) {
1406 // PHI node handling may have generated local value instructions.
1407 // We remove them because SelectionDAGISel will generate them again.
1408 removeDeadLocalValueCode(SavedLastLocalValue);
1409 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1410 }
1411 return false;
1412 }
1413
1414 /// Emit an unconditional branch to the given block, unless it is the immediate
1415 /// (fall-through) successor, and update the CFG.
fastEmitBranch(MachineBasicBlock * MSucc,DebugLoc DbgLoc)1416 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) {
1417 if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
1418 FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1419 // For more accurate line information if this is the only instruction
1420 // in the block then emit it, otherwise we have the unconditional
1421 // fall-through case, which needs no instructions.
1422 } else {
1423 // The unconditional branch case.
1424 TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr,
1425 SmallVector<MachineOperand, 0>(), DbgLoc);
1426 }
1427 if (FuncInfo.BPI) {
1428 auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1429 FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1430 FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1431 } else
1432 FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1433 }
1434
finishCondBranch(const BasicBlock * BranchBB,MachineBasicBlock * TrueMBB,MachineBasicBlock * FalseMBB)1435 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1436 MachineBasicBlock *TrueMBB,
1437 MachineBasicBlock *FalseMBB) {
1438 // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1439 // happen in degenerate IR and MachineIR forbids to have a block twice in the
1440 // successor/predecessor lists.
1441 if (TrueMBB != FalseMBB) {
1442 if (FuncInfo.BPI) {
1443 auto BranchProbability =
1444 FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1445 FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1446 } else
1447 FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1448 }
1449
1450 fastEmitBranch(FalseMBB, DbgLoc);
1451 }
1452
1453 /// Emit an FNeg operation.
selectFNeg(const User * I)1454 bool FastISel::selectFNeg(const User *I) {
1455 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
1456 if (!OpReg)
1457 return false;
1458 bool OpRegIsKill = hasTrivialKill(I);
1459
1460 // If the target has ISD::FNEG, use it.
1461 EVT VT = TLI.getValueType(DL, I->getType());
1462 unsigned ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1463 OpReg, OpRegIsKill);
1464 if (ResultReg) {
1465 updateValueMap(I, ResultReg);
1466 return true;
1467 }
1468
1469 // Bitcast the value to integer, twiddle the sign bit with xor,
1470 // and then bitcast it back to floating-point.
1471 if (VT.getSizeInBits() > 64)
1472 return false;
1473 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1474 if (!TLI.isTypeLegal(IntVT))
1475 return false;
1476
1477 unsigned IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1478 ISD::BITCAST, OpReg, OpRegIsKill);
1479 if (!IntReg)
1480 return false;
1481
1482 unsigned IntResultReg = fastEmit_ri_(
1483 IntVT.getSimpleVT(), ISD::XOR, IntReg, /*IsKill=*/true,
1484 UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1485 if (!IntResultReg)
1486 return false;
1487
1488 ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1489 IntResultReg, /*IsKill=*/true);
1490 if (!ResultReg)
1491 return false;
1492
1493 updateValueMap(I, ResultReg);
1494 return true;
1495 }
1496
selectExtractValue(const User * U)1497 bool FastISel::selectExtractValue(const User *U) {
1498 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1499 if (!EVI)
1500 return false;
1501
1502 // Make sure we only try to handle extracts with a legal result. But also
1503 // allow i1 because it's easy.
1504 EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1505 if (!RealVT.isSimple())
1506 return false;
1507 MVT VT = RealVT.getSimpleVT();
1508 if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1509 return false;
1510
1511 const Value *Op0 = EVI->getOperand(0);
1512 Type *AggTy = Op0->getType();
1513
1514 // Get the base result register.
1515 unsigned ResultReg;
1516 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
1517 if (I != FuncInfo.ValueMap.end())
1518 ResultReg = I->second;
1519 else if (isa<Instruction>(Op0))
1520 ResultReg = FuncInfo.InitializeRegForValue(Op0);
1521 else
1522 return false; // fast-isel can't handle aggregate constants at the moment
1523
1524 // Get the actual result register, which is an offset from the base register.
