1 //===-- R600ControlFlowFinalizer.cpp - Finalize Control Flow Inst----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This pass compute turns all control flow pseudo instructions into native one
12 /// computing their address on the fly ; it also sets STACK_SIZE info.
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Support/Debug.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUSubtarget.h"
18 #include "R600Defines.h"
19 #include "R600InstrInfo.h"
20 #include "R600MachineFunctionInfo.h"
21 #include "R600RegisterInfo.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/Support/raw_ostream.h"
26
27 using namespace llvm;
28
29 #define DEBUG_TYPE "r600cf"
30
31 namespace {
32
33 struct CFStack {
34
35 enum StackItem {
36 ENTRY = 0,
37 SUB_ENTRY = 1,
38 FIRST_NON_WQM_PUSH = 2,
39 FIRST_NON_WQM_PUSH_W_FULL_ENTRY = 3
40 };
41
42 const AMDGPUSubtarget *ST;
43 std::vector<StackItem> BranchStack;
44 std::vector<StackItem> LoopStack;
45 unsigned MaxStackSize;
46 unsigned CurrentEntries;
47 unsigned CurrentSubEntries;
48
CFStack__anon0f917c7a0111::CFStack49 CFStack(const AMDGPUSubtarget *st, unsigned ShaderType) : ST(st),
50 // We need to reserve a stack entry for CALL_FS in vertex shaders.
51 MaxStackSize(ShaderType == ShaderType::VERTEX ? 1 : 0),
52 CurrentEntries(0), CurrentSubEntries(0) { }
53
54 unsigned getLoopDepth();
55 bool branchStackContains(CFStack::StackItem);
56 bool requiresWorkAroundForInst(unsigned Opcode);
57 unsigned getSubEntrySize(CFStack::StackItem Item);
58 void updateMaxStackSize();
59 void pushBranch(unsigned Opcode, bool isWQM = false);
60 void pushLoop();
61 void popBranch();
62 void popLoop();
63 };
64
getLoopDepth()65 unsigned CFStack::getLoopDepth() {
66 return LoopStack.size();
67 }
68
branchStackContains(CFStack::StackItem Item)69 bool CFStack::branchStackContains(CFStack::StackItem Item) {
70 for (std::vector<CFStack::StackItem>::const_iterator I = BranchStack.begin(),
71 E = BranchStack.end(); I != E; ++I) {
72 if (*I == Item)
73 return true;
74 }
75 return false;
76 }
77
requiresWorkAroundForInst(unsigned Opcode)78 bool CFStack::requiresWorkAroundForInst(unsigned Opcode) {
79 if (Opcode == AMDGPU::CF_ALU_PUSH_BEFORE && ST->hasCaymanISA() &&
80 getLoopDepth() > 1)
81 return true;
82
83 if (!ST->hasCFAluBug())
84 return false;
85
86 switch(Opcode) {
87 default: return false;
88 case AMDGPU::CF_ALU_PUSH_BEFORE:
89 case AMDGPU::CF_ALU_ELSE_AFTER:
90 case AMDGPU::CF_ALU_BREAK:
91 case AMDGPU::CF_ALU_CONTINUE:
92 if (CurrentSubEntries == 0)
93 return false;
94 if (ST->getWavefrontSize() == 64) {
95 // We are being conservative here. We only require this work-around if
96 // CurrentSubEntries > 3 &&
97 // (CurrentSubEntries % 4 == 3 || CurrentSubEntries % 4 == 0)
98 //
99 // We have to be conservative, because we don't know for certain that
100 // our stack allocation algorithm for Evergreen/NI is correct. Applying this
101 // work-around when CurrentSubEntries > 3 allows us to over-allocate stack
102 // resources without any problems.
103 return CurrentSubEntries > 3;
104 } else {
105 assert(ST->getWavefrontSize() == 32);
106 // We are being conservative here. We only require the work-around if
107 // CurrentSubEntries > 7 &&
108 // (CurrentSubEntries % 8 == 7 || CurrentSubEntries % 8 == 0)
109 // See the comment on the wavefront size == 64 case for why we are
110 // being conservative.
