1 //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a fast scheduler.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/SchedulerRegistry.h"
15 #include "InstrEmitter.h"
16 #include "ScheduleDAGSDNodes.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/SelectionDAGISel.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 using namespace llvm;
29
30 #define DEBUG_TYPE "pre-RA-sched"
31
32 STATISTIC(NumUnfolds, "Number of nodes unfolded");
33 STATISTIC(NumDups, "Number of duplicated nodes");
34 STATISTIC(NumPRCopies, "Number of physical copies");
35
36 static RegisterScheduler
37 fastDAGScheduler("fast", "Fast suboptimal list scheduling",
38 createFastDAGScheduler);
39 static RegisterScheduler
40 linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling",
41 createDAGLinearizer);
42
43
44 namespace {
45 /// FastPriorityQueue - A degenerate priority queue that considers
46 /// all nodes to have the same priority.
47 ///
48 struct FastPriorityQueue {
49 SmallVector<SUnit *, 16> Queue;
50
empty__anon0612c6de0111::FastPriorityQueue51 bool empty() const { return Queue.empty(); }
52
push__anon0612c6de0111::FastPriorityQueue53 void push(SUnit *U) {
54 Queue.push_back(U);
55 }
56
pop__anon0612c6de0111::FastPriorityQueue57 SUnit *pop() {
58 if (empty()) return nullptr;
59 SUnit *V = Queue.back();
60 Queue.pop_back();
61 return V;
62 }
63 };
64
65 //===----------------------------------------------------------------------===//
66 /// ScheduleDAGFast - The actual "fast" list scheduler implementation.
67 ///
68 class ScheduleDAGFast : public ScheduleDAGSDNodes {
69 private:
70 /// AvailableQueue - The priority queue to use for the available SUnits.
71 FastPriorityQueue AvailableQueue;
72
73 /// LiveRegDefs - A set of physical registers and their definition
74 /// that are "live". These nodes must be scheduled before any other nodes that
75 /// modifies the registers can be scheduled.
76 unsigned NumLiveRegs;
77 std::vector<SUnit*> LiveRegDefs;
78 std::vector<unsigned> LiveRegCycles;
79
80 public:
ScheduleDAGFast(MachineFunction & mf)81 ScheduleDAGFast(MachineFunction &mf)
82 : ScheduleDAGSDNodes(mf) {}
83
84 void Schedule() override;
85
86 /// AddPred - adds a predecessor edge to SUnit SU.
87 /// This returns true if this is a new predecessor.
AddPred(SUnit * SU,const SDep & D)88 void AddPred(SUnit *SU, const SDep &D) {
89 SU->addPred(D);
90 }
91
92 /// RemovePred - removes a predecessor edge from SUnit SU.
93 /// This returns true if an edge was removed.
RemovePred(SUnit * SU,const SDep & D)94 void RemovePred(SUnit *SU, const SDep &D) {
95 SU->removePred(D);
96 }
97
98 private:
99 void ReleasePred(SUnit *SU, SDep *PredEdge);
100 void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
101 void ScheduleNodeBottomUp(SUnit*, unsigned);
102 SUnit *CopyAndMoveSuccessors(SUnit*);
103 void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
104 const TargetRegisterClass*,
105 const TargetRegisterClass*,
106 SmallVectorImpl<SUnit*>&);
107 bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
108 void ListScheduleBottomUp();
109
110 /// forceUnitLatencies - The fast scheduler doesn't care about real latencies.
forceUnitLatencies() const111 bool forceUnitLatencies() const override { return true; }
112 };
113 } // end anonymous namespace
114
115
116 /// Schedule - Schedule the DAG using list scheduling.
Schedule()117 void ScheduleDAGFast::Schedule() {
118 DEBUG(dbgs() << "********** List Scheduling **********\n");
119
120 NumLiveRegs = 0;
121 LiveRegDefs.resize(TRI->getNumRegs(), nullptr);
122 LiveRegCycles.resize(TRI->getNumRegs(), 0);
123
124 // Build the scheduling graph.