1525 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1526
1527 SmallVector<EVT, 4> AggValueVTs;
1528 ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1529
1530 for (unsigned i = 0; i < VTIndex; i++)
1531 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1532
1533 updateValueMap(EVI, ResultReg);
1534 return true;
1535 }
1536
selectOperator(const User * I,unsigned Opcode)1537 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1538 switch (Opcode) {
1539 case Instruction::Add:
1540 return selectBinaryOp(I, ISD::ADD);
1541 case Instruction::FAdd:
1542 return selectBinaryOp(I, ISD::FADD);
1543 case Instruction::Sub:
1544 return selectBinaryOp(I, ISD::SUB);
1545 case Instruction::FSub:
1546 // FNeg is currently represented in LLVM IR as a special case of FSub.
1547 if (BinaryOperator::isFNeg(I))
1548 return selectFNeg(I);
1549 return selectBinaryOp(I, ISD::FSUB);
1550 case Instruction::Mul:
1551 return selectBinaryOp(I, ISD::MUL);
1552 case Instruction::FMul:
1553 return selectBinaryOp(I, ISD::FMUL);
1554 case Instruction::SDiv:
1555 return selectBinaryOp(I, ISD::SDIV);
1556 case Instruction::UDiv:
1557 return selectBinaryOp(I, ISD::UDIV);
1558 case Instruction::FDiv:
1559 return selectBinaryOp(I, ISD::FDIV);
1560 case Instruction::SRem:
1561 return selectBinaryOp(I, ISD::SREM);
1562 case Instruction::URem:
1563 return selectBinaryOp(I, ISD::UREM);
1564 case Instruction::FRem:
1565 return selectBinaryOp(I, ISD::FREM);
1566 case Instruction::Shl:
1567 return selectBinaryOp(I, ISD::SHL);
1568 case Instruction::LShr:
1569 return selectBinaryOp(I, ISD::SRL);
1570 case Instruction::AShr:
1571 return selectBinaryOp(I, ISD::SRA);
1572 case Instruction::And:
1573 return selectBinaryOp(I, ISD::AND);
1574 case Instruction::Or:
1575 return selectBinaryOp(I, ISD::OR);
1576 case Instruction::Xor:
1577 return selectBinaryOp(I, ISD::XOR);
1578
1579 case Instruction::GetElementPtr:
1580 return selectGetElementPtr(I);
1581
1582 case Instruction::Br: {
1583 const BranchInst *BI = cast<BranchInst>(I);
1584
1585 if (BI->isUnconditional()) {
1586 const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1587 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1588 fastEmitBranch(MSucc, BI->getDebugLoc());
1589 return true;
1590 }
1591
1592 // Conditional branches are not handed yet.
1593 // Halt "fast" selection and bail.
1594 return false;
1595 }
1596
1597 case Instruction::Unreachable:
1598 if (TM.Options.TrapUnreachable)
1599 return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1600 else
1601 return true;
1602
1603 case Instruction::Alloca:
1604 // FunctionLowering has the static-sized case covered.
1605 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1606 return true;
1607
1608 // Dynamic-sized alloca is not handled yet.
1609 return false;
1610
1611 case Instruction::Call:
1612 return selectCall(I);
1613
1614 case Instruction::BitCast:
1615 return selectBitCast(I);
1616
1617 case Instruction::FPToSI:
1618 return selectCast(I, ISD::FP_TO_SINT);
1619 case Instruction::ZExt:
1620 return selectCast(I, ISD::ZERO_EXTEND);
1621 case Instruction::SExt:
1622 return selectCast(I, ISD::SIGN_EXTEND);
1623 case Instruction::Trunc:
1624 return selectCast(I, ISD::TRUNCATE);
1625 case Instruction::SIToFP:
1626 return selectCast(I, ISD::SINT_TO_FP);
1627
1628 case Instruction::IntToPtr: // Deliberate fall-through.