111 return CurrentSubEntries > 7;
112 }
113 }
114 }
115
getSubEntrySize(CFStack::StackItem Item)116 unsigned CFStack::getSubEntrySize(CFStack::StackItem Item) {
117 switch(Item) {
118 default:
119 return 0;
120 case CFStack::FIRST_NON_WQM_PUSH:
121 assert(!ST->hasCaymanISA());
122 if (ST->getGeneration() <= AMDGPUSubtarget::R700) {
123 // +1 For the push operation.
124 // +2 Extra space required.
125 return 3;
126 } else {
127 // Some documentation says that this is not necessary on Evergreen,
128 // but experimentation has show that we need to allocate 1 extra
129 // sub-entry for the first non-WQM push.
130 // +1 For the push operation.
131 // +1 Extra space required.
132 return 2;
133 }
134 case CFStack::FIRST_NON_WQM_PUSH_W_FULL_ENTRY:
135 assert(ST->getGeneration() >= AMDGPUSubtarget::EVERGREEN);
136 // +1 For the push operation.
137 // +1 Extra space required.
138 return 2;
139 case CFStack::SUB_ENTRY:
140 return 1;
141 }
142 }
143
updateMaxStackSize()144 void CFStack::updateMaxStackSize() {
145 unsigned CurrentStackSize = CurrentEntries +
146 (RoundUpToAlignment(CurrentSubEntries, 4) / 4);
147 MaxStackSize = std::max(CurrentStackSize, MaxStackSize);
148 }
149
pushBranch(unsigned Opcode,bool isWQM)150 void CFStack::pushBranch(unsigned Opcode, bool isWQM) {
151 CFStack::StackItem Item = CFStack::ENTRY;
152 switch(Opcode) {
153 case AMDGPU::CF_PUSH_EG:
154 case AMDGPU::CF_ALU_PUSH_BEFORE:
155 if (!isWQM) {
156 if (!ST->hasCaymanISA() &&
157 !branchStackContains(CFStack::FIRST_NON_WQM_PUSH))
158 Item = CFStack::FIRST_NON_WQM_PUSH; // May not be required on Evergreen/NI
159 // See comment in
160 // CFStack::getSubEntrySize()
161 else if (CurrentEntries > 0 &&
162 ST->getGeneration() > AMDGPUSubtarget::EVERGREEN &&
163 !ST->hasCaymanISA() &&
164 !branchStackContains(CFStack::FIRST_NON_WQM_PUSH_W_FULL_ENTRY))
165 Item = CFStack::FIRST_NON_WQM_PUSH_W_FULL_ENTRY;
166 else
167 Item = CFStack::SUB_ENTRY;
168 } else
169 Item = CFStack::ENTRY;
170 break;
171 }
172 BranchStack.push_back(Item);
173 if (Item == CFStack::ENTRY)
174 CurrentEntries++;
175 else
176 CurrentSubEntries += getSubEntrySize(Item);
177 updateMaxStackSize();
178 }
179
pushLoop()180 void CFStack::pushLoop() {
181 LoopStack.push_back(CFStack::ENTRY);
182 CurrentEntries++;
183 updateMaxStackSize();
184 }
185
popBranch()186 void CFStack::popBranch() {
187 CFStack::StackItem Top = BranchStack.back();
188 if (Top == CFStack::ENTRY)
189 CurrentEntries--;
190 else
191 CurrentSubEntries-= getSubEntrySize(Top);
192 BranchStack.pop_back();
193 }
194
popLoop()195 void CFStack::popLoop() {
196 CurrentEntries--;
197 LoopStack.pop_back();
198 }
199
200 class R600ControlFlowFinalizer : public MachineFunctionPass {
201
202 private:
203 typedef std::pair<MachineInstr *, std::vector<MachineInstr *> > ClauseFile;
204
205 enum ControlFlowInstruction {
206 CF_TC,
207 CF_VC,
208 CF_CALL_FS,
209 CF_WHILE_LOOP,
210 CF_END_LOOP,
211 CF_LOOP_BREAK,
212 CF_LOOP_CONTINUE,
213 CF_JUMP,
214 CF_ELSE,
215 CF_POP,
216 CF_END
217 };
218
219 static char ID;
220 const R600InstrInfo *TII;
221 const R600RegisterInfo *TRI;