125 BuildSchedGraph(nullptr);
126
127 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
128 SUnits[su].dumpAll(this));
129
130 // Execute the actual scheduling loop.
131 ListScheduleBottomUp();
132 }
133
134 //===----------------------------------------------------------------------===//
135 // Bottom-Up Scheduling
136 //===----------------------------------------------------------------------===//
137
138 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
139 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
ReleasePred(SUnit * SU,SDep * PredEdge)140 void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
141 SUnit *PredSU = PredEdge->getSUnit();
142
143 #ifndef NDEBUG
144 if (PredSU->NumSuccsLeft == 0) {
145 dbgs() << "*** Scheduling failed! ***\n";
146 PredSU->dump(this);
147 dbgs() << " has been released too many times!\n";
148 llvm_unreachable(nullptr);
149 }
150 #endif
151 --PredSU->NumSuccsLeft;
152
153 // If all the node's successors are scheduled, this node is ready
154 // to be scheduled. Ignore the special EntrySU node.
155 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
156 PredSU->isAvailable = true;
157 AvailableQueue.push(PredSU);
158 }
159 }
160
ReleasePredecessors(SUnit * SU,unsigned CurCycle)161 void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
162 // Bottom up: release predecessors
163 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
164 I != E; ++I) {
165 ReleasePred(SU, &*I);
166 if (I->isAssignedRegDep()) {
167 // This is a physical register dependency and it's impossible or
168 // expensive to copy the register. Make sure nothing that can
169 // clobber the register is scheduled between the predecessor and
170 // this node.
171 if (!LiveRegDefs[I->getReg()]) {
172 ++NumLiveRegs;
173 LiveRegDefs[I->getReg()] = I->getSUnit();
174 LiveRegCycles[I->getReg()] = CurCycle;
175 }
176 }
177 }
178 }
179
180 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
181 /// count of its predecessors. If a predecessor pending count is zero, add it to
182 /// the Available queue.
ScheduleNodeBottomUp(SUnit * SU,unsigned CurCycle)183 void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
184 DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
185 DEBUG(SU->dump(this));
186
187 assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
188 SU->setHeightToAtLeast(CurCycle);
189 Sequence.push_back(SU);
190
191 ReleasePredecessors(SU, CurCycle);
192
193 // Release all the implicit physical register defs that are live.
194 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
195 I != E; ++I) {
196 if (I->isAssignedRegDep()) {
197 if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
198 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
199 assert(LiveRegDefs[I->getReg()] == SU &&
200 "Physical register dependency violated?");
201 --NumLiveRegs;
202 LiveRegDefs[I->getReg()] = nullptr;
203 LiveRegCycles[I->getReg()] = 0;
204 }
205 }
206 }
207
208 SU->isScheduled = true;
209 }
210
211 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
212 /// successors to the newly created node.
CopyAndMoveSuccessors(SUnit * SU)213 SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
214 if (SU->getNode()->getGluedNode())
215 return nullptr;
216
217 SDNode *N = SU->getNode();
218 if (!N)
219 return nullptr;
220
221 SUnit *NewSU;
222 bool TryUnfold = false;
223 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
224 MVT VT = N->getSimpleValueType(i);
225 if (VT == MVT::Glue)
226 return nullptr;
227 else if (VT == MVT::Other)
228 TryUnfold = true;
229 }
230 for (const SDValue &Op : N->op_values()) {
231 MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
232 if (VT == MVT::Glue)
233 return nullptr;
234 }
235
236 if (TryUnfold) {
237 SmallVector<SDNode*, 2> NewNodes;
238 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
239 return nullptr;
240
241 DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
242 assert(NewNodes.size() == 2 && "Expected a load folding node!");
243
244 N = NewNodes[1];
245 SDNode *LoadNode = NewNodes[0];
246 unsigned NumVals = N->getNumValues();
247 unsigned OldNumVals = SU->getNode()->getNumValues();
248 for (unsigned i = 0; i != NumVals; ++i)
249 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
250 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
251 SDValue(LoadNode, 1));
252
253 SUnit *NewSU = newSUnit(N);
254 assert(N->getNodeId() == -1 && "Node already inserted!");
255 N->setNodeId(NewSU->NodeNum);
256
257 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
258 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
259 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
260 NewSU->isTwoAddress = true;
261 break;
262 }
263 }
264 if (MCID.isCommutable())
265 NewSU->isCommutable = true;
266
267 // LoadNode may already exist. This can happen when there is another
268 // load from the same location and producing the same type of value
269 // but it has different alignment or volatileness.