1629 case Instruction::PtrToInt: {
1630 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1631 EVT DstVT = TLI.getValueType(DL, I->getType());
1632 if (DstVT.bitsGT(SrcVT))
1633 return selectCast(I, ISD::ZERO_EXTEND);
1634 if (DstVT.bitsLT(SrcVT))
1635 return selectCast(I, ISD::TRUNCATE);
1636 unsigned Reg = getRegForValue(I->getOperand(0));
1637 if (!Reg)
1638 return false;
1639 updateValueMap(I, Reg);
1640 return true;
1641 }
1642
1643 case Instruction::ExtractValue:
1644 return selectExtractValue(I);
1645
1646 case Instruction::PHI:
1647 llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1648
1649 default:
1650 // Unhandled instruction. Halt "fast" selection and bail.
1651 return false;
1652 }
1653 }
1654
FastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo,bool SkipTargetIndependentISel)1655 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1656 const TargetLibraryInfo *LibInfo,
1657 bool SkipTargetIndependentISel)
1658 : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1659 MFI(*FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1660 TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1661 TII(*MF->getSubtarget().getInstrInfo()),
1662 TLI(*MF->getSubtarget().getTargetLowering()),
1663 TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1664 SkipTargetIndependentISel(SkipTargetIndependentISel) {}
1665
~FastISel()1666 FastISel::~FastISel() {}
1667
fastLowerArguments()1668 bool FastISel::fastLowerArguments() { return false; }
1669
fastLowerCall(CallLoweringInfo &)1670 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1671
fastLowerIntrinsicCall(const IntrinsicInst *)1672 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1673 return false;
1674 }
1675
fastEmit_(MVT,MVT,unsigned)1676 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1677
fastEmit_r(MVT,MVT,unsigned,unsigned,bool)1678 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/,
1679 bool /*Op0IsKill*/) {
1680 return 0;
1681 }
1682
fastEmit_rr(MVT,MVT,unsigned,unsigned,bool,unsigned,bool)1683 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1684 bool /*Op0IsKill*/, unsigned /*Op1*/,
1685 bool /*Op1IsKill*/) {
1686 return 0;
1687 }
1688
fastEmit_i(MVT,MVT,unsigned,uint64_t)1689 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1690 return 0;
1691 }
1692
fastEmit_f(MVT,MVT,unsigned,const ConstantFP *)1693 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1694 const ConstantFP * /*FPImm*/) {
1695 return 0;
1696 }
1697
fastEmit_ri(MVT,MVT,unsigned,unsigned,bool,uint64_t)1698 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1699 bool /*Op0IsKill*/, uint64_t /*Imm*/) {
1700 return 0;
1701 }
1702
fastEmit_rf(MVT,MVT,unsigned,unsigned,bool,const ConstantFP *)1703 unsigned FastISel::fastEmit_rf(MVT, MVT, unsigned, unsigned /*Op0*/,
1704 bool /*Op0IsKill*/,
1705 const ConstantFP * /*FPImm*/) {
1706 return 0;
1707 }
1708
fastEmit_rri(MVT,MVT,unsigned,unsigned,bool,unsigned,bool,uint64_t)1709 unsigned FastISel::fastEmit_rri(MVT, MVT, unsigned, unsigned /*Op0*/,
1710 bool /*Op0IsKill*/, unsigned /*Op1*/,
1711 bool /*Op1IsKill*/, uint64_t /*Imm*/) {
1712 return 0;
1713 }
1714
1715 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1716 /// instruction with an immediate operand using fastEmit_ri.
1717 /// If that fails, it materializes the immediate into a register and try
1718 /// fastEmit_rr instead.
fastEmit_ri_(MVT VT,unsigned Opcode,unsigned Op0,bool Op0IsKill,uint64_t Imm,MVT ImmType)1719 unsigned FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1720 bool Op0IsKill, uint64_t Imm, MVT ImmType) {
1721 // If this is a multiply by a power of two, emit this as a shift left.
