1 //===-- SpillPlacement.cpp - Optimal Spill Code Placement -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the spill code placement analysis.
11 //
12 // Each edge bundle corresponds to a node in a Hopfield network. Constraints on
13 // basic blocks are weighted by the block frequency and added to become the node
14 // bias.
15 //
16 // Transparent basic blocks have the variable live through, but don't care if it
17 // is spilled or in a register. These blocks become connections in the Hopfield
18 // network, again weighted by block frequency.
19 //
20 // The Hopfield network minimizes (possibly locally) its energy function:
21 //
22 //   E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
23 //
24 // The energy function represents the expected spill code execution frequency,
25 // or the cost of spilling. This is a Lyapunov function which never increases
26 // when a node is updated. It is guaranteed to converge to a local minimum.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "SpillPlacement.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/CodeGen/EdgeBundles.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineLoopInfo.h"
37 #include "llvm/CodeGen/Passes.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ManagedStatic.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "spillplacement"
44 
45 char SpillPlacement::ID = 0;
46 INITIALIZE_PASS_BEGIN(SpillPlacement, "spill-code-placement",
47                       "Spill Code Placement Analysis", true, true)
48 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
49 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
50 INITIALIZE_PASS_END(SpillPlacement, "spill-code-placement",
51                     "Spill Code Placement Analysis", true, true)
52 
53 char &llvm::SpillPlacementID = SpillPlacement::ID;
54 
getAnalysisUsage(AnalysisUsage & AU) const55 void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
56   AU.setPreservesAll();
57   AU.addRequired<MachineBlockFrequencyInfo>();
58   AU.addRequiredTransitive<EdgeBundles>();
59   AU.addRequiredTransitive<MachineLoopInfo>();
60   MachineFunctionPass::getAnalysisUsage(AU);
61 }
62 
63 /// Node - Each edge bundle corresponds to a Hopfield node.
64 ///
65 /// The node contains precomputed frequency data that only depends on the CFG,
66 /// but Bias and Links are computed each time placeSpills is called.
67 ///
68 /// The node Value is positive when the variable should be in a register. The
69 /// value can change when linked nodes change, but convergence is very fast
70 /// because all weights are positive.
71 ///
72 struct SpillPlacement::Node {
73   /// BiasN - Sum of blocks that prefer a spill.
74   BlockFrequency BiasN;
75   /// BiasP - Sum of blocks that prefer a register.
76   BlockFrequency BiasP;
77 
78   /// Value - Output value of this node computed from the Bias and links.
79   /// This is always on of the values {-1, 0, 1}. A positive number means the
80   /// variable should go in a register through this bundle.
81   int Value;
82 
83   typedef SmallVector<std::pair<BlockFrequency, unsigned>, 4> LinkVector;
84 
85   /// Links - (Weight, BundleNo) for all transparent blocks connecting to other
86   /// bundles. The weights are all positive block frequencies.
87   LinkVector Links;
88 
89   /// SumLinkWeights - Cached sum of the weights of all links + ThresHold.
90   BlockFrequency SumLinkWeights;
91 
92   /// preferReg - Return true when this node prefers to be in a register.
preferRegSpillPlacement::Node93   bool preferReg() const {
94     // Undecided nodes (Value==0) go on the stack.
95     return Value > 0;
96   }
97 
98   /// mustSpill - Return True if this node is so biased that it must spill.
mustSpillSpillPlacement::Node99   bool mustSpill() const {
100     // We must spill if Bias < -sum(weights) or the MustSpill flag was set.
101     // BiasN is saturated when MustSpill is set, make sure this still returns
102     // true when the RHS saturates. Note that SumLinkWeights includes Threshold.
103     return BiasN >= BiasP + SumLinkWeights;
104   }
105 
106   /// clear - Reset per-query data, but preserve frequencies that only depend on
107   // the CFG.
clearSpillPlacement::Node108   void clear(const BlockFrequency &Threshold) {
109     BiasN = BiasP = Value = 0;
110     SumLinkWeights = Threshold;
111     Links.clear();
112   }
113 
114   /// addLink - Add a link to bundle b with weight w.
addLinkSpillPlacement::Node115   void addLink(unsigned b, BlockFrequency w) {
116     // Update cached sum.
117     SumLinkWeights += w;
118 
119     // There can be multiple links to the same bundle, add them up.
120     for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
121       if (I->second == b) {
122         I->first += w;
123         return;
124       }
125     // This must be the first link to b.
126     Links.push_back(std::make_pair(w, b));
127   }
128 
129   /// addBias - Bias this node.
addBiasSpillPlacement::Node130   void addBias(BlockFrequency freq, BorderConstraint direction) {
131     switch (direction) {
132     default:
133       break;
134     case PrefReg:
135       BiasP += freq;
136       break;
137     case PrefSpill:
138       BiasN += freq;
139       break;
140     case MustSpill:
141       BiasN = BlockFrequency::getMaxFrequency();
142       break;
143     }
144   }
145 
146   /// update - Recompute Value from Bias and Links. Return true when node
147   /// preference changes.
updateSpillPlacement::Node148   bool update(const Node nodes[], const BlockFrequency &Threshold) {
149     // Compute the weighted sum of inputs.