270 bool isNewLoad = true;
271 SUnit *LoadSU;
272 if (LoadNode->getNodeId() != -1) {
273 LoadSU = &SUnits[LoadNode->getNodeId()];
274 isNewLoad = false;
275 } else {
276 LoadSU = newSUnit(LoadNode);
277 LoadNode->setNodeId(LoadSU->NodeNum);
278 }
279
280 SDep ChainPred;
281 SmallVector<SDep, 4> ChainSuccs;
282 SmallVector<SDep, 4> LoadPreds;
283 SmallVector<SDep, 4> NodePreds;
284 SmallVector<SDep, 4> NodeSuccs;
285 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
286 I != E; ++I) {
287 if (I->isCtrl())
288 ChainPred = *I;
289 else if (I->getSUnit()->getNode() &&
290 I->getSUnit()->getNode()->isOperandOf(LoadNode))
291 LoadPreds.push_back(*I);
292 else
293 NodePreds.push_back(*I);
294 }
295 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
296 I != E; ++I) {
297 if (I->isCtrl())
298 ChainSuccs.push_back(*I);
299 else
300 NodeSuccs.push_back(*I);
301 }
302
303 if (ChainPred.getSUnit()) {
304 RemovePred(SU, ChainPred);
305 if (isNewLoad)
306 AddPred(LoadSU, ChainPred);
307 }
308 for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
309 const SDep &Pred = LoadPreds[i];
310 RemovePred(SU, Pred);
311 if (isNewLoad) {
312 AddPred(LoadSU, Pred);
313 }
314 }
315 for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
316 const SDep &Pred = NodePreds[i];
317 RemovePred(SU, Pred);
318 AddPred(NewSU, Pred);
319 }
320 for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
321 SDep D = NodeSuccs[i];
322 SUnit *SuccDep = D.getSUnit();
323 D.setSUnit(SU);
324 RemovePred(SuccDep, D);
325 D.setSUnit(NewSU);
326 AddPred(SuccDep, D);
327 }
328 for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
329 SDep D = ChainSuccs[i];
330 SUnit *SuccDep = D.getSUnit();
331 D.setSUnit(SU);
332 RemovePred(SuccDep, D);
333 if (isNewLoad) {
334 D.setSUnit(LoadSU);
335 AddPred(SuccDep, D);
336 }
337 }
338 if (isNewLoad) {
339 SDep D(LoadSU, SDep::Barrier);
340 D.setLatency(LoadSU->Latency);
341 AddPred(NewSU, D);
342 }
343
344 ++NumUnfolds;
345
346 if (NewSU->NumSuccsLeft == 0) {
347 NewSU->isAvailable = true;
348 return NewSU;
349 }
350 SU = NewSU;
351 }
352
353 DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
354 NewSU = Clone(SU);
355
356 // New SUnit has the exact same predecessors.
357 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
358 I != E; ++I)
359 if (!I->isArtificial())
360 AddPred(NewSU, *I);
361
362 // Only copy scheduled successors. Cut them from old node's successor
363 // list and move them over.
