1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * A landing pad is defined by a landingpad instruction, and can be jumped to
39 // only by the unwind edge of an invoke instruction.
40 // * A landingpad instruction must be the first non-PHI instruction in the
41 // block.
42 // * Landingpad instructions must be in a function with a personality function.
43 // * All other things that are tested by asserts spread about the code...
44 //
45 //===----------------------------------------------------------------------===//
46
47 #include "llvm/IR/Verifier.h"
48 #include "llvm/ADT/STLExtras.h"
49 #include "llvm/ADT/SetVector.h"
50 #include "llvm/ADT/SmallPtrSet.h"
51 #include "llvm/ADT/SmallVector.h"
52 #include "llvm/ADT/StringExtras.h"
53 #include "llvm/IR/CFG.h"
54 #include "llvm/IR/CallSite.h"
55 #include "llvm/IR/CallingConv.h"
56 #include "llvm/IR/ConstantRange.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DebugInfo.h"
60 #include "llvm/IR/DerivedTypes.h"
61 #include "llvm/IR/Dominators.h"
62 #include "llvm/IR/InlineAsm.h"
63 #include "llvm/IR/InstIterator.h"
64 #include "llvm/IR/InstVisitor.h"
65 #include "llvm/IR/IntrinsicInst.h"
66 #include "llvm/IR/LLVMContext.h"
67 #include "llvm/IR/Metadata.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/PassManager.h"
70 #include "llvm/IR/Statepoint.h"
71 #include "llvm/Pass.h"
72 #include "llvm/Support/CommandLine.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <algorithm>
77 #include <cstdarg>
78 using namespace llvm;
79
80 static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
81
82 namespace {
83 struct VerifierSupport {
84 raw_ostream &OS;
85 const Module *M;
86
87 /// \brief Track the brokenness of the module while recursively visiting.
88 bool Broken;
89
VerifierSupport__anon2bfcd1980111::VerifierSupport90 explicit VerifierSupport(raw_ostream &OS)
91 : OS(OS), M(nullptr), Broken(false) {}
92
93 private:
Write__anon2bfcd1980111::VerifierSupport94 template <class NodeTy> void Write(const ilist_iterator<NodeTy> &I) {
95 Write(&*I);
96 }
97
Write__anon2bfcd1980111::VerifierSupport98 void Write(const Module *M) {
99 if (!M)
100 return;
101 OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
102 }
103
Write__anon2bfcd1980111::VerifierSupport104 void Write(const Value *V) {
105 if (!V)
106 return;
107 if (isa<Instruction>(V)) {
108 OS << *V << '\n';
109 } else {
110 V->printAsOperand(OS, true, M);
111 OS << '\n';
112 }
113 }
Write__anon2bfcd1980111::VerifierSupport114 void Write(ImmutableCallSite CS) {
115 Write(CS.getInstruction());
116 }
117
Write__anon2bfcd1980111::VerifierSupport118 void Write(const Metadata *MD) {
119 if (!MD)
120 return;
121 MD->print(OS, M);
122 OS << '\n';
123 }
124
Write__anon2bfcd1980111::VerifierSupport125 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
126 Write(MD.get());
127 }
128
Write__anon2bfcd1980111::VerifierSupport129 void Write(const NamedMDNode *NMD) {
130 if (!NMD)
131 return;
132 NMD->print(OS);
133 OS << '\n';
134 }
135
Write__anon2bfcd1980111::VerifierSupport136 void Write(Type *T) {
137 if (!T)
138 return;
139 OS << ' ' << *T;
140 }
141
Write__anon2bfcd1980111::VerifierSupport142 void Write(const Comdat *C) {
143 if (!C)
144 return;
145 OS << *C;
146 }
147
148 template <typename T1, typename... Ts>
WriteTs__anon2bfcd1980111::VerifierSupport149 void WriteTs(const T1 &V1, const Ts &... Vs) {
150 Write(V1);
151 WriteTs(Vs...);
152 }
153
WriteTs__anon2bfcd1980111::VerifierSupport154 template <typename... Ts> void WriteTs() {}
155
156 public:
157 /// \brief A check failed, so printout out the condition and the message.
158 ///
159 /// This provides a nice place to put a breakpoint if you want to see why
160 /// something is not correct.
CheckFailed__anon2bfcd1980111::VerifierSupport161 void CheckFailed(const Twine &Message) {
162 OS << Message << '\n';
163 Broken = true;
164 }
165
166 /// \brief A check failed (with values to print).
167 ///
168 /// This calls the Message-only version so that the above is easier to set a
169 /// breakpoint on.
170 template <typename T1, typename... Ts>
CheckFailed__anon2bfcd1980111::VerifierSupport171 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
172 CheckFailed(Message);
173 WriteTs(V1, Vs...);
174 }
175 };
176
177 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
178 friend class InstVisitor<Verifier>;
179
180 LLVMContext *Context;
181 DominatorTree DT;
182
183 /// \brief When verifying a basic block, keep track of all of the
184 /// instructions we have seen so far.
185 ///
186 /// This allows us to do efficient dominance checks for the case when an
187 /// instruction has an operand that is an instruction in the same block.
188 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
189
190 /// \brief Keep track of the metadata nodes that have been checked already.
191 SmallPtrSet<const Metadata *, 32> MDNodes;
192
193 /// \brief Track unresolved string-based type references.
194 SmallDenseMap<const MDString *, const MDNode *, 32> UnresolvedTypeRefs;
195
196 /// \brief The result type for a landingpad.
197 Type *LandingPadResultTy;
198
199 /// \brief Whether we've seen a call to @llvm.localescape in this function
200 /// already.
201 bool SawFrameEscape;
202
203 /// Stores the count of how many objects were passed to llvm.localescape for a
204 /// given function and the largest index passed to llvm.localrecover.
205 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
206
207 /// Cache of constants visited in search of ConstantExprs.
208 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
209
210 void checkAtomicMemAccessSize(const Module *M, Type *Ty,
211 const Instruction *I);
212 public:
Verifier(raw_ostream & OS)213 explicit Verifier(raw_ostream &OS)
214 : VerifierSupport(OS), Context(nullptr), LandingPadResultTy(nullptr),
215 SawFrameEscape(false) {}
216
verify(const Function & F)217 bool verify(const Function &F) {
218 M = F.getParent();
219 Context = &M->getContext();
220
221 // First ensure the function is well-enough formed to compute dominance
222 // information.
223 if (F.empty()) {
224 OS << "Function '" << F.getName()
225 << "' does not contain an entry block!\n";
226 return false;
227 }
228 for (Function::const_iterator I = F.begin(), E = F.end(); I != E; ++I) {
229 if (I->empty() || !I->back().isTerminator()) {
230 OS << "Basic Block in function '" << F.getName()
231 << "' does not have terminator!\n";
232 I->printAsOperand(OS, true);
233 OS << "\n";
234 return false;
235 }
236 }
237
238 // Now directly compute a dominance tree. We don't rely on the pass
239 // manager to provide this as it isolates us from a potentially
240 // out-of-date dominator tree and makes it significantly more complex to
241 // run this code outside of a pass manager.
242 // FIXME: It's really gross that we have to cast away constness here.
243 DT.recalculate(const_cast<Function &>(F));
244
245 Broken = false;
246 // FIXME: We strip const here because the inst visitor strips const.
247 visit(const_cast<Function &>(F));
248 InstsInThisBlock.clear();
249 LandingPadResultTy = nullptr;
250 SawFrameEscape = false;
251
252 return !Broken;
253 }
254
verify(const Module & M)255 bool verify(const Module &M) {
256 this->M = &M;
257 Context = &M.getContext();
258 Broken = false;
259
260 // Scan through, checking all of the external function's linkage now...
261 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
262 visitGlobalValue(*I);
263
264 // Check to make sure function prototypes are okay.
265 if (I->isDeclaration())
266 visitFunction(*I);
267 }
268
269 // Now that we've visited every function, verify that we never asked to
270 // recover a frame index that wasn't escaped.
271 verifyFrameRecoverIndices();
272
273 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
274 I != E; ++I)
275 visitGlobalVariable(*I);
276
277 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
278 I != E; ++I)
279 visitGlobalAlias(*I);
280
281 for (Module::const_named_metadata_iterator I = M.named_metadata_begin(),
282 E = M.named_metadata_end();
283 I != E; ++I)
284 visitNamedMDNode(*I);
285
286 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
287 visitComdat(SMEC.getValue());
288
289 visitModuleFlags(M);
290 visitModuleIdents(M);
291
292 // Verify type referneces last.
293 verifyTypeRefs();
294
295 return !Broken;
296 }
297
298 private:
299 // Verification methods...
300 void visitGlobalValue(const GlobalValue &GV);
301 void visitGlobalVariable(const GlobalVariable &GV);
302 void visitGlobalAlias(const GlobalAlias &GA);
303 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
304 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
305 const GlobalAlias &A, const Constant &C);
306 void visitNamedMDNode(const NamedMDNode &NMD);
307 void visitMDNode(const MDNode &MD);
308 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
309 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
310 void visitComdat(const Comdat &C);
311 void visitModuleIdents(const Module &M);
312 void visitModuleFlags(const Module &M);
313 void visitModuleFlag(const MDNode *Op,
314 DenseMap<const MDString *, const MDNode *> &SeenIDs,
315 SmallVectorImpl<const MDNode *> &Requirements);
316 void visitFunction(const Function &F);
317 void visitBasicBlock(BasicBlock &BB);
318 void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
319 void visitDereferenceableMetadata(Instruction& I, MDNode* MD);
320
321 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
322 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
323 #include "llvm/IR/Metadata.def"
324 void visitDIScope(const DIScope &N);
325 void visitDIVariable(const DIVariable &N);
326 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
327 void visitDITemplateParameter(const DITemplateParameter &N);
328
329 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
330
331 /// \brief Check for a valid string-based type reference.
332 ///
333 /// Checks if \c MD is a string-based type reference. If it is, keeps track
334 /// of it (and its user, \c N) for error messages later.
335 bool isValidUUID(const MDNode &N, const Metadata *MD);
336
337 /// \brief Check for a valid type reference.
338 ///
339 /// Checks for subclasses of \a DIType, or \a isValidUUID().
340 bool isTypeRef(const MDNode &N, const Metadata *MD);
341
342 /// \brief Check for a valid scope reference.
343 ///
344 /// Checks for subclasses of \a DIScope, or \a isValidUUID().
345 bool isScopeRef(const MDNode &N, const Metadata *MD);
346
347 /// \brief Check for a valid debug info reference.
348 ///
349 /// Checks for subclasses of \a DINode, or \a isValidUUID().
350 bool isDIRef(const MDNode &N, const Metadata *MD);
351
352 // InstVisitor overrides...
353 using InstVisitor<Verifier>::visit;
354 void visit(Instruction &I);
355
356 void visitTruncInst(TruncInst &I);
357 void visitZExtInst(ZExtInst &I);
358 void visitSExtInst(SExtInst &I);
359 void visitFPTruncInst(FPTruncInst &I);
360 void visitFPExtInst(FPExtInst &I);
361 void visitFPToUIInst(FPToUIInst &I);
362 void visitFPToSIInst(FPToSIInst &I);
363 void visitUIToFPInst(UIToFPInst &I);
364 void visitSIToFPInst(SIToFPInst &I);
365 void visitIntToPtrInst(IntToPtrInst &I);
366 void visitPtrToIntInst(PtrToIntInst &I);
367 void visitBitCastInst(BitCastInst &I);
368 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
369 void visitPHINode(PHINode &PN);
370 void visitBinaryOperator(BinaryOperator &B);
371 void visitICmpInst(ICmpInst &IC);
372 void visitFCmpInst(FCmpInst &FC);
373 void visitExtractElementInst(ExtractElementInst &EI);
374 void visitInsertElementInst(InsertElementInst &EI);
375 void visitShuffleVectorInst(ShuffleVectorInst &EI);
visitVAArgInst(VAArgInst & VAA)376 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
377 void visitCallInst(CallInst &CI);
378 void visitInvokeInst(InvokeInst &II);
379 void visitGetElementPtrInst(GetElementPtrInst &GEP);
380 void visitLoadInst(LoadInst &LI);
381 void visitStoreInst(StoreInst &SI);
382 void verifyDominatesUse(Instruction &I, unsigned i);
383 void visitInstruction(Instruction &I);
384 void visitTerminatorInst(TerminatorInst &I);
385 void visitBranchInst(BranchInst &BI);
386 void visitReturnInst(ReturnInst &RI);
387 void visitSwitchInst(SwitchInst &SI);
388 void visitIndirectBrInst(IndirectBrInst &BI);
389 void visitSelectInst(SelectInst &SI);
390 void visitUserOp1(Instruction &I);
visitUserOp2(Instruction & I)391 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
392 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
393 template <class DbgIntrinsicTy>
394 void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
395 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
396 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
397 void visitFenceInst(FenceInst &FI);
398 void visitAllocaInst(AllocaInst &AI);
399 void visitExtractValueInst(ExtractValueInst &EVI);
400 void visitInsertValueInst(InsertValueInst &IVI);
401 void visitEHPadPredecessors(Instruction &I);
402 void visitLandingPadInst(LandingPadInst &LPI);
403 void visitCatchPadInst(CatchPadInst &CPI);
404 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
405 void visitCleanupPadInst(CleanupPadInst &CPI);
406 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
407 void visitCleanupReturnInst(CleanupReturnInst &CRI);
408
409 void VerifyCallSite(CallSite CS);
410 void verifyMustTailCall(CallInst &CI);
411 bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
412 unsigned ArgNo, std::string &Suffix);
413 bool VerifyIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
414 SmallVectorImpl<Type *> &ArgTys);
415 bool VerifyIntrinsicIsVarArg(bool isVarArg,
416 ArrayRef<Intrinsic::IITDescriptor> &Infos);
417 bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
418 void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
419 const Value *V);
420 void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
421 bool isReturnValue, const Value *V);
422 void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
423 const Value *V);
424 void VerifyFunctionMetadata(
425 const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs);
426
427 void visitConstantExprsRecursively(const Constant *EntryC);
428 void visitConstantExpr(const ConstantExpr *CE);
429 void VerifyStatepoint(ImmutableCallSite CS);
430 void verifyFrameRecoverIndices();
431
432 // Module-level debug info verification...
433 void verifyTypeRefs();
434 template <class MapTy>
435 void verifyBitPieceExpression(const DbgInfoIntrinsic &I,
436 const MapTy &TypeRefs);
437 void visitUnresolvedTypeRef(const MDString *S, const MDNode *N);
438 };
439 } // End anonymous namespace
440
441 // Assert - We know that cond should be true, if not print an error message.
442 #define Assert(C, ...) \
443 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
444
visit(Instruction & I)445 void Verifier::visit(Instruction &I) {
446 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
447 Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
448 InstVisitor<Verifier>::visit(I);
449 }
450
451
visitGlobalValue(const GlobalValue & GV)452 void Verifier::visitGlobalValue(const GlobalValue &GV) {
453 Assert(!GV.isDeclaration() || GV.hasExternalLinkage() ||
454 GV.hasExternalWeakLinkage(),
455 "Global is external, but doesn't have external or weak linkage!", &GV);
456
457 Assert(GV.getAlignment() <= Value::MaximumAlignment,
458 "huge alignment values are unsupported", &GV);
459 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
460 "Only global variables can have appending linkage!", &GV);
461
462 if (GV.hasAppendingLinkage()) {
463 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
464 Assert(GVar && GVar->getValueType()->isArrayTy(),
465 "Only global arrays can have appending linkage!", GVar);
466 }
467
468 if (GV.isDeclarationForLinker())
469 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
470 }
471
visitGlobalVariable(const GlobalVariable & GV)472 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
473 if (GV.hasInitializer()) {
474 Assert(GV.getInitializer()->getType() == GV.getType()->getElementType(),
475 "Global variable initializer type does not match global "
476 "variable type!",
477 &GV);
478
479 // If the global has common linkage, it must have a zero initializer and
480 // cannot be constant.
481 if (GV.hasCommonLinkage()) {
482 Assert(GV.getInitializer()->isNullValue(),
483 "'common' global must have a zero initializer!", &GV);
484 Assert(!GV.isConstant(), "'common' global may not be marked constant!",
485 &GV);
486 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
487 }
488 } else {
489 Assert(GV.hasExternalLinkage() || GV.hasExternalWeakLinkage(),
490 "invalid linkage type for global declaration", &GV);
491 }
492
493 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
494 GV.getName() == "llvm.global_dtors")) {
495 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
496 "invalid linkage for intrinsic global variable", &GV);
497 // Don't worry about emitting an error for it not being an array,
498 // visitGlobalValue will complain on appending non-array.
499 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
500 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
501 PointerType *FuncPtrTy =
502 FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
503 // FIXME: Reject the 2-field form in LLVM 4.0.
504 Assert(STy &&
505 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
506 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
507 STy->getTypeAtIndex(1) == FuncPtrTy,
508 "wrong type for intrinsic global variable", &GV);
509 if (STy->getNumElements() == 3) {
510 Type *ETy = STy->getTypeAtIndex(2);
511 Assert(ETy->isPointerTy() &&
512 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
513 "wrong type for intrinsic global variable", &GV);
514 }
515 }
516 }
517
518 if (GV.hasName() && (GV.getName() == "llvm.used" ||
519 GV.getName() == "llvm.compiler.used")) {
520 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
521 "invalid linkage for intrinsic global variable", &GV);
522 Type *GVType = GV.getValueType();
523 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
524 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
525 Assert(PTy, "wrong type for intrinsic global variable", &GV);
526 if (GV.hasInitializer()) {
527 const Constant *Init = GV.getInitializer();
528 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
529 Assert(InitArray, "wrong initalizer for intrinsic global variable",
530 Init);
531 for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
532 Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
533 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
534 isa<GlobalAlias>(V),
535 "invalid llvm.used member", V);
536 Assert(V->hasName(), "members of llvm.used must be named", V);
537 }
538 }
539 }
540 }
541
542 Assert(!GV.hasDLLImportStorageClass() ||
543 (GV.isDeclaration() && GV.hasExternalLinkage()) ||
544 GV.hasAvailableExternallyLinkage(),
545 "Global is marked as dllimport, but not external", &GV);
546
547 if (!GV.hasInitializer()) {
548 visitGlobalValue(GV);
549 return;
550 }
551
552 // Walk any aggregate initializers looking for bitcasts between address spaces
553 visitConstantExprsRecursively(GV.getInitializer());
554
555 visitGlobalValue(GV);
556 }
557
visitAliaseeSubExpr(const GlobalAlias & GA,const Constant & C)558 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
559 SmallPtrSet<const GlobalAlias*, 4> Visited;
560 Visited.insert(&GA);
561 visitAliaseeSubExpr(Visited, GA, C);
562 }
563
visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias * > & Visited,const GlobalAlias & GA,const Constant & C)564 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
565 const GlobalAlias &GA, const Constant &C) {
566 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
567 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
568 &GA);
569
570 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
571 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
572
573 Assert(!GA2->mayBeOverridden(), "Alias cannot point to a weak alias",
574 &GA);
575 } else {
576 // Only continue verifying subexpressions of GlobalAliases.