222 unsigned MaxFetchInst;
223 const AMDGPUSubtarget *ST;
224
IsTrivialInst(MachineInstr * MI) const225 bool IsTrivialInst(MachineInstr *MI) const {
226 switch (MI->getOpcode()) {
227 case AMDGPU::KILL:
228 case AMDGPU::RETURN:
229 return true;
230 default:
231 return false;
232 }
233 }
234
getHWInstrDesc(ControlFlowInstruction CFI) const235 const MCInstrDesc &getHWInstrDesc(ControlFlowInstruction CFI) const {
236 unsigned Opcode = 0;
237 bool isEg = (ST->getGeneration() >= AMDGPUSubtarget::EVERGREEN);
238 switch (CFI) {
239 case CF_TC:
240 Opcode = isEg ? AMDGPU::CF_TC_EG : AMDGPU::CF_TC_R600;
241 break;
242 case CF_VC:
243 Opcode = isEg ? AMDGPU::CF_VC_EG : AMDGPU::CF_VC_R600;
244 break;
245 case CF_CALL_FS:
246 Opcode = isEg ? AMDGPU::CF_CALL_FS_EG : AMDGPU::CF_CALL_FS_R600;
247 break;
248 case CF_WHILE_LOOP:
249 Opcode = isEg ? AMDGPU::WHILE_LOOP_EG : AMDGPU::WHILE_LOOP_R600;
250 break;
251 case CF_END_LOOP:
252 Opcode = isEg ? AMDGPU::END_LOOP_EG : AMDGPU::END_LOOP_R600;
253 break;
254 case CF_LOOP_BREAK:
255 Opcode = isEg ? AMDGPU::LOOP_BREAK_EG : AMDGPU::LOOP_BREAK_R600;
256 break;
257 case CF_LOOP_CONTINUE:
258 Opcode = isEg ? AMDGPU::CF_CONTINUE_EG : AMDGPU::CF_CONTINUE_R600;
259 break;
260 case CF_JUMP:
261 Opcode = isEg ? AMDGPU::CF_JUMP_EG : AMDGPU::CF_JUMP_R600;
262 break;
263 case CF_ELSE:
264 Opcode = isEg ? AMDGPU::CF_ELSE_EG : AMDGPU::CF_ELSE_R600;
265 break;
266 case CF_POP:
267 Opcode = isEg ? AMDGPU::POP_EG : AMDGPU::POP_R600;
268 break;
269 case CF_END:
270 if (ST->hasCaymanISA()) {
271 Opcode = AMDGPU::CF_END_CM;
272 break;
273 }
274 Opcode = isEg ? AMDGPU::CF_END_EG : AMDGPU::CF_END_R600;
275 break;
276 }
277 assert (Opcode && "No opcode selected");
278 return TII->get(Opcode);
279 }
280
isCompatibleWithClause(const MachineInstr * MI,std::set<unsigned> & DstRegs) const281 bool isCompatibleWithClause(const MachineInstr *MI,
282 std::set<unsigned> &DstRegs) const {
283 unsigned DstMI, SrcMI;
284 for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
285 E = MI->operands_end(); I != E; ++I) {
286 const MachineOperand &MO = *I;
287 if (!MO.isReg())
288 continue;
289 if (MO.isDef()) {
290 unsigned Reg = MO.getReg();
291 if (AMDGPU::R600_Reg128RegClass.contains(Reg))
292 DstMI = Reg;
293 else
294 DstMI = TRI->getMatchingSuperReg(Reg,
295 TRI->getSubRegFromChannel(TRI->getHWRegChan(Reg)),
296 &AMDGPU::R600_Reg128RegClass);
297 }
298 if (MO.isUse()) {
299 unsigned Reg = MO.getReg();
300 if (AMDGPU::R600_Reg128RegClass.contains(Reg))
301 SrcMI = Reg;
302 else
303 SrcMI = TRI->getMatchingSuperReg(Reg,
304 TRI->getSubRegFromChannel(TRI->getHWRegChan(Reg)),
305 &AMDGPU::R600_Reg128RegClass);
306 }
307 }
308 if ((DstRegs.find(SrcMI) == DstRegs.end())) {
309 DstRegs.insert(DstMI);
310 return true;
311 } else
312 return false;
313 }
314
315 ClauseFile
MakeFetchClause(MachineBasicBlock & MBB,MachineBasicBlock::iterator & I) const316 MakeFetchClause(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I)
317 const {
318 MachineBasicBlock::iterator ClauseHead = I;
319 std::vector<MachineInstr *> ClauseContent;