364 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
365 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
366 I != E; ++I) {
367 if (I->isArtificial())
368 continue;
369 SUnit *SuccSU = I->getSUnit();
370 if (SuccSU->isScheduled) {
371 SDep D = *I;
372 D.setSUnit(NewSU);
373 AddPred(SuccSU, D);
374 D.setSUnit(SU);
375 DelDeps.push_back(std::make_pair(SuccSU, D));
376 }
377 }
378 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
379 RemovePred(DelDeps[i].first, DelDeps[i].second);
380
381 ++NumDups;
382 return NewSU;
383 }
384
385 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
386 /// scheduled successors of the given SUnit to the last copy.
InsertCopiesAndMoveSuccs(SUnit * SU,unsigned Reg,const TargetRegisterClass * DestRC,const TargetRegisterClass * SrcRC,SmallVectorImpl<SUnit * > & Copies)387 void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
388 const TargetRegisterClass *DestRC,
389 const TargetRegisterClass *SrcRC,
390 SmallVectorImpl<SUnit*> &Copies) {
391 SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(nullptr));
392 CopyFromSU->CopySrcRC = SrcRC;
393 CopyFromSU->CopyDstRC = DestRC;
394
395 SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(nullptr));
396 CopyToSU->CopySrcRC = DestRC;
397 CopyToSU->CopyDstRC = SrcRC;
398
399 // Only copy scheduled successors. Cut them from old node's successor
400 // list and move them over.
401 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
402 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
403 I != E; ++I) {
404 if (I->isArtificial())
405 continue;
406 SUnit *SuccSU = I->getSUnit();
407 if (SuccSU->isScheduled) {
408 SDep D = *I;
409 D.setSUnit(CopyToSU);
410 AddPred(SuccSU, D);
411 DelDeps.push_back(std::make_pair(SuccSU, *I));
412 }
413 }
414 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
415 RemovePred(DelDeps[i].first, DelDeps[i].second);
416 }
417 SDep FromDep(SU, SDep::Data, Reg);
418 FromDep.setLatency(SU->Latency);
419 AddPred(CopyFromSU, FromDep);
420 SDep ToDep(CopyFromSU, SDep::Data, 0);
421 ToDep.setLatency(CopyFromSU->Latency);
422 AddPred(CopyToSU, ToDep);
423
424 Copies.push_back(CopyFromSU);
425 Copies.push_back(CopyToSU);
426
427 ++NumPRCopies;
428 }
429
430 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
431 /// definition of the specified node.
432 /// FIXME: Move to SelectionDAG?
getPhysicalRegisterVT(SDNode * N,unsigned Reg,const TargetInstrInfo * TII)433 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
434 const TargetInstrInfo *TII) {
435 unsigned NumRes;
436 if (N->getOpcode() == ISD::CopyFromReg) {
437 // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
438 NumRes = 1;
439 } else {
440 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
441 assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
442 NumRes = MCID.getNumDefs();
443 for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
444 if (Reg == *ImpDef)
445 break;
446 ++NumRes;
447 }
448 }
449 return N->getSimpleValueType(NumRes);
450 }
451
452 /// CheckForLiveRegDef - Return true and update live register vector if the
453 /// specified register def of the specified SUnit clobbers any "live" registers.
CheckForLiveRegDef(SUnit * SU,unsigned Reg,std::vector<SUnit * > & LiveRegDefs,SmallSet<unsigned,4> & RegAdded,SmallVectorImpl<unsigned> & LRegs,const TargetRegisterInfo * TRI)454 static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
455 std::vector<SUnit*> &LiveRegDefs,
456 SmallSet<unsigned, 4> &RegAdded,
457 SmallVectorImpl<unsigned> &LRegs,
458 const TargetRegisterInfo *TRI) {
459 bool Added = false;
460 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
461 if (LiveRegDefs[*AI] && LiveRegDefs[*AI] != SU) {
462 if (RegAdded.insert(*AI).second) {
463 LRegs.push_back(*AI);
464 Added = true;
465 }
466 }
467 }
468 return Added;
469 }
470
471 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
472 /// scheduling of the given node to satisfy live physical register dependencies.