150     BlockFrequency SumN = BiasN;
151     BlockFrequency SumP = BiasP;
152     for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) {
153       if (nodes[I->second].Value == -1)
154         SumN += I->first;
155       else if (nodes[I->second].Value == 1)
156         SumP += I->first;
157     }
158 
159     // Each weighted sum is going to be less than the total frequency of the
160     // bundle. Ideally, we should simply set Value = sign(SumP - SumN), but we
161     // will add a dead zone around 0 for two reasons:
162     //
163     //  1. It avoids arbitrary bias when all links are 0 as is possible during
164     //     initial iterations.
165     //  2. It helps tame rounding errors when the links nominally sum to 0.
166     //
167     bool Before = preferReg();
168     if (SumN >= SumP + Threshold)
169       Value = -1;
170     else if (SumP >= SumN + Threshold)
171       Value = 1;
172     else
173       Value = 0;
174     return Before != preferReg();
175   }
176 };
177 
runOnMachineFunction(MachineFunction & mf)178 bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
179   MF = &mf;
180   bundles = &getAnalysis<EdgeBundles>();
181   loops = &getAnalysis<MachineLoopInfo>();
182 
183   assert(!nodes && "Leaking node array");
184   nodes = new Node[bundles->getNumBundles()];
185 
186   // Compute total ingoing and outgoing block frequencies for all bundles.
187   BlockFrequencies.resize(mf.getNumBlockIDs());
188   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
189   setThreshold(MBFI->getEntryFreq());
190   for (auto &I : mf) {
191     unsigned Num = I.getNumber();
192     BlockFrequencies[Num] = MBFI->getBlockFreq(&I);
193   }
194 
195   // We never change the function.
196   return false;
197 }
198 
releaseMemory()199 void SpillPlacement::releaseMemory() {
200   delete[] nodes;
201   nodes = nullptr;
202 }
203 
204 /// activate - mark node n as active if it wasn't already.
activate(unsigned n)205 void SpillPlacement::activate(unsigned n) {
206   if (ActiveNodes->test(n))
207     return;
208   ActiveNodes->set(n);
209   nodes[n].clear(Threshold);
210 
211   // Very large bundles usually come from big switches, indirect branches,
212   // landing pads, or loops with many 'continue' statements. It is difficult to
213   // allocate registers when so many different blocks are involved.
214   //
215   // Give a small negative bias to large bundles such that a substantial
216   // fraction of the connected blocks need to be interested before we consider
217   // expanding the region through the bundle. This helps compile time by
218   // limiting the number of blocks visited and the number of links in the
219   // Hopfield network.
220   if (bundles->getBlocks(n).size() > 100) {
221     nodes[n].BiasP = 0;
222     nodes[n].BiasN = (MBFI->getEntryFreq() / 16);
223   }
224 }
225 
226 /// \brief Set the threshold for a given entry frequency.
227 ///
228 /// Set the threshold relative to \c Entry.  Since the threshold is used as a
229 /// bound on the open interval (-Threshold;Threshold), 1 is the minimum
230 /// threshold.
setThreshold(const BlockFrequency & Entry)231 void SpillPlacement::setThreshold(const BlockFrequency &Entry) {
232   // Apparently 2 is a good threshold when Entry==2^14, but we need to scale
233   // it.  Divide by 2^13, rounding as appropriate.
234   uint64_t Freq = Entry.getFrequency();
235   uint64_t Scaled = (Freq >> 13) + bool(Freq & (1 << 12));
236   Threshold = std::max(UINT64_C(1), Scaled);
237 }
238 
239 /// addConstraints - Compute node biases and weights from a set of constraints.
240 /// Set a bit in NodeMask for each active node.
addConstraints(ArrayRef<BlockConstraint> LiveBlocks)241 void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) {
242   for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(),
243        E = LiveBlocks.end(); I != E; ++I) {
244     BlockFrequency Freq = BlockFrequencies[I->Number];
245 
246     // Live-in to block?
247     if (I->Entry != DontCare) {
248       unsigned ib = bundles->getBundle(I->Number, 0);
249       activate(ib);
250       nodes[ib].addBias(Freq, I->Entry);
251     }
252 
253     // Live-out from block?
