1 //===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements bottom-up and top-down register pressure reduction list
11 // schedulers, using standard algorithms.  The basic approach uses a priority
12 // queue of available nodes to schedule.  One at a time, nodes are taken from
13 // the priority queue (thus in priority order), checked for legality to
14 // schedule, and emitted if legal.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/CodeGen/SchedulerRegistry.h"
19 #include "ScheduleDAGSDNodes.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
25 #include "llvm/CodeGen/SelectionDAGISel.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/Target/TargetLowering.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 #include <climits>
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "pre-RA-sched"
39 
40 STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
41 STATISTIC(NumUnfolds,    "Number of nodes unfolded");
42 STATISTIC(NumDups,       "Number of duplicated nodes");
43 STATISTIC(NumPRCopies,   "Number of physical register copies");
44 
45 static RegisterScheduler
46   burrListDAGScheduler("list-burr",
47                        "Bottom-up register reduction list scheduling",
48                        createBURRListDAGScheduler);
49 static RegisterScheduler
50   sourceListDAGScheduler("source",
51                          "Similar to list-burr but schedules in source "
52                          "order when possible",
53                          createSourceListDAGScheduler);
54 
55 static RegisterScheduler
56   hybridListDAGScheduler("list-hybrid",
57                          "Bottom-up register pressure aware list scheduling "
58                          "which tries to balance latency and register pressure",
59                          createHybridListDAGScheduler);
60 
61 static RegisterScheduler
62   ILPListDAGScheduler("list-ilp",
63                       "Bottom-up register pressure aware list scheduling "
64                       "which tries to balance ILP and register pressure",
65                       createILPListDAGScheduler);
66 
67 static cl::opt<bool> DisableSchedCycles(
68   "disable-sched-cycles", cl::Hidden, cl::init(false),
69   cl::desc("Disable cycle-level precision during preRA scheduling"));
70 
71 // Temporary sched=list-ilp flags until the heuristics are robust.
72 // Some options are also available under sched=list-hybrid.
73 static cl::opt<bool> DisableSchedRegPressure(
74   "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
75   cl::desc("Disable regpressure priority in sched=list-ilp"));
76 static cl::opt<bool> DisableSchedLiveUses(
77   "disable-sched-live-uses", cl::Hidden, cl::init(true),
78   cl::desc("Disable live use priority in sched=list-ilp"));
79 static cl::opt<bool> DisableSchedVRegCycle(
80   "disable-sched-vrcycle", cl::Hidden, cl::init(false),
81   cl::desc("Disable virtual register cycle interference checks"));
82 static cl::opt<bool> DisableSchedPhysRegJoin(
83   "disable-sched-physreg-join", cl::Hidden, cl::init(false),
84   cl::desc("Disable physreg def-use affinity"));
85 static cl::opt<bool> DisableSchedStalls(
86   "disable-sched-stalls", cl::Hidden, cl::init(true),
87   cl::desc("Disable no-stall priority in sched=list-ilp"));
88 static cl::opt<bool> DisableSchedCriticalPath(
89   "disable-sched-critical-path", cl::Hidden, cl::init(false),
90   cl::desc("Disable critical path priority in sched=list-ilp"));
91 static cl::opt<bool> DisableSchedHeight(
92   "disable-sched-height", cl::Hidden, cl::init(false),
93   cl::desc("Disable scheduled-height priority in sched=list-ilp"));
94 static cl::opt<bool> Disable2AddrHack(
95   "disable-2addr-hack", cl::Hidden, cl::init(true),
96   cl::desc("Disable scheduler's two-address hack"));
97 
98 static cl::opt<int> MaxReorderWindow(
99   "max-sched-reorder", cl::Hidden, cl::init(6),
100   cl::desc("Number of instructions to allow ahead of the critical path "
101            "in sched=list-ilp"));
102 
103 static cl::opt<unsigned> AvgIPC(
104   "sched-avg-ipc", cl::Hidden, cl::init(1),
105   cl::desc("Average inst/cycle whan no target itinerary exists."));
106 
107 namespace {
108 //===----------------------------------------------------------------------===//
109 /// ScheduleDAGRRList - The actual register reduction list scheduler
110 /// implementation.  This supports both top-down and bottom-up scheduling.
111 ///
112 class ScheduleDAGRRList : public ScheduleDAGSDNodes {
113 private:
114   /// NeedLatency - True if the scheduler will make use of latency information.
115   ///
116   bool NeedLatency;
117 
118   /// AvailableQueue - The priority queue to use for the available SUnits.
119   SchedulingPriorityQueue *AvailableQueue;
120 
121   /// PendingQueue - This contains all of the instructions whose operands have
122   /// been issued, but their results are not ready yet (due to the latency of
123   /// the operation).  Once the operands becomes available, the instruction is
124   /// added to the AvailableQueue.
125   std::vector<SUnit*> PendingQueue;
126 
127   /// HazardRec - The hazard recognizer to use.
128   ScheduleHazardRecognizer *HazardRec;
129 
130   /// CurCycle - The current scheduler state corresponds to this cycle.
131   unsigned CurCycle;
132 
133   /// MinAvailableCycle - Cycle of the soonest available instruction.
134   unsigned MinAvailableCycle;
135 
136   /// IssueCount - Count instructions issued in this cycle
137   /// Currently valid only for bottom-up scheduling.
138   unsigned IssueCount;
139 
140   /// LiveRegDefs - A set of physical registers and their definition
141   /// that are "live". These nodes must be scheduled before any other nodes that
142   /// modifies the registers can be scheduled.
143   unsigned NumLiveRegs;
144   std::unique_ptr<SUnit*[]> LiveRegDefs;
145   std::unique_ptr<SUnit*[]> LiveRegGens;
146 
147   // Collect interferences between physical register use/defs.
148   // Each interference is an SUnit and set of physical registers.
149   SmallVector<SUnit*, 4> Interferences;
150   typedef DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMapT;
151   LRegsMapT LRegsMap;
152 
153   /// Topo - A topological ordering for SUnits which permits fast IsReachable
154   /// and similar queries.
155   ScheduleDAGTopologicalSort Topo;
156 
157   // Hack to keep track of the inverse of FindCallSeqStart without more crazy
158   // DAG crawling.
159   DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
160 
161 public:
ScheduleDAGRRList(MachineFunction & mf,bool needlatency,SchedulingPriorityQueue * availqueue,CodeGenOpt::Level OptLevel)162   ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
163                     SchedulingPriorityQueue *availqueue,
164                     CodeGenOpt::Level OptLevel)
165     : ScheduleDAGSDNodes(mf),
166       NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
167       Topo(SUnits, nullptr) {
168 
169     const TargetSubtargetInfo &STI = mf.getSubtarget();
170     if (DisableSchedCycles || !NeedLatency)
171       HazardRec = new ScheduleHazardRecognizer();
172     else
173       HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(&STI, this);
174   }
175 
~ScheduleDAGRRList()176   ~ScheduleDAGRRList() override {
177     delete HazardRec;
178     delete AvailableQueue;
179   }
180 
181   void Schedule() override;
182 
getHazardRec()183   ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
184 
185   /// IsReachable - Checks if SU is reachable from TargetSU.
IsReachable(const SUnit * SU,const SUnit * TargetSU)186   bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
187     return Topo.IsReachable(SU, TargetSU);
188   }
189 
190   /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
191   /// create a cycle.
WillCreateCycle(SUnit * SU,SUnit * TargetSU)192   bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
193     return Topo.WillCreateCycle(SU, TargetSU);
194   }
195 
196   /// AddPred - adds a predecessor edge to SUnit SU.
197   /// This returns true if this is a new predecessor.
198   /// Updates the topological ordering if required.
AddPred(SUnit * SU,const SDep & D)199   void AddPred(SUnit *SU, const SDep &D) {
200     Topo.AddPred(SU, D.getSUnit());
201     SU->addPred(D);
202   }
203 
204   /// RemovePred - removes a predecessor edge from SUnit SU.
205   /// This returns true if an edge was removed.
206   /// Updates the topological ordering if required.
RemovePred(SUnit * SU,const SDep & D)207   void RemovePred(SUnit *SU, const SDep &D) {
208     Topo.RemovePred(SU, D.getSUnit());
209     SU->removePred(D);
210   }
211 
212 private:
isReady(SUnit * SU)213   bool isReady(SUnit *SU) {
214     return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
215       AvailableQueue->isReady(SU);
216   }
217 
218   void ReleasePred(SUnit *SU, const SDep *PredEdge);
219   void ReleasePredecessors(SUnit *SU);
220   void ReleasePending();
221   void AdvanceToCycle(unsigned NextCycle);
222   void AdvancePastStalls(SUnit *SU);
223   void EmitNode(SUnit *SU);
224   void ScheduleNodeBottomUp(SUnit*);
225   void CapturePred(SDep *PredEdge);
226   void UnscheduleNodeBottomUp(SUnit*);
227   void RestoreHazardCheckerBottomUp();
228   void BacktrackBottomUp(SUnit*, SUnit*);
229   SUnit *CopyAndMoveSuccessors(SUnit*);
230   void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
231                                 const TargetRegisterClass*,
232                                 const TargetRegisterClass*,
233                                 SmallVectorImpl<SUnit*>&);
234   bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
235 
236   void releaseInterferences(unsigned Reg = 0);
237 
238   SUnit *PickNodeToScheduleBottomUp();
239   void ListScheduleBottomUp();
240 
241   /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
242   /// Updates the topological ordering if required.
CreateNewSUnit(SDNode * N)243   SUnit *CreateNewSUnit(SDNode *N) {
244     unsigned NumSUnits = SUnits.size();
245     SUnit *NewNode = newSUnit(N);
246     // Update the topological ordering.
247     if (NewNode->NodeNum >= NumSUnits)
248       Topo.InitDAGTopologicalSorting();
249     return NewNode;
250   }
251 
252   /// CreateClone - Creates a new SUnit from an existing one.
253   /// Updates the topological ordering if required.
CreateClone(SUnit * N)254   SUnit *CreateClone(SUnit *N) {
255     unsigned NumSUnits = SUnits.size();
256     SUnit *NewNode = Clone(N);
257     // Update the topological ordering.
258     if (NewNode->NodeNum >= NumSUnits)
259       Topo.InitDAGTopologicalSorting();
260     return NewNode;
261   }
262 
263   /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
264   /// need actual latency information but the hybrid scheduler does.
forceUnitLatencies() const265   bool forceUnitLatencies() const override {
266     return !NeedLatency;
267   }
268 };
269 }  // end anonymous namespace
270 
271 /// GetCostForDef - Looks up the register class and cost for a given definition.
272 /// Typically this just means looking up the representative register class,
273 /// but for untyped values (MVT::Untyped) it means inspecting the node's
274 /// opcode to determine what register class is being generated.
GetCostForDef(const ScheduleDAGSDNodes::RegDefIter & RegDefPos,const TargetLowering * TLI,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI,unsigned & RegClass,unsigned & Cost,const MachineFunction & MF)275 static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
276                           const TargetLowering *TLI,
277                           const TargetInstrInfo *TII,
278                           const TargetRegisterInfo *TRI,
279                           unsigned &RegClass, unsigned &Cost,
280                           const MachineFunction &MF) {
281   MVT VT = RegDefPos.GetValue();
282 
283   // Special handling for untyped values.  These values can only come from
284   // the expansion of custom DAG-to-DAG patterns.
285   if (VT == MVT::Untyped) {
286     const SDNode *Node = RegDefPos.GetNode();
287 
288     // Special handling for CopyFromReg of untyped values.
289     if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) {
290       unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
291       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
292       RegClass = RC->getID();
293       Cost = 1;
294       return;
295     }
296 
297     unsigned Opcode = Node->getMachineOpcode();
298     if (Opcode == TargetOpcode::REG_SEQUENCE) {
299       unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
300       const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
301       RegClass = RC->getID();
302       Cost = 1;
303       return;
304     }
305 
306     unsigned Idx = RegDefPos.GetIdx();
307     const MCInstrDesc Desc = TII->get(Opcode);
308     const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
309     RegClass = RC->getID();
310     // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
311     // better way to determine it.
312     Cost = 1;
313   } else {
314     RegClass = TLI->getRepRegClassFor(VT)->getID();
315     Cost = TLI->getRepRegClassCostFor(VT);
316   }
317 }
318 
319 /// Schedule - Schedule the DAG using list scheduling.
Schedule()320 void ScheduleDAGRRList::Schedule() {
321   DEBUG(dbgs()
322         << "********** List Scheduling BB#" << BB->getNumber()
323         << " '" << BB->getName() << "' **********\n");
324 
325   CurCycle = 0;
326   IssueCount = 0;
327   MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
328   NumLiveRegs = 0;
329   // Allocate slots for each physical register, plus one for a special register
330   // to track the virtual resource of a calling sequence.
331   LiveRegDefs.reset(new SUnit*[TRI->getNumRegs() + 1]());
332   LiveRegGens.reset(new SUnit*[TRI->getNumRegs() + 1]());
333   CallSeqEndForStart.clear();
334   assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences");
335 
336   // Build the scheduling graph.
337   BuildSchedGraph(nullptr);
338 
339   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
340           SUnits[su].dumpAll(this));
341   Topo.InitDAGTopologicalSorting();
342 
343   AvailableQueue->initNodes(SUnits);
344 
345   HazardRec->Reset();
346 
347   // Execute the actual scheduling loop.
348   ListScheduleBottomUp();
349 
350   AvailableQueue->releaseState();
351 
352   DEBUG({
353       dbgs() << "*** Final schedule ***\n";
354       dumpSchedule();
355       dbgs() << '\n';
356     });
357 }
358 
359 //===----------------------------------------------------------------------===//
360 //  Bottom-Up Scheduling
361 //===----------------------------------------------------------------------===//
362 
363 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
364 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
ReleasePred(SUnit * SU,const SDep * PredEdge)365 void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
366   SUnit *PredSU = PredEdge->getSUnit();
367 
368 #ifndef NDEBUG
369   if (PredSU->NumSuccsLeft == 0) {
370     dbgs() << "*** Scheduling failed! ***\n";
371     PredSU->dump(this);
372     dbgs() << " has been released too many times!\n";
373     llvm_unreachable(nullptr);
374   }
375 #endif
376   --PredSU->NumSuccsLeft;
377 
378   if (!forceUnitLatencies()) {
379     // Updating predecessor's height. This is now the cycle when the
380     // predecessor can be scheduled without causing a pipeline stall.
