1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Value.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/IR/CallSite.h"
19 #include "llvm/IR/Constant.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/InstrTypes.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/Statepoint.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/ManagedStatic.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <algorithm>
37 using namespace llvm;
38
39 //===----------------------------------------------------------------------===//
40 // Value Class
41 //===----------------------------------------------------------------------===//
checkType(Type * Ty)42 static inline Type *checkType(Type *Ty) {
43 assert(Ty && "Value defined with a null type: Error!");
44 return Ty;
45 }
46
Value(Type * ty,unsigned scid)47 Value::Value(Type *ty, unsigned scid)
48 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid),
49 HasValueHandle(0), SubclassOptionalData(0), SubclassData(0),
50 NumUserOperands(0), IsUsedByMD(false), HasName(false) {
51 // FIXME: Why isn't this in the subclass gunk??
52 // Note, we cannot call isa<CallInst> before the CallInst has been
53 // constructed.
54 if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
55 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
56 "invalid CallInst type!");
57 else if (SubclassID != BasicBlockVal &&
58 (SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal))
59 assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
60 "Cannot create non-first-class values except for constants!");
61 }
62
~Value()63 Value::~Value() {
64 // Notify all ValueHandles (if present) that this value is going away.
65 if (HasValueHandle)
66 ValueHandleBase::ValueIsDeleted(this);
67 if (isUsedByMetadata())
68 ValueAsMetadata::handleDeletion(this);
69
70 #ifndef NDEBUG // Only in -g mode...
71 // Check to make sure that there are no uses of this value that are still
72 // around when the value is destroyed. If there are, then we have a dangling
73 // reference and something is wrong. This code is here to print out where
74 // the value is still being referenced.
75 //
76 if (!use_empty()) {
77 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
78 for (auto *U : users())
79 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
80 }
81 #endif
82 assert(use_empty() && "Uses remain when a value is destroyed!");
83
84 // If this value is named, destroy the name. This should not be in a symtab
85 // at this point.
86 destroyValueName();
87 }
88
destroyValueName()89 void Value::destroyValueName() {
90 ValueName *Name = getValueName();
91 if (Name)
92 Name->Destroy();
93 setValueName(nullptr);
94 }
95
hasNUses(unsigned N) const96 bool Value::hasNUses(unsigned N) const {
97 const_use_iterator UI = use_begin(), E = use_end();
98
99 for (; N; --N, ++UI)
100 if (UI == E) return false; // Too few.
101 return UI == E;
102 }
103
hasNUsesOrMore(unsigned N) const104 bool Value::hasNUsesOrMore(unsigned N) const {
105 const_use_iterator UI = use_begin(), E = use_end();
106
107 for (; N; --N, ++UI)
108 if (UI == E) return false; // Too few.
109
110 return true;
111 }
112
isUsedInBasicBlock(const BasicBlock * BB) const113 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
114 // This can be computed either by scanning the instructions in BB, or by
115 // scanning the use list of this Value. Both lists can be very long, but
116 // usually one is quite short.
117 //
118 // Scan both lists simultaneously until one is exhausted. This limits the
119 // search to the shorter list.
120 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
121 const_user_iterator UI = user_begin(), UE = user_end();
122 for (; BI != BE && UI != UE; ++BI, ++UI) {
123 // Scan basic block: Check if this Value is used by the instruction at BI.
124 if (std::find(BI->op_begin(), BI->op_end(), this) != BI->op_end())
125 return true;
126 // Scan use list: Check if the use at UI is in BB.
127 const Instruction *User = dyn_cast<Instruction>(*UI);
128 if (User && User->getParent() == BB)
129 return true;
130 }
131 return false;
132 }
133
getNumUses() const134 unsigned Value::getNumUses() const {
135 return (unsigned)std::distance(use_begin(), use_end());
136 }
137
getSymTab(Value * V,ValueSymbolTable * & ST)138 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
139 ST = nullptr;
140 if (Instruction *I = dyn_cast<Instruction>(V)) {
141 if (BasicBlock *P = I->getParent())
142 if (Function *PP = P->getParent())
143 ST = &PP->getValueSymbolTable();
144 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
145 if (Function *P = BB->getParent())
146 ST = &P->getValueSymbolTable();
147 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
148 if (Module *P = GV->getParent())
149 ST = &P->getValueSymbolTable();
150 } else if (Argument *A = dyn_cast<Argument>(V)) {
151 if (Function *P = A->getParent())
152 ST = &P->getValueSymbolTable();
153 } else {
154 assert(isa<Constant>(V) && "Unknown value type!");
155 return true; // no name is setable for this.
