1 //===-- SelectionDAGBuilder.h - Selection-DAG building --------*- C++ -*---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
15 #define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
16 
17 #include "StatepointLowering.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/SelectionDAGNodes.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/Statepoint.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Target/TargetLowering.h"
29 #include <vector>
30 
31 namespace llvm {
32 
33 class AddrSpaceCastInst;
34 class AllocaInst;
35 class BasicBlock;
36 class BitCastInst;
37 class BranchInst;
38 class CallInst;
39 class DbgValueInst;
40 class ExtractElementInst;
41 class ExtractValueInst;
42 class FCmpInst;
43 class FPExtInst;
44 class FPToSIInst;
45 class FPToUIInst;
46 class FPTruncInst;
47 class Function;
48 class FunctionLoweringInfo;
49 class GetElementPtrInst;
50 class GCFunctionInfo;
51 class ICmpInst;
52 class IntToPtrInst;
53 class IndirectBrInst;
54 class InvokeInst;
55 class InsertElementInst;
56 class InsertValueInst;
57 class Instruction;
58 class LoadInst;
59 class MachineBasicBlock;
60 class MachineInstr;
61 class MachineRegisterInfo;
62 class MDNode;
63 class MVT;
64 class PHINode;
65 class PtrToIntInst;
66 class ReturnInst;
67 class SDDbgValue;
68 class SExtInst;
69 class SelectInst;
70 class ShuffleVectorInst;
71 class SIToFPInst;
72 class StoreInst;
73 class SwitchInst;
74 class DataLayout;
75 class TargetLibraryInfo;
76 class TargetLowering;
77 class TruncInst;
78 class UIToFPInst;
79 class UnreachableInst;
80 class VAArgInst;
81 class ZExtInst;
82 
83 //===----------------------------------------------------------------------===//
84 /// SelectionDAGBuilder - This is the common target-independent lowering
85 /// implementation that is parameterized by a TargetLowering object.
86 ///
87 class SelectionDAGBuilder {
88   /// CurInst - The current instruction being visited
89   const Instruction *CurInst;
90 
91   DenseMap<const Value*, SDValue> NodeMap;
92 
93   /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
94   /// to preserve debug information for incoming arguments.
95   DenseMap<const Value*, SDValue> UnusedArgNodeMap;
96 
97   /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
98   class DanglingDebugInfo {
99     const DbgValueInst* DI;
100     DebugLoc dl;
101     unsigned SDNodeOrder;
102   public:
DanglingDebugInfo()103     DanglingDebugInfo() : DI(nullptr), dl(DebugLoc()), SDNodeOrder(0) { }
DanglingDebugInfo(const DbgValueInst * di,DebugLoc DL,unsigned SDNO)104     DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) :
105       DI(di), dl(DL), SDNodeOrder(SDNO) { }
getDI()106     const DbgValueInst* getDI() { return DI; }
getdl()107     DebugLoc getdl() { return dl; }
getSDNodeOrder()108     unsigned getSDNodeOrder() { return SDNodeOrder; }
109   };
110 
111   /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
112   /// yet seen the referent.  We defer handling these until we do see it.
113   DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap;
114 
115 public:
116   /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
117   /// them up and then emit token factor nodes when possible.  This allows us to
118   /// get simple disambiguation between loads without worrying about alias
119   /// analysis.
120   SmallVector<SDValue, 8> PendingLoads;
121 
122   /// State used while lowering a statepoint sequence (gc_statepoint,
123   /// gc_relocate, and gc_result).  See StatepointLowering.hpp/cpp for details.
124   StatepointLoweringState StatepointLowering;
125 private:
126 
127   /// PendingExports - CopyToReg nodes that copy values to virtual registers
128   /// for export to other blocks need to be emitted before any terminator
129   /// instruction, but they have no other ordering requirements. We bunch them
130   /// up and the emit a single tokenfactor for them just before terminator
131   /// instructions.
132   SmallVector<SDValue, 8> PendingExports;
133 
134   /// SDNodeOrder - A unique monotonically increasing number used to order the
135   /// SDNodes we create.
136   unsigned SDNodeOrder;
137 
138   enum CaseClusterKind {
139     /// A cluster of adjacent case labels with the same destination, or just one
140     /// case.
141     CC_Range,
142     /// A cluster of cases suitable for jump table lowering.
143     CC_JumpTable,
144     /// A cluster of cases suitable for bit test lowering.
145     CC_BitTests
146   };
147 
148   /// A cluster of case labels.
