1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a printer that converts from our internal representation
11 // of machine-dependent LLVM code to GAS-format ARM assembly language.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "ARMAsmPrinter.h"
16 #include "ARM.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMTargetMachine.h"
20 #include "ARMTargetObjectFile.h"
21 #include "InstPrinter/ARMInstPrinter.h"
22 #include "MCTargetDesc/ARMAddressingModes.h"
23 #include "MCTargetDesc/ARMMCExpr.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/Mangler.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCAssembler.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCELFStreamer.h"
39 #include "llvm/MC/MCInst.h"
40 #include "llvm/MC/MCInstBuilder.h"
41 #include "llvm/MC/MCObjectStreamer.h"
42 #include "llvm/MC/MCSectionMachO.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/TargetParser.h"
47 #include "llvm/Support/COFF.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ELF.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/TargetRegistry.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetMachine.h"
55 #include <cctype>
56 using namespace llvm;
57
58 #define DEBUG_TYPE "asm-printer"
59
ARMAsmPrinter(TargetMachine & TM,std::unique_ptr<MCStreamer> Streamer)60 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM,
61 std::unique_ptr<MCStreamer> Streamer)
62 : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr),
63 InConstantPool(false), OptimizationGoals(-1) {}
64
EmitFunctionBodyEnd()65 void ARMAsmPrinter::EmitFunctionBodyEnd() {
66 // Make sure to terminate any constant pools that were at the end
67 // of the function.
68 if (!InConstantPool)
69 return;
70 InConstantPool = false;
71 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
72 }
73
EmitFunctionEntryLabel()74 void ARMAsmPrinter::EmitFunctionEntryLabel() {
75 if (AFI->isThumbFunction()) {
76 OutStreamer->EmitAssemblerFlag(MCAF_Code16);
77 OutStreamer->EmitThumbFunc(CurrentFnSym);
78 }
79
80 OutStreamer->EmitLabel(CurrentFnSym);
81 }
82
EmitXXStructor(const DataLayout & DL,const Constant * CV)83 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) {
84 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType());
85 assert(Size && "C++ constructor pointer had zero size!");
86
87 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
88 assert(GV && "C++ constructor pointer was not a GlobalValue!");
89
90 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV,
91 ARMII::MO_NO_FLAG),
92 (Subtarget->isTargetELF()
93 ? MCSymbolRefExpr::VK_ARM_TARGET1
94 : MCSymbolRefExpr::VK_None),
95 OutContext);
96
97 OutStreamer->EmitValue(E, Size);
98 }
99
100 /// runOnMachineFunction - This uses the EmitInstruction()
101 /// method to print assembly for each instruction.
102 ///
runOnMachineFunction(MachineFunction & MF)103 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
104 AFI = MF.getInfo<ARMFunctionInfo>();
105 MCP = MF.getConstantPool();
106 Subtarget = &MF.getSubtarget<ARMSubtarget>();
107
108 SetupMachineFunction(MF);
109 const Function* F = MF.getFunction();
110 const TargetMachine& TM = MF.getTarget();
111
112 // Calculate this function's optimization goal.
113 unsigned OptimizationGoal;
114 if (F->hasFnAttribute(Attribute::OptimizeNone))
115 // For best debugging illusion, speed and small size sacrificed
116 OptimizationGoal = 6;
117 else if (F->optForMinSize())
118 // Aggressively for small size, speed and debug illusion sacrificed
119 OptimizationGoal = 4;
120 else if (F->optForSize())
121 // For small size, but speed and debugging illusion preserved
122 OptimizationGoal = 3;
123 else if (TM.getOptLevel() == CodeGenOpt::Aggressive)
124 // Aggressively for speed, small size and debug illusion sacrificed
125 OptimizationGoal = 2;
126 else if (TM.getOptLevel() > CodeGenOpt::None)
127 // For speed, but small size and good debug illusion preserved
128 OptimizationGoal = 1;
129 else // TM.getOptLevel() == CodeGenOpt::None
130 // For good debugging, but speed and small size preserved
131 OptimizationGoal = 5;
132
133 // Combine a new optimization goal with existing ones.