320 unsigned AluInstCount = 0;
321 bool IsTex = TII->usesTextureCache(ClauseHead);
322 std::set<unsigned> DstRegs;
323 for (MachineBasicBlock::iterator E = MBB.end(); I != E; ++I) {
324 if (IsTrivialInst(I))
325 continue;
326 if (AluInstCount >= MaxFetchInst)
327 break;
328 if ((IsTex && !TII->usesTextureCache(I)) ||
329 (!IsTex && !TII->usesVertexCache(I)))
330 break;
331 if (!isCompatibleWithClause(I, DstRegs))
332 break;
333 AluInstCount ++;
334 ClauseContent.push_back(I);
335 }
336 MachineInstr *MIb = BuildMI(MBB, ClauseHead, MBB.findDebugLoc(ClauseHead),
337 getHWInstrDesc(IsTex?CF_TC:CF_VC))
338 .addImm(0) // ADDR
339 .addImm(AluInstCount - 1); // COUNT
340 return ClauseFile(MIb, std::move(ClauseContent));
341 }
342
getLiteral(MachineInstr * MI,std::vector<int64_t> & Lits) const343 void getLiteral(MachineInstr *MI, std::vector<int64_t> &Lits) const {
344 static const unsigned LiteralRegs[] = {
345 AMDGPU::ALU_LITERAL_X,
346 AMDGPU::ALU_LITERAL_Y,
347 AMDGPU::ALU_LITERAL_Z,
348 AMDGPU::ALU_LITERAL_W
349 };
350 const SmallVector<std::pair<MachineOperand *, int64_t>, 3 > Srcs =
351 TII->getSrcs(MI);
352 for (unsigned i = 0, e = Srcs.size(); i < e; ++i) {
353 if (Srcs[i].first->getReg() != AMDGPU::ALU_LITERAL_X)
354 continue;
355 int64_t Imm = Srcs[i].second;
356 std::vector<int64_t>::iterator It =
357 std::find(Lits.begin(), Lits.end(), Imm);
358 if (It != Lits.end()) {
359 unsigned Index = It - Lits.begin();
360 Srcs[i].first->setReg(LiteralRegs[Index]);
361 } else {
362 assert(Lits.size() < 4 && "Too many literals in Instruction Group");
363 Srcs[i].first->setReg(LiteralRegs[Lits.size()]);
364 Lits.push_back(Imm);
365 }
366 }
367 }
368
insertLiterals(MachineBasicBlock::iterator InsertPos,const std::vector<unsigned> & Literals) const369 MachineBasicBlock::iterator insertLiterals(
370 MachineBasicBlock::iterator InsertPos,
371 const std::vector<unsigned> &Literals) const {
372 MachineBasicBlock *MBB = InsertPos->getParent();
373 for (unsigned i = 0, e = Literals.size(); i < e; i+=2) {
374 unsigned LiteralPair0 = Literals[i];
375 unsigned LiteralPair1 = (i + 1 < e)?Literals[i + 1]:0;
376 InsertPos = BuildMI(MBB, InsertPos->getDebugLoc(),
377 TII->get(AMDGPU::LITERALS))
378 .addImm(LiteralPair0)
379 .addImm(LiteralPair1);
380 }
381 return InsertPos;
382 }
383
384 ClauseFile
MakeALUClause(MachineBasicBlock & MBB,MachineBasicBlock::iterator & I) const385 MakeALUClause(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I)
386 const {
387 MachineBasicBlock::iterator ClauseHead = I;
388 std::vector<MachineInstr *> ClauseContent;
389 I++;
390 for (MachineBasicBlock::instr_iterator E = MBB.instr_end(); I != E;) {
391 if (IsTrivialInst(I)) {
392 ++I;
393 continue;
394 }
395 if (!I->isBundle() && !TII->isALUInstr(I->getOpcode()))
396 break;
397 std::vector<int64_t> Literals;
398 if (I->isBundle()) {
399 MachineInstr *DeleteMI = I;
400 MachineBasicBlock::instr_iterator BI = I.getInstrIterator();
401 while (++BI != E && BI->isBundledWithPred()) {
402 BI->unbundleFromPred();
403 for (unsigned i = 0, e = BI->getNumOperands(); i != e; ++i) {