577 // Do not recurse into global initializers.
578 return;
579 }
580 }
581
582 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
583 visitConstantExprsRecursively(CE);
584
585 for (const Use &U : C.operands()) {
586 Value *V = &*U;
587 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
588 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
589 else if (const auto *C2 = dyn_cast<Constant>(V))
590 visitAliaseeSubExpr(Visited, GA, *C2);
591 }
592 }
593
visitGlobalAlias(const GlobalAlias & GA)594 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
595 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
596 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
597 "weak_odr, or external linkage!",
598 &GA);
599 const Constant *Aliasee = GA.getAliasee();
600 Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
601 Assert(GA.getType() == Aliasee->getType(),
602 "Alias and aliasee types should match!", &GA);
603
604 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
605 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
606
607 visitAliaseeSubExpr(GA, *Aliasee);
608
609 visitGlobalValue(GA);
610 }
611
visitNamedMDNode(const NamedMDNode & NMD)612 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
613 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
614 MDNode *MD = NMD.getOperand(i);
615
616 if (NMD.getName() == "llvm.dbg.cu") {
617 Assert(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
618 }
619
620 if (!MD)
621 continue;
622
623 visitMDNode(*MD);
624 }
625 }
626
visitMDNode(const MDNode & MD)627 void Verifier::visitMDNode(const MDNode &MD) {
628 // Only visit each node once. Metadata can be mutually recursive, so this
629 // avoids infinite recursion here, as well as being an optimization.
630 if (!MDNodes.insert(&MD).second)
631 return;
632
633 switch (MD.getMetadataID()) {
634 default:
635 llvm_unreachable("Invalid MDNode subclass");
636 case Metadata::MDTupleKind:
637 break;
638 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
639 case Metadata::CLASS##Kind: \
640 visit##CLASS(cast<CLASS>(MD)); \
641 break;
642 #include "llvm/IR/Metadata.def"
643 }
644
645 for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
646 Metadata *Op = MD.getOperand(i);
647 if (!Op)
648 continue;
649 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
650 &MD, Op);
651 if (auto *N = dyn_cast<MDNode>(Op)) {
652 visitMDNode(*N);
653 continue;
654 }
655 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
656 visitValueAsMetadata(*V, nullptr);
657 continue;
658 }
659 }
660
661 // Check these last, so we diagnose problems in operands first.
662 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
663 Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
664 }
665
visitValueAsMetadata(const ValueAsMetadata & MD,Function * F)666 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
667 Assert(MD.getValue(), "Expected valid value", &MD);
668 Assert(!MD.getValue()->getType()->isMetadataTy(),
669 "Unexpected metadata round-trip through values", &MD, MD.getValue());
670
671 auto *L = dyn_cast<LocalAsMetadata>(&MD);
672 if (!L)
673 return;
674
675 Assert(F, "function-local metadata used outside a function", L);
676
677 // If this was an instruction, bb, or argument, verify that it is in the
678 // function that we expect.
679 Function *ActualF = nullptr;
680 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
681 Assert(I->getParent(), "function-local metadata not in basic block", L, I);
682 ActualF = I->getParent()->getParent();
683 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
684 ActualF = BB->getParent();
685 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
686 ActualF = A->getParent();
687 assert(ActualF && "Unimplemented function local metadata case!");
688
689 Assert(ActualF == F, "function-local metadata used in wrong function", L);
690 }
691
visitMetadataAsValue(const MetadataAsValue & MDV,Function * F)692 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
693 Metadata *MD = MDV.getMetadata();
694 if (auto *N = dyn_cast<MDNode>(MD)) {
695 visitMDNode(*N);
696 return;
697 }
698
699 // Only visit each node once. Metadata can be mutually recursive, so this
700 // avoids infinite recursion here, as well as being an optimization.
701 if (!MDNodes.insert(MD).second)
702 return;
703
704 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
705 visitValueAsMetadata(*V, F);
706 }
707
isValidUUID(const MDNode & N,const Metadata * MD)708 bool Verifier::isValidUUID(const MDNode &N, const Metadata *MD) {
709 auto *S = dyn_cast<MDString>(MD);
710 if (!S)
711 return false;
712 if (S->getString().empty())
713 return false;
714
715 // Keep track of names of types referenced via UUID so we can check that they
716 // actually exist.
717 UnresolvedTypeRefs.insert(std::make_pair(S, &N));
718 return true;
719 }
720
721 /// \brief Check if a value can be a reference to a type.
isTypeRef(const MDNode & N,const Metadata * MD)722 bool Verifier::isTypeRef(const MDNode &N, const Metadata *MD) {
723 return !MD || isValidUUID(N, MD) || isa<DIType>(MD);
724 }
725
726 /// \brief Check if a value can be a ScopeRef.
isScopeRef(const MDNode & N,const Metadata * MD)727 bool Verifier::isScopeRef(const MDNode &N, const Metadata *MD) {
728 return !MD || isValidUUID(N, MD) || isa<DIScope>(MD);
729 }
730
731 /// \brief Check if a value can be a debug info ref.
isDIRef(const MDNode & N,const Metadata * MD)732 bool Verifier::isDIRef(const MDNode &N, const Metadata *MD) {
733 return !MD || isValidUUID(N, MD) || isa<DINode>(MD);
734 }
735
736 template <class Ty>
isValidMetadataArrayImpl(const MDTuple & N,bool AllowNull)737 bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
738 for (Metadata *MD : N.operands()) {
739 if (MD) {
740 if (!isa<Ty>(MD))
741 return false;
742 } else {
743 if (!AllowNull)
744 return false;
745 }
746 }
747 return true;
748 }
749
750 template <class Ty>
isValidMetadataArray(const MDTuple & N)751 bool isValidMetadataArray(const MDTuple &N) {
752 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
753 }
754
755 template <class Ty>
isValidMetadataNullArray(const MDTuple & N)756 bool isValidMetadataNullArray(const MDTuple &N) {
757 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
758 }
759
visitDILocation(const DILocation & N)760 void Verifier::visitDILocation(const DILocation &N) {
761 Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
762 "location requires a valid scope", &N, N.getRawScope());
763 if (auto *IA = N.getRawInlinedAt())
764 Assert(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
765 }
766
visitGenericDINode(const GenericDINode & N)767 void Verifier::visitGenericDINode(const GenericDINode &N) {
768 Assert(N.getTag(), "invalid tag", &N);
769 }
770
visitDIScope(const DIScope & N)771 void Verifier::visitDIScope(const DIScope &N) {
772 if (auto *F = N.getRawFile())
773 Assert(isa<DIFile>(F), "invalid file", &N, F);
774 }
775
visitDISubrange(const DISubrange & N)776 void Verifier::visitDISubrange(const DISubrange &N) {
777 Assert(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
778 Assert(N.getCount() >= -1, "invalid subrange count", &N);
779 }
780
visitDIEnumerator(const DIEnumerator & N)781 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
782 Assert(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
783 }
784
visitDIBasicType(const DIBasicType & N)785 void Verifier::visitDIBasicType(const DIBasicType &N) {
786 Assert(N.getTag() == dwarf::DW_TAG_base_type ||
787 N.getTag() == dwarf::DW_TAG_unspecified_type,
788 "invalid tag", &N);
789 }
790
visitDIDerivedType(const DIDerivedType & N)791 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
792 // Common scope checks.
793 visitDIScope(N);
794
795 Assert(N.getTag() == dwarf::DW_TAG_typedef ||
796 N.getTag() == dwarf::DW_TAG_pointer_type ||
797 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
798 N.getTag() == dwarf::DW_TAG_reference_type ||
799 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
800 N.getTag() == dwarf::DW_TAG_const_type ||
801 N.getTag() == dwarf::DW_TAG_volatile_type ||
802 N.getTag() == dwarf::DW_TAG_restrict_type ||
803 N.getTag() == dwarf::DW_TAG_member ||
804 N.getTag() == dwarf::DW_TAG_inheritance ||
805 N.getTag() == dwarf::DW_TAG_friend,
806 "invalid tag", &N);
807 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
808 Assert(isTypeRef(N, N.getExtraData()), "invalid pointer to member type", &N,
809 N.getExtraData());
810 }
811
812 Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
813 Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
814 N.getBaseType());
815 }
816
hasConflictingReferenceFlags(unsigned Flags)817 static bool hasConflictingReferenceFlags(unsigned Flags) {
818 return (Flags & DINode::FlagLValueReference) &&
819 (Flags & DINode::FlagRValueReference);
820 }
821
visitTemplateParams(const MDNode & N,const Metadata & RawParams)822 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
823 auto *Params = dyn_cast<MDTuple>(&RawParams);
824 Assert(Params, "invalid template params", &N, &RawParams);
825 for (Metadata *Op : Params->operands()) {
826 Assert(Op && isa<DITemplateParameter>(Op), "invalid template parameter", &N,
827 Params, Op);
828 }
829 }
830
visitDICompositeType(const DICompositeType & N)831 void Verifier::visitDICompositeType(const DICompositeType &N) {
832 // Common scope checks.
833 visitDIScope(N);
834
835 Assert(N.getTag() == dwarf::DW_TAG_array_type ||
836 N.getTag() == dwarf::DW_TAG_structure_type ||
837 N.getTag() == dwarf::DW_TAG_union_type ||
838 N.getTag() == dwarf::DW_TAG_enumeration_type ||
839 N.getTag() == dwarf::DW_TAG_class_type,
840 "invalid tag", &N);
841
842 Assert(isScopeRef(N, N.getScope()), "invalid scope", &N, N.getScope());
843 Assert(isTypeRef(N, N.getBaseType()), "invalid base type", &N,
844 N.getBaseType());
845
846 Assert(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
847 "invalid composite elements", &N, N.getRawElements());
848 Assert(isTypeRef(N, N.getRawVTableHolder()), "invalid vtable holder", &N,
849 N.getRawVTableHolder());
850 Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
851 &N);
852 if (auto *Params = N.getRawTemplateParams())
853 visitTemplateParams(N, *Params);
854
855 if (N.getTag() == dwarf::DW_TAG_class_type ||
856 N.getTag() == dwarf::DW_TAG_union_type) {
857 Assert(N.getFile() && !N.getFile()->getFilename().empty(),
858 "class/union requires a filename", &N, N.getFile());
859 }
860 }
861
visitDISubroutineType(const DISubroutineType & N)862 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
863 Assert(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
864 if (auto *Types = N.getRawTypeArray()) {
865 Assert(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
866 for (Metadata *Ty : N.getTypeArray()->operands()) {
867 Assert(isTypeRef(N, Ty), "invalid subroutine type ref", &N, Types, Ty);
868 }
869 }
870 Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
871 &N);
872 }
873
visitDIFile(const DIFile & N)874 void Verifier::visitDIFile(const DIFile &N) {
875 Assert(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
876 }
877
visitDICompileUnit(const DICompileUnit & N)878 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
879 Assert(N.isDistinct(), "compile units must be distinct", &N);
880 Assert(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
881
882 // Don't bother verifying the compilation directory or producer string
883 // as those could be empty.
884 Assert(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
885 N.getRawFile());
886 Assert(!N.getFile()->getFilename().empty(), "invalid filename", &N,
887 N.getFile());
888
889 if (auto *Array = N.getRawEnumTypes()) {
890 Assert(isa<MDTuple>(Array), "invalid enum list", &N, Array);
891 for (Metadata *Op : N.getEnumTypes()->operands()) {
892 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
893 Assert(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
894 "invalid enum type", &N, N.getEnumTypes(), Op);
895 }
896 }
897 if (auto *Array = N.getRawRetainedTypes()) {
898 Assert(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
899 for (Metadata *Op : N.getRetainedTypes()->operands()) {
900 Assert(Op && isa<DIType>(Op), "invalid retained type", &N, Op);
901 }
902 }
903 if (auto *Array = N.getRawSubprograms()) {
904 Assert(isa<MDTuple>(Array), "invalid subprogram list", &N, Array);
905 for (Metadata *Op : N.getSubprograms()->operands()) {
906 Assert(Op && isa<DISubprogram>(Op), "invalid subprogram ref", &N, Op);
907 }
908 }
909 if (auto *Array = N.getRawGlobalVariables()) {
910 Assert(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
911 for (Metadata *Op : N.getGlobalVariables()->operands()) {
912 Assert(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref", &N,
913 Op);
914 }
915 }
916 if (auto *Array = N.getRawImportedEntities()) {
917 Assert(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
918 for (Metadata *Op : N.getImportedEntities()->operands()) {
919 Assert(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", &N,
920 Op);
921 }
922 }
923 if (auto *Array = N.getRawMacros()) {
924 Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array);
925 for (Metadata *Op : N.getMacros()->operands()) {
926 Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
927 }
928 }
929 }
930
visitDISubprogram(const DISubprogram & N)931 void Verifier::visitDISubprogram(const DISubprogram &N) {
932 Assert(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
933 Assert(isScopeRef(N, N.getRawScope()), "invalid scope", &N, N.getRawScope());
934 if (auto *T = N.getRawType())
935 Assert(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
936 Assert(isTypeRef(N, N.getRawContainingType()), "invalid containing type", &N,
937 N.getRawContainingType());
938 if (auto *Params = N.getRawTemplateParams())
939 visitTemplateParams(N, *Params);
940 if (auto *S = N.getRawDeclaration()) {
941 Assert(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
942 "invalid subprogram declaration", &N, S);
943 }
944 if (auto *RawVars = N.getRawVariables()) {
945 auto *Vars = dyn_cast<MDTuple>(RawVars);
946 Assert(Vars, "invalid variable list", &N, RawVars);
947 for (Metadata *Op : Vars->operands()) {
948 Assert(Op && isa<DILocalVariable>(Op), "invalid local variable", &N, Vars,
949 Op);
950 }
951 }
952 Assert(!hasConflictingReferenceFlags(N.getFlags()), "invalid reference flags",
953 &N);
954
955 if (N.isDefinition())
956 Assert(N.isDistinct(), "subprogram definitions must be distinct", &N);
957 }
958
visitDILexicalBlockBase(const DILexicalBlockBase & N)959 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
960 Assert(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
961 Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
962 "invalid local scope", &N, N.getRawScope());
963 }
964
visitDILexicalBlock(const DILexicalBlock & N)965 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
966 visitDILexicalBlockBase(N);
967
968 Assert(N.getLine() || !N.getColumn(),
969 "cannot have column info without line info", &N);
970 }
971
visitDILexicalBlockFile(const DILexicalBlockFile & N)972 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
973 visitDILexicalBlockBase(N);
974 }
975
visitDINamespace(const DINamespace & N)976 void Verifier::visitDINamespace(const DINamespace &N) {
977 Assert(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
978 if (auto *S = N.getRawScope())
979 Assert(isa<DIScope>(S), "invalid scope ref", &N, S);
980 }
981
visitDIMacro(const DIMacro & N)982 void Verifier::visitDIMacro(const DIMacro &N) {
983 Assert(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
984 N.getMacinfoType() == dwarf::DW_MACINFO_undef,
985 "invalid macinfo type", &N);
986 Assert(!N.getName().empty(), "anonymous macro", &N);
987 }
988
visitDIMacroFile(const DIMacroFile & N)989 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
990 Assert(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
991 "invalid macinfo type", &N);
992 if (auto *F = N.getRawFile())
993 Assert(isa<DIFile>(F), "invalid file", &N, F);
994
995 if (auto *Array = N.getRawElements()) {
996 Assert(isa<MDTuple>(Array), "invalid macro list", &N, Array);
997 for (Metadata *Op : N.getElements()->operands()) {
998 Assert(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
999 }
1000 }
1001 }
1002
visitDIModule(const DIModule & N)1003 void Verifier::visitDIModule(const DIModule &N) {
1004 Assert(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1005 Assert(!N.getName().empty(), "anonymous module", &N);
1006 }
1007
visitDITemplateParameter(const DITemplateParameter & N)1008 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1009 Assert(isTypeRef(N, N.getType()), "invalid type ref", &N, N.getType());
1010 }
1011
visitDITemplateTypeParameter(const DITemplateTypeParameter & N)1012 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1013 visitDITemplateParameter(N);
1014
1015 Assert(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1016 &N);
1017 }
1018
visitDITemplateValueParameter(const DITemplateValueParameter & N)1019 void Verifier::visitDITemplateValueParameter(
1020 const DITemplateValueParameter &N) {
1021 visitDITemplateParameter(N);
1022
1023 Assert(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1024 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1025 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1026 "invalid tag", &N);
1027 }
1028
visitDIVariable(const DIVariable & N)1029 void Verifier::visitDIVariable(const DIVariable &N) {
1030 if (auto *S = N.getRawScope())
1031 Assert(isa<DIScope>(S), "invalid scope", &N, S);
1032 Assert(isTypeRef(N, N.getRawType()), "invalid type ref", &N, N.getRawType());
1033 if (auto *F = N.getRawFile())
1034 Assert(isa<DIFile>(F), "invalid file", &N, F);
1035 }
1036
visitDIGlobalVariable(const DIGlobalVariable & N)1037 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1038 // Checks common to all variables.
1039 visitDIVariable(N);
1040
1041 Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1042 Assert(!N.getName().empty(), "missing global variable name", &N);
1043 if (auto *V = N.getRawVariable()) {
1044 Assert(isa<ConstantAsMetadata>(V) &&
1045 !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),
1046 "invalid global varaible ref", &N, V);
1047 }
1048 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1049 Assert(isa<DIDerivedType>(Member), "invalid static data member declaration",
1050 &N, Member);
1051 }
1052 }
1053
visitDILocalVariable(const DILocalVariable & N)1054 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1055 // Checks common to all variables.