134 if (OptimizationGoals == -1) // uninitialized goals
135 OptimizationGoals = OptimizationGoal;
136 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals
137 OptimizationGoals = 0;
138
139 if (Subtarget->isTargetCOFF()) {
140 bool Internal = F->hasInternalLinkage();
141 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
142 : COFF::IMAGE_SYM_CLASS_EXTERNAL;
143 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
144
145 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
146 OutStreamer->EmitCOFFSymbolStorageClass(Scl);
147 OutStreamer->EmitCOFFSymbolType(Type);
148 OutStreamer->EndCOFFSymbolDef();
149 }
150
151 // Emit the rest of the function body.
152 EmitFunctionBody();
153
154 // If we need V4T thumb mode Register Indirect Jump pads, emit them.
155 // These are created per function, rather than per TU, since it's
156 // relatively easy to exceed the thumb branch range within a TU.
157 if (! ThumbIndirectPads.empty()) {
158 OutStreamer->EmitAssemblerFlag(MCAF_Code16);
159 EmitAlignment(1);
160 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
161 OutStreamer->EmitLabel(ThumbIndirectPads[i].second);
162 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
163 .addReg(ThumbIndirectPads[i].first)
164 // Add predicate operands.
165 .addImm(ARMCC::AL)
166 .addReg(0));
167 }
168 ThumbIndirectPads.clear();
169 }
170
171 // We didn't modify anything.
172 return false;
173 }
174
printOperand(const MachineInstr * MI,int OpNum,raw_ostream & O)175 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
176 raw_ostream &O) {
177 const MachineOperand &MO = MI->getOperand(OpNum);
178 unsigned TF = MO.getTargetFlags();
179
180 switch (MO.getType()) {
181 default: llvm_unreachable("<unknown operand type>");
182 case MachineOperand::MO_Register: {
183 unsigned Reg = MO.getReg();
184 assert(TargetRegisterInfo::isPhysicalRegister(Reg));
185 assert(!MO.getSubReg() && "Subregs should be eliminated!");
186 if(ARM::GPRPairRegClass.contains(Reg)) {
187 const MachineFunction &MF = *MI->getParent()->getParent();
188 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
189 Reg = TRI->getSubReg(Reg, ARM::gsub_0);
190 }
191 O << ARMInstPrinter::getRegisterName(Reg);
192 break;
193 }
194 case MachineOperand::MO_Immediate: {
195 int64_t Imm = MO.getImm();
196 O << '#';
197 if (TF == ARMII::MO_LO16)
198 O << ":lower16:";
199 else if (TF == ARMII::MO_HI16)
200 O << ":upper16:";
201 O << Imm;
202 break;
203 }
204 case MachineOperand::MO_MachineBasicBlock:
205 MO.getMBB()->getSymbol()->print(O, MAI);
206 return;
207 case MachineOperand::MO_GlobalAddress: {
208 const GlobalValue *GV = MO.getGlobal();
209 if (TF & ARMII::MO_LO16)
210 O << ":lower16:";
211 else if (TF & ARMII::MO_HI16)
212 O << ":upper16:";
213 GetARMGVSymbol(GV, TF)->print(O, MAI);
214
215 printOffset(MO.getOffset(), O);
216 if (TF == ARMII::MO_PLT)
217 O << "(PLT)";
218 break;
219 }
220 case MachineOperand::MO_ConstantPoolIndex:
221 GetCPISymbol(MO.getIndex())->print(O, MAI);
222 break;
223 }
224 }
225
226 //===--------------------------------------------------------------------===//
227
228 MCSymbol *ARMAsmPrinter::
GetARMJTIPICJumpTableLabel(unsigned uid) const229 GetARMJTIPICJumpTableLabel(unsigned uid) const {
230 const DataLayout &DL = getDataLayout();
231 SmallString<60> Name;
232 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI"
233 << getFunctionNumber() << '_' << uid;
234 return OutContext.getOrCreateSymbol(Name);
235 }
236
PrintAsmOperand(const MachineInstr * MI,unsigned OpNum,unsigned AsmVariant,const char * ExtraCode,raw_ostream & O)237 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
238 unsigned AsmVariant, const char *ExtraCode,
239 raw_ostream &O) {
240 // Does this asm operand have a single letter operand modifier?