381     PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
382   }
383 
384   // If all the node's successors are scheduled, this node is ready
385   // to be scheduled. Ignore the special EntrySU node.
386   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
387     PredSU->isAvailable = true;
388 
389     unsigned Height = PredSU->getHeight();
390     if (Height < MinAvailableCycle)
391       MinAvailableCycle = Height;
392 
393     if (isReady(PredSU)) {
394       AvailableQueue->push(PredSU);
395     }
396     // CapturePred and others may have left the node in the pending queue, avoid
397     // adding it twice.
398     else if (!PredSU->isPending) {
399       PredSU->isPending = true;
400       PendingQueue.push_back(PredSU);
401     }
402   }
403 }
404 
405 /// IsChainDependent - Test if Outer is reachable from Inner through
406 /// chain dependencies.
IsChainDependent(SDNode * Outer,SDNode * Inner,unsigned NestLevel,const TargetInstrInfo * TII)407 static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
408                              unsigned NestLevel,
409                              const TargetInstrInfo *TII) {
410   SDNode *N = Outer;
411   for (;;) {
412     if (N == Inner)
413       return true;
414     // For a TokenFactor, examine each operand. There may be multiple ways
415     // to get to the CALLSEQ_BEGIN, but we need to find the path with the
416     // most nesting in order to ensure that we find the corresponding match.
417     if (N->getOpcode() == ISD::TokenFactor) {
418       for (const SDValue &Op : N->op_values())
419         if (IsChainDependent(Op.getNode(), Inner, NestLevel, TII))
420           return true;
421       return false;
422     }
423     // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
424     if (N->isMachineOpcode()) {
425       if (N->getMachineOpcode() ==
426           (unsigned)TII->getCallFrameDestroyOpcode()) {
427         ++NestLevel;
428       } else if (N->getMachineOpcode() ==
429                  (unsigned)TII->getCallFrameSetupOpcode()) {
430         if (NestLevel == 0)
431           return false;
432         --NestLevel;
433       }
434     }
435     // Otherwise, find the chain and continue climbing.
436     for (const SDValue &Op : N->op_values())
437       if (Op.getValueType() == MVT::Other) {
438         N = Op.getNode();
439         goto found_chain_operand;
440       }
441     return false;
442   found_chain_operand:;
443     if (N->getOpcode() == ISD::EntryToken)
444       return false;
445   }
446 }
447 
448 /// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
449 /// the corresponding (lowered) CALLSEQ_BEGIN node.
450 ///
451 /// NestLevel and MaxNested are used in recursion to indcate the current level
452 /// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
453 /// level seen so far.
454 ///
455 /// TODO: It would be better to give CALLSEQ_END an explicit operand to point
456 /// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
457 static SDNode *
FindCallSeqStart(SDNode * N,unsigned & NestLevel,unsigned & MaxNest,const TargetInstrInfo * TII)458 FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
459                  const TargetInstrInfo *TII) {
460   for (;;) {
461     // For a TokenFactor, examine each operand. There may be multiple ways
462     // to get to the CALLSEQ_BEGIN, but we need to find the path with the
463     // most nesting in order to ensure that we find the corresponding match.
464     if (N->getOpcode() == ISD::TokenFactor) {
465       SDNode *Best = nullptr;
466       unsigned BestMaxNest = MaxNest;
467       for (const SDValue &Op : N->op_values()) {
468         unsigned MyNestLevel = NestLevel;
469         unsigned MyMaxNest = MaxNest;
470         if (SDNode *New = FindCallSeqStart(Op.getNode(),
471                                            MyNestLevel, MyMaxNest, TII))
472           if (!Best || (MyMaxNest > BestMaxNest)) {
473             Best = New;
474             BestMaxNest = MyMaxNest;
475           }
476       }
477       assert(Best);
478       MaxNest = BestMaxNest;
479       return Best;
480     }
481     // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
482     if (N->isMachineOpcode()) {
483       if (N->getMachineOpcode() ==
484           (unsigned)TII->getCallFrameDestroyOpcode()) {
485         ++NestLevel;
486         MaxNest = std::max(MaxNest, NestLevel);
487       } else if (N->getMachineOpcode() ==
488                  (unsigned)TII->getCallFrameSetupOpcode()) {
489         assert(NestLevel != 0);
490         --NestLevel;
491         if (NestLevel == 0)
492           return N;
493       }
494     }
495     // Otherwise, find the chain and continue climbing.
496     for (const SDValue &Op : N->op_values())
497       if (Op.getValueType() == MVT::Other) {
498         N = Op.getNode();
499         goto found_chain_operand;
500       }
501     return nullptr;
502   found_chain_operand:;
503     if (N->getOpcode() == ISD::EntryToken)
504       return nullptr;
505   }
506 }
507 
508 /// Call ReleasePred for each predecessor, then update register live def/gen.
509 /// Always update LiveRegDefs for a register dependence even if the current SU
510 /// also defines the register. This effectively create one large live range
511 /// across a sequence of two-address node. This is important because the
512 /// entire chain must be scheduled together. Example:
513 ///
514 /// flags = (3) add
515 /// flags = (2) addc flags
516 /// flags = (1) addc flags
517 ///
518 /// results in
519 ///
520 /// LiveRegDefs[flags] = 3
521 /// LiveRegGens[flags] = 1
522 ///
523 /// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
524 /// interference on flags.
ReleasePredecessors(SUnit * SU)525 void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
526   // Bottom up: release predecessors
527   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
528        I != E; ++I) {
529     ReleasePred(SU, &*I);
530     if (I->isAssignedRegDep()) {
531       // This is a physical register dependency and it's impossible or
532       // expensive to copy the register. Make sure nothing that can
533       // clobber the register is scheduled between the predecessor and
534       // this node.
535       SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
536       assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
537              "interference on register dependence");
538       LiveRegDefs[I->getReg()] = I->getSUnit();
539       if (!LiveRegGens[I->getReg()]) {
540         ++NumLiveRegs;
541         LiveRegGens[I->getReg()] = SU;
542       }
543     }
544   }
545 
546   // If we're scheduling a lowered CALLSEQ_END, find the corresponding
547   // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
548   // these nodes, to prevent other calls from being interscheduled with them.
549   unsigned CallResource = TRI->getNumRegs();
550   if (!LiveRegDefs[CallResource])
551     for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
552       if (Node->isMachineOpcode() &&
553           Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
554         unsigned NestLevel = 0;
555         unsigned MaxNest = 0;
556         SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
557 
558         SUnit *Def = &SUnits[N->getNodeId()];
559         CallSeqEndForStart[Def] = SU;
560 
561         ++NumLiveRegs;
562         LiveRegDefs[CallResource] = Def;
563         LiveRegGens[CallResource] = SU;
564         break;
565       }
566 }
567 
568 /// Check to see if any of the pending instructions are ready to issue.  If
569 /// so, add them to the available queue.
ReleasePending()570 void ScheduleDAGRRList::ReleasePending() {
571   if (DisableSchedCycles) {
572     assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
573     return;
574   }
575 
576   // If the available queue is empty, it is safe to reset MinAvailableCycle.
577   if (AvailableQueue->empty())
578     MinAvailableCycle = UINT_MAX;
579 
580   // Check to see if any of the pending instructions are ready to issue.  If
581   // so, add them to the available queue.
582   for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
583     unsigned ReadyCycle = PendingQueue[i]->getHeight();
584     if (ReadyCycle < MinAvailableCycle)
585       MinAvailableCycle = ReadyCycle;
586 
587     if (PendingQueue[i]->isAvailable) {
588       if (!isReady(PendingQueue[i]))
589           continue;
590       AvailableQueue->push(PendingQueue[i]);
591     }
592     PendingQueue[i]->isPending = false;
593     PendingQueue[i] = PendingQueue.back();
594     PendingQueue.pop_back();
595     --i; --e;
596   }
597 }
598 
599 /// Move the scheduler state forward by the specified number of Cycles.
AdvanceToCycle(unsigned NextCycle)600 void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
601   if (NextCycle <= CurCycle)
602     return;
603 
604   IssueCount = 0;
605   AvailableQueue->setCurCycle(NextCycle);
606   if (!HazardRec->isEnabled()) {
607     // Bypass lots of virtual calls in case of long latency.
608     CurCycle = NextCycle;
609   }
610   else {
611     for (; CurCycle != NextCycle; ++CurCycle) {
612       HazardRec->RecedeCycle();
613     }
614   }
615   // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
616   // available Q to release pending nodes at least once before popping.
617   ReleasePending();
618 }
619 
620 /// Move the scheduler state forward until the specified node's dependents are
621 /// ready and can be scheduled with no resource conflicts.
AdvancePastStalls(SUnit * SU)622 void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
623   if (DisableSchedCycles)
624     return;
625 
626   // FIXME: Nodes such as CopyFromReg probably should not advance the current
627   // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
628   // has predecessors the cycle will be advanced when they are scheduled.
629   // But given the crude nature of modeling latency though such nodes, we
630   // currently need to treat these nodes like real instructions.
631   // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
632 
633   unsigned ReadyCycle = SU->getHeight();
634 
635   // Bump CurCycle to account for latency. We assume the latency of other
636   // available instructions may be hidden by the stall (not a full pipe stall).
637   // This updates the hazard recognizer's cycle before reserving resources for
638   // this instruction.
639   AdvanceToCycle(ReadyCycle);
640 
641   // Calls are scheduled in their preceding cycle, so don't conflict with
642   // hazards from instructions after the call. EmitNode will reset the
643   // scoreboard state before emitting the call.
644   if (SU->isCall)
645     return;
646 
647   // FIXME: For resource conflicts in very long non-pipelined stages, we
648   // should probably skip ahead here to avoid useless scoreboard checks.
649   int Stalls = 0;
650   while (true) {
651     ScheduleHazardRecognizer::HazardType HT =
652       HazardRec->getHazardType(SU, -Stalls);
653 
654     if (HT == ScheduleHazardRecognizer::NoHazard)
655       break;
656 
657     ++Stalls;
658   }
659   AdvanceToCycle(CurCycle + Stalls);
660 }
661 
662 /// Record this SUnit in the HazardRecognizer.
663 /// Does not update CurCycle.
EmitNode(SUnit * SU)664 void ScheduleDAGRRList::EmitNode(SUnit *SU) {
665   if (!HazardRec->isEnabled())
666     return;
667 
668   // Check for phys reg copy.
669   if (!SU->getNode())
670     return;
671 
672   switch (SU->getNode()->getOpcode()) {
673   default:
674     assert(SU->getNode()->isMachineOpcode() &&
675            "This target-independent node should not be scheduled.");
676     break;
677   case ISD::MERGE_VALUES:
678   case ISD::TokenFactor:
679   case ISD::LIFETIME_START:
680   case ISD::LIFETIME_END:
681   case ISD::CopyToReg:
682   case ISD::CopyFromReg:
683   case ISD::EH_LABEL:
684     // Noops don't affect the scoreboard state. Copies are likely to be
685     // removed.
686     return;
687   case ISD::INLINEASM:
688     // For inline asm, clear the pipeline state.
689     HazardRec->Reset();
690     return;
691   }
692   if (SU->isCall) {
693     // Calls are scheduled with their preceding instructions. For bottom-up
694     // scheduling, clear the pipeline state before emitting.
695     HazardRec->Reset();
696   }
697 
698   HazardRec->EmitInstruction(SU);
699 }
700 
701 static void resetVRegCycle(SUnit *SU);
702 
703 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
704 /// count of its predecessors. If a predecessor pending count is zero, add it to
705 /// the Available queue.
ScheduleNodeBottomUp(SUnit * SU)706 void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
707   DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
708   DEBUG(SU->dump(this));
709 
710 #ifndef NDEBUG
711   if (CurCycle < SU->getHeight())
712     DEBUG(dbgs() << "   Height [" << SU->getHeight()
713           << "] pipeline stall!\n");
714 #endif
715 
716   // FIXME: Do not modify node height. It may interfere with
717   // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
718   // node its ready cycle can aid heuristics, and after scheduling it can
719   // indicate the scheduled cycle.
720   SU->setHeightToAtLeast(CurCycle);
721 
722   // Reserve resources for the scheduled instruction.
723   EmitNode(SU);
724 
725   Sequence.push_back(SU);
726 
727   AvailableQueue->scheduledNode(SU);
728 
729   // If HazardRec is disabled, and each inst counts as one cycle, then
730   // advance CurCycle before ReleasePredecessors to avoid useless pushes to
731   // PendingQueue for schedulers that implement HasReadyFilter.
732   if (!HazardRec->isEnabled() && AvgIPC < 2)
733     AdvanceToCycle(CurCycle + 1);
734 
735   // Update liveness of predecessors before successors to avoid treating a
736   // two-address node as a live range def.
737   ReleasePredecessors(SU);
738 
739   // Release all the implicit physical register defs that are live.
740   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
741        I != E; ++I) {
742     // LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
743     if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
744       assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
745       --NumLiveRegs;
746       LiveRegDefs[I->getReg()] = nullptr;
747       LiveRegGens[I->getReg()] = nullptr;
748       releaseInterferences(I->getReg());
749     }
750   }
751   // Release the special call resource dependence, if this is the beginning
752   // of a call.
753   unsigned CallResource = TRI->getNumRegs();
754   if (LiveRegDefs[CallResource] == SU)
755     for (const SDNode *SUNode = SU->getNode(); SUNode;
756          SUNode = SUNode->getGluedNode()) {
757       if (SUNode->isMachineOpcode() &&
758           SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
759         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
760         --NumLiveRegs;
761         LiveRegDefs[CallResource] = nullptr;
762         LiveRegGens[CallResource] = nullptr;
763         releaseInterferences(CallResource);
764       }
765     }
766 
767   resetVRegCycle(SU);
768 
769   SU->isScheduled = true;
770 
771   // Conditions under which the scheduler should eagerly advance the cycle:
772   // (1) No available instructions
773   // (2) All pipelines full, so available instructions must have hazards.
774   //
775   // If HazardRec is disabled, the cycle was pre-advanced before calling
776   // ReleasePredecessors. In that case, IssueCount should remain 0.
777   //
778   // Check AvailableQueue after ReleasePredecessors in case of zero latency.