1056 visitDIVariable(N);
1057
1058 Assert(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1059 Assert(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1060 "local variable requires a valid scope", &N, N.getRawScope());
1061 }
1062
visitDIExpression(const DIExpression & N)1063 void Verifier::visitDIExpression(const DIExpression &N) {
1064 Assert(N.isValid(), "invalid expression", &N);
1065 }
1066
visitDIObjCProperty(const DIObjCProperty & N)1067 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1068 Assert(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1069 if (auto *T = N.getRawType())
1070 Assert(isTypeRef(N, T), "invalid type ref", &N, T);
1071 if (auto *F = N.getRawFile())
1072 Assert(isa<DIFile>(F), "invalid file", &N, F);
1073 }
1074
visitDIImportedEntity(const DIImportedEntity & N)1075 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1076 Assert(N.getTag() == dwarf::DW_TAG_imported_module ||
1077 N.getTag() == dwarf::DW_TAG_imported_declaration,
1078 "invalid tag", &N);
1079 if (auto *S = N.getRawScope())
1080 Assert(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1081 Assert(isDIRef(N, N.getEntity()), "invalid imported entity", &N,
1082 N.getEntity());
1083 }
1084
visitComdat(const Comdat & C)1085 void Verifier::visitComdat(const Comdat &C) {
1086 // The Module is invalid if the GlobalValue has private linkage. Entities
1087 // with private linkage don't have entries in the symbol table.
1088 if (const GlobalValue *GV = M->getNamedValue(C.getName()))
1089 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1090 GV);
1091 }
1092
visitModuleIdents(const Module & M)1093 void Verifier::visitModuleIdents(const Module &M) {
1094 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1095 if (!Idents)
1096 return;
1097
1098 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1099 // Scan each llvm.ident entry and make sure that this requirement is met.
1100 for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
1101 const MDNode *N = Idents->getOperand(i);
1102 Assert(N->getNumOperands() == 1,
1103 "incorrect number of operands in llvm.ident metadata", N);
1104 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1105 ("invalid value for llvm.ident metadata entry operand"
1106 "(the operand should be a string)"),
1107 N->getOperand(0));
1108 }
1109 }
1110
visitModuleFlags(const Module & M)1111 void Verifier::visitModuleFlags(const Module &M) {
1112 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1113 if (!Flags) return;
1114
1115 // Scan each flag, and track the flags and requirements.
1116 DenseMap<const MDString*, const MDNode*> SeenIDs;
1117 SmallVector<const MDNode*, 16> Requirements;
1118 for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
1119 visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
1120 }
1121
1122 // Validate that the requirements in the module are valid.
1123 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1124 const MDNode *Requirement = Requirements[I];
1125 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1126 const Metadata *ReqValue = Requirement->getOperand(1);
1127
1128 const MDNode *Op = SeenIDs.lookup(Flag);
1129 if (!Op) {
1130 CheckFailed("invalid requirement on flag, flag is not present in module",
1131 Flag);
1132 continue;
1133 }
1134
1135 if (Op->getOperand(2) != ReqValue) {
1136 CheckFailed(("invalid requirement on flag, "
1137 "flag does not have the required value"),
1138 Flag);
1139 continue;
1140 }
1141 }
1142 }
1143
1144 void
visitModuleFlag(const MDNode * Op,DenseMap<const MDString *,const MDNode * > & SeenIDs,SmallVectorImpl<const MDNode * > & Requirements)1145 Verifier::visitModuleFlag(const MDNode *Op,
1146 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1147 SmallVectorImpl<const MDNode *> &Requirements) {
1148 // Each module flag should have three arguments, the merge behavior (a
1149 // constant int), the flag ID (an MDString), and the value.
1150 Assert(Op->getNumOperands() == 3,
1151 "incorrect number of operands in module flag", Op);
1152 Module::ModFlagBehavior MFB;
1153 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1154 Assert(
1155 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1156 "invalid behavior operand in module flag (expected constant integer)",
1157 Op->getOperand(0));
1158 Assert(false,
1159 "invalid behavior operand in module flag (unexpected constant)",
1160 Op->getOperand(0));
1161 }
1162 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1163 Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1164 Op->getOperand(1));
1165
1166 // Sanity check the values for behaviors with additional requirements.
1167 switch (MFB) {
1168 case Module::Error:
1169 case Module::Warning:
1170 case Module::Override:
1171 // These behavior types accept any value.
1172 break;
1173
1174 case Module::Require: {
1175 // The value should itself be an MDNode with two operands, a flag ID (an
1176 // MDString), and a value.
1177 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1178 Assert(Value && Value->getNumOperands() == 2,
1179 "invalid value for 'require' module flag (expected metadata pair)",
1180 Op->getOperand(2));
1181 Assert(isa<MDString>(Value->getOperand(0)),
1182 ("invalid value for 'require' module flag "
1183 "(first value operand should be a string)"),
1184 Value->getOperand(0));
1185
1186 // Append it to the list of requirements, to check once all module flags are
1187 // scanned.
1188 Requirements.push_back(Value);
1189 break;
1190 }
1191
1192 case Module::Append:
1193 case Module::AppendUnique: {
1194 // These behavior types require the operand be an MDNode.
1195 Assert(isa<MDNode>(Op->getOperand(2)),
1196 "invalid value for 'append'-type module flag "
1197 "(expected a metadata node)",
1198 Op->getOperand(2));
1199 break;
1200 }
1201 }
1202
1203 // Unless this is a "requires" flag, check the ID is unique.
1204 if (MFB != Module::Require) {
1205 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1206 Assert(Inserted,
1207 "module flag identifiers must be unique (or of 'require' type)", ID);
1208 }
1209 }
1210
VerifyAttributeTypes(AttributeSet Attrs,unsigned Idx,bool isFunction,const Value * V)1211 void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
1212 bool isFunction, const Value *V) {
1213 unsigned Slot = ~0U;
1214 for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
1215 if (Attrs.getSlotIndex(I) == Idx) {
1216 Slot = I;
1217 break;
1218 }
1219
1220 assert(Slot != ~0U && "Attribute set inconsistency!");
1221
1222 for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
1223 I != E; ++I) {
1224 if (I->isStringAttribute())
1225 continue;
1226
1227 if (I->getKindAsEnum() == Attribute::NoReturn ||
1228 I->getKindAsEnum() == Attribute::NoUnwind ||
1229 I->getKindAsEnum() == Attribute::NoInline ||
1230 I->getKindAsEnum() == Attribute::AlwaysInline ||
1231 I->getKindAsEnum() == Attribute::OptimizeForSize ||
1232 I->getKindAsEnum() == Attribute::StackProtect ||
1233 I->getKindAsEnum() == Attribute::StackProtectReq ||
1234 I->getKindAsEnum() == Attribute::StackProtectStrong ||
1235 I->getKindAsEnum() == Attribute::SafeStack ||
1236 I->getKindAsEnum() == Attribute::NoRedZone ||
1237 I->getKindAsEnum() == Attribute::NoImplicitFloat ||
1238 I->getKindAsEnum() == Attribute::Naked ||
1239 I->getKindAsEnum() == Attribute::InlineHint ||
1240 I->getKindAsEnum() == Attribute::StackAlignment ||
1241 I->getKindAsEnum() == Attribute::UWTable ||
1242 I->getKindAsEnum() == Attribute::NonLazyBind ||
1243 I->getKindAsEnum() == Attribute::ReturnsTwice ||
1244 I->getKindAsEnum() == Attribute::SanitizeAddress ||
1245 I->getKindAsEnum() == Attribute::SanitizeThread ||
1246 I->getKindAsEnum() == Attribute::SanitizeMemory ||
1247 I->getKindAsEnum() == Attribute::MinSize ||
1248 I->getKindAsEnum() == Attribute::NoDuplicate ||
1249 I->getKindAsEnum() == Attribute::Builtin ||
1250 I->getKindAsEnum() == Attribute::NoBuiltin ||
1251 I->getKindAsEnum() == Attribute::Cold ||
1252 I->getKindAsEnum() == Attribute::OptimizeNone ||
1253 I->getKindAsEnum() == Attribute::JumpTable ||
1254 I->getKindAsEnum() == Attribute::Convergent ||
1255 I->getKindAsEnum() == Attribute::ArgMemOnly ||
1256 I->getKindAsEnum() == Attribute::NoRecurse ||
1257 I->getKindAsEnum() == Attribute::InaccessibleMemOnly ||
1258 I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly) {
1259 if (!isFunction) {
1260 CheckFailed("Attribute '" + I->getAsString() +
1261 "' only applies to functions!", V);
1262 return;
1263 }
1264 } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
1265 I->getKindAsEnum() == Attribute::ReadNone) {
1266 if (Idx == 0) {
1267 CheckFailed("Attribute '" + I->getAsString() +
1268 "' does not apply to function returns");
1269 return;
1270 }
1271 } else if (isFunction) {
1272 CheckFailed("Attribute '" + I->getAsString() +
1273 "' does not apply to functions!", V);
1274 return;
1275 }
1276 }
1277 }
1278
1279 // VerifyParameterAttrs - Check the given attributes for an argument or return
1280 // value of the specified type. The value V is printed in error messages.
VerifyParameterAttrs(AttributeSet Attrs,unsigned Idx,Type * Ty,bool isReturnValue,const Value * V)1281 void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
1282 bool isReturnValue, const Value *V) {
1283 if (!Attrs.hasAttributes(Idx))
1284 return;
1285
1286 VerifyAttributeTypes(Attrs, Idx, false, V);
1287
1288 if (isReturnValue)
1289 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1290 !Attrs.hasAttribute(Idx, Attribute::Nest) &&
1291 !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1292 !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
1293 !Attrs.hasAttribute(Idx, Attribute::Returned) &&
1294 !Attrs.hasAttribute(Idx, Attribute::InAlloca),
1295 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
1296 "'returned' do not apply to return values!",
1297 V);
1298
1299 // Check for mutually incompatible attributes. Only inreg is compatible with
1300 // sret.
1301 unsigned AttrCount = 0;
1302 AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
1303 AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
1304 AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
1305 Attrs.hasAttribute(Idx, Attribute::InReg);
1306 AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
1307 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1308 "and 'sret' are incompatible!",
1309 V);
1310
1311 Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
1312 Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1313 "Attributes "
1314 "'inalloca and readonly' are incompatible!",
1315 V);
1316
1317 Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1318 Attrs.hasAttribute(Idx, Attribute::Returned)),
1319 "Attributes "
1320 "'sret and returned' are incompatible!",
1321 V);
1322
1323 Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
1324 Attrs.hasAttribute(Idx, Attribute::SExt)),
1325 "Attributes "
1326 "'zeroext and signext' are incompatible!",
1327 V);
1328
1329 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
1330 Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1331 "Attributes "
1332 "'readnone and readonly' are incompatible!",
1333 V);
1334
1335 Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
1336 Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
1337 "Attributes "
1338 "'noinline and alwaysinline' are incompatible!",
1339 V);
1340
1341 Assert(!AttrBuilder(Attrs, Idx)
1342 .overlaps(AttributeFuncs::typeIncompatible(Ty)),
1343 "Wrong types for attribute: " +
1344 AttributeSet::get(*Context, Idx,
1345 AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx),
1346 V);
1347
1348 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1349 SmallPtrSet<Type*, 4> Visited;
1350 if (!PTy->getElementType()->isSized(&Visited)) {
1351 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1352 !Attrs.hasAttribute(Idx, Attribute::InAlloca),
1353 "Attributes 'byval' and 'inalloca' do not support unsized types!",
1354 V);
1355 }
1356 } else {
1357 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
1358 "Attribute 'byval' only applies to parameters with pointer type!",
1359 V);
1360 }
1361 }
1362
1363 // VerifyFunctionAttrs - Check parameter attributes against a function type.
1364 // The value V is printed in error messages.
VerifyFunctionAttrs(FunctionType * FT,AttributeSet Attrs,const Value * V)1365 void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
1366 const Value *V) {
1367 if (Attrs.isEmpty())
1368 return;
1369
1370 bool SawNest = false;
1371 bool SawReturned = false;
1372 bool SawSRet = false;
1373
1374 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1375 unsigned Idx = Attrs.getSlotIndex(i);
1376
1377 Type *Ty;
1378 if (Idx == 0)
1379 Ty = FT->getReturnType();
1380 else if (Idx-1 < FT->getNumParams())
1381 Ty = FT->getParamType(Idx-1);
1382 else
1383 break; // VarArgs attributes, verified elsewhere.
1384
1385 VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
1386
1387 if (Idx == 0)
1388 continue;
1389
1390 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1391 Assert(!SawNest, "More than one parameter has attribute nest!", V);
1392 SawNest = true;
1393 }
1394
1395 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1396 Assert(!SawReturned, "More than one parameter has attribute returned!",
1397 V);
1398 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1399 "Incompatible "
1400 "argument and return types for 'returned' attribute",
1401 V);
1402 SawReturned = true;
1403 }
1404
1405 if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
1406 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1407 Assert(Idx == 1 || Idx == 2,
1408 "Attribute 'sret' is not on first or second parameter!", V);
1409 SawSRet = true;
1410 }
1411
1412 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
1413 Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
1414 V);
1415 }
1416 }
1417
1418 if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
1419 return;
1420
1421 VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
1422
1423 Assert(
1424 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1425 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
1426 "Attributes 'readnone and readonly' are incompatible!", V);
1427
1428 Assert(
1429 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1430 Attrs.hasAttribute(AttributeSet::FunctionIndex,
1431 Attribute::InaccessibleMemOrArgMemOnly)),
1432 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V);
1433
1434 Assert(
1435 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1436 Attrs.hasAttribute(AttributeSet::FunctionIndex,
1437 Attribute::InaccessibleMemOnly)),
1438 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1439
1440 Assert(
1441 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
1442 Attrs.hasAttribute(AttributeSet::FunctionIndex,
1443 Attribute::AlwaysInline)),
1444 "Attributes 'noinline and alwaysinline' are incompatible!", V);
1445
1446 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1447 Attribute::OptimizeNone)) {
1448 Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
1449 "Attribute 'optnone' requires 'noinline'!", V);
1450
1451 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
1452 Attribute::OptimizeForSize),
1453 "Attributes 'optsize and optnone' are incompatible!", V);
1454
1455 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
1456 "Attributes 'minsize and optnone' are incompatible!", V);
1457 }
1458
1459 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1460 Attribute::JumpTable)) {
1461 const GlobalValue *GV = cast<GlobalValue>(V);
1462 Assert(GV->hasUnnamedAddr(),
1463 "Attribute 'jumptable' requires 'unnamed_addr'", V);
1464 }
1465 }
1466
VerifyFunctionMetadata(const SmallVector<std::pair<unsigned,MDNode * >,4> MDs)1467 void Verifier::VerifyFunctionMetadata(
1468 const SmallVector<std::pair<unsigned, MDNode *>, 4> MDs) {
1469 if (MDs.empty())
1470 return;
1471
1472 for (unsigned i = 0; i < MDs.size(); i++) {
1473 if (MDs[i].first == LLVMContext::MD_prof) {
1474 MDNode *MD = MDs[i].second;
1475 Assert(MD->getNumOperands() == 2,
1476 "!prof annotations should have exactly 2 operands", MD);
1477
1478 // Check first operand.
1479 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1480 MD);
1481 Assert(isa<MDString>(MD->getOperand(0)),
1482 "expected string with name of the !prof annotation", MD);
1483 MDString *MDS = cast<MDString>(MD->getOperand(0));
1484 StringRef ProfName = MDS->getString();
1485 Assert(ProfName.equals("function_entry_count"),
1486 "first operand should be 'function_entry_count'", MD);
1487
1488 // Check second operand.
1489 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1490 MD);
1491 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1492 "expected integer argument to function_entry_count", MD);
1493 }
1494 }
1495 }
1496
visitConstantExprsRecursively(const Constant * EntryC)1497 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1498 if (!ConstantExprVisited.insert(EntryC).second)
1499 return;
1500
1501 SmallVector<const Constant *, 16> Stack;
1502 Stack.push_back(EntryC);
1503
1504 while (!Stack.empty()) {
1505 const Constant *C = Stack.pop_back_val();
1506
1507 // Check this constant expression.
1508 if (const auto *CE = dyn_cast<ConstantExpr>(C))
1509 visitConstantExpr(CE);
1510
1511 // Visit all sub-expressions.
1512 for (const Use &U : C->operands()) {
1513 const auto *OpC = dyn_cast<Constant>(U);
1514 if (!OpC)
1515 continue;
1516 if (isa<GlobalValue>(OpC))
1517 continue; // Global values get visited separately.
1518 if (!ConstantExprVisited.insert(OpC).second)
1519 continue;
1520 Stack.push_back(OpC);
1521 }
1522 }
1523 }
1524
visitConstantExpr(const ConstantExpr * CE)1525 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1526 if (CE->getOpcode() != Instruction::BitCast)
1527 return;
1528
1529 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1530 CE->getType()),
1531 "Invalid bitcast", CE);
1532 }
1533
VerifyAttributeCount(AttributeSet Attrs,unsigned Params)1534 bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
1535 if (Attrs.getNumSlots() == 0)
1536 return true;
1537
1538 unsigned LastSlot = Attrs.getNumSlots() - 1;
1539 unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1540 if (LastIndex <= Params
1541 || (LastIndex == AttributeSet::FunctionIndex
1542 && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1543 return true;
1544
1545 return false;
1546 }
1547
1548 /// \brief Verify that statepoint intrinsic is well formed.