473 /// If the specific node is the last one that's available to schedule, do
474 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
DelayForLiveRegsBottomUp(SUnit * SU,SmallVectorImpl<unsigned> & LRegs)475 bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
476 SmallVectorImpl<unsigned> &LRegs){
477 if (NumLiveRegs == 0)
478 return false;
479
480 SmallSet<unsigned, 4> RegAdded;
481 // If this node would clobber any "live" register, then it's not ready.
482 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
483 I != E; ++I) {
484 if (I->isAssignedRegDep()) {
485 CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
486 RegAdded, LRegs, TRI);
487 }
488 }
489
490 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
491 if (Node->getOpcode() == ISD::INLINEASM) {
492 // Inline asm can clobber physical defs.
493 unsigned NumOps = Node->getNumOperands();
494 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
495 --NumOps; // Ignore the glue operand.
496
497 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
498 unsigned Flags =
499 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
500 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
501
502 ++i; // Skip the ID value.
503 if (InlineAsm::isRegDefKind(Flags) ||
504 InlineAsm::isRegDefEarlyClobberKind(Flags) ||
505 InlineAsm::isClobberKind(Flags)) {
506 // Check for def of register or earlyclobber register.
507 for (; NumVals; --NumVals, ++i) {
508 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
509 if (TargetRegisterInfo::isPhysicalRegister(Reg))
510 CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
511 }
512 } else
513 i += NumVals;
514 }
515 continue;
516 }
517 if (!Node->isMachineOpcode())
518 continue;
519 const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
520 if (!MCID.ImplicitDefs)
521 continue;
522 for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg) {
523 CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
524 }
525 }
526 return !LRegs.empty();
527 }
528
529
530 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
531 /// schedulers.
ListScheduleBottomUp()532 void ScheduleDAGFast::ListScheduleBottomUp() {
533 unsigned CurCycle = 0;
534
535 // Release any predecessors of the special Exit node.
536 ReleasePredecessors(&ExitSU, CurCycle);
537
538 // Add root to Available queue.
539 if (!SUnits.empty()) {
540 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
541 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
542 RootSU->isAvailable = true;
543 AvailableQueue.push(RootSU);
544 }
545
546 // While Available queue is not empty, grab the node with the highest
547 // priority. If it is not ready put it back. Schedule the node.
548 SmallVector<SUnit*, 4> NotReady;
549 DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
550 Sequence.reserve(SUnits.size());
551 while (!AvailableQueue.empty()) {
552 bool Delayed = false;
553 LRegsMap.clear();
554 SUnit *CurSU = AvailableQueue.pop();
555 while (CurSU) {
556 SmallVector<unsigned, 4> LRegs;
557 if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
558 break;
559 Delayed = true;
560 LRegsMap.insert(std::make_pair(CurSU, LRegs));
561
562 CurSU->isPending = true; // This SU is not in AvailableQueue right now.
563 NotReady.push_back(CurSU);
564 CurSU = AvailableQueue.pop();
565 }
566
567 // All candidates are delayed due to live physical reg dependencies.
568 // Try code duplication or inserting cross class copies
569 // to resolve it.
570 if (Delayed && !CurSU) {
571 if (!CurSU) {
572 // Try duplicating the nodes that produces these
573 // "expensive to copy" values to break the dependency. In case even
574 // that doesn't work, insert cross class copies.
575 SUnit *TrySU = NotReady[0];
576 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
577 assert(LRegs.size() == 1 && "Can't handle this yet!");
578 unsigned Reg = LRegs[0];
579 SUnit *LRDef = LiveRegDefs[Reg];
580 MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
581 const TargetRegisterClass *RC =
582 TRI->getMinimalPhysRegClass(Reg, VT);
583 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
584
585 // If cross copy register class is the same as RC, then it must be
586 // possible copy the value directly. Do not try duplicate the def.
587 // If cross copy register class is not the same as RC, then it's
588 // possible to copy the value but it require cross register class copies
589 // and it is expensive.