779   if (HazardRec->isEnabled() || AvgIPC > 1) {
780     if (SU->getNode() && SU->getNode()->isMachineOpcode())
781       ++IssueCount;
782     if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
783         || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
784       AdvanceToCycle(CurCycle + 1);
785   }
786 }
787 
788 /// CapturePred - This does the opposite of ReleasePred. Since SU is being
789 /// unscheduled, incrcease the succ left count of its predecessors. Remove
790 /// them from AvailableQueue if necessary.
CapturePred(SDep * PredEdge)791 void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
792   SUnit *PredSU = PredEdge->getSUnit();
793   if (PredSU->isAvailable) {
794     PredSU->isAvailable = false;
795     if (!PredSU->isPending)
796       AvailableQueue->remove(PredSU);
797   }
798 
799   assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
800   ++PredSU->NumSuccsLeft;
801 }
802 
803 /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
804 /// its predecessor states to reflect the change.
UnscheduleNodeBottomUp(SUnit * SU)805 void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
806   DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
807   DEBUG(SU->dump(this));
808 
809   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
810        I != E; ++I) {
811     CapturePred(&*I);
812     if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
813       assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
814       assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
815              "Physical register dependency violated?");
816       --NumLiveRegs;
817       LiveRegDefs[I->getReg()] = nullptr;
818       LiveRegGens[I->getReg()] = nullptr;
819       releaseInterferences(I->getReg());
820     }
821   }
822 
823   // Reclaim the special call resource dependence, if this is the beginning
824   // of a call.
825   unsigned CallResource = TRI->getNumRegs();
826   for (const SDNode *SUNode = SU->getNode(); SUNode;
827        SUNode = SUNode->getGluedNode()) {
828     if (SUNode->isMachineOpcode() &&
829         SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
830       ++NumLiveRegs;
831       LiveRegDefs[CallResource] = SU;
832       LiveRegGens[CallResource] = CallSeqEndForStart[SU];
833     }
834   }
835 
836   // Release the special call resource dependence, if this is the end
837   // of a call.
838   if (LiveRegGens[CallResource] == SU)
839     for (const SDNode *SUNode = SU->getNode(); SUNode;
840          SUNode = SUNode->getGluedNode()) {
841       if (SUNode->isMachineOpcode() &&
842           SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
843         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
844         --NumLiveRegs;
845         LiveRegDefs[CallResource] = nullptr;
846         LiveRegGens[CallResource] = nullptr;
847         releaseInterferences(CallResource);
848       }
849     }
850 
851   for (auto &Succ : SU->Succs) {
852     if (Succ.isAssignedRegDep()) {
853       auto Reg = Succ.getReg();
854       if (!LiveRegDefs[Reg])
855         ++NumLiveRegs;
856       // This becomes the nearest def. Note that an earlier def may still be
857       // pending if this is a two-address node.
858       LiveRegDefs[Reg] = SU;
859 
860       // Update LiveRegGen only if was empty before this unscheduling.
861       // This is to avoid incorrect updating LiveRegGen set in previous run.
862       if (!LiveRegGens[Reg]) {
863         // Find the successor with the lowest height.
864         LiveRegGens[Reg] = Succ.getSUnit();
865         for (auto &Succ2 : SU->Succs) {
866           if (Succ2.isAssignedRegDep() && Succ2.getReg() == Reg &&
867               Succ2.getSUnit()->getHeight() < LiveRegGens[Reg]->getHeight())
868             LiveRegGens[Reg] = Succ2.getSUnit();
869         }
870       }
871     }
872   }
873   if (SU->getHeight() < MinAvailableCycle)
874     MinAvailableCycle = SU->getHeight();
875 
876   SU->setHeightDirty();
877   SU->isScheduled = false;
878   SU->isAvailable = true;
879   if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
880     // Don't make available until backtracking is complete.
881     SU->isPending = true;
882     PendingQueue.push_back(SU);
883   }
884   else {
885     AvailableQueue->push(SU);
886   }
887   AvailableQueue->unscheduledNode(SU);
888 }
889 
890 /// After backtracking, the hazard checker needs to be restored to a state
891 /// corresponding the current cycle.
RestoreHazardCheckerBottomUp()892 void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
893   HazardRec->Reset();
894 
895   unsigned LookAhead = std::min((unsigned)Sequence.size(),
896                                 HazardRec->getMaxLookAhead());
897   if (LookAhead == 0)
898     return;
899 
900   std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
901   unsigned HazardCycle = (*I)->getHeight();
902   for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
903     SUnit *SU = *I;
904     for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
905       HazardRec->RecedeCycle();
906     }
907     EmitNode(SU);
908   }
909 }
910 
911 /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
912 /// BTCycle in order to schedule a specific node.
BacktrackBottomUp(SUnit * SU,SUnit * BtSU)913 void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
914   SUnit *OldSU = Sequence.back();
915   while (true) {
916     Sequence.pop_back();
917     // FIXME: use ready cycle instead of height
918     CurCycle = OldSU->getHeight();
919     UnscheduleNodeBottomUp(OldSU);
920     AvailableQueue->setCurCycle(CurCycle);
921     if (OldSU == BtSU)
922       break;
923     OldSU = Sequence.back();
924   }
925 
926   assert(!SU->isSucc(OldSU) && "Something is wrong!");
927 
928   RestoreHazardCheckerBottomUp();
929 
930   ReleasePending();
931 
932   ++NumBacktracks;
933 }
934 
isOperandOf(const SUnit * SU,SDNode * N)935 static bool isOperandOf(const SUnit *SU, SDNode *N) {
936   for (const SDNode *SUNode = SU->getNode(); SUNode;
937        SUNode = SUNode->getGluedNode()) {
938     if (SUNode->isOperandOf(N))
939       return true;
940   }
941   return false;
942 }
943 
944 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
945 /// successors to the newly created node.
CopyAndMoveSuccessors(SUnit * SU)946 SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
947   SDNode *N = SU->getNode();
948   if (!N)
949     return nullptr;
950 
951   if (SU->getNode()->getGluedNode())
952     return nullptr;
953 
954   SUnit *NewSU;
955   bool TryUnfold = false;
956   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
957     MVT VT = N->getSimpleValueType(i);
958     if (VT == MVT::Glue)
959       return nullptr;
960     else if (VT == MVT::Other)
961       TryUnfold = true;
962   }
963   for (const SDValue &Op : N->op_values()) {
964     MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
965     if (VT == MVT::Glue)
966       return nullptr;
967   }
968 
969   if (TryUnfold) {
970     SmallVector<SDNode*, 2> NewNodes;
971     if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
972       return nullptr;
973 
974     // unfolding an x86 DEC64m operation results in store, dec, load which
975     // can't be handled here so quit
976     if (NewNodes.size() == 3)
977       return nullptr;
978 
979     DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
980     assert(NewNodes.size() == 2 && "Expected a load folding node!");
981 
982     N = NewNodes[1];
983     SDNode *LoadNode = NewNodes[0];
984     unsigned NumVals = N->getNumValues();
985     unsigned OldNumVals = SU->getNode()->getNumValues();
986     for (unsigned i = 0; i != NumVals; ++i)
987       DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
988     DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
989                                    SDValue(LoadNode, 1));
990 
991     // LoadNode may already exist. This can happen when there is another
992     // load from the same location and producing the same type of value
993     // but it has different alignment or volatileness.
994     bool isNewLoad = true;
995     SUnit *LoadSU;
996     if (LoadNode->getNodeId() != -1) {
997       LoadSU = &SUnits[LoadNode->getNodeId()];
998       isNewLoad = false;
999     } else {
1000       LoadSU = CreateNewSUnit(LoadNode);
1001       LoadNode->setNodeId(LoadSU->NodeNum);
1002 
1003       InitNumRegDefsLeft(LoadSU);
1004       computeLatency(LoadSU);
1005     }
1006 
1007     SUnit *NewSU = CreateNewSUnit(N);
1008     assert(N->getNodeId() == -1 && "Node already inserted!");
1009     N->setNodeId(NewSU->NodeNum);
1010 
1011     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1012     for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
1013       if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
1014         NewSU->isTwoAddress = true;
1015         break;
1016       }
1017     }
1018     if (MCID.isCommutable())
1019       NewSU->isCommutable = true;
1020 
1021     InitNumRegDefsLeft(NewSU);
1022     computeLatency(NewSU);
1023 
1024     // Record all the edges to and from the old SU, by category.
1025     SmallVector<SDep, 4> ChainPreds;
1026     SmallVector<SDep, 4> ChainSuccs;
1027     SmallVector<SDep, 4> LoadPreds;
1028     SmallVector<SDep, 4> NodePreds;
1029     SmallVector<SDep, 4> NodeSuccs;
1030     for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1031          I != E; ++I) {
1032       if (I->isCtrl())
1033         ChainPreds.push_back(*I);
1034       else if (isOperandOf(I->getSUnit(), LoadNode))
1035         LoadPreds.push_back(*I);
1036       else
1037         NodePreds.push_back(*I);
1038     }
1039     for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1040          I != E; ++I) {
1041       if (I->isCtrl())
1042         ChainSuccs.push_back(*I);
1043       else
1044         NodeSuccs.push_back(*I);
1045     }
1046 
1047     // Now assign edges to the newly-created nodes.
1048     for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
1049       const SDep &Pred = ChainPreds[i];
1050       RemovePred(SU, Pred);
1051       if (isNewLoad)
1052         AddPred(LoadSU, Pred);
1053     }
1054     for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
1055       const SDep &Pred = LoadPreds[i];
1056       RemovePred(SU, Pred);
1057       if (isNewLoad)
1058         AddPred(LoadSU, Pred);
1059     }
1060     for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
1061       const SDep &Pred = NodePreds[i];
1062       RemovePred(SU, Pred);
1063       AddPred(NewSU, Pred);
1064     }
1065     for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
1066       SDep D = NodeSuccs[i];
1067       SUnit *SuccDep = D.getSUnit();
1068       D.setSUnit(SU);
1069       RemovePred(SuccDep, D);
1070       D.setSUnit(NewSU);
1071       AddPred(SuccDep, D);
1072       // Balance register pressure.
1073       if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
1074           && !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
1075         --NewSU->NumRegDefsLeft;
1076     }
1077     for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
1078       SDep D = ChainSuccs[i];
1079       SUnit *SuccDep = D.getSUnit();
1080       D.setSUnit(SU);
1081       RemovePred(SuccDep, D);
1082       if (isNewLoad) {
1083         D.setSUnit(LoadSU);
1084         AddPred(SuccDep, D);
1085       }
1086     }
1087 
1088     // Add a data dependency to reflect that NewSU reads the value defined
1089     // by LoadSU.
1090     SDep D(LoadSU, SDep::Data, 0);
1091     D.setLatency(LoadSU->Latency);
1092     AddPred(NewSU, D);
1093 
1094     if (isNewLoad)
1095       AvailableQueue->addNode(LoadSU);
1096     AvailableQueue->addNode(NewSU);
1097 
1098     ++NumUnfolds;
1099 
1100     if (NewSU->NumSuccsLeft == 0) {
1101       NewSU->isAvailable = true;
1102       return NewSU;
1103     }
1104     SU = NewSU;
1105   }
1106 
1107   DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
1108   NewSU = CreateClone(SU);
1109 
1110   // New SUnit has the exact same predecessors.
1111   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1112        I != E; ++I)
1113     if (!I->isArtificial())
1114       AddPred(NewSU, *I);
1115 
1116   // Only copy scheduled successors. Cut them from old node's successor
1117   // list and move them over.
1118   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1119   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1120        I != E; ++I) {
1121     if (I->isArtificial())
1122       continue;
1123     SUnit *SuccSU = I->getSUnit();
1124     if (SuccSU->isScheduled) {
1125       SDep D = *I;
1126       D.setSUnit(NewSU);
1127       AddPred(SuccSU, D);
1128       D.setSUnit(SU);
1129       DelDeps.push_back(std::make_pair(SuccSU, D));
1130     }
1131   }
1132   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
1133     RemovePred(DelDeps[i].first, DelDeps[i].second);
1134 
1135   AvailableQueue->updateNode(SU);
1136   AvailableQueue->addNode(NewSU);
1137 
1138   ++NumDups;
1139   return NewSU;
1140 }
1141 
1142 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
1143 /// scheduled successors of the given SUnit to the last copy.
InsertCopiesAndMoveSuccs(SUnit * SU,unsigned Reg,const TargetRegisterClass * DestRC,const TargetRegisterClass * SrcRC,SmallVectorImpl<SUnit * > & Copies)1144 void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
1145                                               const TargetRegisterClass *DestRC,
1146                                               const TargetRegisterClass *SrcRC,
1147                                               SmallVectorImpl<SUnit*> &Copies) {
1148   SUnit *CopyFromSU = CreateNewSUnit(nullptr);
1149   CopyFromSU->CopySrcRC = SrcRC;
1150   CopyFromSU->CopyDstRC = DestRC;
1151 
1152   SUnit *CopyToSU = CreateNewSUnit(nullptr);
1153   CopyToSU->CopySrcRC = DestRC;
1154   CopyToSU->CopyDstRC = SrcRC;
1155 
1156   // Only copy scheduled successors. Cut them from old node's successor
1157   // list and move them over.
1158   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1159   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1160        I != E; ++I) {
1161     if (I->isArtificial())
1162       continue;
1163     SUnit *SuccSU = I->getSUnit();
1164     if (SuccSU->isScheduled) {
1165       SDep D = *I;
1166       D.setSUnit(CopyToSU);
1167       AddPred(SuccSU, D);
1168       DelDeps.push_back(std::make_pair(SuccSU, *I));
1169     }
1170     else {
1171       // Avoid scheduling the def-side copy before other successors. Otherwise
1172       // we could introduce another physreg interference on the copy and
1173       // continue inserting copies indefinitely.
1174       AddPred(SuccSU, SDep(CopyFromSU, SDep::Artificial));
1175     }
1176   }
1177   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
1178     RemovePred(DelDeps[i].first, DelDeps[i].second);
1179 
1180   SDep FromDep(SU, SDep::Data, Reg);
1181   FromDep.setLatency(SU->Latency);
1182   AddPred(CopyFromSU, FromDep);
1183   SDep ToDep(CopyFromSU, SDep::Data, 0);
1184   ToDep.setLatency(CopyFromSU->Latency);
1185   AddPred(CopyToSU, ToDep);
1186 
1187   AvailableQueue->updateNode(SU);
1188   AvailableQueue->addNode(CopyFromSU);
1189   AvailableQueue->addNode(CopyToSU);
1190   Copies.push_back(CopyFromSU);
1191   Copies.push_back(CopyToSU);
1192 
1193   ++NumPRCopies;
1194 }
1195 
1196 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
1197 /// definition of the specified node.