VerifyStatepoint(ImmutableCallSite CS)1549 void Verifier::VerifyStatepoint(ImmutableCallSite CS) {
1550 assert(CS.getCalledFunction() &&
1551 CS.getCalledFunction()->getIntrinsicID() ==
1552 Intrinsic::experimental_gc_statepoint);
1553
1554 const Instruction &CI = *CS.getInstruction();
1555
1556 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1557 !CS.onlyAccessesArgMemory(),
1558 "gc.statepoint must read and write all memory to preserve "
1559 "reordering restrictions required by safepoint semantics",
1560 &CI);
1561
1562 const Value *IDV = CS.getArgument(0);
1563 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1564 &CI);
1565
1566 const Value *NumPatchBytesV = CS.getArgument(1);
1567 Assert(isa<ConstantInt>(NumPatchBytesV),
1568 "gc.statepoint number of patchable bytes must be a constant integer",
1569 &CI);
1570 const int64_t NumPatchBytes =
1571 cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1572 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1573 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1574 "positive",
1575 &CI);
1576
1577 const Value *Target = CS.getArgument(2);
1578 auto *PT = dyn_cast<PointerType>(Target->getType());
1579 Assert(PT && PT->getElementType()->isFunctionTy(),
1580 "gc.statepoint callee must be of function pointer type", &CI, Target);
1581 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1582
1583 const Value *NumCallArgsV = CS.getArgument(3);
1584 Assert(isa<ConstantInt>(NumCallArgsV),
1585 "gc.statepoint number of arguments to underlying call "
1586 "must be constant integer",
1587 &CI);
1588 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1589 Assert(NumCallArgs >= 0,
1590 "gc.statepoint number of arguments to underlying call "
1591 "must be positive",
1592 &CI);
1593 const int NumParams = (int)TargetFuncType->getNumParams();
1594 if (TargetFuncType->isVarArg()) {
1595 Assert(NumCallArgs >= NumParams,
1596 "gc.statepoint mismatch in number of vararg call args", &CI);
1597
1598 // TODO: Remove this limitation
1599 Assert(TargetFuncType->getReturnType()->isVoidTy(),
1600 "gc.statepoint doesn't support wrapping non-void "
1601 "vararg functions yet",
1602 &CI);
1603 } else
1604 Assert(NumCallArgs == NumParams,
1605 "gc.statepoint mismatch in number of call args", &CI);
1606
1607 const Value *FlagsV = CS.getArgument(4);
1608 Assert(isa<ConstantInt>(FlagsV),
1609 "gc.statepoint flags must be constant integer", &CI);
1610 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1611 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1612 "unknown flag used in gc.statepoint flags argument", &CI);
1613
1614 // Verify that the types of the call parameter arguments match
1615 // the type of the wrapped callee.
1616 for (int i = 0; i < NumParams; i++) {
1617 Type *ParamType = TargetFuncType->getParamType(i);
1618 Type *ArgType = CS.getArgument(5 + i)->getType();
1619 Assert(ArgType == ParamType,
1620 "gc.statepoint call argument does not match wrapped "
1621 "function type",
1622 &CI);
1623 }
1624
1625 const int EndCallArgsInx = 4 + NumCallArgs;
1626
1627 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1628 Assert(isa<ConstantInt>(NumTransitionArgsV),
1629 "gc.statepoint number of transition arguments "
1630 "must be constant integer",
1631 &CI);
1632 const int NumTransitionArgs =
1633 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1634 Assert(NumTransitionArgs >= 0,
1635 "gc.statepoint number of transition arguments must be positive", &CI);
1636 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1637
1638 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1639 Assert(isa<ConstantInt>(NumDeoptArgsV),
1640 "gc.statepoint number of deoptimization arguments "
1641 "must be constant integer",
1642 &CI);
1643 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1644 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1645 "must be positive",
1646 &CI);
1647
1648 const int ExpectedNumArgs =
1649 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1650 Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1651 "gc.statepoint too few arguments according to length fields", &CI);
1652
1653 // Check that the only uses of this gc.statepoint are gc.result or
1654 // gc.relocate calls which are tied to this statepoint and thus part
1655 // of the same statepoint sequence
1656 for (const User *U : CI.users()) {
1657 const CallInst *Call = dyn_cast<const CallInst>(U);
1658 Assert(Call, "illegal use of statepoint token", &CI, U);
1659 if (!Call) continue;
1660 Assert(isGCRelocate(Call) || isGCResult(Call),
1661 "gc.result or gc.relocate are the only value uses"
1662 "of a gc.statepoint",
1663 &CI, U);
1664 if (isGCResult(Call)) {
1665 Assert(Call->getArgOperand(0) == &CI,
1666 "gc.result connected to wrong gc.statepoint", &CI, Call);
1667 } else if (isGCRelocate(Call)) {
1668 Assert(Call->getArgOperand(0) == &CI,
1669 "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1670 }
1671 }
1672
1673 // Note: It is legal for a single derived pointer to be listed multiple
1674 // times. It's non-optimal, but it is legal. It can also happen after
1675 // insertion if we strip a bitcast away.
1676 // Note: It is really tempting to check that each base is relocated and
1677 // that a derived pointer is never reused as a base pointer. This turns
1678 // out to be problematic since optimizations run after safepoint insertion
1679 // can recognize equality properties that the insertion logic doesn't know
1680 // about. See example statepoint.ll in the verifier subdirectory
1681 }
1682
verifyFrameRecoverIndices()1683 void Verifier::verifyFrameRecoverIndices() {
1684 for (auto &Counts : FrameEscapeInfo) {
1685 Function *F = Counts.first;
1686 unsigned EscapedObjectCount = Counts.second.first;
1687 unsigned MaxRecoveredIndex = Counts.second.second;
1688 Assert(MaxRecoveredIndex <= EscapedObjectCount,
1689 "all indices passed to llvm.localrecover must be less than the "
1690 "number of arguments passed ot llvm.localescape in the parent "
1691 "function",
1692 F);
1693 }
1694 }
1695
1696 // visitFunction - Verify that a function is ok.
1697 //
visitFunction(const Function & F)1698 void Verifier::visitFunction(const Function &F) {
1699 // Check function arguments.
1700 FunctionType *FT = F.getFunctionType();
1701 unsigned NumArgs = F.arg_size();
1702
1703 Assert(Context == &F.getContext(),
1704 "Function context does not match Module context!", &F);
1705
1706 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
1707 Assert(FT->getNumParams() == NumArgs,
1708 "# formal arguments must match # of arguments for function type!", &F,
1709 FT);
1710 Assert(F.getReturnType()->isFirstClassType() ||
1711 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
1712 "Functions cannot return aggregate values!", &F);
1713
1714 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
1715 "Invalid struct return type!", &F);
1716
1717 AttributeSet Attrs = F.getAttributes();
1718
1719 Assert(VerifyAttributeCount(Attrs, FT->getNumParams()),
1720 "Attribute after last parameter!", &F);
1721
1722 // Check function attributes.
1723 VerifyFunctionAttrs(FT, Attrs, &F);
1724
1725 // On function declarations/definitions, we do not support the builtin
1726 // attribute. We do not check this in VerifyFunctionAttrs since that is
1727 // checking for Attributes that can/can not ever be on functions.
1728 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
1729 "Attribute 'builtin' can only be applied to a callsite.", &F);
1730
1731 // Check that this function meets the restrictions on this calling convention.
1732 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
1733 // restrictions can be lifted.
1734 switch (F.getCallingConv()) {
1735 default:
1736 case CallingConv::C:
1737 break;
1738 case CallingConv::Fast:
1739 case CallingConv::Cold:
1740 case CallingConv::Intel_OCL_BI:
1741 case CallingConv::PTX_Kernel:
1742 case CallingConv::PTX_Device:
1743 Assert(!F.isVarArg(), "Calling convention does not support varargs or "
1744 "perfect forwarding!",
1745 &F);
1746 break;
1747 }
1748
1749 bool isLLVMdotName = F.getName().size() >= 5 &&
1750 F.getName().substr(0, 5) == "llvm.";
1751
1752 // Check that the argument values match the function type for this function...
1753 unsigned i = 0;
1754 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
1755 ++I, ++i) {
1756 Assert(I->getType() == FT->getParamType(i),
1757 "Argument value does not match function argument type!", I,
1758 FT->getParamType(i));
1759 Assert(I->getType()->isFirstClassType(),
1760 "Function arguments must have first-class types!", I);
1761 if (!isLLVMdotName) {
1762 Assert(!I->getType()->isMetadataTy(),
1763 "Function takes metadata but isn't an intrinsic", I, &F);
1764 Assert(!I->getType()->isTokenTy(),
1765 "Function takes token but isn't an intrinsic", I, &F);
1766 }
1767 }
1768
1769 if (!isLLVMdotName)
1770 Assert(!F.getReturnType()->isTokenTy(),
1771 "Functions returns a token but isn't an intrinsic", &F);
1772
1773 // Get the function metadata attachments.
1774 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1775 F.getAllMetadata(MDs);
1776 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
1777 VerifyFunctionMetadata(MDs);
1778
1779 // Check validity of the personality function
1780 if (F.hasPersonalityFn()) {
1781 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
1782 if (Per)
1783 Assert(Per->getParent() == F.getParent(),
1784 "Referencing personality function in another module!",
1785 &F, F.getParent(), Per, Per->getParent());
1786 }
1787
1788 if (F.isMaterializable()) {
1789 // Function has a body somewhere we can't see.
1790 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
1791 MDs.empty() ? nullptr : MDs.front().second);
1792 } else if (F.isDeclaration()) {
1793 Assert(F.hasExternalLinkage() || F.hasExternalWeakLinkage(),
1794 "invalid linkage type for function declaration", &F);
1795 Assert(MDs.empty(), "function without a body cannot have metadata", &F,
1796 MDs.empty() ? nullptr : MDs.front().second);
1797 Assert(!F.hasPersonalityFn(),
1798 "Function declaration shouldn't have a personality routine", &F);
1799 } else {
1800 // Verify that this function (which has a body) is not named "llvm.*". It
1801 // is not legal to define intrinsics.
1802 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
1803
1804 // Check the entry node
1805 const BasicBlock *Entry = &F.getEntryBlock();
1806 Assert(pred_empty(Entry),
1807 "Entry block to function must not have predecessors!", Entry);
1808
1809 // The address of the entry block cannot be taken, unless it is dead.
1810 if (Entry->hasAddressTaken()) {
1811 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
1812 "blockaddress may not be used with the entry block!", Entry);
1813 }
1814
1815 // Visit metadata attachments.
1816 for (const auto &I : MDs) {
1817 // Verify that the attachment is legal.
1818 switch (I.first) {
1819 default:
1820 break;
1821 case LLVMContext::MD_dbg:
1822 Assert(isa<DISubprogram>(I.second),
1823 "function !dbg attachment must be a subprogram", &F, I.second);
1824 break;
1825 }
1826
1827 // Verify the metadata itself.
1828 visitMDNode(*I.second);
1829 }
1830 }
1831
1832 // If this function is actually an intrinsic, verify that it is only used in
1833 // direct call/invokes, never having its "address taken".
1834 // Only do this if the module is materialized, otherwise we don't have all the
1835 // uses.
1836 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
1837 const User *U;
1838 if (F.hasAddressTaken(&U))
1839 Assert(0, "Invalid user of intrinsic instruction!", U);
1840 }
1841
1842 Assert(!F.hasDLLImportStorageClass() ||
1843 (F.isDeclaration() && F.hasExternalLinkage()) ||
1844 F.hasAvailableExternallyLinkage(),
1845 "Function is marked as dllimport, but not external.", &F);
1846
1847 auto *N = F.getSubprogram();
1848 if (!N)
1849 return;
1850
1851 // Check that all !dbg attachments lead to back to N (or, at least, another
1852 // subprogram that describes the same function).
1853 //
1854 // FIXME: Check this incrementally while visiting !dbg attachments.
1855 // FIXME: Only check when N is the canonical subprogram for F.
1856 SmallPtrSet<const MDNode *, 32> Seen;
1857 for (auto &BB : F)
1858 for (auto &I : BB) {
1859 // Be careful about using DILocation here since we might be dealing with
1860 // broken code (this is the Verifier after all).
1861 DILocation *DL =
1862 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
1863 if (!DL)
1864 continue;
1865 if (!Seen.insert(DL).second)
1866 continue;
1867
1868 DILocalScope *Scope = DL->getInlinedAtScope();
1869 if (Scope && !Seen.insert(Scope).second)
1870 continue;
1871
1872 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
1873
1874 // Scope and SP could be the same MDNode and we don't want to skip
1875 // validation in that case
1876 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
1877 continue;
1878
1879 // FIXME: Once N is canonical, check "SP == &N".
1880 Assert(SP->describes(&F),
1881 "!dbg attachment points at wrong subprogram for function", N, &F,
1882 &I, DL, Scope, SP);
1883 }
1884 }
1885
1886 // verifyBasicBlock - Verify that a basic block is well formed...
1887 //
visitBasicBlock(BasicBlock & BB)1888 void Verifier::visitBasicBlock(BasicBlock &BB) {
1889 InstsInThisBlock.clear();
1890
1891 // Ensure that basic blocks have terminators!
1892 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
1893
1894 // Check constraints that this basic block imposes on all of the PHI nodes in
1895 // it.
1896 if (isa<PHINode>(BB.front())) {
1897 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
1898 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
1899 std::sort(Preds.begin(), Preds.end());
1900 PHINode *PN;
1901 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
1902 // Ensure that PHI nodes have at least one entry!
1903 Assert(PN->getNumIncomingValues() != 0,
1904 "PHI nodes must have at least one entry. If the block is dead, "
1905 "the PHI should be removed!",
1906 PN);
1907 Assert(PN->getNumIncomingValues() == Preds.size(),
1908 "PHINode should have one entry for each predecessor of its "
1909 "parent basic block!",
1910 PN);
1911
1912 // Get and sort all incoming values in the PHI node...
1913 Values.clear();
1914 Values.reserve(PN->getNumIncomingValues());
1915 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1916 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
1917 PN->getIncomingValue(i)));
1918 std::sort(Values.begin(), Values.end());
1919
1920 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
1921 // Check to make sure that if there is more than one entry for a
1922 // particular basic block in this PHI node, that the incoming values are
1923 // all identical.
1924 //
1925 Assert(i == 0 || Values[i].first != Values[i - 1].first ||
1926 Values[i].second == Values[i - 1].second,
1927 "PHI node has multiple entries for the same basic block with "
1928 "different incoming values!",
1929 PN, Values[i].first, Values[i].second, Values[i - 1].second);
1930
1931 // Check to make sure that the predecessors and PHI node entries are
1932 // matched up.
1933 Assert(Values[i].first == Preds[i],
1934 "PHI node entries do not match predecessors!", PN,
1935 Values[i].first, Preds[i]);
1936 }
1937 }
1938 }
1939
1940 // Check that all instructions have their parent pointers set up correctly.
1941 for (auto &I : BB)
1942 {
1943 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
1944 }
1945 }
1946
visitTerminatorInst(TerminatorInst & I)1947 void Verifier::visitTerminatorInst(TerminatorInst &I) {
1948 // Ensure that terminators only exist at the end of the basic block.
1949 Assert(&I == I.getParent()->getTerminator(),
1950 "Terminator found in the middle of a basic block!", I.getParent());
1951 visitInstruction(I);
1952 }
1953
visitBranchInst(BranchInst & BI)1954 void Verifier::visitBranchInst(BranchInst &BI) {
1955 if (BI.isConditional()) {
1956 Assert(BI.getCondition()->getType()->isIntegerTy(1),
1957 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
1958 }
1959 visitTerminatorInst(BI);
1960 }
1961
visitReturnInst(ReturnInst & RI)1962 void Verifier::visitReturnInst(ReturnInst &RI) {
1963 Function *F = RI.getParent()->getParent();
1964 unsigned N = RI.getNumOperands();
1965 if (F->getReturnType()->isVoidTy())
1966 Assert(N == 0,
1967 "Found return instr that returns non-void in Function of void "
1968 "return type!",
1969 &RI, F->getReturnType());
1970 else
1971 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
1972 "Function return type does not match operand "
1973 "type of return inst!",
1974 &RI, F->getReturnType());
1975
1976 // Check to make sure that the return value has necessary properties for
1977 // terminators...
1978 visitTerminatorInst(RI);
1979 }
1980
visitSwitchInst(SwitchInst & SI)1981 void Verifier::visitSwitchInst(SwitchInst &SI) {
1982 // Check to make sure that all of the constants in the switch instruction
1983 // have the same type as the switched-on value.
1984 Type *SwitchTy = SI.getCondition()->getType();
1985 SmallPtrSet<ConstantInt*, 32> Constants;
1986 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
1987 Assert(i.getCaseValue()->getType() == SwitchTy,
1988 "Switch constants must all be same type as switch value!", &SI);
1989 Assert(Constants.insert(i.getCaseValue()).second,
1990 "Duplicate integer as switch case", &SI, i.getCaseValue());
1991 }
1992
1993 visitTerminatorInst(SI);
1994 }
1995
visitIndirectBrInst(IndirectBrInst & BI)1996 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
1997 Assert(BI.getAddress()->getType()->isPointerTy(),
1998 "Indirectbr operand must have pointer type!", &BI);
1999 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2000 Assert(BI.getDestination(i)->getType()->isLabelTy(),
2001 "Indirectbr destinations must all have pointer type!", &BI);
2002
2003 visitTerminatorInst(BI);
2004 }
2005
visitSelectInst(SelectInst & SI)2006 void Verifier::visitSelectInst(SelectInst &SI) {
2007 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2008 SI.getOperand(2)),
2009 "Invalid operands for select instruction!", &SI);
2010
2011 Assert(SI.getTrueValue()->getType() == SI.getType(),
2012 "Select values must have same type as select instruction!", &SI);
2013 visitInstruction(SI);
2014 }
2015
2016 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2017 /// a pass, if any exist, it's an error.