1722 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1723 Opcode = ISD::SHL;
1724 Imm = Log2_64(Imm);
1725 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1726 // div x, 8 -> srl x, 3
1727 Opcode = ISD::SRL;
1728 Imm = Log2_64(Imm);
1729 }
1730
1731 // Horrible hack (to be removed), check to make sure shift amounts are
1732 // in-range.
1733 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1734 Imm >= VT.getSizeInBits())
1735 return 0;
1736
1737 // First check if immediate type is legal. If not, we can't use the ri form.
1738 unsigned ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1739 if (ResultReg)
1740 return ResultReg;
1741 unsigned MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1742 bool IsImmKill = true;
1743 if (!MaterialReg) {
1744 // This is a bit ugly/slow, but failing here means falling out of
1745 // fast-isel, which would be very slow.
1746 IntegerType *ITy =
1747 IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
1748 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1749 if (!MaterialReg)
1750 return 0;
1751 // FIXME: If the materialized register here has no uses yet then this
1752 // will be the first use and we should be able to mark it as killed.
1753 // However, the local value area for materialising constant expressions
1754 // grows down, not up, which means that any constant expressions we generate
1755 // later which also use 'Imm' could be after this instruction and therefore
1756 // after this kill.
1757 IsImmKill = false;
1758 }
1759 return fastEmit_rr(VT, VT, Opcode, Op0, Op0IsKill, MaterialReg, IsImmKill);
1760 }
1761
createResultReg(const TargetRegisterClass * RC)1762 unsigned FastISel::createResultReg(const TargetRegisterClass *RC) {
1763 return MRI.createVirtualRegister(RC);
1764 }
1765
constrainOperandRegClass(const MCInstrDesc & II,unsigned Op,unsigned OpNum)1766 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
1767 unsigned OpNum) {
1768 if (TargetRegisterInfo::isVirtualRegister(Op)) {
1769 const TargetRegisterClass *RegClass =
1770 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
1771 if (!MRI.constrainRegClass(Op, RegClass)) {
1772 // If it's not legal to COPY between the register classes, something
1773 // has gone very wrong before we got here.
1774 unsigned NewOp = createResultReg(RegClass);
1775 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1776 TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
1777 return NewOp;
1778 }
1779 }
1780 return Op;
1781 }
1782
fastEmitInst_(unsigned MachineInstOpcode,const TargetRegisterClass * RC)1783 unsigned FastISel::fastEmitInst_(unsigned MachineInstOpcode,
1784 const TargetRegisterClass *RC) {
1785 unsigned ResultReg = createResultReg(RC);
1786 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1787
1788 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
1789 return ResultReg;
1790 }
1791
fastEmitInst_r(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill)1792 unsigned FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
1793 const TargetRegisterClass *RC, unsigned Op0,
1794 bool Op0IsKill) {
1795 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1796
1797 unsigned ResultReg = createResultReg(RC);
1798 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1799
1800 if (II.getNumDefs() >= 1)
1801 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1802 .addReg(Op0, getKillRegState(Op0IsKill));
1803 else {
1804 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1805 .addReg(Op0, getKillRegState(Op0IsKill));
1806 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1807 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1808 }
1809
1810 return ResultReg;
1811 }
1812
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)1813 unsigned FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
1814 const TargetRegisterClass *RC, unsigned Op0,
1815 bool Op0IsKill, unsigned Op1,
1816 bool Op1IsKill) {
1817 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1818
1819 unsigned ResultReg = createResultReg(RC);
1820 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1821 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1822
1823 if (II.getNumDefs() >= 1)
1824 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1825 .addReg(Op0, getKillRegState(Op0IsKill))
1826 .addReg(Op1, getKillRegState(Op1IsKill));
1827 else {
1828 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1829 .addReg(Op0, getKillRegState(Op0IsKill))
1830 .addReg(Op1, getKillRegState(Op1IsKill));
1831 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1832 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1833 }