590 // If cross copy register class is null, then it's not possible to copy
591 // the value at all.
592 SUnit *NewDef = nullptr;
593 if (DestRC != RC) {
594 NewDef = CopyAndMoveSuccessors(LRDef);
595 if (!DestRC && !NewDef)
596 report_fatal_error("Can't handle live physical "
597 "register dependency!");
598 }
599 if (!NewDef) {
600 // Issue copies, these can be expensive cross register class copies.
601 SmallVector<SUnit*, 2> Copies;
602 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
603 DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
604 << " to SU #" << Copies.front()->NodeNum << "\n");
605 AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
606 NewDef = Copies.back();
607 }
608
609 DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
610 << " to SU #" << TrySU->NodeNum << "\n");
611 LiveRegDefs[Reg] = NewDef;
612 AddPred(NewDef, SDep(TrySU, SDep::Artificial));
613 TrySU->isAvailable = false;
614 CurSU = NewDef;
615 }
616
617 if (!CurSU) {
618 llvm_unreachable("Unable to resolve live physical register dependencies!");
619 }
620 }
621
622 // Add the nodes that aren't ready back onto the available list.
623 for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
624 NotReady[i]->isPending = false;
625 // May no longer be available due to backtracking.
626 if (NotReady[i]->isAvailable)
627 AvailableQueue.push(NotReady[i]);
628 }
629 NotReady.clear();
630
631 if (CurSU)
632 ScheduleNodeBottomUp(CurSU, CurCycle);
633 ++CurCycle;
634 }
635
636 // Reverse the order since it is bottom up.
637 std::reverse(Sequence.begin(), Sequence.end());
638
639 #ifndef NDEBUG
640 VerifyScheduledSequence(/*isBottomUp=*/true);
641 #endif
642 }
643
644
645 namespace {
646 //===----------------------------------------------------------------------===//
647 // ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the
648 // DAG in topological order.
649 // IMPORTANT: this may not work for targets with phyreg dependency.
650 //
651 class ScheduleDAGLinearize : public ScheduleDAGSDNodes {
652 public:
ScheduleDAGLinearize(MachineFunction & mf)653 ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {}
654
655 void Schedule() override;
656
657 MachineBasicBlock *
658 EmitSchedule(MachineBasicBlock::iterator &InsertPos) override;
659
660 private:
661 std::vector<SDNode*> Sequence;
662 DenseMap<SDNode*, SDNode*> GluedMap; // Cache glue to its user
663
664 void ScheduleNode(SDNode *N);
665 };
666 } // end anonymous namespace
667
ScheduleNode(SDNode * N)668 void ScheduleDAGLinearize::ScheduleNode(SDNode *N) {
669 if (N->getNodeId() != 0)
670 llvm_unreachable(nullptr);
671
672 if (!N->isMachineOpcode() &&
673 (N->getOpcode() == ISD::EntryToken || isPassiveNode(N)))
674 // These nodes do not need to be translated into MIs.
675 return;
676
677 DEBUG(dbgs() << "\n*** Scheduling: ");
678 DEBUG(N->dump(DAG));
679 Sequence.push_back(N);
680
681 unsigned NumOps = N->getNumOperands();
682 if (unsigned NumLeft = NumOps) {
683 SDNode *GluedOpN = nullptr;
684 do {
685 const SDValue &Op = N->getOperand(NumLeft-1);
686 SDNode *OpN = Op.getNode();
687
688 if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) {
689 // Schedule glue operand right above N.
690 GluedOpN = OpN;
691 assert(OpN->getNodeId() != 0 && "Glue operand not ready?");
692 OpN->setNodeId(0);
693 ScheduleNode(OpN);
694 continue;
695 }
696
697 if (OpN == GluedOpN)
698 // Glue operand is already scheduled.
699 continue;
700
701 DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN);
702 if (DI != GluedMap.end() && DI->second != N)
703 // Users of glues are counted against the glued users.