156 }
157 return false;
158 }
159
getValueName() const160 ValueName *Value::getValueName() const {
161 if (!HasName) return nullptr;
162
163 LLVMContext &Ctx = getContext();
164 auto I = Ctx.pImpl->ValueNames.find(this);
165 assert(I != Ctx.pImpl->ValueNames.end() &&
166 "No name entry found!");
167
168 return I->second;
169 }
170
setValueName(ValueName * VN)171 void Value::setValueName(ValueName *VN) {
172 LLVMContext &Ctx = getContext();
173
174 assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
175 "HasName bit out of sync!");
176
177 if (!VN) {
178 if (HasName)
179 Ctx.pImpl->ValueNames.erase(this);
180 HasName = false;
181 return;
182 }
183
184 HasName = true;
185 Ctx.pImpl->ValueNames[this] = VN;
186 }
187
getName() const188 StringRef Value::getName() const {
189 // Make sure the empty string is still a C string. For historical reasons,
190 // some clients want to call .data() on the result and expect it to be null
191 // terminated.
192 if (!hasName())
193 return StringRef("", 0);
194 return getValueName()->getKey();
195 }
196
setNameImpl(const Twine & NewName)197 void Value::setNameImpl(const Twine &NewName) {
198 // Fast path for common IRBuilder case of setName("") when there is no name.
199 if (NewName.isTriviallyEmpty() && !hasName())
200 return;
201
202 SmallString<256> NameData;
203 StringRef NameRef = NewName.toStringRef(NameData);
204 assert(NameRef.find_first_of(0) == StringRef::npos &&
205 "Null bytes are not allowed in names");
206
207 // Name isn't changing?
208 if (getName() == NameRef)
209 return;
210
211 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
212
213 // Get the symbol table to update for this object.
214 ValueSymbolTable *ST;
215 if (getSymTab(this, ST))
216 return; // Cannot set a name on this value (e.g. constant).
217
218 if (!ST) { // No symbol table to update? Just do the change.
219 if (NameRef.empty()) {
220 // Free the name for this value.
221 destroyValueName();
222 return;
223 }
224
225 // NOTE: Could optimize for the case the name is shrinking to not deallocate
226 // then reallocated.
227 destroyValueName();
228
229 // Create the new name.
230 setValueName(ValueName::Create(NameRef));
231 getValueName()->setValue(this);
232 return;
233 }
234
235 // NOTE: Could optimize for the case the name is shrinking to not deallocate
236 // then reallocated.
237 if (hasName()) {
238 // Remove old name.
239 ST->removeValueName(getValueName());
240 destroyValueName();
241
242 if (NameRef.empty())
243 return;
244 }
245
246 // Name is changing to something new.
247 setValueName(ST->createValueName(NameRef, this));
248 }
249
setName(const Twine & NewName)250 void Value::setName(const Twine &NewName) {
251 setNameImpl(NewName);
252 if (Function *F = dyn_cast<Function>(this))
253 F->recalculateIntrinsicID();
254 }
255
takeName(Value * V)256 void Value::takeName(Value *V) {
257 ValueSymbolTable *ST = nullptr;
258 // If this value has a name, drop it.
259 if (hasName()) {
260 // Get the symtab this is in.
261 if (getSymTab(this, ST)) {
262 // We can't set a name on this value, but we need to clear V's name if
263 // it has one.
264 if (V->hasName()) V->setName("");
265 return; // Cannot set a name on this value (e.g. constant).
266 }
267
268 // Remove old name.
269 if (ST)
270 ST->removeValueName(getValueName());
271 destroyValueName();
272 }
273
274 // Now we know that this has no name.