2018 ///
visitUserOp1(Instruction & I)2019 void Verifier::visitUserOp1(Instruction &I) {
2020 Assert(0, "User-defined operators should not live outside of a pass!", &I);
2021 }
2022
visitTruncInst(TruncInst & I)2023 void Verifier::visitTruncInst(TruncInst &I) {
2024 // Get the source and destination types
2025 Type *SrcTy = I.getOperand(0)->getType();
2026 Type *DestTy = I.getType();
2027
2028 // Get the size of the types in bits, we'll need this later
2029 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2030 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2031
2032 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2033 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2034 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2035 "trunc source and destination must both be a vector or neither", &I);
2036 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2037
2038 visitInstruction(I);
2039 }
2040
visitZExtInst(ZExtInst & I)2041 void Verifier::visitZExtInst(ZExtInst &I) {
2042 // Get the source and destination types
2043 Type *SrcTy = I.getOperand(0)->getType();
2044 Type *DestTy = I.getType();
2045
2046 // Get the size of the types in bits, we'll need this later
2047 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2048 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2049 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2050 "zext source and destination must both be a vector or neither", &I);
2051 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2052 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2053
2054 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2055
2056 visitInstruction(I);
2057 }
2058
visitSExtInst(SExtInst & I)2059 void Verifier::visitSExtInst(SExtInst &I) {
2060 // Get the source and destination types
2061 Type *SrcTy = I.getOperand(0)->getType();
2062 Type *DestTy = I.getType();
2063
2064 // Get the size of the types in bits, we'll need this later
2065 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2066 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2067
2068 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2069 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2070 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2071 "sext source and destination must both be a vector or neither", &I);
2072 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2073
2074 visitInstruction(I);
2075 }
2076
visitFPTruncInst(FPTruncInst & I)2077 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2078 // Get the source and destination types
2079 Type *SrcTy = I.getOperand(0)->getType();
2080 Type *DestTy = I.getType();
2081 // Get the size of the types in bits, we'll need this later
2082 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2083 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2084
2085 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2086 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2087 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2088 "fptrunc source and destination must both be a vector or neither", &I);
2089 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2090
2091 visitInstruction(I);
2092 }
2093
visitFPExtInst(FPExtInst & I)2094 void Verifier::visitFPExtInst(FPExtInst &I) {
2095 // Get the source and destination types
2096 Type *SrcTy = I.getOperand(0)->getType();
2097 Type *DestTy = I.getType();
2098
2099 // Get the size of the types in bits, we'll need this later
2100 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2101 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2102
2103 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2104 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2105 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2106 "fpext source and destination must both be a vector or neither", &I);
2107 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2108
2109 visitInstruction(I);
2110 }
2111
visitUIToFPInst(UIToFPInst & I)2112 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2113 // Get the source and destination types
2114 Type *SrcTy = I.getOperand(0)->getType();
2115 Type *DestTy = I.getType();
2116
2117 bool SrcVec = SrcTy->isVectorTy();
2118 bool DstVec = DestTy->isVectorTy();
2119
2120 Assert(SrcVec == DstVec,
2121 "UIToFP source and dest must both be vector or scalar", &I);
2122 Assert(SrcTy->isIntOrIntVectorTy(),
2123 "UIToFP source must be integer or integer vector", &I);
2124 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2125 &I);
2126
2127 if (SrcVec && DstVec)
2128 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2129 cast<VectorType>(DestTy)->getNumElements(),
2130 "UIToFP source and dest vector length mismatch", &I);
2131
2132 visitInstruction(I);
2133 }
2134
visitSIToFPInst(SIToFPInst & I)2135 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2136 // Get the source and destination types
2137 Type *SrcTy = I.getOperand(0)->getType();
2138 Type *DestTy = I.getType();
2139
2140 bool SrcVec = SrcTy->isVectorTy();
2141 bool DstVec = DestTy->isVectorTy();
2142
2143 Assert(SrcVec == DstVec,
2144 "SIToFP source and dest must both be vector or scalar", &I);
2145 Assert(SrcTy->isIntOrIntVectorTy(),
2146 "SIToFP source must be integer or integer vector", &I);
2147 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2148 &I);
2149
2150 if (SrcVec && DstVec)
2151 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2152 cast<VectorType>(DestTy)->getNumElements(),
2153 "SIToFP source and dest vector length mismatch", &I);
2154
2155 visitInstruction(I);
2156 }
2157
visitFPToUIInst(FPToUIInst & I)2158 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2159 // Get the source and destination types
2160 Type *SrcTy = I.getOperand(0)->getType();
2161 Type *DestTy = I.getType();
2162
2163 bool SrcVec = SrcTy->isVectorTy();
2164 bool DstVec = DestTy->isVectorTy();
2165
2166 Assert(SrcVec == DstVec,
2167 "FPToUI source and dest must both be vector or scalar", &I);
2168 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2169 &I);
2170 Assert(DestTy->isIntOrIntVectorTy(),
2171 "FPToUI result must be integer or integer vector", &I);
2172
2173 if (SrcVec && DstVec)
2174 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2175 cast<VectorType>(DestTy)->getNumElements(),
2176 "FPToUI source and dest vector length mismatch", &I);
2177
2178 visitInstruction(I);
2179 }
2180
visitFPToSIInst(FPToSIInst & I)2181 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2182 // Get the source and destination types
2183 Type *SrcTy = I.getOperand(0)->getType();
2184 Type *DestTy = I.getType();
2185
2186 bool SrcVec = SrcTy->isVectorTy();
2187 bool DstVec = DestTy->isVectorTy();
2188
2189 Assert(SrcVec == DstVec,
2190 "FPToSI source and dest must both be vector or scalar", &I);
2191 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2192 &I);
2193 Assert(DestTy->isIntOrIntVectorTy(),
2194 "FPToSI result must be integer or integer vector", &I);
2195
2196 if (SrcVec && DstVec)
2197 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2198 cast<VectorType>(DestTy)->getNumElements(),
2199 "FPToSI source and dest vector length mismatch", &I);
2200
2201 visitInstruction(I);
2202 }
2203
visitPtrToIntInst(PtrToIntInst & I)2204 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2205 // Get the source and destination types
2206 Type *SrcTy = I.getOperand(0)->getType();
2207 Type *DestTy = I.getType();
2208
2209 Assert(SrcTy->getScalarType()->isPointerTy(),
2210 "PtrToInt source must be pointer", &I);
2211 Assert(DestTy->getScalarType()->isIntegerTy(),
2212 "PtrToInt result must be integral", &I);
2213 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2214 &I);
2215
2216 if (SrcTy->isVectorTy()) {
2217 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2218 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2219 Assert(VSrc->getNumElements() == VDest->getNumElements(),
2220 "PtrToInt Vector width mismatch", &I);
2221 }
2222
2223 visitInstruction(I);
2224 }
2225
visitIntToPtrInst(IntToPtrInst & I)2226 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2227 // Get the source and destination types
2228 Type *SrcTy = I.getOperand(0)->getType();
2229 Type *DestTy = I.getType();
2230
2231 Assert(SrcTy->getScalarType()->isIntegerTy(),
2232 "IntToPtr source must be an integral", &I);
2233 Assert(DestTy->getScalarType()->isPointerTy(),
2234 "IntToPtr result must be a pointer", &I);
2235 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2236 &I);
2237 if (SrcTy->isVectorTy()) {
2238 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2239 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2240 Assert(VSrc->getNumElements() == VDest->getNumElements(),
2241 "IntToPtr Vector width mismatch", &I);
2242 }
2243 visitInstruction(I);
2244 }
2245
visitBitCastInst(BitCastInst & I)2246 void Verifier::visitBitCastInst(BitCastInst &I) {
2247 Assert(
2248 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2249 "Invalid bitcast", &I);
2250 visitInstruction(I);
2251 }
2252
visitAddrSpaceCastInst(AddrSpaceCastInst & I)2253 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2254 Type *SrcTy = I.getOperand(0)->getType();
2255 Type *DestTy = I.getType();
2256
2257 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2258 &I);
2259 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2260 &I);
2261 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2262 "AddrSpaceCast must be between different address spaces", &I);
2263 if (SrcTy->isVectorTy())
2264 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2265 "AddrSpaceCast vector pointer number of elements mismatch", &I);
2266 visitInstruction(I);
2267 }
2268
2269 /// visitPHINode - Ensure that a PHI node is well formed.
2270 ///
visitPHINode(PHINode & PN)2271 void Verifier::visitPHINode(PHINode &PN) {
2272 // Ensure that the PHI nodes are all grouped together at the top of the block.
2273 // This can be tested by checking whether the instruction before this is
2274 // either nonexistent (because this is begin()) or is a PHI node. If not,
2275 // then there is some other instruction before a PHI.
2276 Assert(&PN == &PN.getParent()->front() ||
2277 isa<PHINode>(--BasicBlock::iterator(&PN)),
2278 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2279
2280 // Check that a PHI doesn't yield a Token.
2281 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2282
2283 // Check that all of the values of the PHI node have the same type as the
2284 // result, and that the incoming blocks are really basic blocks.
2285 for (Value *IncValue : PN.incoming_values()) {
2286 Assert(PN.getType() == IncValue->getType(),
2287 "PHI node operands are not the same type as the result!", &PN);
2288 }
2289
2290 // All other PHI node constraints are checked in the visitBasicBlock method.
2291
2292 visitInstruction(PN);
2293 }
2294
VerifyCallSite(CallSite CS)2295 void Verifier::VerifyCallSite(CallSite CS) {
2296 Instruction *I = CS.getInstruction();
2297
2298 Assert(CS.getCalledValue()->getType()->isPointerTy(),
2299 "Called function must be a pointer!", I);
2300 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2301
2302 Assert(FPTy->getElementType()->isFunctionTy(),
2303 "Called function is not pointer to function type!", I);
2304
2305 Assert(FPTy->getElementType() == CS.getFunctionType(),
2306 "Called function is not the same type as the call!", I);
2307
2308 FunctionType *FTy = CS.getFunctionType();
2309
2310 // Verify that the correct number of arguments are being passed
2311 if (FTy->isVarArg())
2312 Assert(CS.arg_size() >= FTy->getNumParams(),
2313 "Called function requires more parameters than were provided!", I);
2314 else
2315 Assert(CS.arg_size() == FTy->getNumParams(),
2316 "Incorrect number of arguments passed to called function!", I);
2317
2318 // Verify that all arguments to the call match the function type.
2319 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2320 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2321 "Call parameter type does not match function signature!",
2322 CS.getArgument(i), FTy->getParamType(i), I);
2323
2324 AttributeSet Attrs = CS.getAttributes();
2325
2326 Assert(VerifyAttributeCount(Attrs, CS.arg_size()),
2327 "Attribute after last parameter!", I);
2328
2329 // Verify call attributes.
2330 VerifyFunctionAttrs(FTy, Attrs, I);
2331
2332 // Conservatively check the inalloca argument.
2333 // We have a bug if we can find that there is an underlying alloca without
2334 // inalloca.
2335 if (CS.hasInAllocaArgument()) {
2336 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2337 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2338 Assert(AI->isUsedWithInAlloca(),
2339 "inalloca argument for call has mismatched alloca", AI, I);
2340 }
2341
2342 if (FTy->isVarArg()) {
2343 // FIXME? is 'nest' even legal here?
2344 bool SawNest = false;
2345 bool SawReturned = false;
2346
2347 for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
2348 if (Attrs.hasAttribute(Idx, Attribute::Nest))
2349 SawNest = true;
2350 if (Attrs.hasAttribute(Idx, Attribute::Returned))
2351 SawReturned = true;
2352 }
2353
2354 // Check attributes on the varargs part.
2355 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
2356 Type *Ty = CS.getArgument(Idx-1)->getType();
2357 VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
2358
2359 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
2360 Assert(!SawNest, "More than one parameter has attribute nest!", I);
2361 SawNest = true;
2362 }
2363
2364 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
2365 Assert(!SawReturned, "More than one parameter has attribute returned!",
2366 I);
2367 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2368 "Incompatible argument and return types for 'returned' "
2369 "attribute",
2370 I);
2371 SawReturned = true;
2372 }
2373
2374 Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
2375 "Attribute 'sret' cannot be used for vararg call arguments!", I);
2376
2377 if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
2378 Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
2379 }
2380 }
2381
2382 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2383 if (CS.getCalledFunction() == nullptr ||
2384 !CS.getCalledFunction()->getName().startswith("llvm.")) {
2385 for (Type *ParamTy : FTy->params()) {
2386 Assert(!ParamTy->isMetadataTy(),
2387 "Function has metadata parameter but isn't an intrinsic", I);
2388 Assert(!ParamTy->isTokenTy(),
2389 "Function has token parameter but isn't an intrinsic", I);
2390 }
2391 }
2392
2393 // Verify that indirect calls don't return tokens.
2394 if (CS.getCalledFunction() == nullptr)
2395 Assert(!FTy->getReturnType()->isTokenTy(),
2396 "Return type cannot be token for indirect call!");
2397
2398 if (Function *F = CS.getCalledFunction())
2399 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2400 visitIntrinsicCallSite(ID, CS);
2401
2402 // Verify that a callsite has at most one "deopt" and one "funclet" operand
2403 // bundle.
2404 bool FoundDeoptBundle = false, FoundFuncletBundle = false;
2405 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2406 OperandBundleUse BU = CS.getOperandBundleAt(i);
2407 uint32_t Tag = BU.getTagID();
2408 if (Tag == LLVMContext::OB_deopt) {
2409 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
2410 FoundDeoptBundle = true;
2411 }
2412 if (Tag == LLVMContext::OB_funclet) {
2413 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
2414 FoundFuncletBundle = true;
2415 Assert(BU.Inputs.size() == 1,
2416 "Expected exactly one funclet bundle operand", I);
2417 Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2418 "Funclet bundle operands should correspond to a FuncletPadInst",
2419 I);
2420 }
2421 }
2422
2423 visitInstruction(*I);
2424 }
2425
2426 /// Two types are "congruent" if they are identical, or if they are both pointer
2427 /// types with different pointee types and the same address space.
isTypeCongruent(Type * L,Type * R)2428 static bool isTypeCongruent(Type *L, Type *R) {
2429 if (L == R)
2430 return true;
2431 PointerType *PL = dyn_cast<PointerType>(L);
2432 PointerType *PR = dyn_cast<PointerType>(R);
2433 if (!PL || !PR)
2434 return false;
2435 return PL->getAddressSpace() == PR->getAddressSpace();
2436 }
2437
getParameterABIAttributes(int I,AttributeSet Attrs)2438 static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
2439 static const Attribute::AttrKind ABIAttrs[] = {
2440 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2441 Attribute::InReg, Attribute::Returned};
2442 AttrBuilder Copy;
2443 for (auto AK : ABIAttrs) {
2444 if (Attrs.hasAttribute(I + 1, AK))
2445 Copy.addAttribute(AK);
2446 }
2447 if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
2448 Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
2449 return Copy;
2450 }
2451
verifyMustTailCall(CallInst & CI)2452 void Verifier::verifyMustTailCall(CallInst &CI) {
2453 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2454
2455 // - The caller and callee prototypes must match. Pointer types of
2456 // parameters or return types may differ in pointee type, but not
2457 // address space.
2458 Function *F = CI.getParent()->getParent();
2459 FunctionType *CallerTy = F->getFunctionType();
2460 FunctionType *CalleeTy = CI.getFunctionType();
2461 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2462 "cannot guarantee tail call due to mismatched parameter counts", &CI);
2463 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2464 "cannot guarantee tail call due to mismatched varargs", &CI);
2465 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2466 "cannot guarantee tail call due to mismatched return types", &CI);
2467 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2468 Assert(
2469 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2470 "cannot guarantee tail call due to mismatched parameter types", &CI);
2471 }
2472
2473 // - The calling conventions of the caller and callee must match.
2474 Assert(F->getCallingConv() == CI.getCallingConv(),
2475 "cannot guarantee tail call due to mismatched calling conv", &CI);
2476
2477 // - All ABI-impacting function attributes, such as sret, byval, inreg,
2478 // returned, and inalloca, must match.
2479 AttributeSet CallerAttrs = F->getAttributes();
2480 AttributeSet CalleeAttrs = CI.getAttributes();
2481 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2482 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2483 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2484 Assert(CallerABIAttrs == CalleeABIAttrs,
2485 "cannot guarantee tail call due to mismatched ABI impacting "
2486 "function attributes",
2487 &CI, CI.getOperand(I));
2488 }
2489
2490 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2491 // or a pointer bitcast followed by a ret instruction.
2492 // - The ret instruction must return the (possibly bitcasted) value
2493 // produced by the call or void.
2494 Value *RetVal = &CI;
2495 Instruction *Next = CI.getNextNode();
2496
2497 // Handle the optional bitcast.
2498 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2499 Assert(BI->getOperand(0) == RetVal,
2500 "bitcast following musttail call must use the call", BI);
2501 RetVal = BI;
2502 Next = BI->getNextNode();
2503 }
2504
2505 // Check the return.
2506 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2507 Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
2508 &CI);
2509 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2510 "musttail call result must be returned", Ret);
2511 }
2512
visitCallInst(CallInst & CI)2513 void Verifier::visitCallInst(CallInst &CI) {
2514 VerifyCallSite(&CI);
2515
2516 if (CI.isMustTailCall())
2517 verifyMustTailCall(CI);
2518 }
2519
visitInvokeInst(InvokeInst & II)2520 void Verifier::visitInvokeInst(InvokeInst &II) {
2521 VerifyCallSite(&II);
2522
2523 // Verify that the first non-PHI instruction of the unwind destination is an
2524 // exception handling instruction.
2525 Assert(
2526 II.getUnwindDest()->isEHPad(),
2527 "The unwind destination does not have an exception handling instruction!",
2528 &II);
2529
2530 visitTerminatorInst(II);
2531 }
2532
2533 /// visitBinaryOperator - Check that both arguments to the binary operator are
2534 /// of the same type!
2535 ///
visitBinaryOperator(BinaryOperator & B)2536 void Verifier::visitBinaryOperator(BinaryOperator &B) {
2537 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2538 "Both operands to a binary operator are not of the same type!", &B);
2539
2540 switch (B.getOpcode()) {
2541 // Check that integer arithmetic operators are only used with
2542 // integral operands.
2543 case Instruction::Add:
2544 case Instruction::Sub:
2545 case Instruction::Mul:
2546 case Instruction::SDiv:
2547 case Instruction::UDiv:
2548 case Instruction::SRem:
2549 case Instruction::URem:
2550 Assert(B.getType()->isIntOrIntVectorTy(),
2551 "Integer arithmetic operators only work with integral types!", &B);
2552 Assert(B.getType() == B.getOperand(0)->getType(),
2553 "Integer arithmetic operators must have same type "
2554 "for operands and result!",
2555 &B);
2556 break;
2557 // Check that floating-point arithmetic operators are only used with
2558 // floating-point operands.
2559 case Instruction::FAdd:
2560 case Instruction::FSub:
2561 case Instruction::FMul:
2562 case Instruction::FDiv:
2563 case Instruction::FRem:
2564 Assert(B.getType()->isFPOrFPVectorTy(),
2565 "Floating-point arithmetic operators only work with "
2566 "floating-point types!",
2567 &B);
2568 Assert(B.getType() == B.getOperand(0)->getType(),
2569 "Floating-point arithmetic operators must have same type "
2570 "for operands and result!",
2571 &B);
2572 break;
2573 // Check that logical operators are only used with integral operands.