1834 return ResultReg;
1835 }
1836
fastEmitInst_rrr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill,unsigned Op2,bool Op2IsKill)1837 unsigned FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
1838 const TargetRegisterClass *RC, unsigned Op0,
1839 bool Op0IsKill, unsigned Op1,
1840 bool Op1IsKill, unsigned Op2,
1841 bool Op2IsKill) {
1842 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1843
1844 unsigned ResultReg = createResultReg(RC);
1845 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1846 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1847 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
1848
1849 if (II.getNumDefs() >= 1)
1850 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1851 .addReg(Op0, getKillRegState(Op0IsKill))
1852 .addReg(Op1, getKillRegState(Op1IsKill))
1853 .addReg(Op2, getKillRegState(Op2IsKill));
1854 else {
1855 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1856 .addReg(Op0, getKillRegState(Op0IsKill))
1857 .addReg(Op1, getKillRegState(Op1IsKill))
1858 .addReg(Op2, getKillRegState(Op2IsKill));
1859 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1860 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1861 }
1862 return ResultReg;
1863 }
1864
fastEmitInst_ri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t Imm)1865 unsigned FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
1866 const TargetRegisterClass *RC, unsigned Op0,
1867 bool Op0IsKill, uint64_t Imm) {
1868 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1869
1870 unsigned ResultReg = createResultReg(RC);
1871 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1872
1873 if (II.getNumDefs() >= 1)
1874 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1875 .addReg(Op0, getKillRegState(Op0IsKill))
1876 .addImm(Imm);
1877 else {
1878 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1879 .addReg(Op0, getKillRegState(Op0IsKill))
1880 .addImm(Imm);
1881 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1882 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1883 }
1884 return ResultReg;
1885 }
1886
fastEmitInst_rii(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t Imm1,uint64_t Imm2)1887 unsigned FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
1888 const TargetRegisterClass *RC, unsigned Op0,
1889 bool Op0IsKill, uint64_t Imm1,
1890 uint64_t Imm2) {
1891 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1892
1893 unsigned ResultReg = createResultReg(RC);
1894 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1895
1896 if (II.getNumDefs() >= 1)
1897 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1898 .addReg(Op0, getKillRegState(Op0IsKill))
1899 .addImm(Imm1)
1900 .addImm(Imm2);
1901 else {
1902 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1903 .addReg(Op0, getKillRegState(Op0IsKill))
1904 .addImm(Imm1)
1905 .addImm(Imm2);
1906 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1907 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1908 }
1909 return ResultReg;
1910 }
1911
fastEmitInst_f(unsigned MachineInstOpcode,const TargetRegisterClass * RC,const ConstantFP * FPImm)1912 unsigned FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
1913 const TargetRegisterClass *RC,
1914 const ConstantFP *FPImm) {
1915 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1916
1917 unsigned ResultReg = createResultReg(RC);
1918
1919 if (II.getNumDefs() >= 1)
1920 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1921 .addFPImm(FPImm);
1922 else {
1923 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1924 .addFPImm(FPImm);
1925 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1926 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1927 }
1928 return ResultReg;
1929 }
1930
fastEmitInst_rri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill,uint64_t Imm)1931 unsigned FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
1932 const TargetRegisterClass *RC, unsigned Op0,
1933 bool Op0IsKill, unsigned Op1,
1934 bool Op1IsKill, uint64_t Imm) {
1935 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1936
1937 unsigned ResultReg = createResultReg(RC);
1938 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
1939 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
1940
1941 if (II.getNumDefs() >= 1)
1942 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1943 .addReg(Op0, getKillRegState(Op0IsKill))
1944 .addReg(Op1, getKillRegState(Op1IsKill))
1945 .addImm(Imm);
1946 else {