275
276 // If V has no name either, we're done.
277 if (!V->hasName()) return;
278
279 // Get this's symtab if we didn't before.
280 if (!ST) {
281 if (getSymTab(this, ST)) {
282 // Clear V's name.
283 V->setName("");
284 return; // Cannot set a name on this value (e.g. constant).
285 }
286 }
287
288 // Get V's ST, this should always succed, because V has a name.
289 ValueSymbolTable *VST;
290 bool Failure = getSymTab(V, VST);
291 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
292
293 // If these values are both in the same symtab, we can do this very fast.
294 // This works even if both values have no symtab yet.
295 if (ST == VST) {
296 // Take the name!
297 setValueName(V->getValueName());
298 V->setValueName(nullptr);
299 getValueName()->setValue(this);
300 return;
301 }
302
303 // Otherwise, things are slightly more complex. Remove V's name from VST and
304 // then reinsert it into ST.
305
306 if (VST)
307 VST->removeValueName(V->getValueName());
308 setValueName(V->getValueName());
309 V->setValueName(nullptr);
310 getValueName()->setValue(this);
311
312 if (ST)
313 ST->reinsertValue(this);
314 }
315
316 #ifndef NDEBUG
assertModuleIsMaterialized() const317 void Value::assertModuleIsMaterialized() const {
318 const GlobalValue *GV = dyn_cast<GlobalValue>(this);
319 if (!GV)
320 return;
321 const Module *M = GV->getParent();
322 if (!M)
323 return;
324 assert(M->isMaterialized());
325 }
326
contains(SmallPtrSetImpl<ConstantExpr * > & Cache,ConstantExpr * Expr,Constant * C)327 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
328 Constant *C) {
329 if (!Cache.insert(Expr).second)
330 return false;
331
332 for (auto &O : Expr->operands()) {
333 if (O == C)
334 return true;
335 auto *CE = dyn_cast<ConstantExpr>(O);
336 if (!CE)
337 continue;
338 if (contains(Cache, CE, C))
339 return true;
340 }
341 return false;
342 }
343
contains(Value * Expr,Value * V)344 static bool contains(Value *Expr, Value *V) {
345 if (Expr == V)
346 return true;
347
348 auto *C = dyn_cast<Constant>(V);
349 if (!C)
350 return false;
351
352 auto *CE = dyn_cast<ConstantExpr>(Expr);
353 if (!CE)
354 return false;
355
356 SmallPtrSet<ConstantExpr *, 4> Cache;
357 return contains(Cache, CE, C);
358 }
359 #endif
360
replaceAllUsesWith(Value * New)361 void Value::replaceAllUsesWith(Value *New) {
362 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
363 assert(!contains(New, this) &&
364 "this->replaceAllUsesWith(expr(this)) is NOT valid!");
365 assert(New->getType() == getType() &&
366 "replaceAllUses of value with new value of different type!");
367
368 // Notify all ValueHandles (if present) that this value is going away.
369 if (HasValueHandle)
370 ValueHandleBase::ValueIsRAUWd(this, New);
371 if (isUsedByMetadata())
372 ValueAsMetadata::handleRAUW(this, New);
373
374 while (!use_empty()) {
375 Use &U = *UseList;
376 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
377 // constant because they are uniqued.
378 if (auto *C = dyn_cast<Constant>(U.getUser())) {
379 if (!isa<GlobalValue>(C)) {
380 C->handleOperandChange(this, New, &U);
381 continue;
382 }
383 }
384
385 U.set(New);
386 }
387
388 if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
389 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
390 }
391
392 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
393 // This routine leaves uses within BB.
replaceUsesOutsideBlock(Value * New,BasicBlock * BB)394 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
395 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
396 assert(!contains(New, this) &&
397 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
398 assert(New->getType() == getType() &&
399 "replaceUses of value with new value of different type!");
400 assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
401
402 use_iterator UI = use_begin(), E = use_end();
403 for (; UI != E;) {
404 Use &U = *UI;
405 ++UI;
406 auto *Usr = dyn_cast<Instruction>(U.getUser());
407 if (Usr && Usr->getParent() == BB)
408 continue;
409 U.set(New);
410 }
411 return;
412 }
413
414 namespace {
415 // Various metrics for how much to strip off of pointers.