2574 case Instruction::And:
2575 case Instruction::Or:
2576 case Instruction::Xor:
2577 Assert(B.getType()->isIntOrIntVectorTy(),
2578 "Logical operators only work with integral types!", &B);
2579 Assert(B.getType() == B.getOperand(0)->getType(),
2580 "Logical operators must have same type for operands and result!",
2581 &B);
2582 break;
2583 case Instruction::Shl:
2584 case Instruction::LShr:
2585 case Instruction::AShr:
2586 Assert(B.getType()->isIntOrIntVectorTy(),
2587 "Shifts only work with integral types!", &B);
2588 Assert(B.getType() == B.getOperand(0)->getType(),
2589 "Shift return type must be same as operands!", &B);
2590 break;
2591 default:
2592 llvm_unreachable("Unknown BinaryOperator opcode!");
2593 }
2594
2595 visitInstruction(B);
2596 }
2597
visitICmpInst(ICmpInst & IC)2598 void Verifier::visitICmpInst(ICmpInst &IC) {
2599 // Check that the operands are the same type
2600 Type *Op0Ty = IC.getOperand(0)->getType();
2601 Type *Op1Ty = IC.getOperand(1)->getType();
2602 Assert(Op0Ty == Op1Ty,
2603 "Both operands to ICmp instruction are not of the same type!", &IC);
2604 // Check that the operands are the right type
2605 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
2606 "Invalid operand types for ICmp instruction", &IC);
2607 // Check that the predicate is valid.
2608 Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
2609 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
2610 "Invalid predicate in ICmp instruction!", &IC);
2611
2612 visitInstruction(IC);
2613 }
2614
visitFCmpInst(FCmpInst & FC)2615 void Verifier::visitFCmpInst(FCmpInst &FC) {
2616 // Check that the operands are the same type
2617 Type *Op0Ty = FC.getOperand(0)->getType();
2618 Type *Op1Ty = FC.getOperand(1)->getType();
2619 Assert(Op0Ty == Op1Ty,
2620 "Both operands to FCmp instruction are not of the same type!", &FC);
2621 // Check that the operands are the right type
2622 Assert(Op0Ty->isFPOrFPVectorTy(),
2623 "Invalid operand types for FCmp instruction", &FC);
2624 // Check that the predicate is valid.
2625 Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
2626 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
2627 "Invalid predicate in FCmp instruction!", &FC);
2628
2629 visitInstruction(FC);
2630 }
2631
visitExtractElementInst(ExtractElementInst & EI)2632 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2633 Assert(
2634 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
2635 "Invalid extractelement operands!", &EI);
2636 visitInstruction(EI);
2637 }
2638
visitInsertElementInst(InsertElementInst & IE)2639 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2640 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
2641 IE.getOperand(2)),
2642 "Invalid insertelement operands!", &IE);
2643 visitInstruction(IE);
2644 }
2645
visitShuffleVectorInst(ShuffleVectorInst & SV)2646 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2647 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
2648 SV.getOperand(2)),
2649 "Invalid shufflevector operands!", &SV);
2650 visitInstruction(SV);
2651 }
2652
visitGetElementPtrInst(GetElementPtrInst & GEP)2653 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2654 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
2655
2656 Assert(isa<PointerType>(TargetTy),
2657 "GEP base pointer is not a vector or a vector of pointers", &GEP);
2658 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
2659 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
2660 Type *ElTy =
2661 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
2662 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
2663
2664 Assert(GEP.getType()->getScalarType()->isPointerTy() &&
2665 GEP.getResultElementType() == ElTy,
2666 "GEP is not of right type for indices!", &GEP, ElTy);
2667
2668 if (GEP.getType()->isVectorTy()) {
2669 // Additional checks for vector GEPs.
2670 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
2671 if (GEP.getPointerOperandType()->isVectorTy())
2672 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
2673 "Vector GEP result width doesn't match operand's", &GEP);
2674 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2675 Type *IndexTy = Idxs[i]->getType();
2676 if (IndexTy->isVectorTy()) {
2677 unsigned IndexWidth = IndexTy->getVectorNumElements();
2678 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
2679 }
2680 Assert(IndexTy->getScalarType()->isIntegerTy(),
2681 "All GEP indices should be of integer type");
2682 }
2683 }
2684 visitInstruction(GEP);
2685 }
2686
isContiguous(const ConstantRange & A,const ConstantRange & B)2687 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
2688 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
2689 }
2690
visitRangeMetadata(Instruction & I,MDNode * Range,Type * Ty)2691 void Verifier::visitRangeMetadata(Instruction& I,
2692 MDNode* Range, Type* Ty) {
2693 assert(Range &&
2694 Range == I.getMetadata(LLVMContext::MD_range) &&
2695 "precondition violation");
2696
2697 unsigned NumOperands = Range->getNumOperands();
2698 Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
2699 unsigned NumRanges = NumOperands / 2;
2700 Assert(NumRanges >= 1, "It should have at least one range!", Range);
2701
2702 ConstantRange LastRange(1); // Dummy initial value
2703 for (unsigned i = 0; i < NumRanges; ++i) {
2704 ConstantInt *Low =
2705 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
2706 Assert(Low, "The lower limit must be an integer!", Low);
2707 ConstantInt *High =
2708 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
2709 Assert(High, "The upper limit must be an integer!", High);
2710 Assert(High->getType() == Low->getType() && High->getType() == Ty,
2711 "Range types must match instruction type!", &I);
2712
2713 APInt HighV = High->getValue();
2714 APInt LowV = Low->getValue();
2715 ConstantRange CurRange(LowV, HighV);
2716 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
2717 "Range must not be empty!", Range);
2718 if (i != 0) {
2719 Assert(CurRange.intersectWith(LastRange).isEmptySet(),
2720 "Intervals are overlapping", Range);
2721 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
2722 Range);
2723 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
2724 Range);
2725 }
2726 LastRange = ConstantRange(LowV, HighV);
2727 }
2728 if (NumRanges > 2) {
2729 APInt FirstLow =
2730 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
2731 APInt FirstHigh =
2732 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
2733 ConstantRange FirstRange(FirstLow, FirstHigh);
2734 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
2735 "Intervals are overlapping", Range);
2736 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
2737 Range);
2738 }
2739 }
2740
checkAtomicMemAccessSize(const Module * M,Type * Ty,const Instruction * I)2741 void Verifier::checkAtomicMemAccessSize(const Module *M, Type *Ty,
2742 const Instruction *I) {
2743 unsigned Size = M->getDataLayout().getTypeSizeInBits(Ty);
2744 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
2745 Assert(!(Size & (Size - 1)),
2746 "atomic memory access' operand must have a power-of-two size", Ty, I);
2747 }
2748
visitLoadInst(LoadInst & LI)2749 void Verifier::visitLoadInst(LoadInst &LI) {
2750 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
2751 Assert(PTy, "Load operand must be a pointer.", &LI);
2752 Type *ElTy = LI.getType();
2753 Assert(LI.getAlignment() <= Value::MaximumAlignment,
2754 "huge alignment values are unsupported", &LI);
2755 if (LI.isAtomic()) {
2756 Assert(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
2757 "Load cannot have Release ordering", &LI);
2758 Assert(LI.getAlignment() != 0,
2759 "Atomic load must specify explicit alignment", &LI);
2760 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
2761 ElTy->isFloatingPointTy(),
2762 "atomic load operand must have integer, pointer, or floating point "
2763 "type!",
2764 ElTy, &LI);
2765 checkAtomicMemAccessSize(M, ElTy, &LI);
2766 } else {
2767 Assert(LI.getSynchScope() == CrossThread,
2768 "Non-atomic load cannot have SynchronizationScope specified", &LI);
2769 }
2770
2771 visitInstruction(LI);
2772 }
2773
visitStoreInst(StoreInst & SI)2774 void Verifier::visitStoreInst(StoreInst &SI) {
2775 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
2776 Assert(PTy, "Store operand must be a pointer.", &SI);
2777 Type *ElTy = PTy->getElementType();
2778 Assert(ElTy == SI.getOperand(0)->getType(),
2779 "Stored value type does not match pointer operand type!", &SI, ElTy);
2780 Assert(SI.getAlignment() <= Value::MaximumAlignment,
2781 "huge alignment values are unsupported", &SI);
2782 if (SI.isAtomic()) {
2783 Assert(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
2784 "Store cannot have Acquire ordering", &SI);
2785 Assert(SI.getAlignment() != 0,
2786 "Atomic store must specify explicit alignment", &SI);
2787 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
2788 ElTy->isFloatingPointTy(),
2789 "atomic store operand must have integer, pointer, or floating point "
2790 "type!",
2791 ElTy, &SI);
2792 checkAtomicMemAccessSize(M, ElTy, &SI);
2793 } else {
2794 Assert(SI.getSynchScope() == CrossThread,
2795 "Non-atomic store cannot have SynchronizationScope specified", &SI);
2796 }
2797 visitInstruction(SI);
2798 }
2799
visitAllocaInst(AllocaInst & AI)2800 void Verifier::visitAllocaInst(AllocaInst &AI) {
2801 SmallPtrSet<Type*, 4> Visited;
2802 PointerType *PTy = AI.getType();
2803 Assert(PTy->getAddressSpace() == 0,
2804 "Allocation instruction pointer not in the generic address space!",
2805 &AI);
2806 Assert(AI.getAllocatedType()->isSized(&Visited),
2807 "Cannot allocate unsized type", &AI);
2808 Assert(AI.getArraySize()->getType()->isIntegerTy(),
2809 "Alloca array size must have integer type", &AI);
2810 Assert(AI.getAlignment() <= Value::MaximumAlignment,
2811 "huge alignment values are unsupported", &AI);
2812
2813 visitInstruction(AI);
2814 }
2815
visitAtomicCmpXchgInst(AtomicCmpXchgInst & CXI)2816 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
2817
2818 // FIXME: more conditions???
2819 Assert(CXI.getSuccessOrdering() != NotAtomic,
2820 "cmpxchg instructions must be atomic.", &CXI);
2821 Assert(CXI.getFailureOrdering() != NotAtomic,
2822 "cmpxchg instructions must be atomic.", &CXI);
2823 Assert(CXI.getSuccessOrdering() != Unordered,
2824 "cmpxchg instructions cannot be unordered.", &CXI);
2825 Assert(CXI.getFailureOrdering() != Unordered,
2826 "cmpxchg instructions cannot be unordered.", &CXI);
2827 Assert(CXI.getSuccessOrdering() >= CXI.getFailureOrdering(),
2828 "cmpxchg instructions be at least as constrained on success as fail",
2829 &CXI);
2830 Assert(CXI.getFailureOrdering() != Release &&
2831 CXI.getFailureOrdering() != AcquireRelease,
2832 "cmpxchg failure ordering cannot include release semantics", &CXI);
2833
2834 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
2835 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
2836 Type *ElTy = PTy->getElementType();
2837 Assert(ElTy->isIntegerTy(), "cmpxchg operand must have integer type!", &CXI,
2838 ElTy);
2839 checkAtomicMemAccessSize(M, ElTy, &CXI);
2840 Assert(ElTy == CXI.getOperand(1)->getType(),
2841 "Expected value type does not match pointer operand type!", &CXI,
2842 ElTy);
2843 Assert(ElTy == CXI.getOperand(2)->getType(),
2844 "Stored value type does not match pointer operand type!", &CXI, ElTy);
2845 visitInstruction(CXI);
2846 }
2847
visitAtomicRMWInst(AtomicRMWInst & RMWI)2848 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
2849 Assert(RMWI.getOrdering() != NotAtomic,
2850 "atomicrmw instructions must be atomic.", &RMWI);
2851 Assert(RMWI.getOrdering() != Unordered,
2852 "atomicrmw instructions cannot be unordered.", &RMWI);
2853 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
2854 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
2855 Type *ElTy = PTy->getElementType();
2856 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
2857 &RMWI, ElTy);
2858 checkAtomicMemAccessSize(M, ElTy, &RMWI);
2859 Assert(ElTy == RMWI.getOperand(1)->getType(),
2860 "Argument value type does not match pointer operand type!", &RMWI,
2861 ElTy);
2862 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
2863 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
2864 "Invalid binary operation!", &RMWI);
2865 visitInstruction(RMWI);
2866 }
2867
visitFenceInst(FenceInst & FI)2868 void Verifier::visitFenceInst(FenceInst &FI) {
2869 const AtomicOrdering Ordering = FI.getOrdering();
2870 Assert(Ordering == Acquire || Ordering == Release ||
2871 Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
2872 "fence instructions may only have "
2873 "acquire, release, acq_rel, or seq_cst ordering.",
2874 &FI);
2875 visitInstruction(FI);
2876 }
2877
visitExtractValueInst(ExtractValueInst & EVI)2878 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
2879 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
2880 EVI.getIndices()) == EVI.getType(),
2881 "Invalid ExtractValueInst operands!", &EVI);
2882
2883 visitInstruction(EVI);
2884 }
2885
visitInsertValueInst(InsertValueInst & IVI)2886 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
2887 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
2888 IVI.getIndices()) ==
2889 IVI.getOperand(1)->getType(),
2890 "Invalid InsertValueInst operands!", &IVI);
2891
2892 visitInstruction(IVI);
2893 }
2894
visitEHPadPredecessors(Instruction & I)2895 void Verifier::visitEHPadPredecessors(Instruction &I) {
2896 assert(I.isEHPad());
2897
2898 BasicBlock *BB = I.getParent();
2899 Function *F = BB->getParent();
2900
2901 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
2902
2903 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
2904 // The landingpad instruction defines its parent as a landing pad block. The
2905 // landing pad block may be branched to only by the unwind edge of an
2906 // invoke.
2907 for (BasicBlock *PredBB : predecessors(BB)) {
2908 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
2909 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
2910 "Block containing LandingPadInst must be jumped to "
2911 "only by the unwind edge of an invoke.",
2912 LPI);
2913 }
2914 return;
2915 }
2916 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
2917 if (!pred_empty(BB))
2918 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
2919 "Block containg CatchPadInst must be jumped to "
2920 "only by its catchswitch.",
2921 CPI);
2922 return;
2923 }
2924
2925 for (BasicBlock *PredBB : predecessors(BB)) {
2926 TerminatorInst *TI = PredBB->getTerminator();
2927 if (auto *II = dyn_cast<InvokeInst>(TI)) {
2928 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
2929 "EH pad must be jumped to via an unwind edge", &I, II);
2930 } else if (!isa<CleanupReturnInst>(TI) && !isa<CatchSwitchInst>(TI)) {
2931 Assert(false, "EH pad must be jumped to via an unwind edge", &I, TI);
2932 }
2933 }
2934 }
2935
visitLandingPadInst(LandingPadInst & LPI)2936 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
2937 // The landingpad instruction is ill-formed if it doesn't have any clauses and
2938 // isn't a cleanup.
2939 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
2940 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
2941
2942 visitEHPadPredecessors(LPI);
2943
2944 if (!LandingPadResultTy)
2945 LandingPadResultTy = LPI.getType();
2946 else
2947 Assert(LandingPadResultTy == LPI.getType(),
2948 "The landingpad instruction should have a consistent result type "
2949 "inside a function.",
2950 &LPI);
2951
2952 Function *F = LPI.getParent()->getParent();
2953 Assert(F->hasPersonalityFn(),
2954 "LandingPadInst needs to be in a function with a personality.", &LPI);
2955
2956 // The landingpad instruction must be the first non-PHI instruction in the
2957 // block.
2958 Assert(LPI.getParent()->getLandingPadInst() == &LPI,
2959 "LandingPadInst not the first non-PHI instruction in the block.",
2960 &LPI);
2961
2962 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
2963 Constant *Clause = LPI.getClause(i);
2964 if (LPI.isCatch(i)) {
2965 Assert(isa<PointerType>(Clause->getType()),
2966 "Catch operand does not have pointer type!", &LPI);
2967 } else {
2968 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
2969 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
2970 "Filter operand is not an array of constants!", &LPI);
2971 }
2972 }
2973
2974 visitInstruction(LPI);
2975 }
2976
visitCatchPadInst(CatchPadInst & CPI)2977 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
2978 visitEHPadPredecessors(CPI);
2979
2980 BasicBlock *BB = CPI.getParent();
2981
2982 Function *F = BB->getParent();
2983 Assert(F->hasPersonalityFn(),
2984 "CatchPadInst needs to be in a function with a personality.", &CPI);
2985
2986 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
2987 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
2988 CPI.getParentPad());
2989
2990 // The catchpad instruction must be the first non-PHI instruction in the
2991 // block.
2992 Assert(BB->getFirstNonPHI() == &CPI,
2993 "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
2994
2995 visitInstruction(CPI);
2996 }
2997
visitCatchReturnInst(CatchReturnInst & CatchReturn)2998 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
2999 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3000 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3001 CatchReturn.getOperand(0));
3002
3003 visitTerminatorInst(CatchReturn);
3004 }
3005
visitCleanupPadInst(CleanupPadInst & CPI)3006 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3007 visitEHPadPredecessors(CPI);
3008
3009 BasicBlock *BB = CPI.getParent();
3010
3011 Function *F = BB->getParent();
3012 Assert(F->hasPersonalityFn(),
3013 "CleanupPadInst needs to be in a function with a personality.", &CPI);
3014
3015 // The cleanuppad instruction must be the first non-PHI instruction in the
3016 // block.
3017 Assert(BB->getFirstNonPHI() == &CPI,
3018 "CleanupPadInst not the first non-PHI instruction in the block.",
3019 &CPI);
3020
3021 auto *ParentPad = CPI.getParentPad();
3022 Assert(isa<CatchSwitchInst>(ParentPad) || isa<ConstantTokenNone>(ParentPad) ||
3023 isa<CleanupPadInst>(ParentPad) || isa<CatchPadInst>(ParentPad),
3024 "CleanupPadInst has an invalid parent.", &CPI);
3025
3026 User *FirstUser = nullptr;
3027 BasicBlock *FirstUnwindDest = nullptr;
3028 for (User *U : CPI.users()) {
3029 BasicBlock *UnwindDest;
3030 if (CleanupReturnInst *CRI = dyn_cast<CleanupReturnInst>(U)) {
3031 UnwindDest = CRI->getUnwindDest();
3032 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
3033 continue;
3034 } else if (CallSite(U)) {
3035 continue;
3036 } else {
3037 Assert(false, "bogus cleanuppad use", &CPI);
3038 }
3039
3040 if (!FirstUser) {
3041 FirstUser = U;
3042 FirstUnwindDest = UnwindDest;
3043 } else {
3044 Assert(
3045 UnwindDest == FirstUnwindDest,
3046 "cleanupret instructions from the same cleanuppad must have the same "
3047 "unwind destination",
3048 FirstUser, U);
3049 }
3050 }
3051
3052 visitInstruction(CPI);
3053 }
3054
visitCatchSwitchInst(CatchSwitchInst & CatchSwitch)3055 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3056 visitEHPadPredecessors(CatchSwitch);
3057
3058 BasicBlock *BB = CatchSwitch.getParent();
3059
3060 Function *F = BB->getParent();
3061 Assert(F->hasPersonalityFn(),
3062 "CatchSwitchInst needs to be in a function with a personality.",
3063 &CatchSwitch);
3064
3065 // The catchswitch instruction must be the first non-PHI instruction in the
3066 // block.