404 MachineOperand &MO = BI->getOperand(i);
405 if (MO.isReg() && MO.isInternalRead())
406 MO.setIsInternalRead(false);
407 }
408 getLiteral(&*BI, Literals);
409 ClauseContent.push_back(&*BI);
410 }
411 I = BI;
412 DeleteMI->eraseFromParent();
413 } else {
414 getLiteral(I, Literals);
415 ClauseContent.push_back(I);
416 I++;
417 }
418 for (unsigned i = 0, e = Literals.size(); i < e; i+=2) {
419 unsigned literal0 = Literals[i];
420 unsigned literal2 = (i + 1 < e)?Literals[i + 1]:0;
421 MachineInstr *MILit = BuildMI(MBB, I, I->getDebugLoc(),
422 TII->get(AMDGPU::LITERALS))
423 .addImm(literal0)
424 .addImm(literal2);
425 ClauseContent.push_back(MILit);
426 }
427 }
428 assert(ClauseContent.size() < 128 && "ALU clause is too big");
429 ClauseHead->getOperand(7).setImm(ClauseContent.size() - 1);
430 return ClauseFile(ClauseHead, std::move(ClauseContent));
431 }
432
433 void
EmitFetchClause(MachineBasicBlock::iterator InsertPos,ClauseFile & Clause,unsigned & CfCount)434 EmitFetchClause(MachineBasicBlock::iterator InsertPos, ClauseFile &Clause,
435 unsigned &CfCount) {
436 CounterPropagateAddr(Clause.first, CfCount);
437 MachineBasicBlock *BB = Clause.first->getParent();
438 BuildMI(BB, InsertPos->getDebugLoc(), TII->get(AMDGPU::FETCH_CLAUSE))
439 .addImm(CfCount);
440 for (unsigned i = 0, e = Clause.second.size(); i < e; ++i) {
441 BB->splice(InsertPos, BB, Clause.second[i]);
442 }
443 CfCount += 2 * Clause.second.size();
444 }
445
446 void
EmitALUClause(MachineBasicBlock::iterator InsertPos,ClauseFile & Clause,unsigned & CfCount)447 EmitALUClause(MachineBasicBlock::iterator InsertPos, ClauseFile &Clause,
448 unsigned &CfCount) {
449 Clause.first->getOperand(0).setImm(0);
450 CounterPropagateAddr(Clause.first, CfCount);
451 MachineBasicBlock *BB = Clause.first->getParent();
452 BuildMI(BB, InsertPos->getDebugLoc(), TII->get(AMDGPU::ALU_CLAUSE))
453 .addImm(CfCount);
454 for (unsigned i = 0, e = Clause.second.size(); i < e; ++i) {
455 BB->splice(InsertPos, BB, Clause.second[i]);
456 }
457 CfCount += Clause.second.size();
458 }
459
CounterPropagateAddr(MachineInstr * MI,unsigned Addr) const460 void CounterPropagateAddr(MachineInstr *MI, unsigned Addr) const {
461 MI->getOperand(0).setImm(Addr + MI->getOperand(0).getImm());
462 }
CounterPropagateAddr(const std::set<MachineInstr * > & MIs,unsigned Addr) const463 void CounterPropagateAddr(const std::set<MachineInstr *> &MIs,
464 unsigned Addr) const {
465 for (MachineInstr *MI : MIs) {
466 CounterPropagateAddr(MI, Addr);
467 }
468 }
469
470 public:
R600ControlFlowFinalizer(TargetMachine & tm)471 R600ControlFlowFinalizer(TargetMachine &tm)
472 : MachineFunctionPass(ID), TII(nullptr), TRI(nullptr), ST(nullptr) {}
473
runOnMachineFunction(MachineFunction & MF)474 bool runOnMachineFunction(MachineFunction &MF) override {
475 ST = &MF.getSubtarget<AMDGPUSubtarget>();
476 MaxFetchInst = ST->getTexVTXClauseSize();
477 TII = static_cast<const R600InstrInfo *>(ST->getInstrInfo());
478 TRI = static_cast<const R600RegisterInfo *>(ST->getRegisterInfo());
479 R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