149   struct CaseCluster {
150     CaseClusterKind Kind;
151     const ConstantInt *Low, *High;
152     union {
153       MachineBasicBlock *MBB;
154       unsigned JTCasesIndex;
155       unsigned BTCasesIndex;
156     };
157     BranchProbability Prob;
158 
rangeCaseCluster159     static CaseCluster range(const ConstantInt *Low, const ConstantInt *High,
160                              MachineBasicBlock *MBB, BranchProbability Prob) {
161       CaseCluster C;
162       C.Kind = CC_Range;
163       C.Low = Low;
164       C.High = High;
165       C.MBB = MBB;
166       C.Prob = Prob;
167       return C;
168     }
169 
jumpTableCaseCluster170     static CaseCluster jumpTable(const ConstantInt *Low,
171                                  const ConstantInt *High, unsigned JTCasesIndex,
172                                  BranchProbability Prob) {
173       CaseCluster C;
174       C.Kind = CC_JumpTable;
175       C.Low = Low;
176       C.High = High;
177       C.JTCasesIndex = JTCasesIndex;
178       C.Prob = Prob;
179       return C;
180     }
181 
bitTestsCaseCluster182     static CaseCluster bitTests(const ConstantInt *Low, const ConstantInt *High,
183                                 unsigned BTCasesIndex, BranchProbability Prob) {
184       CaseCluster C;
185       C.Kind = CC_BitTests;
186       C.Low = Low;
187       C.High = High;
188       C.BTCasesIndex = BTCasesIndex;
189       C.Prob = Prob;
190       return C;
191     }
192   };
193 
194   typedef std::vector<CaseCluster> CaseClusterVector;
195   typedef CaseClusterVector::iterator CaseClusterIt;
196 
197   struct CaseBits {
198     uint64_t Mask;
199     MachineBasicBlock* BB;
200     unsigned Bits;
201     BranchProbability ExtraProb;
202 
CaseBitsCaseBits203     CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits,
204              BranchProbability Prob):
205       Mask(mask), BB(bb), Bits(bits), ExtraProb(Prob) { }
206 
CaseBitsCaseBits207     CaseBits() : Mask(0), BB(nullptr), Bits(0) {}
208   };
209 
210   typedef std::vector<CaseBits> CaseBitsVector;
211 
212   /// Sort Clusters and merge adjacent cases.
213   void sortAndRangeify(CaseClusterVector &Clusters);
214 
215   /// CaseBlock - This structure is used to communicate between
216   /// SelectionDAGBuilder and SDISel for the code generation of additional basic
217   /// blocks needed by multi-case switch statements.
218   struct CaseBlock {
219     CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
220               const Value *cmpmiddle, MachineBasicBlock *truebb,
221               MachineBasicBlock *falsebb, MachineBasicBlock *me,
222               BranchProbability trueprob = BranchProbability::getUnknown(),
223               BranchProbability falseprob = BranchProbability::getUnknown())
CCCaseBlock224         : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
225           TrueBB(truebb), FalseBB(falsebb), ThisBB(me), TrueProb(trueprob),
226           FalseProb(falseprob) {}
227 
228     // CC - the condition code to use for the case block's setcc node
229     ISD::CondCode CC;
230 
231     // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
232     // Emit by default LHS op RHS. MHS is used for range comparisons:
233     // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
234     const Value *CmpLHS, *CmpMHS, *CmpRHS;
235 
236     // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
237     MachineBasicBlock *TrueBB, *FalseBB;
238 
239     // ThisBB - the block into which to emit the code for the setcc and branches
240     MachineBasicBlock *ThisBB;
241 
242     // TrueProb/FalseProb - branch weights.
243     BranchProbability TrueProb, FalseProb;
244   };
245 
246   struct JumpTable {
JumpTableJumpTable247     JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
248               MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
249 
250     /// Reg - the virtual register containing the index of the jump table entry
251     //. to jump to.
252     unsigned Reg;
253     /// JTI - the JumpTableIndex for this jump table in the function.
254     unsigned JTI;
255     /// MBB - the MBB into which to emit the code for the indirect jump.
256     MachineBasicBlock *MBB;
257     /// Default - the MBB of the default bb, which is a successor of the range
258     /// check MBB.  This is when updating PHI nodes in successors.
259     MachineBasicBlock *Default;
260   };
261   struct JumpTableHeader {
262     JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
263                     bool E = false):
FirstJumpTableHeader264       First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
265     APInt First;
266     APInt Last;
267     const Value *SValue;
268     MachineBasicBlock *HeaderBB;
269     bool Emitted;
270   };
271   typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
272 
273   struct BitTestCase {
BitTestCaseBitTestCase274     BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr,
275                 BranchProbability Prob):
276       Mask(M), ThisBB(T), TargetBB(Tr), ExtraProb(Prob) { }
277     uint64_t Mask;
278     MachineBasicBlock *ThisBB;
279     MachineBasicBlock *TargetBB;
280     BranchProbability ExtraProb;
281   };
282 
283   typedef SmallVector<BitTestCase, 3> BitTestInfo;
284 
285   struct BitTestBlock {
BitTestBlockBitTestBlock286     BitTestBlock(APInt F, APInt R, const Value *SV, unsigned Rg, MVT RgVT,
287                  bool E, bool CR, MachineBasicBlock *P, MachineBasicBlock *D,
288                  BitTestInfo C, BranchProbability Pr)
289         : First(F), Range(R), SValue(SV), Reg(Rg), RegVT(RgVT), Emitted(E),
290           ContiguousRange(CR), Parent(P), Default(D), Cases(std::move(C)),
291           Prob(Pr) {}
292     APInt First;
293     APInt Range;
294     const Value *SValue;
295     unsigned Reg;
296     MVT RegVT;
297     bool Emitted;
298     bool ContiguousRange;
299     MachineBasicBlock *Parent;
300     MachineBasicBlock *Default;
301     BitTestInfo Cases;
302     BranchProbability Prob;
303     BranchProbability DefaultProb;
304   };
305 
306   /// Minimum jump table density, in percent.