704 OpN = DI->second;
705
706 unsigned Degree = OpN->getNodeId();
707 assert(Degree > 0 && "Predecessor over-released!");
708 OpN->setNodeId(--Degree);
709 if (Degree == 0)
710 ScheduleNode(OpN);
711 } while (--NumLeft);
712 }
713 }
714
715 /// findGluedUser - Find the representative use of a glue value by walking
716 /// the use chain.
findGluedUser(SDNode * N)717 static SDNode *findGluedUser(SDNode *N) {
718 while (SDNode *Glued = N->getGluedUser())
719 N = Glued;
720 return N;
721 }
722
Schedule()723 void ScheduleDAGLinearize::Schedule() {
724 DEBUG(dbgs() << "********** DAG Linearization **********\n");
725
726 SmallVector<SDNode*, 8> Glues;
727 unsigned DAGSize = 0;
728 for (SDNode &Node : DAG->allnodes()) {
729 SDNode *N = &Node;
730
731 // Use node id to record degree.
732 unsigned Degree = N->use_size();
733 N->setNodeId(Degree);
734 unsigned NumVals = N->getNumValues();
735 if (NumVals && N->getValueType(NumVals-1) == MVT::Glue &&
736 N->hasAnyUseOfValue(NumVals-1)) {
737 SDNode *User = findGluedUser(N);
738 if (User) {
739 Glues.push_back(N);
740 GluedMap.insert(std::make_pair(N, User));
741 }
742 }
743
744 if (N->isMachineOpcode() ||
745 (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N)))
746 ++DAGSize;
747 }
748
749 for (unsigned i = 0, e = Glues.size(); i != e; ++i) {
750 SDNode *Glue = Glues[i];
751 SDNode *GUser = GluedMap[Glue];
752 unsigned Degree = Glue->getNodeId();
753 unsigned UDegree = GUser->getNodeId();
754
755 // Glue user must be scheduled together with the glue operand. So other
756 // users of the glue operand must be treated as its users.
757 SDNode *ImmGUser = Glue->getGluedUser();
758 for (SDNode::use_iterator ui = Glue->use_begin(), ue = Glue->use_end();
759 ui != ue; ++ui)
760 if (*ui == ImmGUser)
761 --Degree;
762 GUser->setNodeId(UDegree + Degree);
763 Glue->setNodeId(1);
764 }
765
766 Sequence.reserve(DAGSize);
767 ScheduleNode(DAG->getRoot().getNode());
768 }
769
770 MachineBasicBlock*
EmitSchedule(MachineBasicBlock::iterator & InsertPos)771 ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
772 InstrEmitter Emitter(BB, InsertPos);
773 DenseMap<SDValue, unsigned> VRBaseMap;
774
775 DEBUG({
776 dbgs() << "\n*** Final schedule ***\n";
777 });
778
779 // FIXME: Handle dbg_values.
780 unsigned NumNodes = Sequence.size();
781 for (unsigned i = 0; i != NumNodes; ++i) {
782 SDNode *N = Sequence[NumNodes-i-1];
783 DEBUG(N->dump(DAG));
784 Emitter.EmitNode(N, false, false, VRBaseMap);
785 }
786
787 DEBUG(dbgs() << '\n');
788
789 InsertPos = Emitter.getInsertPos();
790 return Emitter.getBlock();
791 }
792
793 //===----------------------------------------------------------------------===//
794 // Public Constructor Functions
795 //===----------------------------------------------------------------------===//
796
797 llvm::ScheduleDAGSDNodes *
createFastDAGScheduler(SelectionDAGISel * IS,CodeGenOpt::Level)798 llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
799 return new ScheduleDAGFast(*IS->MF);
800 }
801
802 llvm::ScheduleDAGSDNodes *
createDAGLinearizer(SelectionDAGISel * IS,CodeGenOpt::Level)803 llvm::createDAGLinearizer(SelectionDAGISel *IS, CodeGenOpt::Level) {
804 return new ScheduleDAGLinearize(*IS->MF);
805 }
806