480
481 CFStack CFStack(ST, MFI->getShaderType());
482 for (MachineFunction::iterator MB = MF.begin(), ME = MF.end(); MB != ME;
483 ++MB) {
484 MachineBasicBlock &MBB = *MB;
485 unsigned CfCount = 0;
486 std::vector<std::pair<unsigned, std::set<MachineInstr *> > > LoopStack;
487 std::vector<MachineInstr * > IfThenElseStack;
488 if (MFI->getShaderType() == ShaderType::VERTEX) {
489 BuildMI(MBB, MBB.begin(), MBB.findDebugLoc(MBB.begin()),
490 getHWInstrDesc(CF_CALL_FS));
491 CfCount++;
492 }
493 std::vector<ClauseFile> FetchClauses, AluClauses;
494 std::vector<MachineInstr *> LastAlu(1);
495 std::vector<MachineInstr *> ToPopAfter;
496
497 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
498 I != E;) {
499 if (TII->usesTextureCache(I) || TII->usesVertexCache(I)) {
500 DEBUG(dbgs() << CfCount << ":"; I->dump(););
501 FetchClauses.push_back(MakeFetchClause(MBB, I));
502 CfCount++;
503 LastAlu.back() = nullptr;
504 continue;
505 }
506
507 MachineBasicBlock::iterator MI = I;
508 if (MI->getOpcode() != AMDGPU::ENDIF)
509 LastAlu.back() = nullptr;
510 if (MI->getOpcode() == AMDGPU::CF_ALU)
511 LastAlu.back() = MI;
512 I++;
513 bool RequiresWorkAround =
514 CFStack.requiresWorkAroundForInst(MI->getOpcode());
515 switch (MI->getOpcode()) {
516 case AMDGPU::CF_ALU_PUSH_BEFORE:
517 if (RequiresWorkAround) {
518 DEBUG(dbgs() << "Applying bug work-around for ALU_PUSH_BEFORE\n");
519 BuildMI(MBB, MI, MBB.findDebugLoc(MI), TII->get(AMDGPU::CF_PUSH_EG))
520 .addImm(CfCount + 1)
521 .addImm(1);
522 MI->setDesc(TII->get(AMDGPU::CF_ALU));
523 CfCount++;
524 CFStack.pushBranch(AMDGPU::CF_PUSH_EG);
525 } else
526 CFStack.pushBranch(AMDGPU::CF_ALU_PUSH_BEFORE);
527
528 case AMDGPU::CF_ALU:
529 I = MI;
530 AluClauses.push_back(MakeALUClause(MBB, I));
531 DEBUG(dbgs() << CfCount << ":"; MI->dump(););
532 CfCount++;
533 break;
534 case AMDGPU::WHILELOOP: {
535 CFStack.pushLoop();
536 MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
537 getHWInstrDesc(CF_WHILE_LOOP))
538 .addImm(1);
539 std::pair<unsigned, std::set<MachineInstr *> > Pair(CfCount,
540 std::set<MachineInstr *>());
541 Pair.second.insert(MIb);
542 LoopStack.push_back(std::move(Pair));
543 MI->eraseFromParent();
544 CfCount++;
545 break;
546 }
547 case AMDGPU::ENDLOOP: {
548 CFStack.popLoop();
549 std::pair<unsigned, std::set<MachineInstr *> > Pair =
550 std::move(LoopStack.back());
551 LoopStack.pop_back();
552 CounterPropagateAddr(Pair.second, CfCount);
553 BuildMI(MBB, MI, MBB.findDebugLoc(MI), getHWInstrDesc(CF_END_LOOP))
554 .addImm(Pair.first + 1);
555 MI->eraseFromParent();
556 CfCount++;
557 break;
558 }
559 case AMDGPU::IF_PREDICATE_SET: {
560 LastAlu.push_back(nullptr);
561 MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
562 getHWInstrDesc(CF_JUMP))
563 .addImm(0)
564 .addImm(0);
565 IfThenElseStack.push_back(MIb);
566 DEBUG(dbgs() << CfCount << ":"; MIb->dump(););
567 MI->eraseFromParent();
568 CfCount++;
569 break;
570 }
571 case AMDGPU::ELSE: {
572 MachineInstr * JumpInst = IfThenElseStack.back();
573 IfThenElseStack.pop_back();
574 CounterPropagateAddr(JumpInst, CfCount);