1198 /// FIXME: Move to SelectionDAG?
getPhysicalRegisterVT(SDNode * N,unsigned Reg,const TargetInstrInfo * TII)1199 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
1200                                  const TargetInstrInfo *TII) {
1201   unsigned NumRes;
1202   if (N->getOpcode() == ISD::CopyFromReg) {
1203     // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
1204     NumRes = 1;
1205   } else {
1206     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1207     assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
1208     NumRes = MCID.getNumDefs();
1209     for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
1210       if (Reg == *ImpDef)
1211         break;
1212       ++NumRes;
1213     }
1214   }
1215   return N->getSimpleValueType(NumRes);
1216 }
1217 
1218 /// CheckForLiveRegDef - Return true and update live register vector if the
1219 /// specified register def of the specified SUnit clobbers any "live" registers.
CheckForLiveRegDef(SUnit * SU,unsigned Reg,SUnit ** LiveRegDefs,SmallSet<unsigned,4> & RegAdded,SmallVectorImpl<unsigned> & LRegs,const TargetRegisterInfo * TRI)1220 static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
1221                                SUnit **LiveRegDefs,
1222                                SmallSet<unsigned, 4> &RegAdded,
1223                                SmallVectorImpl<unsigned> &LRegs,
1224                                const TargetRegisterInfo *TRI) {
1225   for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
1226 
1227     // Check if Ref is live.
1228     if (!LiveRegDefs[*AliasI]) continue;
1229 
1230     // Allow multiple uses of the same def.
1231     if (LiveRegDefs[*AliasI] == SU) continue;
1232 
1233     // Add Reg to the set of interfering live regs.
1234     if (RegAdded.insert(*AliasI).second) {
1235       LRegs.push_back(*AliasI);
1236     }
1237   }
1238 }
1239 
1240 /// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
1241 /// by RegMask, and add them to LRegs.
CheckForLiveRegDefMasked(SUnit * SU,const uint32_t * RegMask,ArrayRef<SUnit * > LiveRegDefs,SmallSet<unsigned,4> & RegAdded,SmallVectorImpl<unsigned> & LRegs)1242 static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
1243                                      ArrayRef<SUnit*> LiveRegDefs,
1244                                      SmallSet<unsigned, 4> &RegAdded,
1245                                      SmallVectorImpl<unsigned> &LRegs) {
1246   // Look at all live registers. Skip Reg0 and the special CallResource.
1247   for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
1248     if (!LiveRegDefs[i]) continue;
1249     if (LiveRegDefs[i] == SU) continue;
1250     if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
1251     if (RegAdded.insert(i).second)
1252       LRegs.push_back(i);
1253   }
1254 }
1255 
1256 /// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
getNodeRegMask(const SDNode * N)1257 static const uint32_t *getNodeRegMask(const SDNode *N) {
1258   for (const SDValue &Op : N->op_values())
1259     if (const auto *RegOp = dyn_cast<RegisterMaskSDNode>(Op.getNode()))
1260       return RegOp->getRegMask();
1261   return nullptr;
1262 }
1263 
1264 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
1265 /// scheduling of the given node to satisfy live physical register dependencies.
1266 /// If the specific node is the last one that's available to schedule, do
1267 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
1268 bool ScheduleDAGRRList::
DelayForLiveRegsBottomUp(SUnit * SU,SmallVectorImpl<unsigned> & LRegs)1269 DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) {
1270   if (NumLiveRegs == 0)
1271     return false;
1272 
1273   SmallSet<unsigned, 4> RegAdded;
1274   // If this node would clobber any "live" register, then it's not ready.
1275   //
1276   // If SU is the currently live definition of the same register that it uses,
1277   // then we are free to schedule it.
1278   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1279        I != E; ++I) {
1280     if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
1281       CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs.get(),
1282                          RegAdded, LRegs, TRI);
1283   }
1284 
1285   for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
1286     if (Node->getOpcode() == ISD::INLINEASM) {
1287       // Inline asm can clobber physical defs.
1288       unsigned NumOps = Node->getNumOperands();
1289       if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1290         --NumOps;  // Ignore the glue operand.
1291 
1292       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1293         unsigned Flags =
1294           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1295         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1296 
1297         ++i; // Skip the ID value.
1298         if (InlineAsm::isRegDefKind(Flags) ||
1299             InlineAsm::isRegDefEarlyClobberKind(Flags) ||
1300             InlineAsm::isClobberKind(Flags)) {
1301           // Check for def of register or earlyclobber register.
1302           for (; NumVals; --NumVals, ++i) {
1303             unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1304             if (TargetRegisterInfo::isPhysicalRegister(Reg))
1305               CheckForLiveRegDef(SU, Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1306           }
1307         } else
1308           i += NumVals;
1309       }
1310       continue;
1311     }
1312 
1313     if (!Node->isMachineOpcode())
1314       continue;
1315     // If we're in the middle of scheduling a call, don't begin scheduling
1316     // another call. Also, don't allow any physical registers to be live across
1317     // the call.
1318     if (Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
1319       // Check the special calling-sequence resource.
1320       unsigned CallResource = TRI->getNumRegs();
1321       if (LiveRegDefs[CallResource]) {
1322         SDNode *Gen = LiveRegGens[CallResource]->getNode();
1323         while (SDNode *Glued = Gen->getGluedNode())
1324           Gen = Glued;
1325         if (!IsChainDependent(Gen, Node, 0, TII) &&
1326             RegAdded.insert(CallResource).second)
1327           LRegs.push_back(CallResource);
1328       }
1329     }
1330     if (const uint32_t *RegMask = getNodeRegMask(Node))
1331       CheckForLiveRegDefMasked(SU, RegMask,
1332                                makeArrayRef(LiveRegDefs.get(), TRI->getNumRegs()),
1333                                RegAdded, LRegs);
1334 
1335     const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
1336     if (!MCID.ImplicitDefs)
1337       continue;
1338     for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
1339       CheckForLiveRegDef(SU, *Reg, LiveRegDefs.get(), RegAdded, LRegs, TRI);
1340   }
1341 
1342   return !LRegs.empty();
1343 }
1344 
releaseInterferences(unsigned Reg)1345 void ScheduleDAGRRList::releaseInterferences(unsigned Reg) {
1346   // Add the nodes that aren't ready back onto the available list.
1347   for (unsigned i = Interferences.size(); i > 0; --i) {
1348     SUnit *SU = Interferences[i-1];
1349     LRegsMapT::iterator LRegsPos = LRegsMap.find(SU);
1350     if (Reg) {
1351       SmallVectorImpl<unsigned> &LRegs = LRegsPos->second;
1352       if (std::find(LRegs.begin(), LRegs.end(), Reg) == LRegs.end())
1353         continue;
1354     }
1355     SU->isPending = false;
1356     // The interfering node may no longer be available due to backtracking.
1357     // Furthermore, it may have been made available again, in which case it is
1358     // now already in the AvailableQueue.
1359     if (SU->isAvailable && !SU->NodeQueueId) {
1360       DEBUG(dbgs() << "    Repushing SU #" << SU->NodeNum << '\n');
1361       AvailableQueue->push(SU);
1362     }
1363     if (i < Interferences.size())
1364       Interferences[i-1] = Interferences.back();
1365     Interferences.pop_back();
1366     LRegsMap.erase(LRegsPos);
1367   }
1368 }
1369 
1370 /// Return a node that can be scheduled in this cycle. Requirements:
1371 /// (1) Ready: latency has been satisfied
1372 /// (2) No Hazards: resources are available
1373 /// (3) No Interferences: may unschedule to break register interferences.
PickNodeToScheduleBottomUp()1374 SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1375   SUnit *CurSU = AvailableQueue->empty() ? nullptr : AvailableQueue->pop();
1376   while (CurSU) {
1377     SmallVector<unsigned, 4> LRegs;
1378     if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
1379       break;
1380     DEBUG(dbgs() << "    Interfering reg " <<
1381           (LRegs[0] == TRI->getNumRegs() ? "CallResource"
1382            : TRI->getName(LRegs[0]))
1383            << " SU #" << CurSU->NodeNum << '\n');
1384     std::pair<LRegsMapT::iterator, bool> LRegsPair =
1385       LRegsMap.insert(std::make_pair(CurSU, LRegs));
1386     if (LRegsPair.second) {
1387       CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
1388       Interferences.push_back(CurSU);
1389     }
1390     else {
1391       assert(CurSU->isPending && "Interferences are pending");
1392       // Update the interference with current live regs.
1393       LRegsPair.first->second = LRegs;
1394     }
1395     CurSU = AvailableQueue->pop();
1396   }
1397   if (CurSU)
1398     return CurSU;
1399 
1400   // All candidates are delayed due to live physical reg dependencies.
1401   // Try backtracking, code duplication, or inserting cross class copies
1402   // to resolve it.
1403   for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1404     SUnit *TrySU = Interferences[i];
1405     SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1406 
1407     // Try unscheduling up to the point where it's safe to schedule
1408     // this node.
1409     SUnit *BtSU = nullptr;
1410     unsigned LiveCycle = UINT_MAX;
1411     for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
1412       unsigned Reg = LRegs[j];
1413       if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
1414         BtSU = LiveRegGens[Reg];
1415         LiveCycle = BtSU->getHeight();
1416       }
1417     }
1418     if (!WillCreateCycle(TrySU, BtSU))  {
1419       // BacktrackBottomUp mutates Interferences!
1420       BacktrackBottomUp(TrySU, BtSU);
1421 
1422       // Force the current node to be scheduled before the node that
1423       // requires the physical reg dep.
1424       if (BtSU->isAvailable) {
1425         BtSU->isAvailable = false;
1426         if (!BtSU->isPending)
1427           AvailableQueue->remove(BtSU);
1428       }
1429       DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNum << ") to SU("
1430             << TrySU->NodeNum << ")\n");
1431       AddPred(TrySU, SDep(BtSU, SDep::Artificial));
1432 
1433       // If one or more successors has been unscheduled, then the current
1434       // node is no longer available.
1435       if (!TrySU->isAvailable || !TrySU->NodeQueueId)
1436         CurSU = AvailableQueue->pop();
1437       else {
1438         // Available and in AvailableQueue
1439         AvailableQueue->remove(TrySU);
1440         CurSU = TrySU;
1441       }
1442       // Interferences has been mutated. We must break.
1443       break;
1444     }
1445   }
1446 
1447   if (!CurSU) {
1448     // Can't backtrack. If it's too expensive to copy the value, then try
1449     // duplicate the nodes that produces these "too expensive to copy"
1450     // values to break the dependency. In case even that doesn't work,
1451     // insert cross class copies.
1452     // If it's not too expensive, i.e. cost != -1, issue copies.
1453     SUnit *TrySU = Interferences[0];
1454     SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1455     assert(LRegs.size() == 1 && "Can't handle this yet!");
1456     unsigned Reg = LRegs[0];
1457     SUnit *LRDef = LiveRegDefs[Reg];
1458     MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1459     const TargetRegisterClass *RC =
1460       TRI->getMinimalPhysRegClass(Reg, VT);
1461     const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1462 
1463     // If cross copy register class is the same as RC, then it must be possible
1464     // copy the value directly. Do not try duplicate the def.
1465     // If cross copy register class is not the same as RC, then it's possible to
1466     // copy the value but it require cross register class copies and it is
1467     // expensive.
1468     // If cross copy register class is null, then it's not possible to copy
1469     // the value at all.
1470     SUnit *NewDef = nullptr;
1471     if (DestRC != RC) {
1472       NewDef = CopyAndMoveSuccessors(LRDef);
1473       if (!DestRC && !NewDef)
1474         report_fatal_error("Can't handle live physical register dependency!");
1475     }
1476     if (!NewDef) {
1477       // Issue copies, these can be expensive cross register class copies.
1478       SmallVector<SUnit*, 2> Copies;
1479       InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1480       DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
1481             << " to SU #" << Copies.front()->NodeNum << "\n");
1482       AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
1483       NewDef = Copies.back();
1484     }
1485 
1486     DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
1487           << " to SU #" << TrySU->NodeNum << "\n");
1488     LiveRegDefs[Reg] = NewDef;
1489     AddPred(NewDef, SDep(TrySU, SDep::Artificial));
1490     TrySU->isAvailable = false;
1491     CurSU = NewDef;
1492   }
1493   assert(CurSU && "Unable to resolve live physical register dependencies!");
1494   return CurSU;
1495 }
1496 
1497 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1498 /// schedulers.
ListScheduleBottomUp()1499 void ScheduleDAGRRList::ListScheduleBottomUp() {
1500   // Release any predecessors of the special Exit node.
1501   ReleasePredecessors(&ExitSU);
1502 
1503   // Add root to Available queue.
1504   if (!SUnits.empty()) {
1505     SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
1506     assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
1507     RootSU->isAvailable = true;
1508     AvailableQueue->push(RootSU);
1509   }
1510 
1511   // While Available queue is not empty, grab the node with the highest
1512   // priority. If it is not ready put it back.  Schedule the node.
1513   Sequence.reserve(SUnits.size());
1514   while (!AvailableQueue->empty() || !Interferences.empty()) {
1515     DEBUG(dbgs() << "\nExamining Available:\n";
1516           AvailableQueue->dump(this));
1517 
1518     // Pick the best node to schedule taking all constraints into
1519     // consideration.
1520     SUnit *SU = PickNodeToScheduleBottomUp();
1521 
1522     AdvancePastStalls(SU);
1523 
1524     ScheduleNodeBottomUp(SU);
1525 
1526     while (AvailableQueue->empty() && !PendingQueue.empty()) {
1527       // Advance the cycle to free resources. Skip ahead to the next ready SU.
1528       assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
1529       AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
1530     }
1531   }
1532 
1533   // Reverse the order if it is bottom up.
1534   std::reverse(Sequence.begin(), Sequence.end());
1535 
1536 #ifndef NDEBUG
1537   VerifyScheduledSequence(/*isBottomUp=*/true);
1538 #endif
1539 }
1540 
1541 //===----------------------------------------------------------------------===//
1542 //                RegReductionPriorityQueue Definition
1543 //===----------------------------------------------------------------------===//
1544 //
1545 // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1546 // to reduce register pressure.