254     if (I->Exit != DontCare) {
255       unsigned ob = bundles->getBundle(I->Number, 1);
256       activate(ob);
257       nodes[ob].addBias(Freq, I->Exit);
258     }
259   }
260 }
261 
262 /// addPrefSpill - Same as addConstraints(PrefSpill)
addPrefSpill(ArrayRef<unsigned> Blocks,bool Strong)263 void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) {
264   for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
265        I != E; ++I) {
266     BlockFrequency Freq = BlockFrequencies[*I];
267     if (Strong)
268       Freq += Freq;
269     unsigned ib = bundles->getBundle(*I, 0);
270     unsigned ob = bundles->getBundle(*I, 1);
271     activate(ib);
272     activate(ob);
273     nodes[ib].addBias(Freq, PrefSpill);
274     nodes[ob].addBias(Freq, PrefSpill);
275   }
276 }
277 
addLinks(ArrayRef<unsigned> Links)278 void SpillPlacement::addLinks(ArrayRef<unsigned> Links) {
279   for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E;
280        ++I) {
281     unsigned Number = *I;
282     unsigned ib = bundles->getBundle(Number, 0);
283     unsigned ob = bundles->getBundle(Number, 1);
284 
285     // Ignore self-loops.
286     if (ib == ob)
287       continue;
288     activate(ib);
289     activate(ob);
290     if (nodes[ib].Links.empty() && !nodes[ib].mustSpill())
291       Linked.push_back(ib);
292     if (nodes[ob].Links.empty() && !nodes[ob].mustSpill())
293       Linked.push_back(ob);
294     BlockFrequency Freq = BlockFrequencies[Number];
295     nodes[ib].addLink(ob, Freq);
296     nodes[ob].addLink(ib, Freq);
297   }
298 }
299 
scanActiveBundles()300 bool SpillPlacement::scanActiveBundles() {
301   Linked.clear();
302   RecentPositive.clear();
303   for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n)) {
304     nodes[n].update(nodes, Threshold);
305     // A node that must spill, or a node without any links is not going to
306     // change its value ever again, so exclude it from iterations.
307     if (nodes[n].mustSpill())
308       continue;
309     if (!nodes[n].Links.empty())
310       Linked.push_back(n);
311     if (nodes[n].preferReg())
312       RecentPositive.push_back(n);
313   }
314   return !RecentPositive.empty();
315 }
316 
317 /// iterate - Repeatedly update the Hopfield nodes until stability or the
318 /// maximum number of iterations is reached.
319 /// @param Linked - Numbers of linked nodes that need updating.
iterate()320 void SpillPlacement::iterate() {
321   // First update the recently positive nodes. They have likely received new
322   // negative bias that will turn them off.
323   while (!RecentPositive.empty())
324     nodes[RecentPositive.pop_back_val()].update(nodes, Threshold);
325 
326   if (Linked.empty())
327     return;
328 
329   // Run up to 10 iterations. The edge bundle numbering is closely related to
330   // basic block numbering, so there is a strong tendency towards chains of
331   // linked nodes with sequential numbers. By scanning the linked nodes
332   // backwards and forwards, we make it very likely that a single node can
333   // affect the entire network in a single iteration. That means very fast
334   // convergence, usually in a single iteration.
335   for (unsigned iteration = 0; iteration != 10; ++iteration) {
336     // Scan backwards, skipping the last node when iteration is not zero. When
337     // iteration is not zero, the last node was just updated.
338     bool Changed = false;
339     for (SmallVectorImpl<unsigned>::const_reverse_iterator I =
340            iteration == 0 ? Linked.rbegin() : std::next(Linked.rbegin()),
341            E = Linked.rend(); I != E; ++I) {
342       unsigned n = *I;
343       if (nodes[n].update(nodes, Threshold)) {
344         Changed = true;
345         if (nodes[n].preferReg())
346           RecentPositive.push_back(n);
347       }
348     }
349     if (!Changed || !RecentPositive.empty())
350       return;
351 
352     // Scan forwards, skipping the first node which was just updated.
353     Changed = false;
354     for (SmallVectorImpl<unsigned>::const_iterator I =
355            std::next(Linked.begin()), E = Linked.end(); I != E; ++I) {
356       unsigned n = *I;
357       if (nodes[n].update(nodes, Threshold)) {
358         Changed = true;
359         if (nodes[n].preferReg())
360           RecentPositive.push_back(n);
361       }
362     }
363     if (!Changed || !RecentPositive.empty())
364       return;
365   }
366 }
367 
prepare(BitVector & RegBundles)368 void SpillPlacement::prepare(BitVector &RegBundles) {
369   Linked.clear();
370   RecentPositive.clear();
371   // Reuse RegBundles as our ActiveNodes vector.
372   ActiveNodes = &RegBundles;
373   ActiveNodes->clear();
374   ActiveNodes->resize(bundles->getNumBundles());
375 }
376 
377 bool
finish()378 SpillPlacement::finish() {
379   assert(ActiveNodes && "Call prepare() first");
380 
381   // Write preferences back to ActiveNodes.
382   bool Perfect = true;
383   for (int n = ActiveNodes->find_first(); n>=0; n = ActiveNodes->find_next(n))
384     if (!nodes[n].preferReg()) {
385       ActiveNodes->reset(n);
386       Perfect = false;
387     }
388   ActiveNodes = nullptr;
389   return Perfect;
390 }
391