416 enum PointerStripKind {
417 PSK_ZeroIndices,
418 PSK_ZeroIndicesAndAliases,
419 PSK_InBoundsConstantIndices,
420 PSK_InBounds
421 };
422
423 template <PointerStripKind StripKind>
stripPointerCastsAndOffsets(Value * V)424 static Value *stripPointerCastsAndOffsets(Value *V) {
425 if (!V->getType()->isPointerTy())
426 return V;
427
428 // Even though we don't look through PHI nodes, we could be called on an
429 // instruction in an unreachable block, which may be on a cycle.
430 SmallPtrSet<Value *, 4> Visited;
431
432 Visited.insert(V);
433 do {
434 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
435 switch (StripKind) {
436 case PSK_ZeroIndicesAndAliases:
437 case PSK_ZeroIndices:
438 if (!GEP->hasAllZeroIndices())
439 return V;
440 break;
441 case PSK_InBoundsConstantIndices:
442 if (!GEP->hasAllConstantIndices())
443 return V;
444 // fallthrough
445 case PSK_InBounds:
446 if (!GEP->isInBounds())
447 return V;
448 break;
449 }
450 V = GEP->getPointerOperand();
451 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
452 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
453 V = cast<Operator>(V)->getOperand(0);
454 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
455 if (StripKind == PSK_ZeroIndices || GA->mayBeOverridden())
456 return V;
457 V = GA->getAliasee();
458 } else {
459 return V;
460 }
461 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
462 } while (Visited.insert(V).second);
463
464 return V;
465 }
466 } // namespace
467
stripPointerCasts()468 Value *Value::stripPointerCasts() {
469 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
470 }
471
stripPointerCastsNoFollowAliases()472 Value *Value::stripPointerCastsNoFollowAliases() {
473 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
474 }
475
stripInBoundsConstantOffsets()476 Value *Value::stripInBoundsConstantOffsets() {
477 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
478 }
479
stripAndAccumulateInBoundsConstantOffsets(const DataLayout & DL,APInt & Offset)480 Value *Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
481 APInt &Offset) {
482 if (!getType()->isPointerTy())
483 return this;
484
485 assert(Offset.getBitWidth() == DL.getPointerSizeInBits(cast<PointerType>(
486 getType())->getAddressSpace()) &&
487 "The offset must have exactly as many bits as our pointer.");
488
489 // Even though we don't look through PHI nodes, we could be called on an
490 // instruction in an unreachable block, which may be on a cycle.
491 SmallPtrSet<Value *, 4> Visited;
492 Visited.insert(this);
493 Value *V = this;
494 do {
495 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
496 if (!GEP->isInBounds())
497 return V;
498 APInt GEPOffset(Offset);
499 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
500 return V;
501 Offset = GEPOffset;
502 V = GEP->getPointerOperand();
503 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
504 V = cast<Operator>(V)->getOperand(0);
505 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
506 V = GA->getAliasee();
507 } else {
508 return V;
509 }
510 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
511 } while (Visited.insert(V).second);
512
513 return V;
514 }
515
stripInBoundsOffsets()516 Value *Value::stripInBoundsOffsets() {
517 return stripPointerCastsAndOffsets<PSK_InBounds>(this);
518 }
519
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)520 Value *Value::DoPHITranslation(const BasicBlock *CurBB,
521 const BasicBlock *PredBB) {
522 PHINode *PN = dyn_cast<PHINode>(this);
523 if (PN && PN->getParent() == CurBB)
524 return PN->getIncomingValueForBlock(PredBB);
525 return this;
526 }
527
getContext() const528 LLVMContext &Value::getContext() const { return VTy->getContext(); }
529
reverseUseList()530 void Value::reverseUseList() {
531 if (!UseList || !UseList->Next)
532 // No need to reverse 0 or 1 uses.