1547 //
1548 namespace {
1549 class RegReductionPQBase;
1550 
1551 struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
isReady__anon884f54d00211::queue_sort1552   bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
1553 };
1554 
1555 #ifndef NDEBUG
1556 template<class SF>
1557 struct reverse_sort : public queue_sort {
1558   SF &SortFunc;
reverse_sort__anon884f54d00211::reverse_sort1559   reverse_sort(SF &sf) : SortFunc(sf) {}
1560 
operator ()__anon884f54d00211::reverse_sort1561   bool operator()(SUnit* left, SUnit* right) const {
1562     // reverse left/right rather than simply !SortFunc(left, right)
1563     // to expose different paths in the comparison logic.
1564     return SortFunc(right, left);
1565   }
1566 };
1567 #endif // NDEBUG
1568 
1569 /// bu_ls_rr_sort - Priority function for bottom up register pressure
1570 // reduction scheduler.
1571 struct bu_ls_rr_sort : public queue_sort {
1572   enum {
1573     IsBottomUp = true,
1574     HasReadyFilter = false
1575   };
1576 
1577   RegReductionPQBase *SPQ;
bu_ls_rr_sort__anon884f54d00211::bu_ls_rr_sort1578   bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1579 
1580   bool operator()(SUnit* left, SUnit* right) const;
1581 };
1582 
1583 // src_ls_rr_sort - Priority function for source order scheduler.
1584 struct src_ls_rr_sort : public queue_sort {
1585   enum {
1586     IsBottomUp = true,
1587     HasReadyFilter = false
1588   };
1589 
1590   RegReductionPQBase *SPQ;
src_ls_rr_sort__anon884f54d00211::src_ls_rr_sort1591   src_ls_rr_sort(RegReductionPQBase *spq)
1592     : SPQ(spq) {}
1593 
1594   bool operator()(SUnit* left, SUnit* right) const;
1595 };
1596 
1597 // hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1598 struct hybrid_ls_rr_sort : public queue_sort {
1599   enum {
1600     IsBottomUp = true,
1601     HasReadyFilter = false
1602   };
1603 
1604   RegReductionPQBase *SPQ;
hybrid_ls_rr_sort__anon884f54d00211::hybrid_ls_rr_sort1605   hybrid_ls_rr_sort(RegReductionPQBase *spq)
1606     : SPQ(spq) {}
1607 
1608   bool isReady(SUnit *SU, unsigned CurCycle) const;
1609 
1610   bool operator()(SUnit* left, SUnit* right) const;
1611 };
1612 
1613 // ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1614 // scheduler.
1615 struct ilp_ls_rr_sort : public queue_sort {
1616   enum {
1617     IsBottomUp = true,
1618     HasReadyFilter = false
1619   };
1620 
1621   RegReductionPQBase *SPQ;
ilp_ls_rr_sort__anon884f54d00211::ilp_ls_rr_sort1622   ilp_ls_rr_sort(RegReductionPQBase *spq)
1623     : SPQ(spq) {}
1624 
1625   bool isReady(SUnit *SU, unsigned CurCycle) const;
1626 
1627   bool operator()(SUnit* left, SUnit* right) const;
1628 };
1629 
1630 class RegReductionPQBase : public SchedulingPriorityQueue {
1631 protected:
1632   std::vector<SUnit*> Queue;
1633   unsigned CurQueueId;
1634   bool TracksRegPressure;
1635   bool SrcOrder;
1636 
1637   // SUnits - The SUnits for the current graph.
1638   std::vector<SUnit> *SUnits;
1639 
1640   MachineFunction &MF;
1641   const TargetInstrInfo *TII;
1642   const TargetRegisterInfo *TRI;
1643   const TargetLowering *TLI;
1644   ScheduleDAGRRList *scheduleDAG;
1645 
1646   // SethiUllmanNumbers - The SethiUllman number for each node.
1647   std::vector<unsigned> SethiUllmanNumbers;
1648 
1649   /// RegPressure - Tracking current reg pressure per register class.
1650   ///
1651   std::vector<unsigned> RegPressure;
1652 
1653   /// RegLimit - Tracking the number of allocatable registers per register
1654   /// class.
1655   std::vector<unsigned> RegLimit;
1656 
1657 public:
RegReductionPQBase(MachineFunction & mf,bool hasReadyFilter,bool tracksrp,bool srcorder,const TargetInstrInfo * tii,const TargetRegisterInfo * tri,const TargetLowering * tli)1658   RegReductionPQBase(MachineFunction &mf,
1659                      bool hasReadyFilter,
1660                      bool tracksrp,
1661                      bool srcorder,
1662                      const TargetInstrInfo *tii,
1663                      const TargetRegisterInfo *tri,
1664                      const TargetLowering *tli)
1665     : SchedulingPriorityQueue(hasReadyFilter),
1666       CurQueueId(0), TracksRegPressure(tracksrp), SrcOrder(srcorder),
1667       MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(nullptr) {
1668     if (TracksRegPressure) {
1669       unsigned NumRC = TRI->getNumRegClasses();
1670       RegLimit.resize(NumRC);
1671       RegPressure.resize(NumRC);
1672       std::fill(RegLimit.begin(), RegLimit.end(), 0);
1673       std::fill(RegPressure.begin(), RegPressure.end(), 0);
1674       for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1675              E = TRI->regclass_end(); I != E; ++I)
1676         RegLimit[(*I)->getID()] = tri->getRegPressureLimit(*I, MF);
1677     }
1678   }
1679 
setScheduleDAG(ScheduleDAGRRList * scheduleDag)1680   void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1681     scheduleDAG = scheduleDag;
1682   }
1683 
getHazardRec()1684   ScheduleHazardRecognizer* getHazardRec() {
1685     return scheduleDAG->getHazardRec();
1686   }
1687 
1688   void initNodes(std::vector<SUnit> &sunits) override;
1689 
1690   void addNode(const SUnit *SU) override;
1691 
1692   void updateNode(const SUnit *SU) override;
1693 
releaseState()1694   void releaseState() override {
1695     SUnits = nullptr;
1696     SethiUllmanNumbers.clear();
1697     std::fill(RegPressure.begin(), RegPressure.end(), 0);
1698   }
1699 
1700   unsigned getNodePriority(const SUnit *SU) const;
1701 
getNodeOrdering(const SUnit * SU) const1702   unsigned getNodeOrdering(const SUnit *SU) const {
1703     if (!SU->getNode()) return 0;
1704 
1705     return SU->getNode()->getIROrder();
1706   }
1707 
empty() const1708   bool empty() const override { return Queue.empty(); }
1709 
push(SUnit * U)1710   void push(SUnit *U) override {
1711     assert(!U->NodeQueueId && "Node in the queue already");
1712     U->NodeQueueId = ++CurQueueId;
1713     Queue.push_back(U);
1714   }
1715 
remove(SUnit * SU)1716   void remove(SUnit *SU) override {
1717     assert(!Queue.empty() && "Queue is empty!");
1718     assert(SU->NodeQueueId != 0 && "Not in queue!");
1719     std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
1720                                                  SU);
1721     if (I != std::prev(Queue.end()))
1722       std::swap(*I, Queue.back());
1723     Queue.pop_back();
1724     SU->NodeQueueId = 0;
1725   }
1726 
tracksRegPressure() const1727   bool tracksRegPressure() const override { return TracksRegPressure; }
1728 
1729   void dumpRegPressure() const;
1730 
1731   bool HighRegPressure(const SUnit *SU) const;
1732 
1733   bool MayReduceRegPressure(SUnit *SU) const;
1734 
1735   int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
1736 
1737   void scheduledNode(SUnit *SU) override;
1738 
1739   void unscheduledNode(SUnit *SU) override;
1740 
1741 protected:
1742   bool canClobber(const SUnit *SU, const SUnit *Op);
1743   void AddPseudoTwoAddrDeps();
1744   void PrescheduleNodesWithMultipleUses();
1745   void CalculateSethiUllmanNumbers();
1746 };
1747 
1748 template<class SF>
popFromQueueImpl(std::vector<SUnit * > & Q,SF & Picker)1749 static SUnit *popFromQueueImpl(std::vector<SUnit*> &Q, SF &Picker) {
1750   std::vector<SUnit *>::iterator Best = Q.begin();
1751   for (std::vector<SUnit *>::iterator I = std::next(Q.begin()),
1752          E = Q.end(); I != E; ++I)
1753     if (Picker(*Best, *I))
1754       Best = I;
1755   SUnit *V = *Best;
1756   if (Best != std::prev(Q.end()))
1757     std::swap(*Best, Q.back());
1758   Q.pop_back();
1759   return V;
1760 }
1761 
1762 template<class SF>
popFromQueue(std::vector<SUnit * > & Q,SF & Picker,ScheduleDAG * DAG)1763 SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker, ScheduleDAG *DAG) {
1764 #ifndef NDEBUG
1765   if (DAG->StressSched) {
1766     reverse_sort<SF> RPicker(Picker);
1767     return popFromQueueImpl(Q, RPicker);
1768   }
1769 #endif
1770   (void)DAG;
1771   return popFromQueueImpl(Q, Picker);
1772 }
1773 
1774 template<class SF>
1775 class RegReductionPriorityQueue : public RegReductionPQBase {
1776   SF Picker;
1777 
1778 public:
RegReductionPriorityQueue(MachineFunction & mf,bool tracksrp,bool srcorder,const TargetInstrInfo * tii,const TargetRegisterInfo * tri,const TargetLowering * tli)1779   RegReductionPriorityQueue(MachineFunction &mf,
1780                             bool tracksrp,
1781                             bool srcorder,
1782                             const TargetInstrInfo *tii,
1783                             const TargetRegisterInfo *tri,
1784                             const TargetLowering *tli)
1785     : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
1786                          tii, tri, tli),
1787       Picker(this) {}
1788 
isBottomUp() const1789   bool isBottomUp() const override { return SF::IsBottomUp; }
1790 
isReady(SUnit * U) const1791   bool isReady(SUnit *U) const override {
1792     return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
1793   }
1794 
pop()1795   SUnit *pop() override {
1796     if (Queue.empty()) return nullptr;
1797 
1798     SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
1799     V->NodeQueueId = 0;
1800     return V;
1801   }
1802 
1803 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump(ScheduleDAG * DAG) const1804   void dump(ScheduleDAG *DAG) const override {
1805     // Emulate pop() without clobbering NodeQueueIds.
1806     std::vector<SUnit*> DumpQueue = Queue;
1807     SF DumpPicker = Picker;
1808     while (!DumpQueue.empty()) {
1809       SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
1810       dbgs() << "Height " << SU->getHeight() << ": ";
1811       SU->dump(DAG);
1812     }
1813   }
1814 #endif
1815 };
1816 
1817 typedef RegReductionPriorityQueue<bu_ls_rr_sort>
1818 BURegReductionPriorityQueue;
1819 
1820 typedef RegReductionPriorityQueue<src_ls_rr_sort>
1821 SrcRegReductionPriorityQueue;
1822 
1823 typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
1824 HybridBURRPriorityQueue;
1825 
1826 typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
1827 ILPBURRPriorityQueue;
1828 } // end anonymous namespace
1829 
1830 //===----------------------------------------------------------------------===//
1831 //           Static Node Priority for Register Pressure Reduction
1832 //===----------------------------------------------------------------------===//
1833 
1834 // Check for special nodes that bypass scheduling heuristics.
1835 // Currently this pushes TokenFactor nodes down, but may be used for other
1836 // pseudo-ops as well.
1837 //
1838 // Return -1 to schedule right above left, 1 for left above right.
1839 // Return 0 if no bias exists.
checkSpecialNodes(const SUnit * left,const SUnit * right)1840 static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
1841   bool LSchedLow = left->isScheduleLow;
1842   bool RSchedLow = right->isScheduleLow;
1843   if (LSchedLow != RSchedLow)
1844     return LSchedLow < RSchedLow ? 1 : -1;
1845   return 0;
1846 }
1847 
1848 /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1849 /// Smaller number is the higher priority.
1850 static unsigned
CalcNodeSethiUllmanNumber(const SUnit * SU,std::vector<unsigned> & SUNumbers)1851 CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1852   unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
1853   if (SethiUllmanNumber != 0)
1854     return SethiUllmanNumber;
1855 
1856   unsigned Extra = 0;
1857   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1858        I != E; ++I) {
1859     if (I->isCtrl()) continue;  // ignore chain preds
1860     SUnit *PredSU = I->getSUnit();
1861     unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
1862     if (PredSethiUllman > SethiUllmanNumber) {
1863       SethiUllmanNumber = PredSethiUllman;
1864       Extra = 0;
1865     } else if (PredSethiUllman == SethiUllmanNumber)
1866       ++Extra;
1867   }
1868 
1869   SethiUllmanNumber += Extra;
1870 
1871   if (SethiUllmanNumber == 0)
1872     SethiUllmanNumber = 1;
1873 
1874   return SethiUllmanNumber;
1875 }
1876 
1877 /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1878 /// scheduling units.
CalculateSethiUllmanNumbers()1879 void RegReductionPQBase::CalculateSethiUllmanNumbers() {
1880   SethiUllmanNumbers.assign(SUnits->size(), 0);
1881 
1882   for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1883     CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1884 }
1885 
addNode(const SUnit * SU)1886 void RegReductionPQBase::addNode(const SUnit *SU) {
1887   unsigned SUSize = SethiUllmanNumbers.size();
1888   if (SUnits->size() > SUSize)
1889     SethiUllmanNumbers.resize(SUSize*2, 0);
1890   CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1891 }
1892 
updateNode(const SUnit * SU)1893 void RegReductionPQBase::updateNode(const SUnit *SU) {
1894   SethiUllmanNumbers[SU->NodeNum] = 0;
1895   CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1896 }
1897 
1898 // Lower priority means schedule further down. For bottom-up scheduling, lower
1899 // priority SUs are scheduled before higher priority SUs.
getNodePriority(const SUnit * SU) const1900 unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
1901   assert(SU->NodeNum < SethiUllmanNumbers.size());
1902   unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
1903   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1904     // CopyToReg should be close to its uses to facilitate coalescing and
1905     // avoid spilling.