307   enum { MinJumpTableDensity = 40 };
308 
309   /// Check whether a range of clusters is dense enough for a jump table.
310   bool isDense(const CaseClusterVector &Clusters, unsigned *TotalCases,
311                unsigned First, unsigned Last);
312 
313   /// Build a jump table cluster from Clusters[First..Last]. Returns false if it
314   /// decides it's not a good idea.
315   bool buildJumpTable(CaseClusterVector &Clusters, unsigned First,
316                       unsigned Last, const SwitchInst *SI,
317                       MachineBasicBlock *DefaultMBB, CaseCluster &JTCluster);
318 
319   /// Find clusters of cases suitable for jump table lowering.
320   void findJumpTables(CaseClusterVector &Clusters, const SwitchInst *SI,
321                       MachineBasicBlock *DefaultMBB);
322 
323   /// Check whether the range [Low,High] fits in a machine word.
324   bool rangeFitsInWord(const APInt &Low, const APInt &High);
325 
326   /// Check whether these clusters are suitable for lowering with bit tests based
327   /// on the number of destinations, comparison metric, and range.
328   bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps,
329                              const APInt &Low, const APInt &High);
330 
331   /// Build a bit test cluster from Clusters[First..Last]. Returns false if it
332   /// decides it's not a good idea.
333   bool buildBitTests(CaseClusterVector &Clusters, unsigned First, unsigned Last,
334                      const SwitchInst *SI, CaseCluster &BTCluster);
335 
336   /// Find clusters of cases suitable for bit test lowering.
337   void findBitTestClusters(CaseClusterVector &Clusters, const SwitchInst *SI);
338 
339   struct SwitchWorkListItem {
340     MachineBasicBlock *MBB;
341     CaseClusterIt FirstCluster;
342     CaseClusterIt LastCluster;
343     const ConstantInt *GE;
344     const ConstantInt *LT;
345     BranchProbability DefaultProb;
346   };
347   typedef SmallVector<SwitchWorkListItem, 4> SwitchWorkList;
348 
349   /// Determine the rank by weight of CC in [First,Last]. If CC has more weight
350   /// than each cluster in the range, its rank is 0.
351   static unsigned caseClusterRank(const CaseCluster &CC, CaseClusterIt First,
352                                   CaseClusterIt Last);
353 
354   /// Emit comparison and split W into two subtrees.
355   void splitWorkItem(SwitchWorkList &WorkList, const SwitchWorkListItem &W,
356                      Value *Cond, MachineBasicBlock *SwitchMBB);
357 
358   /// Lower W.
359   void lowerWorkItem(SwitchWorkListItem W, Value *Cond,
360                      MachineBasicBlock *SwitchMBB,
361                      MachineBasicBlock *DefaultMBB);
362 
363 
364   /// A class which encapsulates all of the information needed to generate a
365   /// stack protector check and signals to isel via its state being initialized
366   /// that a stack protector needs to be generated.
367   ///
368   /// *NOTE* The following is a high level documentation of SelectionDAG Stack
369   /// Protector Generation. The reason that it is placed here is for a lack of
370   /// other good places to stick it.
371   ///
372   /// High Level Overview of SelectionDAG Stack Protector Generation:
373   ///
374   /// Previously, generation of stack protectors was done exclusively in the
375   /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
376   /// splitting basic blocks at the IR level to create the success/failure basic
377   /// blocks in the tail of the basic block in question. As a result of this,
378   /// calls that would have qualified for the sibling call optimization were no
379   /// longer eligible for optimization since said calls were no longer right in
380   /// the "tail position" (i.e. the immediate predecessor of a ReturnInst
381   /// instruction).
382   ///
383   /// Then it was noticed that since the sibling call optimization causes the
384   /// callee to reuse the caller's stack, if we could delay the generation of
385   /// the stack protector check until later in CodeGen after the sibling call
386   /// decision was made, we get both the tail call optimization and the stack
387   /// protector check!
388   ///
389   /// A few goals in solving this problem were:
390   ///
391   ///   1. Preserve the architecture independence of stack protector generation.
392   ///
393   ///   2. Preserve the normal IR level stack protector check for platforms like
394   ///      OpenBSD for which we support platform-specific stack protector
395   ///      generation.