3067 Assert(BB->getFirstNonPHI() == &CatchSwitch,
3068 "CatchSwitchInst not the first non-PHI instruction in the block.",
3069 &CatchSwitch);
3070
3071 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3072 Instruction *I = UnwindDest->getFirstNonPHI();
3073 Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3074 "CatchSwitchInst must unwind to an EH block which is not a "
3075 "landingpad.",
3076 &CatchSwitch);
3077 }
3078
3079 auto *ParentPad = CatchSwitch.getParentPad();
3080 Assert(isa<CatchSwitchInst>(ParentPad) || isa<ConstantTokenNone>(ParentPad) ||
3081 isa<CleanupPadInst>(ParentPad) || isa<CatchPadInst>(ParentPad),
3082 "CatchSwitchInst has an invalid parent.", ParentPad);
3083
3084 visitTerminatorInst(CatchSwitch);
3085 }
3086
visitCleanupReturnInst(CleanupReturnInst & CRI)3087 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3088 Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3089 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3090 CRI.getOperand(0));
3091
3092 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3093 Instruction *I = UnwindDest->getFirstNonPHI();
3094 Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3095 "CleanupReturnInst must unwind to an EH block which is not a "
3096 "landingpad.",
3097 &CRI);
3098 }
3099
3100 visitTerminatorInst(CRI);
3101 }
3102
verifyDominatesUse(Instruction & I,unsigned i)3103 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3104 Instruction *Op = cast<Instruction>(I.getOperand(i));
3105 // If the we have an invalid invoke, don't try to compute the dominance.
3106 // We already reject it in the invoke specific checks and the dominance
3107 // computation doesn't handle multiple edges.
3108 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3109 if (II->getNormalDest() == II->getUnwindDest())
3110 return;
3111 }
3112
3113 const Use &U = I.getOperandUse(i);
3114 Assert(InstsInThisBlock.count(Op) || DT.dominates(Op, U),
3115 "Instruction does not dominate all uses!", Op, &I);
3116 }
3117
visitDereferenceableMetadata(Instruction & I,MDNode * MD)3118 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3119 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3120 "apply only to pointer types", &I);
3121 Assert(isa<LoadInst>(I),
3122 "dereferenceable, dereferenceable_or_null apply only to load"
3123 " instructions, use attributes for calls or invokes", &I);
3124 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3125 "take one operand!", &I);
3126 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3127 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3128 "dereferenceable_or_null metadata value must be an i64!", &I);
3129 }
3130
3131 /// verifyInstruction - Verify that an instruction is well formed.
3132 ///
visitInstruction(Instruction & I)3133 void Verifier::visitInstruction(Instruction &I) {
3134 BasicBlock *BB = I.getParent();
3135 Assert(BB, "Instruction not embedded in basic block!", &I);
3136
3137 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3138 for (User *U : I.users()) {
3139 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3140 "Only PHI nodes may reference their own value!", &I);
3141 }
3142 }
3143
3144 // Check that void typed values don't have names
3145 Assert(!I.getType()->isVoidTy() || !I.hasName(),
3146 "Instruction has a name, but provides a void value!", &I);
3147
3148 // Check that the return value of the instruction is either void or a legal
3149 // value type.
3150 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3151 "Instruction returns a non-scalar type!", &I);
3152
3153 // Check that the instruction doesn't produce metadata. Calls are already
3154 // checked against the callee type.
3155 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3156 "Invalid use of metadata!", &I);
3157
3158 // Check that all uses of the instruction, if they are instructions
3159 // themselves, actually have parent basic blocks. If the use is not an
3160 // instruction, it is an error!
3161 for (Use &U : I.uses()) {
3162 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3163 Assert(Used->getParent() != nullptr,
3164 "Instruction referencing"
3165 " instruction not embedded in a basic block!",
3166 &I, Used);
3167 else {
3168 CheckFailed("Use of instruction is not an instruction!", U);
3169 return;
3170 }
3171 }
3172
3173 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3174 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
3175
3176 // Check to make sure that only first-class-values are operands to
3177 // instructions.
3178 if (!I.getOperand(i)->getType()->isFirstClassType()) {
3179 Assert(0, "Instruction operands must be first-class values!", &I);
3180 }
3181
3182 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3183 // Check to make sure that the "address of" an intrinsic function is never
3184 // taken.
3185 Assert(
3186 !F->isIntrinsic() ||
3187 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
3188 "Cannot take the address of an intrinsic!", &I);
3189 Assert(
3190 !F->isIntrinsic() || isa<CallInst>(I) ||
3191 F->getIntrinsicID() == Intrinsic::donothing ||
3192 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
3193 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
3194 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
3195 "Cannot invoke an intrinsinc other than"
3196 " donothing or patchpoint",
3197 &I);
3198 Assert(F->getParent() == M, "Referencing function in another module!",
3199 &I, M, F, F->getParent());
3200 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3201 Assert(OpBB->getParent() == BB->getParent(),
3202 "Referring to a basic block in another function!", &I);
3203 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3204 Assert(OpArg->getParent() == BB->getParent(),
3205 "Referring to an argument in another function!", &I);
3206 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3207 Assert(GV->getParent() == M, "Referencing global in another module!", &I, M, GV, GV->getParent());
3208 } else if (isa<Instruction>(I.getOperand(i))) {
3209 verifyDominatesUse(I, i);
3210 } else if (isa<InlineAsm>(I.getOperand(i))) {
3211 Assert((i + 1 == e && isa<CallInst>(I)) ||
3212 (i + 3 == e && isa<InvokeInst>(I)),
3213 "Cannot take the address of an inline asm!", &I);
3214 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3215 if (CE->getType()->isPtrOrPtrVectorTy()) {
3216 // If we have a ConstantExpr pointer, we need to see if it came from an
3217 // illegal bitcast (inttoptr <constant int> )
3218 visitConstantExprsRecursively(CE);
3219 }
3220 }
3221 }
3222
3223 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3224 Assert(I.getType()->isFPOrFPVectorTy(),
3225 "fpmath requires a floating point result!", &I);
3226 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
3227 if (ConstantFP *CFP0 =
3228 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3229 APFloat Accuracy = CFP0->getValueAPF();
3230 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
3231 "fpmath accuracy not a positive number!", &I);
3232 } else {
3233 Assert(false, "invalid fpmath accuracy!", &I);
3234 }
3235 }
3236
3237 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3238 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
3239 "Ranges are only for loads, calls and invokes!", &I);
3240 visitRangeMetadata(I, Range, I.getType());
3241 }
3242
3243 if (I.getMetadata(LLVMContext::MD_nonnull)) {
3244 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
3245 &I);
3246 Assert(isa<LoadInst>(I),
3247 "nonnull applies only to load instructions, use attributes"
3248 " for calls or invokes",
3249 &I);
3250 }
3251
3252 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3253 visitDereferenceableMetadata(I, MD);
3254
3255 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3256 visitDereferenceableMetadata(I, MD);
3257
3258 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3259 Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
3260 &I);
3261 Assert(isa<LoadInst>(I), "align applies only to load instructions, "
3262 "use attributes for calls or invokes", &I);
3263 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
3264 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3265 Assert(CI && CI->getType()->isIntegerTy(64),
3266 "align metadata value must be an i64!", &I);
3267 uint64_t Align = CI->getZExtValue();
3268 Assert(isPowerOf2_64(Align),
3269 "align metadata value must be a power of 2!", &I);
3270 Assert(Align <= Value::MaximumAlignment,
3271 "alignment is larger that implementation defined limit", &I);
3272 }
3273
3274 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3275 Assert(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
3276 visitMDNode(*N);
3277 }
3278
3279 InstsInThisBlock.insert(&I);
3280 }
3281
3282 /// VerifyIntrinsicType - Verify that the specified type (which comes from an
3283 /// intrinsic argument or return value) matches the type constraints specified
3284 /// by the .td file (e.g. an "any integer" argument really is an integer).
3285 ///
3286 /// This return true on error but does not print a message.
VerifyIntrinsicType(Type * Ty,ArrayRef<Intrinsic::IITDescriptor> & Infos,SmallVectorImpl<Type * > & ArgTys)3287 bool Verifier::VerifyIntrinsicType(Type *Ty,
3288 ArrayRef<Intrinsic::IITDescriptor> &Infos,
3289 SmallVectorImpl<Type*> &ArgTys) {
3290 using namespace Intrinsic;
3291
3292 // If we ran out of descriptors, there are too many arguments.
3293 if (Infos.empty()) return true;
3294 IITDescriptor D = Infos.front();
3295 Infos = Infos.slice(1);
3296
3297 switch (D.Kind) {
3298 case IITDescriptor::Void: return !Ty->isVoidTy();
3299 case IITDescriptor::VarArg: return true;
3300 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
3301 case IITDescriptor::Token: return !Ty->isTokenTy();
3302 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
3303 case IITDescriptor::Half: return !Ty->isHalfTy();
3304 case IITDescriptor::Float: return !Ty->isFloatTy();
3305 case IITDescriptor::Double: return !Ty->isDoubleTy();
3306 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
3307 case IITDescriptor::Vector: {
3308 VectorType *VT = dyn_cast<VectorType>(Ty);
3309 return !VT || VT->getNumElements() != D.Vector_Width ||
3310 VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
3311 }
3312 case IITDescriptor::Pointer: {
3313 PointerType *PT = dyn_cast<PointerType>(Ty);
3314 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
3315 VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
3316 }
3317
3318 case IITDescriptor::Struct: {
3319 StructType *ST = dyn_cast<StructType>(Ty);
3320 if (!ST || ST->getNumElements() != D.Struct_NumElements)
3321 return true;
3322
3323 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
3324 if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
3325 return true;
3326 return false;
3327 }
3328
3329 case IITDescriptor::Argument:
3330 // Two cases here - If this is the second occurrence of an argument, verify
3331 // that the later instance matches the previous instance.
3332 if (D.getArgumentNumber() < ArgTys.size())
3333 return Ty != ArgTys[D.getArgumentNumber()];
3334
3335 // Otherwise, if this is the first instance of an argument, record it and
3336 // verify the "Any" kind.
3337 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
3338 ArgTys.push_back(Ty);
3339
3340 switch (D.getArgumentKind()) {
3341 case IITDescriptor::AK_Any: return false; // Success
3342 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
3343 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
3344 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
3345 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
3346 }
3347 llvm_unreachable("all argument kinds not covered");
3348
3349 case IITDescriptor::ExtendArgument: {
3350 // This may only be used when referring to a previous vector argument.
3351 if (D.getArgumentNumber() >= ArgTys.size())
3352 return true;
3353
3354 Type *NewTy = ArgTys[D.getArgumentNumber()];
3355 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
3356 NewTy = VectorType::getExtendedElementVectorType(VTy);
3357 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
3358 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
3359 else
3360 return true;
3361
3362 return Ty != NewTy;
3363 }
3364 case IITDescriptor::TruncArgument: {
3365 // This may only be used when referring to a previous vector argument.
3366 if (D.getArgumentNumber() >= ArgTys.size())
3367 return true;
3368
3369 Type *NewTy = ArgTys[D.getArgumentNumber()];
3370 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
3371 NewTy = VectorType::getTruncatedElementVectorType(VTy);
3372 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
3373 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
3374 else
3375 return true;
3376
3377 return Ty != NewTy;
3378 }
3379 case IITDescriptor::HalfVecArgument:
3380 // This may only be used when referring to a previous vector argument.
3381 return D.getArgumentNumber() >= ArgTys.size() ||
3382 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
3383 VectorType::getHalfElementsVectorType(
3384 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
3385 case IITDescriptor::SameVecWidthArgument: {
3386 if (D.getArgumentNumber() >= ArgTys.size())
3387 return true;
3388 VectorType * ReferenceType =
3389 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
3390 VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
3391 if (!ThisArgType || !ReferenceType ||
3392 (ReferenceType->getVectorNumElements() !=
3393 ThisArgType->getVectorNumElements()))
3394 return true;
3395 return VerifyIntrinsicType(ThisArgType->getVectorElementType(),
3396 Infos, ArgTys);
3397 }
3398 case IITDescriptor::PtrToArgument: {
3399 if (D.getArgumentNumber() >= ArgTys.size())
3400 return true;
3401 Type * ReferenceType = ArgTys[D.getArgumentNumber()];
3402 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
3403 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
3404 }
3405 case IITDescriptor::VecOfPtrsToElt: {
3406 if (D.getArgumentNumber() >= ArgTys.size())
3407 return true;
3408 VectorType * ReferenceType =
3409 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
3410 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
3411 if (!ThisArgVecTy || !ReferenceType ||
3412 (ReferenceType->getVectorNumElements() !=
3413 ThisArgVecTy->getVectorNumElements()))
3414 return true;
3415 PointerType *ThisArgEltTy =
3416 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
3417 if (!ThisArgEltTy)
3418 return true;
3419 return ThisArgEltTy->getElementType() !=
3420 ReferenceType->getVectorElementType();
3421 }
3422 }
3423 llvm_unreachable("unhandled");
3424 }
3425
3426 /// \brief Verify if the intrinsic has variable arguments.
3427 /// This method is intended to be called after all the fixed arguments have been
3428 /// verified first.
3429 ///
3430 /// This method returns true on error and does not print an error message.
3431 bool
VerifyIntrinsicIsVarArg(bool isVarArg,ArrayRef<Intrinsic::IITDescriptor> & Infos)3432 Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
3433 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
3434 using namespace Intrinsic;
3435
3436 // If there are no descriptors left, then it can't be a vararg.
3437 if (Infos.empty())
3438 return isVarArg;
3439
3440 // There should be only one descriptor remaining at this point.
3441 if (Infos.size() != 1)
3442 return true;
3443
3444 // Check and verify the descriptor.
3445 IITDescriptor D = Infos.front();
3446 Infos = Infos.slice(1);
3447 if (D.Kind == IITDescriptor::VarArg)
3448 return !isVarArg;
3449
3450 return true;
3451 }
3452
3453 /// Allow intrinsics to be verified in different ways.
visitIntrinsicCallSite(Intrinsic::ID ID,CallSite CS)3454 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3455 Function *IF = CS.getCalledFunction();
3456 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
3457 IF);
3458
3459 // Verify that the intrinsic prototype lines up with what the .td files
3460 // describe.
3461 FunctionType *IFTy = IF->getFunctionType();
3462 bool IsVarArg = IFTy->isVarArg();
3463
3464 SmallVector<Intrinsic::IITDescriptor, 8> Table;
3465 getIntrinsicInfoTableEntries(ID, Table);
3466 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3467
3468 SmallVector<Type *, 4> ArgTys;
3469 Assert(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
3470 "Intrinsic has incorrect return type!", IF);
3471 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3472 Assert(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
3473 "Intrinsic has incorrect argument type!", IF);
3474
3475 // Verify if the intrinsic call matches the vararg property.
3476 if (IsVarArg)
3477 Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
3478 "Intrinsic was not defined with variable arguments!", IF);
3479 else
3480 Assert(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
3481 "Callsite was not defined with variable arguments!", IF);
3482
3483 // All descriptors should be absorbed by now.
3484 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
3485
3486 // Now that we have the intrinsic ID and the actual argument types (and we
3487 // know they are legal for the intrinsic!) get the intrinsic name through the
3488 // usual means. This allows us to verify the mangling of argument types into
3489 // the name.
3490 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3491 Assert(ExpectedName == IF->getName(),
3492 "Intrinsic name not mangled correctly for type arguments! "
3493 "Should be: " +
3494 ExpectedName,
3495 IF);
3496
3497 // If the intrinsic takes MDNode arguments, verify that they are either global
3498 // or are local to *this* function.
3499 for (Value *V : CS.args())
3500 if (auto *MD = dyn_cast<MetadataAsValue>(V))
3501 visitMetadataAsValue(*MD, CS.getCaller());
3502
3503 switch (ID) {
3504 default:
3505 break;
3506 case Intrinsic::ctlz: // llvm.ctlz
3507 case Intrinsic::cttz: // llvm.cttz
3508 Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3509 "is_zero_undef argument of bit counting intrinsics must be a "
3510 "constant int",
3511 CS);
3512 break;
3513 case Intrinsic::dbg_declare: // llvm.dbg.declare
3514 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
3515 "invalid llvm.dbg.declare intrinsic call 1", CS);
3516 visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
3517 break;
3518 case Intrinsic::dbg_value: // llvm.dbg.value
3519 visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
3520 break;
3521 case Intrinsic::memcpy:
3522 case Intrinsic::memmove:
3523 case Intrinsic::memset: {
3524 ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3525 Assert(AlignCI,
3526 "alignment argument of memory intrinsics must be a constant int",
3527 CS);
3528 const APInt &AlignVal = AlignCI->getValue();
3529 Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
3530 "alignment argument of memory intrinsics must be a power of 2", CS);
3531 Assert(isa<ConstantInt>(CS.getArgOperand(4)),
3532 "isvolatile argument of memory intrinsics must be a constant int",
3533 CS);
3534 break;
3535 }
3536 case Intrinsic::gcroot:
3537 case Intrinsic::gcwrite:
3538 case Intrinsic::gcread:
3539 if (ID == Intrinsic::gcroot) {
3540 AllocaInst *AI =
3541 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
3542 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
3543 Assert(isa<Constant>(CS.getArgOperand(1)),
3544 "llvm.gcroot parameter #2 must be a constant.", CS);
3545 if (!AI->getAllocatedType()->isPointerTy()) {
3546 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
3547 "llvm.gcroot parameter #1 must either be a pointer alloca, "
3548 "or argument #2 must be a non-null constant.",
3549 CS);
3550 }
3551 }
3552
3553 Assert(CS.getParent()->getParent()->hasGC(),
3554 "Enclosing function does not use GC.", CS);
3555 break;
3556 case Intrinsic::init_trampoline:
3557 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
3558 "llvm.init_trampoline parameter #2 must resolve to a function.",
3559 CS);
3560 break;
3561 case Intrinsic::prefetch:
3562 Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
3563 isa<ConstantInt>(CS.getArgOperand(2)) &&
3564 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
3565 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
3566 "invalid arguments to llvm.prefetch", CS);
3567 break;
3568 case Intrinsic::stackprotector:
3569 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
3570 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
3571 break;
3572 case Intrinsic::lifetime_start:
3573 case Intrinsic::lifetime_end:
3574 case Intrinsic::invariant_start:
3575 Assert(isa<ConstantInt>(CS.getArgOperand(0)),
3576 "size argument of memory use markers must be a constant integer",
3577 CS);
3578 break;
3579 case Intrinsic::invariant_end:
3580 Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3581 "llvm.invariant.end parameter #2 must be a constant integer", CS);
3582 break;
3583
3584 case Intrinsic::localescape: {
3585 BasicBlock *BB = CS.getParent();
3586 Assert(BB == &BB->getParent()->front(),
3587 "llvm.localescape used outside of entry block", CS);
3588 Assert(!SawFrameEscape,
3589 "multiple calls to llvm.localescape in one function", CS);
3590 for (Value *Arg : CS.args()) {
3591 if (isa<ConstantPointerNull>(Arg))
3592 continue; // Null values are allowed as placeholders.