1906     return 0;
1907   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
1908       Opc == TargetOpcode::SUBREG_TO_REG ||
1909       Opc == TargetOpcode::INSERT_SUBREG)
1910     // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
1911     // close to their uses to facilitate coalescing.
1912     return 0;
1913   if (SU->NumSuccs == 0 && SU->NumPreds != 0)
1914     // If SU does not have a register use, i.e. it doesn't produce a value
1915     // that would be consumed (e.g. store), then it terminates a chain of
1916     // computation.  Give it a large SethiUllman number so it will be
1917     // scheduled right before its predecessors that it doesn't lengthen
1918     // their live ranges.
1919     return 0xffff;
1920   if (SU->NumPreds == 0 && SU->NumSuccs != 0)
1921     // If SU does not have a register def, schedule it close to its uses
1922     // because it does not lengthen any live ranges.
1923     return 0;
1924 #if 1
1925   return SethiUllmanNumbers[SU->NodeNum];
1926 #else
1927   unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
1928   if (SU->isCallOp) {
1929     // FIXME: This assumes all of the defs are used as call operands.
1930     int NP = (int)Priority - SU->getNode()->getNumValues();
1931     return (NP > 0) ? NP : 0;
1932   }
1933   return Priority;
1934 #endif
1935 }
1936 
1937 //===----------------------------------------------------------------------===//
1938 //                     Register Pressure Tracking
1939 //===----------------------------------------------------------------------===//
1940 
dumpRegPressure() const1941 void RegReductionPQBase::dumpRegPressure() const {
1942 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1943   for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1944          E = TRI->regclass_end(); I != E; ++I) {
1945     const TargetRegisterClass *RC = *I;
1946     unsigned Id = RC->getID();
1947     unsigned RP = RegPressure[Id];
1948     if (!RP) continue;
1949     DEBUG(dbgs() << TRI->getRegClassName(RC) << ": " << RP << " / "
1950           << RegLimit[Id] << '\n');
1951   }
1952 #endif
1953 }
1954 
HighRegPressure(const SUnit * SU) const1955 bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
1956   if (!TLI)
1957     return false;
1958 
1959   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1960        I != E; ++I) {
1961     if (I->isCtrl())
1962       continue;
1963     SUnit *PredSU = I->getSUnit();
1964     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1965     // to cover the number of registers defined (they are all live).
1966     if (PredSU->NumRegDefsLeft == 0) {
1967       continue;
1968     }
1969     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1970          RegDefPos.IsValid(); RegDefPos.Advance()) {
1971       unsigned RCId, Cost;
1972       GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
1973 
1974       if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
1975         return true;
1976     }
1977   }
1978   return false;
1979 }
1980 
MayReduceRegPressure(SUnit * SU) const1981 bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
1982   const SDNode *N = SU->getNode();
1983 
1984   if (!N->isMachineOpcode() || !SU->NumSuccs)
1985     return false;
1986 
1987   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1988   for (unsigned i = 0; i != NumDefs; ++i) {
1989     MVT VT = N->getSimpleValueType(i);
1990     if (!N->hasAnyUseOfValue(i))
1991       continue;
1992     unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1993     if (RegPressure[RCId] >= RegLimit[RCId])
1994       return true;
1995   }
1996   return false;
1997 }
1998 
1999 // Compute the register pressure contribution by this instruction by count up
2000 // for uses that are not live and down for defs. Only count register classes
2001 // that are already under high pressure. As a side effect, compute the number of
2002 // uses of registers that are already live.
2003 //
2004 // FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
2005 // so could probably be factored.
RegPressureDiff(SUnit * SU,unsigned & LiveUses) const2006 int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
2007   LiveUses = 0;
2008   int PDiff = 0;
2009   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2010        I != E; ++I) {
2011     if (I->isCtrl())
2012       continue;
2013     SUnit *PredSU = I->getSUnit();
2014     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2015     // to cover the number of registers defined (they are all live).
2016     if (PredSU->NumRegDefsLeft == 0) {
2017       if (PredSU->getNode()->isMachineOpcode())
2018         ++LiveUses;
2019       continue;
2020     }
2021     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2022          RegDefPos.IsValid(); RegDefPos.Advance()) {
2023       MVT VT = RegDefPos.GetValue();
2024       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2025       if (RegPressure[RCId] >= RegLimit[RCId])
2026         ++PDiff;
2027     }
2028   }
2029   const SDNode *N = SU->getNode();
2030 
2031   if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
2032     return PDiff;
2033 
2034   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2035   for (unsigned i = 0; i != NumDefs; ++i) {
2036     MVT VT = N->getSimpleValueType(i);
2037     if (!N->hasAnyUseOfValue(i))
2038       continue;
2039     unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2040     if (RegPressure[RCId] >= RegLimit[RCId])
2041       --PDiff;
2042   }
2043   return PDiff;
2044 }
2045 
scheduledNode(SUnit * SU)2046 void RegReductionPQBase::scheduledNode(SUnit *SU) {
2047   if (!TracksRegPressure)
2048     return;
2049 
2050   if (!SU->getNode())
2051     return;
2052 
2053   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2054        I != E; ++I) {
2055     if (I->isCtrl())
2056       continue;
2057     SUnit *PredSU = I->getSUnit();
2058     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2059     // to cover the number of registers defined (they are all live).
2060     if (PredSU->NumRegDefsLeft == 0) {
2061       continue;
2062     }
2063     // FIXME: The ScheduleDAG currently loses information about which of a
2064     // node's values is consumed by each dependence. Consequently, if the node
2065     // defines multiple register classes, we don't know which to pressurize
2066     // here. Instead the following loop consumes the register defs in an
2067     // arbitrary order. At least it handles the common case of clustered loads
2068     // to the same class. For precise liveness, each SDep needs to indicate the
2069     // result number. But that tightly couples the ScheduleDAG with the
2070     // SelectionDAG making updates tricky. A simpler hack would be to attach a
2071     // value type or register class to SDep.
2072     //
2073     // The most important aspect of register tracking is balancing the increase
2074     // here with the reduction further below. Note that this SU may use multiple
2075     // defs in PredSU. The can't be determined here, but we've already
2076     // compensated by reducing NumRegDefsLeft in PredSU during
2077     // ScheduleDAGSDNodes::AddSchedEdges.
2078     --PredSU->NumRegDefsLeft;
2079     unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
2080     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2081          RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2082       if (SkipRegDefs)
2083         continue;
2084 
2085       unsigned RCId, Cost;
2086       GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2087       RegPressure[RCId] += Cost;
2088       break;
2089     }
2090   }
2091 
2092   // We should have this assert, but there may be dead SDNodes that never
2093   // materialize as SUnits, so they don't appear to generate liveness.
2094   //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
2095   int SkipRegDefs = (int)SU->NumRegDefsLeft;
2096   for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
2097        RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2098     if (SkipRegDefs > 0)
2099       continue;
2100     unsigned RCId, Cost;
2101     GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2102     if (RegPressure[RCId] < Cost) {
2103       // Register pressure tracking is imprecise. This can happen. But we try
2104       // hard not to let it happen because it likely results in poor scheduling.
2105       DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") has too many regdefs\n");
2106       RegPressure[RCId] = 0;
2107     }
2108     else {
2109       RegPressure[RCId] -= Cost;
2110     }
2111   }
2112   dumpRegPressure();
2113 }
2114 
unscheduledNode(SUnit * SU)2115 void RegReductionPQBase::unscheduledNode(SUnit *SU) {
2116   if (!TracksRegPressure)
2117     return;
2118 
2119   const SDNode *N = SU->getNode();
2120   if (!N) return;
2121 
2122   if (!N->isMachineOpcode()) {
2123     if (N->getOpcode() != ISD::CopyToReg)
2124       return;
2125   } else {
2126     unsigned Opc = N->getMachineOpcode();
2127     if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2128         Opc == TargetOpcode::INSERT_SUBREG ||
2129         Opc == TargetOpcode::SUBREG_TO_REG ||
2130         Opc == TargetOpcode::REG_SEQUENCE ||
2131         Opc == TargetOpcode::IMPLICIT_DEF)
2132       return;
2133   }
2134 
2135   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2136        I != E; ++I) {
2137     if (I->isCtrl())
2138       continue;
2139     SUnit *PredSU = I->getSUnit();
2140     // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
2141     // counts data deps.
2142     if (PredSU->NumSuccsLeft != PredSU->Succs.size())
2143       continue;
2144     const SDNode *PN = PredSU->getNode();
2145     if (!PN->isMachineOpcode()) {
2146       if (PN->getOpcode() == ISD::CopyFromReg) {
2147         MVT VT = PN->getSimpleValueType(0);
2148         unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2149         RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2150       }
2151       continue;
2152     }
2153     unsigned POpc = PN->getMachineOpcode();
2154     if (POpc == TargetOpcode::IMPLICIT_DEF)
2155       continue;
2156     if (POpc == TargetOpcode::EXTRACT_SUBREG ||
2157         POpc == TargetOpcode::INSERT_SUBREG ||
2158         POpc == TargetOpcode::SUBREG_TO_REG) {
2159       MVT VT = PN->getSimpleValueType(0);
2160       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2161       RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2162       continue;
2163     }
2164     unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
2165     for (unsigned i = 0; i != NumDefs; ++i) {
2166       MVT VT = PN->getSimpleValueType(i);
2167       if (!PN->hasAnyUseOfValue(i))
2168         continue;
2169       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2170       if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
2171         // Register pressure tracking is imprecise. This can happen.
2172         RegPressure[RCId] = 0;
2173       else
2174         RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
2175     }
2176   }
2177 
2178   // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
2179   // may transfer data dependencies to CopyToReg.
2180   if (SU->NumSuccs && N->isMachineOpcode()) {
2181     unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2182     for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2183       MVT VT = N->getSimpleValueType(i);
2184       if (VT == MVT::Glue || VT == MVT::Other)
2185         continue;
2186       if (!N->hasAnyUseOfValue(i))
2187         continue;
2188       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2189       RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2190     }
2191   }
2192 
2193   dumpRegPressure();
2194 }
2195 
2196 //===----------------------------------------------------------------------===//
2197 //           Dynamic Node Priority for Register Pressure Reduction
2198 //===----------------------------------------------------------------------===//
2199 
2200 /// closestSucc - Returns the scheduled cycle of the successor which is
2201 /// closest to the current cycle.
closestSucc(const SUnit * SU)2202 static unsigned closestSucc(const SUnit *SU) {
2203   unsigned MaxHeight = 0;
2204   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2205        I != E; ++I) {
2206     if (I->isCtrl()) continue;  // ignore chain succs
2207     unsigned Height = I->getSUnit()->getHeight();
2208     // If there are bunch of CopyToRegs stacked up, they should be considered
2209     // to be at the same position.
2210     if (I->getSUnit()->getNode() &&
2211         I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
2212       Height = closestSucc(I->getSUnit())+1;
2213     if (Height > MaxHeight)
2214       MaxHeight = Height;
2215   }
2216   return MaxHeight;
2217 }
2218 
2219 /// calcMaxScratches - Returns an cost estimate of the worse case requirement
2220 /// for scratch registers, i.e. number of data dependencies.
calcMaxScratches(const SUnit * SU)2221 static unsigned calcMaxScratches(const SUnit *SU) {
2222   unsigned Scratches = 0;
2223   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2224        I != E; ++I) {
2225     if (I->isCtrl()) continue;  // ignore chain preds
2226     Scratches++;
2227   }
2228   return Scratches;
2229 }
2230 
2231 /// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
2232 /// CopyFromReg from a virtual register.
hasOnlyLiveInOpers(const SUnit * SU)2233 static bool hasOnlyLiveInOpers(const SUnit *SU) {
2234   bool RetVal = false;
2235   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2236        I != E; ++I) {
2237     if (I->isCtrl()) continue;
2238     const SUnit *PredSU = I->getSUnit();
2239     if (PredSU->getNode() &&
2240         PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
2241       unsigned Reg =
2242         cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
2243       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2244         RetVal = true;
2245         continue;
2246       }
2247     }
2248     return false;
2249   }
2250   return RetVal;
2251 }
2252 
2253 /// hasOnlyLiveOutUses - Return true if SU has only value successors that are
2254 /// CopyToReg to a virtual register. This SU def is probably a liveout and
2255 /// it has no other use. It should be scheduled closer to the terminator.
hasOnlyLiveOutUses(const SUnit * SU)2256 static bool hasOnlyLiveOutUses(const SUnit *SU) {
2257   bool RetVal = false;
2258   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2259        I != E; ++I) {
2260     if (I->isCtrl()) continue;
2261     const SUnit *SuccSU = I->getSUnit();
2262     if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
2263       unsigned Reg =
2264         cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
2265       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2266         RetVal = true;
2267         continue;
2268       }
2269     }
2270     return false;
2271   }
2272   return RetVal;
2273 }
2274 
2275 // Set isVRegCycle for a node with only live in opers and live out uses. Also
2276 // set isVRegCycle for its CopyFromReg operands.
2277 //
2278 // This is only relevant for single-block loops, in which case the VRegCycle
2279 // node is likely an induction variable in which the operand and target virtual
2280 // registers should be coalesced (e.g. pre/post increment values). Setting the
2281 // isVRegCycle flag helps the scheduler prioritize other uses of the same
2282 // CopyFromReg so that this node becomes the virtual register "kill". This
2283 // avoids interference between the values live in and out of the block and
2284 // eliminates a copy inside the loop.
initVRegCycle(SUnit * SU)2285 static void initVRegCycle(SUnit *SU) {
2286   if (DisableSchedVRegCycle)
2287     return;
2288 
2289   if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
2290     return;
2291 
2292   DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
2293 
2294   SU->isVRegCycle = true;
2295 
2296   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2297        I != E; ++I) {
2298     if (I->isCtrl()) continue;
2299     I->getSUnit()->isVRegCycle = true;
2300   }
2301 }
2302 
2303 // After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
2304 // CopyFromReg operands. We should no longer penalize other uses of this VReg.
resetVRegCycle(SUnit * SU)2305 static void resetVRegCycle(SUnit *SU) {
2306   if (!SU->isVRegCycle)
2307     return;
2308 
2309   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2310        I != E; ++I) {
2311     if (I->isCtrl()) continue;  // ignore chain preds
2312     SUnit *PredSU = I->getSUnit();
2313     if (PredSU->isVRegCycle) {
2314       assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
2315              "VRegCycle def must be CopyFromReg");
2316       I->getSUnit()->isVRegCycle = 0;
2317     }
2318   }
2319 }
2320 
2321 // Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
2322 // means a node that defines the VRegCycle has not been scheduled yet.
hasVRegCycleUse(const SUnit * SU)2323 static bool hasVRegCycleUse(const SUnit *SU) {
2324   // If this SU also defines the VReg, don't hoist it as a "use".