396   ///
397   /// The main problem that guided the present solution is that one can not
398   /// solve this problem in an architecture independent manner at the IR level
399   /// only. This is because:
400   ///
401   ///   1. The decision on whether or not to perform a sibling call on certain
402   ///      platforms (for instance i386) requires lower level information
403   ///      related to available registers that can not be known at the IR level.
404   ///
405   ///   2. Even if the previous point were not true, the decision on whether to
406   ///      perform a tail call is done in LowerCallTo in SelectionDAG which
407   ///      occurs after the Stack Protector Pass. As a result, one would need to
408   ///      put the relevant callinst into the stack protector check success
409   ///      basic block (where the return inst is placed) and then move it back
410   ///      later at SelectionDAG/MI time before the stack protector check if the
411   ///      tail call optimization failed. The MI level option was nixed
412   ///      immediately since it would require platform-specific pattern
413   ///      matching. The SelectionDAG level option was nixed because
414   ///      SelectionDAG only processes one IR level basic block at a time
415   ///      implying one could not create a DAG Combine to move the callinst.
416   ///
417   /// To get around this problem a few things were realized:
418   ///
419   ///   1. While one can not handle multiple IR level basic blocks at the
420   ///      SelectionDAG Level, one can generate multiple machine basic blocks
421   ///      for one IR level basic block. This is how we handle bit tests and
422   ///      switches.
423   ///
424   ///   2. At the MI level, tail calls are represented via a special return
425   ///      MIInst called "tcreturn". Thus if we know the basic block in which we
426   ///      wish to insert the stack protector check, we get the correct behavior
427   ///      by always inserting the stack protector check right before the return
428   ///      statement. This is a "magical transformation" since no matter where
429   ///      the stack protector check intrinsic is, we always insert the stack
430   ///      protector check code at the end of the BB.
431   ///
432   /// Given the aforementioned constraints, the following solution was devised:
433   ///
434   ///   1. On platforms that do not support SelectionDAG stack protector check
435   ///      generation, allow for the normal IR level stack protector check
436   ///      generation to continue.
437   ///
438   ///   2. On platforms that do support SelectionDAG stack protector check
439   ///      generation:
440   ///
441   ///     a. Use the IR level stack protector pass to decide if a stack
442   ///        protector is required/which BB we insert the stack protector check
443   ///        in by reusing the logic already therein. If we wish to generate a
444   ///        stack protector check in a basic block, we place a special IR
445   ///        intrinsic called llvm.stackprotectorcheck right before the BB's
446   ///        returninst or if there is a callinst that could potentially be
447   ///        sibling call optimized, before the call inst.
448   ///
449   ///     b. Then when a BB with said intrinsic is processed, we codegen the BB
450   ///        normally via SelectBasicBlock. In said process, when we visit the
451   ///        stack protector check, we do not actually emit anything into the
452   ///        BB. Instead, we just initialize the stack protector descriptor
453   ///        class (which involves stashing information/creating the success
454   ///        mbbb and the failure mbb if we have not created one for this
455   ///        function yet) and export the guard variable that we are going to
456   ///        compare.
457   ///
458   ///     c. After we finish selecting the basic block, in FinishBasicBlock if
459   ///        the StackProtectorDescriptor attached to the SelectionDAGBuilder is
460   ///        initialized, we first find a splice point in the parent basic block
461   ///        before the terminator and then splice the terminator of said basic
462   ///        block into the success basic block. Then we code-gen a new tail for
463   ///        the parent basic block consisting of the two loads, the comparison,
464   ///        and finally two branches to the success/failure basic blocks. We
465   ///        conclude by code-gening the failure basic block if we have not
466   ///        code-gened it already (all stack protector checks we generate in
467   ///        the same function, use the same failure basic block).
468   class StackProtectorDescriptor {
469   public:
StackProtectorDescriptor()470     StackProtectorDescriptor() : ParentMBB(nullptr), SuccessMBB(nullptr),
471                                  FailureMBB(nullptr), Guard(nullptr),
472                                  GuardReg(0) { }
473 
474     /// Returns true if all fields of the stack protector descriptor are
475     /// initialized implying that we should/are ready to emit a stack protector.
shouldEmitStackProtector()476     bool shouldEmitStackProtector() const {
477       return ParentMBB && SuccessMBB && FailureMBB && Guard;
478     }
479 
480     /// Initialize the stack protector descriptor structure for a new basic
481     /// block.
initialize(const BasicBlock * BB,MachineBasicBlock * MBB,const CallInst & StackProtCheckCall)482     void initialize(const BasicBlock *BB,
483                     MachineBasicBlock *MBB,
484                     const CallInst &StackProtCheckCall) {
485       // Make sure we are not initialized yet.
486       assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
487              "already initialized!");
488       ParentMBB = MBB;
489       SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true);
490       FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB);
491       if (!Guard)
492         Guard = StackProtCheckCall.getArgOperand(0);
493     }
494 
495     /// Reset state that changes when we handle different basic blocks.