533 return;
534
535 Use *Head = UseList;
536 Use *Current = UseList->Next;
537 Head->Next = nullptr;
538 while (Current) {
539 Use *Next = Current->Next;
540 Current->Next = Head;
541 Head->setPrev(&Current->Next);
542 Head = Current;
543 Current = Next;
544 }
545 UseList = Head;
546 Head->setPrev(&UseList);
547 }
548
549 //===----------------------------------------------------------------------===//
550 // ValueHandleBase Class
551 //===----------------------------------------------------------------------===//
552
AddToExistingUseList(ValueHandleBase ** List)553 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
554 assert(List && "Handle list is null?");
555
556 // Splice ourselves into the list.
557 Next = *List;
558 *List = this;
559 setPrevPtr(List);
560 if (Next) {
561 Next->setPrevPtr(&Next);
562 assert(V == Next->V && "Added to wrong list?");
563 }
564 }
565
AddToExistingUseListAfter(ValueHandleBase * List)566 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
567 assert(List && "Must insert after existing node");
568
569 Next = List->Next;
570 setPrevPtr(&List->Next);
571 List->Next = this;
572 if (Next)
573 Next->setPrevPtr(&Next);
574 }
575
AddToUseList()576 void ValueHandleBase::AddToUseList() {
577 assert(V && "Null pointer doesn't have a use list!");
578
579 LLVMContextImpl *pImpl = V->getContext().pImpl;
580
581 if (V->HasValueHandle) {
582 // If this value already has a ValueHandle, then it must be in the
583 // ValueHandles map already.
584 ValueHandleBase *&Entry = pImpl->ValueHandles[V];
585 assert(Entry && "Value doesn't have any handles?");
586 AddToExistingUseList(&Entry);
587 return;
588 }
589
590 // Ok, it doesn't have any handles yet, so we must insert it into the
591 // DenseMap. However, doing this insertion could cause the DenseMap to
592 // reallocate itself, which would invalidate all of the PrevP pointers that
593 // point into the old table. Handle this by checking for reallocation and
594 // updating the stale pointers only if needed.
595 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
596 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
597
598 ValueHandleBase *&Entry = Handles[V];
599 assert(!Entry && "Value really did already have handles?");
600 AddToExistingUseList(&Entry);
601 V->HasValueHandle = true;
602
603 // If reallocation didn't happen or if this was the first insertion, don't
604 // walk the table.
605 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
606 Handles.size() == 1) {
607 return;
608 }
609
610 // Okay, reallocation did happen. Fix the Prev Pointers.
611 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
612 E = Handles.end(); I != E; ++I) {
613 assert(I->second && I->first == I->second->V &&
614 "List invariant broken!");
615 I->second->setPrevPtr(&I->second);
616 }
617 }
618
RemoveFromUseList()619 void ValueHandleBase::RemoveFromUseList() {
620 assert(V && V->HasValueHandle &&
621 "Pointer doesn't have a use list!");
622
623 // Unlink this from its use list.
624 ValueHandleBase **PrevPtr = getPrevPtr();
625 assert(*PrevPtr == this && "List invariant broken");
626
627 *PrevPtr = Next;
628 if (Next) {
629 assert(Next->getPrevPtr() == &Next && "List invariant broken");
630 Next->setPrevPtr(PrevPtr);
631 return;
632 }
633
634 // If the Next pointer was null, then it is possible that this was the last
635 // ValueHandle watching VP. If so, delete its entry from the ValueHandles
636 // map.
637 LLVMContextImpl *pImpl = V->getContext().pImpl;
638 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
639 if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
640 Handles.erase(V);
641 V->HasValueHandle = false;
642 }
643 }
644
645
ValueIsDeleted(Value * V)646 void ValueHandleBase::ValueIsDeleted(Value *V) {
647 assert(V->HasValueHandle && "Should only be called if ValueHandles present");
648
649 // Get the linked list base, which is guaranteed to exist since the
650 // HasValueHandle flag is set.