2325   if (SU->isVRegCycle)
2326     return false;
2327 
2328   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2329        I != E; ++I) {
2330     if (I->isCtrl()) continue;  // ignore chain preds
2331     if (I->getSUnit()->isVRegCycle &&
2332         I->getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
2333       DEBUG(dbgs() << "  VReg cycle use: SU (" << SU->NodeNum << ")\n");
2334       return true;
2335     }
2336   }
2337   return false;
2338 }
2339 
2340 // Check for either a dependence (latency) or resource (hazard) stall.
2341 //
2342 // Note: The ScheduleHazardRecognizer interface requires a non-const SU.
BUHasStall(SUnit * SU,int Height,RegReductionPQBase * SPQ)2343 static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
2344   if ((int)SPQ->getCurCycle() < Height) return true;
2345   if (SPQ->getHazardRec()->getHazardType(SU, 0)
2346       != ScheduleHazardRecognizer::NoHazard)
2347     return true;
2348   return false;
2349 }
2350 
2351 // Return -1 if left has higher priority, 1 if right has higher priority.
2352 // Return 0 if latency-based priority is equivalent.
BUCompareLatency(SUnit * left,SUnit * right,bool checkPref,RegReductionPQBase * SPQ)2353 static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
2354                             RegReductionPQBase *SPQ) {
2355   // Scheduling an instruction that uses a VReg whose postincrement has not yet
2356   // been scheduled will induce a copy. Model this as an extra cycle of latency.
2357   int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
2358   int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
2359   int LHeight = (int)left->getHeight() + LPenalty;
2360   int RHeight = (int)right->getHeight() + RPenalty;
2361 
2362   bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
2363     BUHasStall(left, LHeight, SPQ);
2364   bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
2365     BUHasStall(right, RHeight, SPQ);
2366 
2367   // If scheduling one of the node will cause a pipeline stall, delay it.
2368   // If scheduling either one of the node will cause a pipeline stall, sort
2369   // them according to their height.
2370   if (LStall) {
2371     if (!RStall)
2372       return 1;
2373     if (LHeight != RHeight)
2374       return LHeight > RHeight ? 1 : -1;
2375   } else if (RStall)
2376     return -1;
2377 
2378   // If either node is scheduling for latency, sort them by height/depth
2379   // and latency.
2380   if (!checkPref || (left->SchedulingPref == Sched::ILP ||
2381                      right->SchedulingPref == Sched::ILP)) {
2382     // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
2383     // is enabled, grouping instructions by cycle, then its height is already
2384     // covered so only its depth matters. We also reach this point if both stall
2385     // but have the same height.
2386     if (!SPQ->getHazardRec()->isEnabled()) {
2387       if (LHeight != RHeight)
2388         return LHeight > RHeight ? 1 : -1;
2389     }
2390     int LDepth = left->getDepth() - LPenalty;
2391     int RDepth = right->getDepth() - RPenalty;
2392     if (LDepth != RDepth) {
2393       DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
2394             << ") depth " << LDepth << " vs SU (" << right->NodeNum
2395             << ") depth " << RDepth << "\n");
2396       return LDepth < RDepth ? 1 : -1;
2397     }
2398     if (left->Latency != right->Latency)
2399       return left->Latency > right->Latency ? 1 : -1;
2400   }
2401   return 0;
2402 }
2403 
BURRSort(SUnit * left,SUnit * right,RegReductionPQBase * SPQ)2404 static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
2405   // Schedule physical register definitions close to their use. This is
2406   // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
2407   // long as shortening physreg live ranges is generally good, we can defer
2408   // creating a subtarget hook.
2409   if (!DisableSchedPhysRegJoin) {
2410     bool LHasPhysReg = left->hasPhysRegDefs;
2411     bool RHasPhysReg = right->hasPhysRegDefs;
2412     if (LHasPhysReg != RHasPhysReg) {
2413       #ifndef NDEBUG
2414       static const char *const PhysRegMsg[] = { " has no physreg",
2415                                                 " defines a physreg" };
2416       #endif
2417       DEBUG(dbgs() << "  SU (" << left->NodeNum << ") "
2418             << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum << ") "
2419             << PhysRegMsg[RHasPhysReg] << "\n");
2420       return LHasPhysReg < RHasPhysReg;
2421     }
2422   }
2423 
2424   // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
2425   unsigned LPriority = SPQ->getNodePriority(left);
2426   unsigned RPriority = SPQ->getNodePriority(right);
2427 
2428   // Be really careful about hoisting call operands above previous calls.
2429   // Only allows it if it would reduce register pressure.
2430   if (left->isCall && right->isCallOp) {
2431     unsigned RNumVals = right->getNode()->getNumValues();
2432     RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
2433   }
2434   if (right->isCall && left->isCallOp) {
2435     unsigned LNumVals = left->getNode()->getNumValues();
2436     LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
2437   }
2438 
2439   if (LPriority != RPriority)
2440     return LPriority > RPriority;
2441 
2442   // One or both of the nodes are calls and their sethi-ullman numbers are the
2443   // same, then keep source order.
2444   if (left->isCall || right->isCall) {
2445     unsigned LOrder = SPQ->getNodeOrdering(left);
2446     unsigned ROrder = SPQ->getNodeOrdering(right);
2447 
2448     // Prefer an ordering where the lower the non-zero order number, the higher
2449     // the preference.
2450     if ((LOrder || ROrder) && LOrder != ROrder)
2451       return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2452   }
2453 
2454   // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2455   // e.g.
2456   // t1 = op t2, c1
2457   // t3 = op t4, c2
2458   //
2459   // and the following instructions are both ready.
2460   // t2 = op c3
2461   // t4 = op c4
2462   //
2463   // Then schedule t2 = op first.
2464   // i.e.
2465   // t4 = op c4
2466   // t2 = op c3
2467   // t1 = op t2, c1
2468   // t3 = op t4, c2
2469   //
2470   // This creates more short live intervals.
2471   unsigned LDist = closestSucc(left);
2472   unsigned RDist = closestSucc(right);
2473   if (LDist != RDist)
2474     return LDist < RDist;
2475 
2476   // How many registers becomes live when the node is scheduled.
2477   unsigned LScratch = calcMaxScratches(left);
2478   unsigned RScratch = calcMaxScratches(right);
2479   if (LScratch != RScratch)
2480     return LScratch > RScratch;
2481 
2482   // Comparing latency against a call makes little sense unless the node
2483   // is register pressure-neutral.
2484   if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
2485     return (left->NodeQueueId > right->NodeQueueId);
2486 
2487   // Do not compare latencies when one or both of the nodes are calls.
2488   if (!DisableSchedCycles &&
2489       !(left->isCall || right->isCall)) {
2490     int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
2491     if (result != 0)
2492       return result > 0;
2493   }
2494   else {
2495     if (left->getHeight() != right->getHeight())
2496       return left->getHeight() > right->getHeight();
2497 
2498     if (left->getDepth() != right->getDepth())
2499       return left->getDepth() < right->getDepth();
2500   }
2501 
2502   assert(left->NodeQueueId && right->NodeQueueId &&
2503          "NodeQueueId cannot be zero");
2504   return (left->NodeQueueId > right->NodeQueueId);
2505 }
2506 
2507 // Bottom up
operator ()(SUnit * left,SUnit * right) const2508 bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2509   if (int res = checkSpecialNodes(left, right))
2510     return res > 0;
2511 
2512   return BURRSort(left, right, SPQ);
2513 }
2514 
2515 // Source order, otherwise bottom up.
operator ()(SUnit * left,SUnit * right) const2516 bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2517   if (int res = checkSpecialNodes(left, right))
2518     return res > 0;
2519 
2520   unsigned LOrder = SPQ->getNodeOrdering(left);
2521   unsigned ROrder = SPQ->getNodeOrdering(right);
2522 
2523   // Prefer an ordering where the lower the non-zero order number, the higher
2524   // the preference.
2525   if ((LOrder || ROrder) && LOrder != ROrder)
2526     return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2527 
2528   return BURRSort(left, right, SPQ);
2529 }
2530 
2531 // If the time between now and when the instruction will be ready can cover
2532 // the spill code, then avoid adding it to the ready queue. This gives long
2533 // stalls highest priority and allows hoisting across calls. It should also
2534 // speed up processing the available queue.
isReady(SUnit * SU,unsigned CurCycle) const2535 bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2536   static const unsigned ReadyDelay = 3;
2537 
2538   if (SPQ->MayReduceRegPressure(SU)) return true;
2539 
2540   if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
2541 
2542   if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
2543       != ScheduleHazardRecognizer::NoHazard)
2544     return false;
2545 
2546   return true;
2547 }
2548 
2549 // Return true if right should be scheduled with higher priority than left.
operator ()(SUnit * left,SUnit * right) const2550 bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2551   if (int res = checkSpecialNodes(left, right))
2552     return res > 0;
2553 
2554   if (left->isCall || right->isCall)
2555     // No way to compute latency of calls.
2556     return BURRSort(left, right, SPQ);
2557 
2558   bool LHigh = SPQ->HighRegPressure(left);
2559   bool RHigh = SPQ->HighRegPressure(right);
2560   // Avoid causing spills. If register pressure is high, schedule for
2561   // register pressure reduction.
2562   if (LHigh && !RHigh) {
2563     DEBUG(dbgs() << "  pressure SU(" << left->NodeNum << ") > SU("
2564           << right->NodeNum << ")\n");
2565     return true;
2566   }
2567   else if (!LHigh && RHigh) {
2568     DEBUG(dbgs() << "  pressure SU(" << right->NodeNum << ") > SU("
2569           << left->NodeNum << ")\n");
2570     return false;
2571   }
2572   if (!LHigh && !RHigh) {
2573     int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
2574     if (result != 0)
2575       return result > 0;
2576   }
2577   return BURRSort(left, right, SPQ);
2578 }
2579 
2580 // Schedule as many instructions in each cycle as possible. So don't make an
2581 // instruction available unless it is ready in the current cycle.
isReady(SUnit * SU,unsigned CurCycle) const2582 bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2583   if (SU->getHeight() > CurCycle) return false;
2584 
2585   if (SPQ->getHazardRec()->getHazardType(SU, 0)
2586       != ScheduleHazardRecognizer::NoHazard)
2587     return false;
2588 
2589   return true;
2590 }
2591 
canEnableCoalescing(SUnit * SU)2592 static bool canEnableCoalescing(SUnit *SU) {
2593   unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2594   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2595     // CopyToReg should be close to its uses to facilitate coalescing and
2596     // avoid spilling.
2597     return true;
2598 
2599   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2600       Opc == TargetOpcode::SUBREG_TO_REG ||
2601       Opc == TargetOpcode::INSERT_SUBREG)
2602     // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2603     // close to their uses to facilitate coalescing.
2604     return true;
2605 
2606   if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2607     // If SU does not have a register def, schedule it close to its uses
2608     // because it does not lengthen any live ranges.
2609     return true;
2610 
2611   return false;
2612 }
2613 
2614 // list-ilp is currently an experimental scheduler that allows various
2615 // heuristics to be enabled prior to the normal register reduction logic.
operator ()(SUnit * left,SUnit * right) const2616 bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2617   if (int res = checkSpecialNodes(left, right))
2618     return res > 0;
2619 
2620   if (left->isCall || right->isCall)
2621     // No way to compute latency of calls.
2622     return BURRSort(left, right, SPQ);
2623 
2624   unsigned LLiveUses = 0, RLiveUses = 0;
2625   int LPDiff = 0, RPDiff = 0;
2626   if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
2627     LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
2628     RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
2629   }
2630   if (!DisableSchedRegPressure && LPDiff != RPDiff) {
2631     DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiff
2632           << " != SU(" << right->NodeNum << "): " << RPDiff << "\n");
2633     return LPDiff > RPDiff;
2634   }
2635 
2636   if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
2637     bool LReduce = canEnableCoalescing(left);
2638     bool RReduce = canEnableCoalescing(right);
2639     if (LReduce && !RReduce) return false;
2640     if (RReduce && !LReduce) return true;
2641   }
2642 
2643   if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
2644     DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
2645           << " != SU(" << right->NodeNum << "): " << RLiveUses << "\n");
2646     return LLiveUses < RLiveUses;
2647   }
2648 
2649   if (!DisableSchedStalls) {
2650     bool LStall = BUHasStall(left, left->getHeight(), SPQ);
2651     bool RStall = BUHasStall(right, right->getHeight(), SPQ);
2652     if (LStall != RStall)
2653       return left->getHeight() > right->getHeight();
2654   }
2655 
2656   if (!DisableSchedCriticalPath) {
2657     int spread = (int)left->getDepth() - (int)right->getDepth();
2658     if (std::abs(spread) > MaxReorderWindow) {
2659       DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
2660             << left->getDepth() << " != SU(" << right->NodeNum << "): "
2661             << right->getDepth() << "\n");
2662       return left->getDepth() < right->getDepth();
2663     }
2664   }
2665 
2666   if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
2667     int spread = (int)left->getHeight() - (int)right->getHeight();
2668     if (std::abs(spread) > MaxReorderWindow)
2669       return left->getHeight() > right->getHeight();
2670   }
2671 
2672   return BURRSort(left, right, SPQ);
2673 }
2674 
initNodes(std::vector<SUnit> & sunits)2675 void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
2676   SUnits = &sunits;
2677   // Add pseudo dependency edges for two-address nodes.
2678   if (!Disable2AddrHack)
2679     AddPseudoTwoAddrDeps();
2680   // Reroute edges to nodes with multiple uses.
2681   if (!TracksRegPressure && !SrcOrder)
2682     PrescheduleNodesWithMultipleUses();
2683   // Calculate node priorities.
2684   CalculateSethiUllmanNumbers();
2685 
2686   // For single block loops, mark nodes that look like canonical IV increments.