1947 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1948 .addReg(Op0, getKillRegState(Op0IsKill))
1949 .addReg(Op1, getKillRegState(Op1IsKill))
1950 .addImm(Imm);
1951 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1952 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1953 }
1954 return ResultReg;
1955 }
1956
fastEmitInst_i(unsigned MachineInstOpcode,const TargetRegisterClass * RC,uint64_t Imm)1957 unsigned FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
1958 const TargetRegisterClass *RC, uint64_t Imm) {
1959 unsigned ResultReg = createResultReg(RC);
1960 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1961
1962 if (II.getNumDefs() >= 1)
1963 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1964 .addImm(Imm);
1965 else {
1966 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
1967 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1968 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1969 }
1970 return ResultReg;
1971 }
1972
fastEmitInst_extractsubreg(MVT RetVT,unsigned Op0,bool Op0IsKill,uint32_t Idx)1973 unsigned FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
1974 bool Op0IsKill, uint32_t Idx) {
1975 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1976 assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1977 "Cannot yet extract from physregs");
1978 const TargetRegisterClass *RC = MRI.getRegClass(Op0);
1979 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
1980 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1981 ResultReg).addReg(Op0, getKillRegState(Op0IsKill), Idx);
1982 return ResultReg;
1983 }
1984
1985 /// Emit MachineInstrs to compute the value of Op with all but the least
1986 /// significant bit set to zero.
fastEmitZExtFromI1(MVT VT,unsigned Op0,bool Op0IsKill)1987 unsigned FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1988 return fastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1989 }
1990
1991 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1992 /// Emit code to ensure constants are copied into registers when needed.
1993 /// Remember the virtual registers that need to be added to the Machine PHI
1994 /// nodes as input. We cannot just directly add them, because expansion
1995 /// might result in multiple MBB's for one BB. As such, the start of the
1996 /// BB might correspond to a different MBB than the end.
handlePHINodesInSuccessorBlocks(const BasicBlock * LLVMBB)1997 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1998 const TerminatorInst *TI = LLVMBB->getTerminator();
1999
2000 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2001 FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2002
2003 // Check successor nodes' PHI nodes that expect a constant to be available
2004 // from this block.
2005 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2006 const BasicBlock *SuccBB = TI->getSuccessor(succ);
2007 if (!isa<PHINode>(SuccBB->begin()))
2008 continue;
2009 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
2010
2011 // If this terminator has multiple identical successors (common for
2012 // switches), only handle each succ once.
2013 if (!SuccsHandled.insert(SuccMBB).second)
2014 continue;
2015
2016 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2017
2018 // At this point we know that there is a 1-1 correspondence between LLVM PHI
2019 // nodes and Machine PHI nodes, but the incoming operands have not been
2020 // emitted yet.
2021 for (BasicBlock::const_iterator I = SuccBB->begin();
2022 const auto *PN = dyn_cast<PHINode>(I); ++I) {
2023
2024 // Ignore dead phi's.
2025 if (PN->use_empty())
2026 continue;
2027
2028 // Only handle legal types. Two interesting things to note here. First,
2029 // by bailing out early, we may leave behind some dead instructions,
2030 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2031 // own moves. Second, this check is necessary because FastISel doesn't
2032 // use CreateRegs to create registers, so it always creates
2033 // exactly one register for each non-void instruction.
2034 EVT VT = TLI.getValueType(DL, PN->getType(), /*AllowUnknown=*/true);
2035 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2036 // Handle integer promotions, though, because they're common and easy.
2037 if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2038 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2039 return false;
2040 }
2041 }
2042
2043 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
2044
2045 // Set the DebugLoc for the copy. Prefer the location of the operand
2046 // if there is one; use the location of the PHI otherwise.