496     ///
497     /// This currently includes:
498     ///
499     /// 1. The specific basic block we are generating a
500     /// stack protector for (ParentMBB).
501     ///
502     /// 2. The successor machine basic block that will contain the tail of
503     /// parent mbb after we create the stack protector check (SuccessMBB). This
504     /// BB is visited only on stack protector check success.
resetPerBBState()505     void resetPerBBState() {
506       ParentMBB = nullptr;
507       SuccessMBB = nullptr;
508     }
509 
510     /// Reset state that only changes when we switch functions.
511     ///
512     /// This currently includes:
513     ///
514     /// 1. FailureMBB since we reuse the failure code path for all stack
515     /// protector checks created in an individual function.
516     ///
517     /// 2.The guard variable since the guard variable we are checking against is
518     /// always the same.
resetPerFunctionState()519     void resetPerFunctionState() {
520       FailureMBB = nullptr;
521       Guard = nullptr;
522       GuardReg = 0;
523     }
524 
getParentMBB()525     MachineBasicBlock *getParentMBB() { return ParentMBB; }
getSuccessMBB()526     MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
getFailureMBB()527     MachineBasicBlock *getFailureMBB() { return FailureMBB; }
getGuard()528     const Value *getGuard() { return Guard; }
529 
getGuardReg()530     unsigned getGuardReg() const { return GuardReg; }
setGuardReg(unsigned R)531     void setGuardReg(unsigned R) { GuardReg = R; }
532 
533   private:
534     /// The basic block for which we are generating the stack protector.
535     ///
536     /// As a result of stack protector generation, we will splice the
537     /// terminators of this basic block into the successor mbb SuccessMBB and
538     /// replace it with a compare/branch to the successor mbbs
539     /// SuccessMBB/FailureMBB depending on whether or not the stack protector
540     /// was violated.
541     MachineBasicBlock *ParentMBB;
542 
543     /// A basic block visited on stack protector check success that contains the
544     /// terminators of ParentMBB.
545     MachineBasicBlock *SuccessMBB;
546 
547     /// This basic block visited on stack protector check failure that will
548     /// contain a call to __stack_chk_fail().
549     MachineBasicBlock *FailureMBB;
550 
551     /// The guard variable which we will compare against the stored value in the
552     /// stack protector stack slot.
553     const Value *Guard;
554 
555     /// The virtual register holding the stack guard value.
556     unsigned GuardReg;
557 
558     /// Add a successor machine basic block to ParentMBB. If the successor mbb
559     /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
560     /// block will be created. Assign a large weight if IsLikely is true.
561     MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
562                                        MachineBasicBlock *ParentMBB,
563                                        bool IsLikely,
564                                        MachineBasicBlock *SuccMBB = nullptr);
565   };
566 
567 private:
568   const TargetMachine &TM;
569 public:
570   /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling
571   /// nodes without a corresponding SDNode.
572   static const unsigned LowestSDNodeOrder = 1;
573 
574   SelectionDAG &DAG;
575   const DataLayout *DL;
576   AliasAnalysis *AA;
577   const TargetLibraryInfo *LibInfo;
578 
579   /// SwitchCases - Vector of CaseBlock structures used to communicate
580   /// SwitchInst code generation information.
581   std::vector<CaseBlock> SwitchCases;
582   /// JTCases - Vector of JumpTable structures used to communicate
583   /// SwitchInst code generation information.
584   std::vector<JumpTableBlock> JTCases;
585   /// BitTestCases - Vector of BitTestBlock structures used to communicate
586   /// SwitchInst code generation information.
587   std::vector<BitTestBlock> BitTestCases;
588   /// A StackProtectorDescriptor structure used to communicate stack protector
589   /// information in between SelectBasicBlock and FinishBasicBlock.
590   StackProtectorDescriptor SPDescriptor;
591 
592   // Emit PHI-node-operand constants only once even if used by multiple
593   // PHI nodes.
594   DenseMap<const Constant *, unsigned> ConstantsOut;
595 
596   /// FuncInfo - Information about the function as a whole.
597   ///
598   FunctionLoweringInfo &FuncInfo;
599 
600   /// GFI - Garbage collection metadata for the function.
601   GCFunctionInfo *GFI;
602 
603   /// LPadToCallSiteMap - Map a landing pad to the call site indexes.
604   DenseMap<MachineBasicBlock*, SmallVector<unsigned, 4> > LPadToCallSiteMap;
605 
606   /// HasTailCall - This is set to true if a call in the current
607   /// block has been translated as a tail call. In this case,
608   /// no subsequent DAG nodes should be created.