2687   if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB)) {
2688     for (unsigned i = 0, e = sunits.size(); i != e; ++i) {
2689       initVRegCycle(&sunits[i]);
2690     }
2691   }
2692 }
2693 
2694 //===----------------------------------------------------------------------===//
2695 //                    Preschedule for Register Pressure
2696 //===----------------------------------------------------------------------===//
2697 
canClobber(const SUnit * SU,const SUnit * Op)2698 bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
2699   if (SU->isTwoAddress) {
2700     unsigned Opc = SU->getNode()->getMachineOpcode();
2701     const MCInstrDesc &MCID = TII->get(Opc);
2702     unsigned NumRes = MCID.getNumDefs();
2703     unsigned NumOps = MCID.getNumOperands() - NumRes;
2704     for (unsigned i = 0; i != NumOps; ++i) {
2705       if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
2706         SDNode *DU = SU->getNode()->getOperand(i).getNode();
2707         if (DU->getNodeId() != -1 &&
2708             Op->OrigNode == &(*SUnits)[DU->getNodeId()])
2709           return true;
2710       }
2711     }
2712   }
2713   return false;
2714 }
2715 
2716 /// canClobberReachingPhysRegUse - True if SU would clobber one of it's
2717 /// successor's explicit physregs whose definition can reach DepSU.
2718 /// i.e. DepSU should not be scheduled above SU.
canClobberReachingPhysRegUse(const SUnit * DepSU,const SUnit * SU,ScheduleDAGRRList * scheduleDAG,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI)2719 static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
2720                                          ScheduleDAGRRList *scheduleDAG,
2721                                          const TargetInstrInfo *TII,
2722                                          const TargetRegisterInfo *TRI) {
2723   const MCPhysReg *ImpDefs
2724     = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
2725   const uint32_t *RegMask = getNodeRegMask(SU->getNode());
2726   if(!ImpDefs && !RegMask)
2727     return false;
2728 
2729   for (SUnit::const_succ_iterator SI = SU->Succs.begin(), SE = SU->Succs.end();
2730        SI != SE; ++SI) {
2731     SUnit *SuccSU = SI->getSUnit();
2732     for (SUnit::const_pred_iterator PI = SuccSU->Preds.begin(),
2733            PE = SuccSU->Preds.end(); PI != PE; ++PI) {
2734       if (!PI->isAssignedRegDep())
2735         continue;
2736 
2737       if (RegMask && MachineOperand::clobbersPhysReg(RegMask, PI->getReg()) &&
2738           scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
2739         return true;
2740 
2741       if (ImpDefs)
2742         for (const MCPhysReg *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
2743           // Return true if SU clobbers this physical register use and the
2744           // definition of the register reaches from DepSU. IsReachable queries
2745           // a topological forward sort of the DAG (following the successors).
2746           if (TRI->regsOverlap(*ImpDef, PI->getReg()) &&
2747               scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
2748             return true;
2749     }
2750   }
2751   return false;
2752 }
2753 
2754 /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2755 /// physical register defs.
canClobberPhysRegDefs(const SUnit * SuccSU,const SUnit * SU,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI)2756 static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
2757                                   const TargetInstrInfo *TII,
2758                                   const TargetRegisterInfo *TRI) {
2759   SDNode *N = SuccSU->getNode();
2760   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2761   const MCPhysReg *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
2762   assert(ImpDefs && "Caller should check hasPhysRegDefs");
2763   for (const SDNode *SUNode = SU->getNode(); SUNode;
2764        SUNode = SUNode->getGluedNode()) {
2765     if (!SUNode->isMachineOpcode())
2766       continue;
2767     const MCPhysReg *SUImpDefs =
2768       TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
2769     const uint32_t *SURegMask = getNodeRegMask(SUNode);
2770     if (!SUImpDefs && !SURegMask)
2771       continue;
2772     for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2773       MVT VT = N->getSimpleValueType(i);
2774       if (VT == MVT::Glue || VT == MVT::Other)
2775         continue;
2776       if (!N->hasAnyUseOfValue(i))
2777         continue;
2778       unsigned Reg = ImpDefs[i - NumDefs];
2779       if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
2780         return true;
2781       if (!SUImpDefs)
2782         continue;
2783       for (;*SUImpDefs; ++SUImpDefs) {
2784         unsigned SUReg = *SUImpDefs;
2785         if (TRI->regsOverlap(Reg, SUReg))
2786           return true;
2787       }
2788     }
2789   }
2790   return false;
2791 }
2792 
2793 /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2794 /// are not handled well by the general register pressure reduction
2795 /// heuristics. When presented with code like this:
2796 ///
2797 ///      N
2798 ///    / |
2799 ///   /  |
2800 ///  U  store
2801 ///  |
2802 /// ...
2803 ///
2804 /// the heuristics tend to push the store up, but since the
2805 /// operand of the store has another use (U), this would increase
2806 /// the length of that other use (the U->N edge).
2807 ///
2808 /// This function transforms code like the above to route U's
2809 /// dependence through the store when possible, like this:
2810 ///
2811 ///      N
2812 ///      ||
2813 ///      ||
2814 ///     store
2815 ///       |
2816 ///       U
2817 ///       |
2818 ///      ...
2819 ///
2820 /// This results in the store being scheduled immediately
2821 /// after N, which shortens the U->N live range, reducing
2822 /// register pressure.
2823 ///
PrescheduleNodesWithMultipleUses()2824 void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2825   // Visit all the nodes in topological order, working top-down.
2826   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2827     SUnit *SU = &(*SUnits)[i];
2828     // For now, only look at nodes with no data successors, such as stores.
2829     // These are especially important, due to the heuristics in
2830     // getNodePriority for nodes with no data successors.
2831     if (SU->NumSuccs != 0)
2832       continue;
2833     // For now, only look at nodes with exactly one data predecessor.
2834     if (SU->NumPreds != 1)
2835       continue;
2836     // Avoid prescheduling copies to virtual registers, which don't behave
2837     // like other nodes from the perspective of scheduling heuristics.
2838     if (SDNode *N = SU->getNode())
2839       if (N->getOpcode() == ISD::CopyToReg &&
2840           TargetRegisterInfo::isVirtualRegister
2841             (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2842         continue;
2843 
2844     // Locate the single data predecessor.
2845     SUnit *PredSU = nullptr;
2846     for (SUnit::const_pred_iterator II = SU->Preds.begin(),
2847          EE = SU->Preds.end(); II != EE; ++II)
2848       if (!II->isCtrl()) {
2849         PredSU = II->getSUnit();
2850         break;
2851       }
2852     assert(PredSU);
2853 
2854     // Don't rewrite edges that carry physregs, because that requires additional
2855     // support infrastructure.
2856     if (PredSU->hasPhysRegDefs)
2857       continue;
2858     // Short-circuit the case where SU is PredSU's only data successor.
2859     if (PredSU->NumSuccs == 1)
2860       continue;
2861     // Avoid prescheduling to copies from virtual registers, which don't behave
2862     // like other nodes from the perspective of scheduling heuristics.
2863     if (SDNode *N = SU->getNode())
2864       if (N->getOpcode() == ISD::CopyFromReg &&
2865           TargetRegisterInfo::isVirtualRegister
2866             (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2867         continue;
2868 
2869     // Perform checks on the successors of PredSU.
2870     for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
2871          EE = PredSU->Succs.end(); II != EE; ++II) {
2872       SUnit *PredSuccSU = II->getSUnit();
2873       if (PredSuccSU == SU) continue;
2874       // If PredSU has another successor with no data successors, for
2875       // now don't attempt to choose either over the other.
2876       if (PredSuccSU->NumSuccs == 0)
2877         goto outer_loop_continue;
2878       // Don't break physical register dependencies.
2879       if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
2880         if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
2881           goto outer_loop_continue;
2882       // Don't introduce graph cycles.
2883       if (scheduleDAG->IsReachable(SU, PredSuccSU))
2884         goto outer_loop_continue;
2885     }
2886 
2887     // Ok, the transformation is safe and the heuristics suggest it is
2888     // profitable. Update the graph.
2889     DEBUG(dbgs() << "    Prescheduling SU #" << SU->NodeNum
2890                  << " next to PredSU #" << PredSU->NodeNum
2891                  << " to guide scheduling in the presence of multiple uses\n");
2892     for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
2893       SDep Edge = PredSU->Succs[i];
2894       assert(!Edge.isAssignedRegDep());
2895       SUnit *SuccSU = Edge.getSUnit();
2896       if (SuccSU != SU) {
2897         Edge.setSUnit(PredSU);
2898         scheduleDAG->RemovePred(SuccSU, Edge);
2899         scheduleDAG->AddPred(SU, Edge);
2900         Edge.setSUnit(SU);
2901         scheduleDAG->AddPred(SuccSU, Edge);
2902         --i;
2903       }
2904     }
2905   outer_loop_continue:;
2906   }
2907 }
2908 
2909 /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
2910 /// it as a def&use operand. Add a pseudo control edge from it to the other
2911 /// node (if it won't create a cycle) so the two-address one will be scheduled
2912 /// first (lower in the schedule). If both nodes are two-address, favor the
2913 /// one that has a CopyToReg use (more likely to be a loop induction update).
2914 /// If both are two-address, but one is commutable while the other is not
2915 /// commutable, favor the one that's not commutable.
AddPseudoTwoAddrDeps()2916 void RegReductionPQBase::AddPseudoTwoAddrDeps() {
2917   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2918     SUnit *SU = &(*SUnits)[i];
2919     if (!SU->isTwoAddress)
2920       continue;
2921 
2922     SDNode *Node = SU->getNode();
2923     if (!Node || !Node->isMachineOpcode() || SU->getNode()->getGluedNode())
2924       continue;
2925 
2926     bool isLiveOut = hasOnlyLiveOutUses(SU);
2927     unsigned Opc = Node->getMachineOpcode();
2928     const MCInstrDesc &MCID = TII->get(Opc);
2929     unsigned NumRes = MCID.getNumDefs();
2930     unsigned NumOps = MCID.getNumOperands() - NumRes;
2931     for (unsigned j = 0; j != NumOps; ++j) {
2932       if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
2933         continue;
2934       SDNode *DU = SU->getNode()->getOperand(j).getNode();
2935       if (DU->getNodeId() == -1)
2936         continue;
2937       const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
2938       if (!DUSU) continue;
2939       for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
2940            E = DUSU->Succs.end(); I != E; ++I) {
2941         if (I->isCtrl()) continue;
2942         SUnit *SuccSU = I->getSUnit();
2943         if (SuccSU == SU)
2944           continue;
2945         // Be conservative. Ignore if nodes aren't at roughly the same
2946         // depth and height.
2947         if (SuccSU->getHeight() < SU->getHeight() &&
2948             (SU->getHeight() - SuccSU->getHeight()) > 1)
2949           continue;
2950         // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
2951         // constrains whatever is using the copy, instead of the copy
2952         // itself. In the case that the copy is coalesced, this
2953         // preserves the intent of the pseudo two-address heurietics.
2954         while (SuccSU->Succs.size() == 1 &&
2955                SuccSU->getNode()->isMachineOpcode() &&
2956                SuccSU->getNode()->getMachineOpcode() ==
2957                  TargetOpcode::COPY_TO_REGCLASS)
2958           SuccSU = SuccSU->Succs.front().getSUnit();
2959         // Don't constrain non-instruction nodes.
2960         if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
2961           continue;
2962         // Don't constrain nodes with physical register defs if the
2963         // predecessor can clobber them.
2964         if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
2965           if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
2966             continue;
2967         }
2968         // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
2969         // these may be coalesced away. We want them close to their uses.
2970         unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
2971         if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
2972             SuccOpc == TargetOpcode::INSERT_SUBREG ||
2973             SuccOpc == TargetOpcode::SUBREG_TO_REG)
2974           continue;
2975         if (!canClobberReachingPhysRegUse(SuccSU, SU, scheduleDAG, TII, TRI) &&
2976             (!canClobber(SuccSU, DUSU) ||
2977              (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
2978              (!SU->isCommutable && SuccSU->isCommutable)) &&
2979             !scheduleDAG->IsReachable(SuccSU, SU)) {
2980           DEBUG(dbgs() << "    Adding a pseudo-two-addr edge from SU #"
2981                        << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
2982           scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Artificial));
2983         }
2984       }
2985     }
2986   }
2987 }
2988 
2989 //===----------------------------------------------------------------------===//
2990 //                         Public Constructor Functions
2991 //===----------------------------------------------------------------------===//
2992 
2993 llvm::ScheduleDAGSDNodes *
createBURRListDAGScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)2994 llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
2995                                  CodeGenOpt::Level OptLevel) {
2996   const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
2997   const TargetInstrInfo *TII = STI.getInstrInfo();
2998   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
2999 
3000   BURegReductionPriorityQueue *PQ =
3001     new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, nullptr);
3002   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
3003   PQ->setScheduleDAG(SD);
3004   return SD;
3005 }
3006 
3007 llvm::ScheduleDAGSDNodes *
createSourceListDAGScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)3008 llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
3009                                    CodeGenOpt::Level OptLevel) {
3010   const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3011   const TargetInstrInfo *TII = STI.getInstrInfo();
3012   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3013 
3014   SrcRegReductionPriorityQueue *PQ =
3015     new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, nullptr);
3016   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
3017   PQ->setScheduleDAG(SD);
3018   return SD;
3019 }
3020 
3021 llvm::ScheduleDAGSDNodes *
createHybridListDAGScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)3022 llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
3023                                    CodeGenOpt::Level OptLevel) {
3024   const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3025   const TargetInstrInfo *TII = STI.getInstrInfo();
3026   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3027   const TargetLowering *TLI = IS->TLI;
3028 
3029   HybridBURRPriorityQueue *PQ =
3030     new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3031 
3032   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3033   PQ->setScheduleDAG(SD);
3034   return SD;
3035 }
3036 
3037 llvm::ScheduleDAGSDNodes *
createILPListDAGScheduler(SelectionDAGISel * IS,CodeGenOpt::Level OptLevel)3038 llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
3039                                 CodeGenOpt::Level OptLevel) {
3040   const TargetSubtargetInfo &STI = IS->MF->getSubtarget();
3041   const TargetInstrInfo *TII = STI.getInstrInfo();
3042   const TargetRegisterInfo *TRI = STI.getRegisterInfo();
3043   const TargetLowering *TLI = IS->TLI;
3044 
3045   ILPBURRPriorityQueue *PQ =
3046     new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3047   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3048   PQ->setScheduleDAG(SD);
3049   return SD;
3050 }
3051