2047 DbgLoc = PN->getDebugLoc();
2048 if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2049 DbgLoc = Inst->getDebugLoc();
2050
2051 unsigned Reg = getRegForValue(PHIOp);
2052 if (!Reg) {
2053 FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2054 return false;
2055 }
2056 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
2057 DbgLoc = DebugLoc();
2058 }
2059 }
2060
2061 return true;
2062 }
2063
tryToFoldLoad(const LoadInst * LI,const Instruction * FoldInst)2064 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2065 assert(LI->hasOneUse() &&
2066 "tryToFoldLoad expected a LoadInst with a single use");
2067 // We know that the load has a single use, but don't know what it is. If it
2068 // isn't one of the folded instructions, then we can't succeed here. Handle
2069 // this by scanning the single-use users of the load until we get to FoldInst.
2070 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2071
2072 const Instruction *TheUser = LI->user_back();
2073 while (TheUser != FoldInst && // Scan up until we find FoldInst.
2074 // Stay in the right block.
2075 TheUser->getParent() == FoldInst->getParent() &&
2076 --MaxUsers) { // Don't scan too far.
2077 // If there are multiple or no uses of this instruction, then bail out.
2078 if (!TheUser->hasOneUse())
2079 return false;
2080
2081 TheUser = TheUser->user_back();
2082 }
2083
2084 // If we didn't find the fold instruction, then we failed to collapse the
2085 // sequence.
2086 if (TheUser != FoldInst)
2087 return false;
2088
2089 // Don't try to fold volatile loads. Target has to deal with alignment
2090 // constraints.
2091 if (LI->isVolatile())
2092 return false;
2093
2094 // Figure out which vreg this is going into. If there is no assigned vreg yet
2095 // then there actually was no reference to it. Perhaps the load is referenced
2096 // by a dead instruction.
2097 unsigned LoadReg = getRegForValue(LI);
2098 if (!LoadReg)
2099 return false;
2100
2101 // We can't fold if this vreg has no uses or more than one use. Multiple uses
2102 // may mean that the instruction got lowered to multiple MIs, or the use of
2103 // the loaded value ended up being multiple operands of the result.
2104 if (!MRI.hasOneUse(LoadReg))
2105 return false;
2106
2107 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2108 MachineInstr *User = RI->getParent();
2109
2110 // Set the insertion point properly. Folding the load can cause generation of
2111 // other random instructions (like sign extends) for addressing modes; make
2112 // sure they get inserted in a logical place before the new instruction.
2113 FuncInfo.InsertPt = User;
2114 FuncInfo.MBB = User->getParent();
2115
2116 // Ask the target to try folding the load.
2117 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2118 }
2119
canFoldAddIntoGEP(const User * GEP,const Value * Add)2120 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2121 // Must be an add.
2122 if (!isa<AddOperator>(Add))
2123 return false;
2124 // Type size needs to match.
2125 if (DL.getTypeSizeInBits(GEP->getType()) !=
2126 DL.getTypeSizeInBits(Add->getType()))
2127 return false;
2128 // Must be in the same basic block.
2129 if (isa<Instruction>(Add) &&
2130 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
2131 return false;
2132 // Must have a constant operand.
2133 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2134 }
2135
2136 MachineMemOperand *
createMachineMemOperandFor(const Instruction * I) const2137 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2138 const Value *Ptr;
2139 Type *ValTy;
2140 unsigned Alignment;
2141 unsigned Flags;
2142 bool IsVolatile;
2143
2144 if (const auto *LI = dyn_cast<LoadInst>(I)) {
2145 Alignment = LI->getAlignment();
2146 IsVolatile = LI->isVolatile();
2147 Flags = MachineMemOperand::MOLoad;
2148 Ptr = LI->getPointerOperand();
2149 ValTy = LI->getType();
2150 } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2151 Alignment = SI->getAlignment();
2152 IsVolatile = SI->isVolatile();
2153 Flags = MachineMemOperand::MOStore;
2154 Ptr = SI->getPointerOperand();
2155 ValTy = SI->getValueOperand()->getType();
2156 } else
2157 return nullptr;
2158
2159 bool IsNonTemporal = I->getMetadata(LLVMContext::MD_nontemporal) != nullptr;
2160 bool IsInvariant = I->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
2161 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2162
2163 AAMDNodes AAInfo;
2164 I->getAAMetadata(AAInfo);
2165
2166 if (Alignment == 0) // Ensure that codegen never sees alignment 0.