575 MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
576 getHWInstrDesc(CF_ELSE))
577 .addImm(0)
578 .addImm(0);
579 DEBUG(dbgs() << CfCount << ":"; MIb->dump(););
580 IfThenElseStack.push_back(MIb);
581 MI->eraseFromParent();
582 CfCount++;
583 break;
584 }
585 case AMDGPU::ENDIF: {
586 CFStack.popBranch();
587 if (LastAlu.back()) {
588 ToPopAfter.push_back(LastAlu.back());
589 } else {
590 MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
591 getHWInstrDesc(CF_POP))
592 .addImm(CfCount + 1)
593 .addImm(1);
594 (void)MIb;
595 DEBUG(dbgs() << CfCount << ":"; MIb->dump(););
596 CfCount++;
597 }
598
599 MachineInstr *IfOrElseInst = IfThenElseStack.back();
600 IfThenElseStack.pop_back();
601 CounterPropagateAddr(IfOrElseInst, CfCount);
602 IfOrElseInst->getOperand(1).setImm(1);
603 LastAlu.pop_back();
604 MI->eraseFromParent();
605 break;
606 }
607 case AMDGPU::BREAK: {
608 CfCount ++;
609 MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
610 getHWInstrDesc(CF_LOOP_BREAK))
611 .addImm(0);
612 LoopStack.back().second.insert(MIb);
613 MI->eraseFromParent();
614 break;
615 }
616 case AMDGPU::CONTINUE: {
617 MachineInstr *MIb = BuildMI(MBB, MI, MBB.findDebugLoc(MI),
618 getHWInstrDesc(CF_LOOP_CONTINUE))
619 .addImm(0);
620 LoopStack.back().second.insert(MIb);
621 MI->eraseFromParent();
622 CfCount++;
623 break;
624 }
625 case AMDGPU::RETURN: {
626 BuildMI(MBB, MI, MBB.findDebugLoc(MI), getHWInstrDesc(CF_END));
627 CfCount++;
628 MI->eraseFromParent();
629 if (CfCount % 2) {
630 BuildMI(MBB, I, MBB.findDebugLoc(MI), TII->get(AMDGPU::PAD));
631 CfCount++;
632 }
633 for (unsigned i = 0, e = FetchClauses.size(); i < e; i++)
634 EmitFetchClause(I, FetchClauses[i], CfCount);
635 for (unsigned i = 0, e = AluClauses.size(); i < e; i++)
636 EmitALUClause(I, AluClauses[i], CfCount);
637 }
638 default:
639 if (TII->isExport(MI->getOpcode())) {
640 DEBUG(dbgs() << CfCount << ":"; MI->dump(););
641 CfCount++;
642 }
643 break;
644 }
645 }
646 for (unsigned i = 0, e = ToPopAfter.size(); i < e; ++i) {
647 MachineInstr *Alu = ToPopAfter[i];
648 BuildMI(MBB, Alu, MBB.findDebugLoc((MachineBasicBlock::iterator)Alu),
649 TII->get(AMDGPU::CF_ALU_POP_AFTER))
650 .addImm(Alu->getOperand(0).getImm())
651 .addImm(Alu->getOperand(1).getImm())
652 .addImm(Alu->getOperand(2).getImm())
653 .addImm(Alu->getOperand(3).getImm())
654 .addImm(Alu->getOperand(4).getImm())
655 .addImm(Alu->getOperand(5).getImm())
656 .addImm(Alu->getOperand(6).getImm())
657 .addImm(Alu->getOperand(7).getImm())
658 .addImm(Alu->getOperand(8).getImm());
659 Alu->eraseFromParent();
660 }
661 MFI->StackSize = CFStack.MaxStackSize;
662 }
663
664 return false;
665 }
666
getPassName() const667 const char *getPassName() const override {
668 return "R600 Control Flow Finalizer Pass";
669 }
670 };
671
672 char R600ControlFlowFinalizer::ID = 0;
673
674 } // end anonymous namespace
675
676
createR600ControlFlowFinalizer(TargetMachine & TM)677 llvm::FunctionPass *llvm::createR600ControlFlowFinalizer(TargetMachine &TM) {
678 return new R600ControlFlowFinalizer(TM);
679 }
680