3593 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
3594 Assert(AI && AI->isStaticAlloca(),
3595 "llvm.localescape only accepts static allocas", CS);
3596 }
3597 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
3598 SawFrameEscape = true;
3599 break;
3600 }
3601 case Intrinsic::localrecover: {
3602 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
3603 Function *Fn = dyn_cast<Function>(FnArg);
3604 Assert(Fn && !Fn->isDeclaration(),
3605 "llvm.localrecover first "
3606 "argument must be function defined in this module",
3607 CS);
3608 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
3609 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
3610 CS);
3611 auto &Entry = FrameEscapeInfo[Fn];
3612 Entry.second = unsigned(
3613 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
3614 break;
3615 }
3616
3617 case Intrinsic::experimental_gc_statepoint:
3618 Assert(!CS.isInlineAsm(),
3619 "gc.statepoint support for inline assembly unimplemented", CS);
3620 Assert(CS.getParent()->getParent()->hasGC(),
3621 "Enclosing function does not use GC.", CS);
3622
3623 VerifyStatepoint(CS);
3624 break;
3625 case Intrinsic::experimental_gc_result_int:
3626 case Intrinsic::experimental_gc_result_float:
3627 case Intrinsic::experimental_gc_result_ptr:
3628 case Intrinsic::experimental_gc_result: {
3629 Assert(CS.getParent()->getParent()->hasGC(),
3630 "Enclosing function does not use GC.", CS);
3631 // Are we tied to a statepoint properly?
3632 CallSite StatepointCS(CS.getArgOperand(0));
3633 const Function *StatepointFn =
3634 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
3635 Assert(StatepointFn && StatepointFn->isDeclaration() &&
3636 StatepointFn->getIntrinsicID() ==
3637 Intrinsic::experimental_gc_statepoint,
3638 "gc.result operand #1 must be from a statepoint", CS,
3639 CS.getArgOperand(0));
3640
3641 // Assert that result type matches wrapped callee.
3642 const Value *Target = StatepointCS.getArgument(2);
3643 auto *PT = cast<PointerType>(Target->getType());
3644 auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
3645 Assert(CS.getType() == TargetFuncType->getReturnType(),
3646 "gc.result result type does not match wrapped callee", CS);
3647 break;
3648 }
3649 case Intrinsic::experimental_gc_relocate: {
3650 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
3651
3652 // Check that this relocate is correctly tied to the statepoint
3653
3654 // This is case for relocate on the unwinding path of an invoke statepoint
3655 if (ExtractValueInst *ExtractValue =
3656 dyn_cast<ExtractValueInst>(CS.getArgOperand(0))) {
3657 Assert(isa<LandingPadInst>(ExtractValue->getAggregateOperand()),
3658 "gc relocate on unwind path incorrectly linked to the statepoint",
3659 CS);
3660
3661 const BasicBlock *InvokeBB =
3662 ExtractValue->getParent()->getUniquePredecessor();
3663
3664 // Landingpad relocates should have only one predecessor with invoke
3665 // statepoint terminator
3666 Assert(InvokeBB, "safepoints should have unique landingpads",
3667 ExtractValue->getParent());
3668 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
3669 InvokeBB);
3670 Assert(isStatepoint(InvokeBB->getTerminator()),
3671 "gc relocate should be linked to a statepoint", InvokeBB);
3672 }
3673 else {
3674 // In all other cases relocate should be tied to the statepoint directly.
3675 // This covers relocates on a normal return path of invoke statepoint and
3676 // relocates of a call statepoint
3677 auto Token = CS.getArgOperand(0);
3678 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
3679 "gc relocate is incorrectly tied to the statepoint", CS, Token);
3680 }
3681
3682 // Verify rest of the relocate arguments
3683
3684 GCRelocateOperands Ops(CS);
3685 ImmutableCallSite StatepointCS(Ops.getStatepoint());
3686
3687 // Both the base and derived must be piped through the safepoint
3688 Value* Base = CS.getArgOperand(1);
3689 Assert(isa<ConstantInt>(Base),
3690 "gc.relocate operand #2 must be integer offset", CS);
3691
3692 Value* Derived = CS.getArgOperand(2);
3693 Assert(isa<ConstantInt>(Derived),
3694 "gc.relocate operand #3 must be integer offset", CS);
3695
3696 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
3697 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
3698 // Check the bounds
3699 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
3700 "gc.relocate: statepoint base index out of bounds", CS);
3701 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
3702 "gc.relocate: statepoint derived index out of bounds", CS);
3703
3704 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
3705 // section of the statepoint's argument
3706 Assert(StatepointCS.arg_size() > 0,
3707 "gc.statepoint: insufficient arguments");
3708 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
3709 "gc.statement: number of call arguments must be constant integer");
3710 const unsigned NumCallArgs =
3711 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
3712 Assert(StatepointCS.arg_size() > NumCallArgs + 5,
3713 "gc.statepoint: mismatch in number of call arguments");
3714 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
3715 "gc.statepoint: number of transition arguments must be "
3716 "a constant integer");
3717 const int NumTransitionArgs =
3718 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
3719 ->getZExtValue();
3720 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
3721 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
3722 "gc.statepoint: number of deoptimization arguments must be "
3723 "a constant integer");
3724 const int NumDeoptArgs =
3725 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))->getZExtValue();
3726 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
3727 const int GCParamArgsEnd = StatepointCS.arg_size();
3728 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
3729 "gc.relocate: statepoint base index doesn't fall within the "
3730 "'gc parameters' section of the statepoint call",
3731 CS);
3732 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
3733 "gc.relocate: statepoint derived index doesn't fall within the "
3734 "'gc parameters' section of the statepoint call",
3735 CS);
3736
3737 // Relocated value must be a pointer type, but gc_relocate does not need to return the
3738 // same pointer type as the relocated pointer. It can be casted to the correct type later
3739 // if it's desired. However, they must have the same address space.
3740 GCRelocateOperands Operands(CS);
3741 Assert(Operands.getDerivedPtr()->getType()->isPointerTy(),
3742 "gc.relocate: relocated value must be a gc pointer", CS);
3743
3744 // gc_relocate return type must be a pointer type, and is verified earlier in
3745 // VerifyIntrinsicType().
3746 Assert(cast<PointerType>(CS.getType())->getAddressSpace() ==
3747 cast<PointerType>(Operands.getDerivedPtr()->getType())->getAddressSpace(),
3748 "gc.relocate: relocating a pointer shouldn't change its address space", CS);
3749 break;
3750 }
3751 case Intrinsic::eh_exceptioncode:
3752 case Intrinsic::eh_exceptionpointer: {
3753 Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
3754 "eh.exceptionpointer argument must be a catchpad", CS);
3755 break;
3756 }
3757 };
3758 }
3759
3760 /// \brief Carefully grab the subprogram from a local scope.
3761 ///
3762 /// This carefully grabs the subprogram from a local scope, avoiding the
3763 /// built-in assertions that would typically fire.
getSubprogram(Metadata * LocalScope)3764 static DISubprogram *getSubprogram(Metadata *LocalScope) {
3765 if (!LocalScope)
3766 return nullptr;
3767
3768 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
3769 return SP;
3770
3771 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
3772 return getSubprogram(LB->getRawScope());
3773
3774 // Just return null; broken scope chains are checked elsewhere.
3775 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
3776 return nullptr;
3777 }
3778
3779 template <class DbgIntrinsicTy>
visitDbgIntrinsic(StringRef Kind,DbgIntrinsicTy & DII)3780 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
3781 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
3782 Assert(isa<ValueAsMetadata>(MD) ||
3783 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
3784 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
3785 Assert(isa<DILocalVariable>(DII.getRawVariable()),
3786 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
3787 DII.getRawVariable());
3788 Assert(isa<DIExpression>(DII.getRawExpression()),
3789 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
3790 DII.getRawExpression());
3791
3792 // Ignore broken !dbg attachments; they're checked elsewhere.
3793 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
3794 if (!isa<DILocation>(N))
3795 return;
3796
3797 BasicBlock *BB = DII.getParent();
3798 Function *F = BB ? BB->getParent() : nullptr;
3799
3800 // The scopes for variables and !dbg attachments must agree.
3801 DILocalVariable *Var = DII.getVariable();
3802 DILocation *Loc = DII.getDebugLoc();
3803 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
3804 &DII, BB, F);
3805
3806 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
3807 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
3808 if (!VarSP || !LocSP)
3809 return; // Broken scope chains are checked elsewhere.
3810
3811 Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
3812 " variable and !dbg attachment",
3813 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
3814 Loc->getScope()->getSubprogram());
3815 }
3816
3817 template <class MapTy>
getVariableSize(const DILocalVariable & V,const MapTy & Map)3818 static uint64_t getVariableSize(const DILocalVariable &V, const MapTy &Map) {
3819 // Be careful of broken types (checked elsewhere).
3820 const Metadata *RawType = V.getRawType();
3821 while (RawType) {
3822 // Try to get the size directly.
3823 if (auto *T = dyn_cast<DIType>(RawType))
3824 if (uint64_t Size = T->getSizeInBits())
3825 return Size;
3826
3827 if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
3828 // Look at the base type.
3829 RawType = DT->getRawBaseType();
3830 continue;
3831 }
3832
3833 if (auto *S = dyn_cast<MDString>(RawType)) {
3834 // Don't error on missing types (checked elsewhere).
3835 RawType = Map.lookup(S);
3836 continue;
3837 }
3838
3839 // Missing type or size.
3840 break;
3841 }
3842
3843 // Fail gracefully.
3844 return 0;
3845 }
3846
3847 template <class MapTy>
verifyBitPieceExpression(const DbgInfoIntrinsic & I,const MapTy & TypeRefs)3848 void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I,
3849 const MapTy &TypeRefs) {
3850 DILocalVariable *V;
3851 DIExpression *E;
3852 if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
3853 V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
3854 E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
3855 } else {
3856 auto *DDI = cast<DbgDeclareInst>(&I);
3857 V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
3858 E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
3859 }
3860
3861 // We don't know whether this intrinsic verified correctly.
3862 if (!V || !E || !E->isValid())
3863 return;
3864
3865 // Nothing to do if this isn't a bit piece expression.
3866 if (!E->isBitPiece())
3867 return;
3868
3869 // The frontend helps out GDB by emitting the members of local anonymous
3870 // unions as artificial local variables with shared storage. When SROA splits
3871 // the storage for artificial local variables that are smaller than the entire
3872 // union, the overhang piece will be outside of the allotted space for the
3873 // variable and this check fails.
3874 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
3875 if (V->isArtificial())
3876 return;
3877
3878 // If there's no size, the type is broken, but that should be checked
3879 // elsewhere.
3880 uint64_t VarSize = getVariableSize(*V, TypeRefs);
3881 if (!VarSize)
3882 return;
3883
3884 unsigned PieceSize = E->getBitPieceSize();
3885 unsigned PieceOffset = E->getBitPieceOffset();
3886 Assert(PieceSize + PieceOffset <= VarSize,
3887 "piece is larger than or outside of variable", &I, V, E);
3888 Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E);
3889 }
3890
visitUnresolvedTypeRef(const MDString * S,const MDNode * N)3891 void Verifier::visitUnresolvedTypeRef(const MDString *S, const MDNode *N) {
3892 // This is in its own function so we get an error for each bad type ref (not
3893 // just the first).
3894 Assert(false, "unresolved type ref", S, N);
3895 }
3896
verifyTypeRefs()3897 void Verifier::verifyTypeRefs() {
3898 auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
3899 if (!CUs)
3900 return;
3901
3902 // Visit all the compile units again to map the type references.
3903 SmallDenseMap<const MDString *, const DIType *, 32> TypeRefs;
3904 for (auto *CU : CUs->operands())
3905 if (auto Ts = cast<DICompileUnit>(CU)->getRetainedTypes())
3906 for (DIType *Op : Ts)
3907 if (auto *T = dyn_cast_or_null<DICompositeType>(Op))
3908 if (auto *S = T->getRawIdentifier()) {
3909 UnresolvedTypeRefs.erase(S);
3910 TypeRefs.insert(std::make_pair(S, T));
3911 }
3912
3913 // Verify debug info intrinsic bit piece expressions. This needs a second
3914 // pass through the intructions, since we haven't built TypeRefs yet when
3915 // verifying functions, and simply queuing the DbgInfoIntrinsics to evaluate
3916 // later/now would queue up some that could be later deleted.
3917 for (const Function &F : *M)
3918 for (const BasicBlock &BB : F)
3919 for (const Instruction &I : BB)
3920 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3921 verifyBitPieceExpression(*DII, TypeRefs);
3922
3923 // Return early if all typerefs were resolved.
3924 if (UnresolvedTypeRefs.empty())
3925 return;
3926
3927 // Sort the unresolved references by name so the output is deterministic.
3928 typedef std::pair<const MDString *, const MDNode *> TypeRef;
3929 SmallVector<TypeRef, 32> Unresolved(UnresolvedTypeRefs.begin(),
3930 UnresolvedTypeRefs.end());
3931 std::sort(Unresolved.begin(), Unresolved.end(),
3932 [](const TypeRef &LHS, const TypeRef &RHS) {
3933 return LHS.first->getString() < RHS.first->getString();
3934 });
3935
3936 // Visit the unresolved refs (printing out the errors).
3937 for (const TypeRef &TR : Unresolved)
3938 visitUnresolvedTypeRef(TR.first, TR.second);
3939 }
3940
3941 //===----------------------------------------------------------------------===//
3942 // Implement the public interfaces to this file...
3943 //===----------------------------------------------------------------------===//
3944
verifyFunction(const Function & f,raw_ostream * OS)3945 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
3946 Function &F = const_cast<Function &>(f);
3947 assert(!F.isDeclaration() && "Cannot verify external functions");
3948
3949 raw_null_ostream NullStr;
3950 Verifier V(OS ? *OS : NullStr);
3951
3952 // Note that this function's return value is inverted from what you would
3953 // expect of a function called "verify".
3954 return !V.verify(F);
3955 }
3956
verifyModule(const Module & M,raw_ostream * OS)3957 bool llvm::verifyModule(const Module &M, raw_ostream *OS) {
3958 raw_null_ostream NullStr;
3959 Verifier V(OS ? *OS : NullStr);
3960
3961 bool Broken = false;
3962 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I)
3963 if (!I->isDeclaration() && !I->isMaterializable())
3964 Broken |= !V.verify(*I);
3965
3966 // Note that this function's return value is inverted from what you would
3967 // expect of a function called "verify".
3968 return !V.verify(M) || Broken;
3969 }
3970
3971 namespace {
3972 struct VerifierLegacyPass : public FunctionPass {
3973 static char ID;
3974
3975 Verifier V;
3976 bool FatalErrors;
3977
VerifierLegacyPass__anon2bfcd1980311::VerifierLegacyPass3978 VerifierLegacyPass() : FunctionPass(ID), V(dbgs()), FatalErrors(true) {
3979 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
3980 }
VerifierLegacyPass__anon2bfcd1980311::VerifierLegacyPass3981 explicit VerifierLegacyPass(bool FatalErrors)
3982 : FunctionPass(ID), V(dbgs()), FatalErrors(FatalErrors) {
3983 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
3984 }
3985
runOnFunction__anon2bfcd1980311::VerifierLegacyPass3986 bool runOnFunction(Function &F) override {
3987 if (!V.verify(F) && FatalErrors)
3988 report_fatal_error("Broken function found, compilation aborted!");
3989
3990 return false;
3991 }
3992
doFinalization__anon2bfcd1980311::VerifierLegacyPass3993 bool doFinalization(Module &M) override {
3994 if (!V.verify(M) && FatalErrors)
3995 report_fatal_error("Broken module found, compilation aborted!");
3996
3997 return false;
3998 }
3999
getAnalysisUsage__anon2bfcd1980311::VerifierLegacyPass4000 void getAnalysisUsage(AnalysisUsage &AU) const override {
4001 AU.setPreservesAll();
4002 }
4003 };
4004 }
4005
4006 char VerifierLegacyPass::ID = 0;
4007 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
4008
createVerifierPass(bool FatalErrors)4009 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
4010 return new VerifierLegacyPass(FatalErrors);
4011 }
4012
run(Module & M)4013 PreservedAnalyses VerifierPass::run(Module &M) {
4014 if (verifyModule(M, &dbgs()) && FatalErrors)
4015 report_fatal_error("Broken module found, compilation aborted!");
4016
4017 return PreservedAnalyses::all();
4018 }
4019
run(Function & F)4020 PreservedAnalyses VerifierPass::run(Function &F) {
4021 if (verifyFunction(F, &dbgs()) && FatalErrors)
4022 report_fatal_error("Broken function found, compilation aborted!");
4023
4024 return PreservedAnalyses::all();
4025 }
4026