2167 Alignment = DL.getABITypeAlignment(ValTy);
2168
2169 unsigned Size = DL.getTypeStoreSize(ValTy);
2170
2171 if (IsVolatile)
2172 Flags |= MachineMemOperand::MOVolatile;
2173 if (IsNonTemporal)
2174 Flags |= MachineMemOperand::MONonTemporal;
2175 if (IsInvariant)
2176 Flags |= MachineMemOperand::MOInvariant;
2177
2178 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2179 Alignment, AAInfo, Ranges);
2180 }
2181
optimizeCmpPredicate(const CmpInst * CI) const2182 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2183 // If both operands are the same, then try to optimize or fold the cmp.
2184 CmpInst::Predicate Predicate = CI->getPredicate();
2185 if (CI->getOperand(0) != CI->getOperand(1))
2186 return Predicate;
2187
2188 switch (Predicate) {
2189 default: llvm_unreachable("Invalid predicate!");
2190 case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2191 case CmpInst::FCMP_OEQ: Predicate = CmpInst::FCMP_ORD; break;
2192 case CmpInst::FCMP_OGT: Predicate = CmpInst::FCMP_FALSE; break;
2193 case CmpInst::FCMP_OGE: Predicate = CmpInst::FCMP_ORD; break;
2194 case CmpInst::FCMP_OLT: Predicate = CmpInst::FCMP_FALSE; break;
2195 case CmpInst::FCMP_OLE: Predicate = CmpInst::FCMP_ORD; break;
2196 case CmpInst::FCMP_ONE: Predicate = CmpInst::FCMP_FALSE; break;
2197 case CmpInst::FCMP_ORD: Predicate = CmpInst::FCMP_ORD; break;
2198 case CmpInst::FCMP_UNO: Predicate = CmpInst::FCMP_UNO; break;
2199 case CmpInst::FCMP_UEQ: Predicate = CmpInst::FCMP_TRUE; break;
2200 case CmpInst::FCMP_UGT: Predicate = CmpInst::FCMP_UNO; break;
2201 case CmpInst::FCMP_UGE: Predicate = CmpInst::FCMP_TRUE; break;
2202 case CmpInst::FCMP_ULT: Predicate = CmpInst::FCMP_UNO; break;
2203 case CmpInst::FCMP_ULE: Predicate = CmpInst::FCMP_TRUE; break;
2204 case CmpInst::FCMP_UNE: Predicate = CmpInst::FCMP_UNO; break;
2205 case CmpInst::FCMP_TRUE: Predicate = CmpInst::FCMP_TRUE; break;
2206
2207 case CmpInst::ICMP_EQ: Predicate = CmpInst::FCMP_TRUE; break;
2208 case CmpInst::ICMP_NE: Predicate = CmpInst::FCMP_FALSE; break;
2209 case CmpInst::ICMP_UGT: Predicate = CmpInst::FCMP_FALSE; break;
2210 case CmpInst::ICMP_UGE: Predicate = CmpInst::FCMP_TRUE; break;
2211 case CmpInst::ICMP_ULT: Predicate = CmpInst::FCMP_FALSE; break;
2212 case CmpInst::ICMP_ULE: Predicate = CmpInst::FCMP_TRUE; break;
2213 case CmpInst::ICMP_SGT: Predicate = CmpInst::FCMP_FALSE; break;
2214 case CmpInst::ICMP_SGE: Predicate = CmpInst::FCMP_TRUE; break;
2215 case CmpInst::ICMP_SLT: Predicate = CmpInst::FCMP_FALSE; break;
2216 case CmpInst::ICMP_SLE: Predicate = CmpInst::FCMP_TRUE; break;
2217 }
2218
2219 return Predicate;
2220 }
2221