609   ///
610   bool HasTailCall;
611 
612   LLVMContext *Context;
613 
SelectionDAGBuilder(SelectionDAG & dag,FunctionLoweringInfo & funcinfo,CodeGenOpt::Level ol)614   SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
615                       CodeGenOpt::Level ol)
616     : CurInst(nullptr), SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()),
617       DAG(dag), FuncInfo(funcinfo),
618       HasTailCall(false) {
619   }
620 
621   void init(GCFunctionInfo *gfi, AliasAnalysis &aa,
622             const TargetLibraryInfo *li);
623 
624   /// clear - Clear out the current SelectionDAG and the associated
625   /// state and prepare this SelectionDAGBuilder object to be used
626   /// for a new block. This doesn't clear out information about
627   /// additional blocks that are needed to complete switch lowering
628   /// or PHI node updating; that information is cleared out as it is
629   /// consumed.
630   void clear();
631 
632   /// clearDanglingDebugInfo - Clear the dangling debug information
633   /// map. This function is separated from the clear so that debug
634   /// information that is dangling in a basic block can be properly
635   /// resolved in a different basic block. This allows the
636   /// SelectionDAG to resolve dangling debug information attached
637   /// to PHI nodes.
638   void clearDanglingDebugInfo();
639 
640   /// getRoot - Return the current virtual root of the Selection DAG,
641   /// flushing any PendingLoad items. This must be done before emitting
642   /// a store or any other node that may need to be ordered after any
643   /// prior load instructions.
644   ///
645   SDValue getRoot();
646 
647   /// getControlRoot - Similar to getRoot, but instead of flushing all the
648   /// PendingLoad items, flush all the PendingExports items. It is necessary
649   /// to do this before emitting a terminator instruction.
650   ///
651   SDValue getControlRoot();
652 
getCurSDLoc()653   SDLoc getCurSDLoc() const {
654     return SDLoc(CurInst, SDNodeOrder);
655   }
656 
getCurDebugLoc()657   DebugLoc getCurDebugLoc() const {
658     return CurInst ? CurInst->getDebugLoc() : DebugLoc();
659   }
660 
getSDNodeOrder()661   unsigned getSDNodeOrder() const { return SDNodeOrder; }
662 
663   void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
664 
665   void visit(const Instruction &I);
666 
667   void visit(unsigned Opcode, const User &I);
668 
669   /// getCopyFromRegs - If there was virtual register allocated for the value V
670   /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
671   SDValue getCopyFromRegs(const Value *V, Type *Ty);
672 
673   // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
674   // generate the debug data structures now that we've seen its definition.
675   void resolveDanglingDebugInfo(const Value *V, SDValue Val);
676   SDValue getValue(const Value *V);
677   bool findValue(const Value *V) const;
678 
679   SDValue getNonRegisterValue(const Value *V);
680   SDValue getValueImpl(const Value *V);
681 
setValue(const Value * V,SDValue NewN)682   void setValue(const Value *V, SDValue NewN) {
683     SDValue &N = NodeMap[V];
684     assert(!N.getNode() && "Already set a value for this node!");
685     N = NewN;
686   }
687 
setUnusedArgValue(const Value * V,SDValue NewN)688   void setUnusedArgValue(const Value *V, SDValue NewN) {
689     SDValue &N = UnusedArgNodeMap[V];
690     assert(!N.getNode() && "Already set a value for this node!");
691     N = NewN;
692   }
693 
694   void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
695                             MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
696                             MachineBasicBlock *SwitchBB,
697                             Instruction::BinaryOps Opc, BranchProbability TW,
698                             BranchProbability FW);
699   void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
700                                     MachineBasicBlock *FBB,
701                                     MachineBasicBlock *CurBB,
702                                     MachineBasicBlock *SwitchBB,
703                                     BranchProbability TW, BranchProbability FW);
704   bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
705   bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
706   void CopyToExportRegsIfNeeded(const Value *V);
707   void ExportFromCurrentBlock(const Value *V);
708   void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
709                    const BasicBlock *EHPadBB = nullptr);
710 
711   std::pair<SDValue, SDValue> lowerCallOperands(
712           ImmutableCallSite CS,
713           unsigned ArgIdx,
714           unsigned NumArgs,
715           SDValue Callee,
716           Type *ReturnTy,
717           const BasicBlock *EHPadBB = nullptr,
718           bool IsPatchPoint = false);
719 
720   /// UpdateSplitBlock - When an MBB was split during scheduling, update the
721   /// references that need to refer to the last resulting block.
722   void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
723 
724   // This function is responsible for the whole statepoint lowering process.
725   // It uniformly handles invoke and call statepoints.
726   void LowerStatepoint(ImmutableStatepoint Statepoint,
727                        const BasicBlock *EHPadBB = nullptr);
728 private:
729   std::pair<SDValue, SDValue>
730   lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
731                  const BasicBlock *EHPadBB = nullptr);
732 
733   // Terminator instructions.