651 LLVMContextImpl *pImpl = V->getContext().pImpl;
652 ValueHandleBase *Entry = pImpl->ValueHandles[V];
653 assert(Entry && "Value bit set but no entries exist");
654
655 // We use a local ValueHandleBase as an iterator so that ValueHandles can add
656 // and remove themselves from the list without breaking our iteration. This
657 // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
658 // Note that we deliberately do not the support the case when dropping a value
659 // handle results in a new value handle being permanently added to the list
660 // (as might occur in theory for CallbackVH's): the new value handle will not
661 // be processed and the checking code will mete out righteous punishment if
662 // the handle is still present once we have finished processing all the other
663 // value handles (it is fine to momentarily add then remove a value handle).
664 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
665 Iterator.RemoveFromUseList();
666 Iterator.AddToExistingUseListAfter(Entry);
667 assert(Entry->Next == &Iterator && "Loop invariant broken.");
668
669 switch (Entry->getKind()) {
670 case Assert:
671 break;
672 case Tracking:
673 // Mark that this value has been deleted by setting it to an invalid Value
674 // pointer.
675 Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
676 break;
677 case Weak:
678 // Weak just goes to null, which will unlink it from the list.
679 Entry->operator=(nullptr);
680 break;
681 case Callback:
682 // Forward to the subclass's implementation.
683 static_cast<CallbackVH*>(Entry)->deleted();
684 break;
685 }
686 }
687
688 // All callbacks, weak references, and assertingVHs should be dropped by now.
689 if (V->HasValueHandle) {
690 #ifndef NDEBUG // Only in +Asserts mode...
691 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
692 << "\n";
693 if (pImpl->ValueHandles[V]->getKind() == Assert)
694 llvm_unreachable("An asserting value handle still pointed to this"
695 " value!");
696
697 #endif
698 llvm_unreachable("All references to V were not removed?");
699 }
700 }
701
702
ValueIsRAUWd(Value * Old,Value * New)703 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
704 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
705 assert(Old != New && "Changing value into itself!");
706 assert(Old->getType() == New->getType() &&
707 "replaceAllUses of value with new value of different type!");
708
709 // Get the linked list base, which is guaranteed to exist since the
710 // HasValueHandle flag is set.
711 LLVMContextImpl *pImpl = Old->getContext().pImpl;
712 ValueHandleBase *Entry = pImpl->ValueHandles[Old];
713
714 assert(Entry && "Value bit set but no entries exist");
715
716 // We use a local ValueHandleBase as an iterator so that
717 // ValueHandles can add and remove themselves from the list without
718 // breaking our iteration. This is not really an AssertingVH; we
719 // just have to give ValueHandleBase some kind.
720 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
721 Iterator.RemoveFromUseList();
722 Iterator.AddToExistingUseListAfter(Entry);
723 assert(Entry->Next == &Iterator && "Loop invariant broken.");
724
725 switch (Entry->getKind()) {
726 case Assert:
727 // Asserting handle does not follow RAUW implicitly.
728 break;
729 case Tracking:
730 // Tracking goes to new value like a WeakVH. Note that this may make it
731 // something incompatible with its templated type. We don't want to have a
732 // virtual (or inline) interface to handle this though, so instead we make
733 // the TrackingVH accessors guarantee that a client never sees this value.
734
735 // FALLTHROUGH
736 case Weak:
737 // Weak goes to the new value, which will unlink it from Old's list.
738 Entry->operator=(New);
739 break;
740 case Callback:
741 // Forward to the subclass's implementation.
742 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
743 break;
744 }
745 }
746
747 #ifndef NDEBUG
748 // If any new tracking or weak value handles were added while processing the
749 // list, then complain about it now.
750 if (Old->HasValueHandle)
751 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
752 switch (Entry->getKind()) {
753 case Tracking:
754 case Weak:
755 dbgs() << "After RAUW from " << *Old->getType() << " %"
756 << Old->getName() << " to " << *New->getType() << " %"
757 << New->getName() << "\n";
758 llvm_unreachable("A tracking or weak value handle still pointed to the"
759 " old value!\n");
760 default:
761 break;
762 }
763 #endif
764 }
765
766 // Pin the vtable to this file.
anchor()767 void CallbackVH::anchor() {}
768