734   void visitRet(const ReturnInst &I);
735   void visitBr(const BranchInst &I);
736   void visitSwitch(const SwitchInst &I);
737   void visitIndirectBr(const IndirectBrInst &I);
738   void visitUnreachable(const UnreachableInst &I);
739   void visitCleanupRet(const CleanupReturnInst &I);
740   void visitCatchSwitch(const CatchSwitchInst &I);
741   void visitCatchRet(const CatchReturnInst &I);
742   void visitCatchPad(const CatchPadInst &I);
743   void visitCleanupPad(const CleanupPadInst &CPI);
744 
745   BranchProbability getEdgeProbability(const MachineBasicBlock *Src,
746                                        const MachineBasicBlock *Dst) const;
747   void addSuccessorWithProb(
748       MachineBasicBlock *Src, MachineBasicBlock *Dst,
749       BranchProbability Prob = BranchProbability::getUnknown());
750 
751 public:
752   void visitSwitchCase(CaseBlock &CB,
753                        MachineBasicBlock *SwitchBB);
754   void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
755                                MachineBasicBlock *ParentBB);
756   void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
757   void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
758   void visitBitTestCase(BitTestBlock &BB,
759                         MachineBasicBlock* NextMBB,
760                         BranchProbability BranchProbToNext,
761                         unsigned Reg,
762                         BitTestCase &B,
763                         MachineBasicBlock *SwitchBB);
764   void visitJumpTable(JumpTable &JT);
765   void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
766                             MachineBasicBlock *SwitchBB);
767 
768 private:
769   // These all get lowered before this pass.
770   void visitInvoke(const InvokeInst &I);
771   void visitResume(const ResumeInst &I);
772 
773   void visitBinary(const User &I, unsigned OpCode);
774   void visitShift(const User &I, unsigned Opcode);
visitAdd(const User & I)775   void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); }
visitFAdd(const User & I)776   void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
visitSub(const User & I)777   void visitSub(const User &I)  { visitBinary(I, ISD::SUB); }
778   void visitFSub(const User &I);
visitMul(const User & I)779   void visitMul(const User &I)  { visitBinary(I, ISD::MUL); }
visitFMul(const User & I)780   void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
visitURem(const User & I)781   void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
visitSRem(const User & I)782   void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
visitFRem(const User & I)783   void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
visitUDiv(const User & I)784   void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
785   void visitSDiv(const User &I);
visitFDiv(const User & I)786   void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
visitAnd(const User & I)787   void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
visitOr(const User & I)788   void visitOr  (const User &I) { visitBinary(I, ISD::OR); }
visitXor(const User & I)789   void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
visitShl(const User & I)790   void visitShl (const User &I) { visitShift(I, ISD::SHL); }
visitLShr(const User & I)791   void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
visitAShr(const User & I)792   void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
793   void visitICmp(const User &I);
794   void visitFCmp(const User &I);
795   // Visit the conversion instructions
796   void visitTrunc(const User &I);
797   void visitZExt(const User &I);
798   void visitSExt(const User &I);
799   void visitFPTrunc(const User &I);
800   void visitFPExt(const User &I);
801   void visitFPToUI(const User &I);
802   void visitFPToSI(const User &I);
803   void visitUIToFP(const User &I);
804   void visitSIToFP(const User &I);
805   void visitPtrToInt(const User &I);
806   void visitIntToPtr(const User &I);
807   void visitBitCast(const User &I);
808   void visitAddrSpaceCast(const User &I);
809 
810   void visitExtractElement(const User &I);
811   void visitInsertElement(const User &I);
812   void visitShuffleVector(const User &I);
813 
814   void visitExtractValue(const ExtractValueInst &I);
815   void visitInsertValue(const InsertValueInst &I);
816   void visitLandingPad(const LandingPadInst &I);
817 
818   void visitGetElementPtr(const User &I);
819   void visitSelect(const User &I);
820 
821   void visitAlloca(const AllocaInst &I);
822   void visitLoad(const LoadInst &I);
823   void visitStore(const StoreInst &I);
824   void visitMaskedLoad(const CallInst &I);
825   void visitMaskedStore(const CallInst &I);
826   void visitMaskedGather(const CallInst &I);
827   void visitMaskedScatter(const CallInst &I);
828   void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
829   void visitAtomicRMW(const AtomicRMWInst &I);
830   void visitFence(const FenceInst &I);
831   void visitPHI(const PHINode &I);
832   void visitCall(const CallInst &I);
833   bool visitMemCmpCall(const CallInst &I);
834   bool visitMemChrCall(const CallInst &I);
835   bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
836   bool visitStrCmpCall(const CallInst &I);
837   bool visitStrLenCall(const CallInst &I);
838   bool visitStrNLenCall(const CallInst &I);
839   bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
840   bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode);
841   void visitAtomicLoad(const LoadInst &I);
842   void visitAtomicStore(const StoreInst &I);
843 
844   void visitInlineAsm(ImmutableCallSite CS);
845   const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
846   void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
847 
848   void visitVAStart(const CallInst &I);
849   void visitVAArg(const VAArgInst &I);
850   void visitVAEnd(const CallInst &I);
851   void visitVACopy(const CallInst &I);
852   void visitStackmap(const CallInst &I);
853   void visitPatchpoint(ImmutableCallSite CS,
854                        const BasicBlock *EHPadBB = nullptr);
855 
856   // These three are implemented in StatepointLowering.cpp
857   void visitStatepoint(const CallInst &I);
858   void visitGCRelocate(const CallInst &I);
859   void visitGCResult(const CallInst &I);
860 
visitUserOp1(const Instruction & I)861   void visitUserOp1(const Instruction &I) {
862     llvm_unreachable("UserOp1 should not exist at instruction selection time!");
863   }
visitUserOp2(const Instruction & I)864   void visitUserOp2(const Instruction &I) {
865     llvm_unreachable("UserOp2 should not exist at instruction selection time!");
866   }
867 
868   void processIntegerCallValue(const Instruction &I,
869                                SDValue Value, bool IsSigned);
870 
871   void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
872 
873   /// EmitFuncArgumentDbgValue - If V is an function argument then create
874   /// corresponding DBG_VALUE machine instruction for it now. At the end of
875   /// instruction selection, they will be inserted to the entry BB.
876   bool EmitFuncArgumentDbgValue(const Value *V, DILocalVariable *Variable,
877                                 DIExpression *Expr, DILocation *DL,
878                                 int64_t Offset, bool IsIndirect,
879                                 const SDValue &N);
880 
881   /// Return the next block after MBB, or nullptr if there is none.
882   MachineBasicBlock *NextBlock(MachineBasicBlock *MBB);
883 
884   /// Update the DAG and DAG builder with the relevant information after
885   /// a new root node has been created which could be a tail call.
886   void updateDAGForMaybeTailCall(SDValue MaybeTC);
887 };
888 
889 /// RegsForValue - This struct represents the registers (physical or virtual)
890 /// that a particular set of values is assigned, and the type information about
891 /// the value. The most common situation is to represent one value at a time,
892 /// but struct or array values are handled element-wise as multiple values.  The
893 /// splitting of aggregates is performed recursively, so that we never have
894 /// aggregate-typed registers. The values at this point do not necessarily have
895 /// legal types, so each value may require one or more registers of some legal
896 /// type.
897 ///
898 struct RegsForValue {
899   /// ValueVTs - The value types of the values, which may not be legal, and
900   /// may need be promoted or synthesized from one or more registers.
901   ///
902   SmallVector<EVT, 4> ValueVTs;
903 
904   /// RegVTs - The value types of the registers. This is the same size as
905   /// ValueVTs and it records, for each value, what the type of the assigned
906   /// register or registers are. (Individual values are never synthesized
907   /// from more than one type of register.)
908   ///
909   /// With virtual registers, the contents of RegVTs is redundant with TLI's
910   /// getRegisterType member function, however when with physical registers
911   /// it is necessary to have a separate record of the types.
912   ///
913   SmallVector<MVT, 4> RegVTs;
914 
915   /// Regs - This list holds the registers assigned to the values.
916   /// Each legal or promoted value requires one register, and each
917   /// expanded value requires multiple registers.
918   ///
919   SmallVector<unsigned, 4> Regs;
920 
921   RegsForValue();
922 
923   RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt, EVT valuevt);
924 
925   RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
926                const DataLayout &DL, unsigned Reg, Type *Ty);
927 
928   /// append - Add the specified values to this one.
appendRegsForValue929   void append(const RegsForValue &RHS) {
930     ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
931     RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
932     Regs.append(RHS.Regs.begin(), RHS.Regs.end());
933   }
934 
935   /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
936   /// this value and returns the result as a ValueVTs value.  This uses
937   /// Chain/Flag as the input and updates them for the output Chain/Flag.
938   /// If the Flag pointer is NULL, no flag is used.
939   SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
940                           SDLoc dl,
941                           SDValue &Chain, SDValue *Flag,
942                           const Value *V = nullptr) const;
943 
944   /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the specified
945   /// value into the registers specified by this object.  This uses Chain/Flag
946   /// as the input and updates them for the output Chain/Flag.  If the Flag
947   /// pointer is nullptr, no flag is used.  If V is not nullptr, then it is used
948   /// in printing better diagnostic messages on error.
949   void
950   getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain,
951                 SDValue *Flag, const Value *V = nullptr,
952                 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const;
953 
954   /// AddInlineAsmOperands - Add this value to the specified inlineasm node
955   /// operand list.  This adds the code marker, matching input operand index
956   /// (if applicable), and includes the number of values added into it.
957   void AddInlineAsmOperands(unsigned Kind,
958                             bool HasMatching, unsigned MatchingIdx, SDLoc dl,
959                             SelectionDAG &DAG,
960                             std::vector<SDValue> &Ops) const;
961 };
962 
963 } // end namespace llvm
964 
965 #endif
966