241 if (ExtraCode && ExtraCode[0]) {
242 if (ExtraCode[1] != 0) return true; // Unknown modifier.
243
244 switch (ExtraCode[0]) {
245 default:
246 // See if this is a generic print operand
247 return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O);
248 case 'a': // Print as a memory address.
249 if (MI->getOperand(OpNum).isReg()) {
250 O << "["
251 << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
252 << "]";
253 return false;
254 }
255 // Fallthrough
256 case 'c': // Don't print "#" before an immediate operand.
257 if (!MI->getOperand(OpNum).isImm())
258 return true;
259 O << MI->getOperand(OpNum).getImm();
260 return false;
261 case 'P': // Print a VFP double precision register.
262 case 'q': // Print a NEON quad precision register.
263 printOperand(MI, OpNum, O);
264 return false;
265 case 'y': // Print a VFP single precision register as indexed double.
266 if (MI->getOperand(OpNum).isReg()) {
267 unsigned Reg = MI->getOperand(OpNum).getReg();
268 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
269 // Find the 'd' register that has this 's' register as a sub-register,
270 // and determine the lane number.
271 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
272 if (!ARM::DPRRegClass.contains(*SR))
273 continue;
274 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
275 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
276 return false;
277 }
278 }
279 return true;
280 case 'B': // Bitwise inverse of integer or symbol without a preceding #.
281 if (!MI->getOperand(OpNum).isImm())
282 return true;
283 O << ~(MI->getOperand(OpNum).getImm());
284 return false;
285 case 'L': // The low 16 bits of an immediate constant.
286 if (!MI->getOperand(OpNum).isImm())
287 return true;
288 O << (MI->getOperand(OpNum).getImm() & 0xffff);
289 return false;
290 case 'M': { // A register range suitable for LDM/STM.
291 if (!MI->getOperand(OpNum).isReg())
292 return true;
293 const MachineOperand &MO = MI->getOperand(OpNum);
294 unsigned RegBegin = MO.getReg();
295 // This takes advantage of the 2 operand-ness of ldm/stm and that we've
296 // already got the operands in registers that are operands to the
297 // inline asm statement.
298 O << "{";
299 if (ARM::GPRPairRegClass.contains(RegBegin)) {
300 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
301 unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
302 O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
303 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
304 }
305 O << ARMInstPrinter::getRegisterName(RegBegin);
306
307 // FIXME: The register allocator not only may not have given us the
308 // registers in sequence, but may not be in ascending registers. This
309 // will require changes in the register allocator that'll need to be
310 // propagated down here if the operands change.
311 unsigned RegOps = OpNum + 1;
312 while (MI->getOperand(RegOps).isReg()) {
313 O << ", "
314 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
315 RegOps++;
316 }
317
318 O << "}";
319
320 return false;
321 }
322 case 'R': // The most significant register of a pair.
323 case 'Q': { // The least significant register of a pair.
324 if (OpNum == 0)
325 return true;
326 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
327 if (!FlagsOP.isImm())
328 return true;
329 unsigned Flags = FlagsOP.getImm();
330
331 // This operand may not be the one that actually provides the register. If
332 // it's tied to a previous one then we should refer instead to that one
333 // for registers and their classes.
334 unsigned TiedIdx;
335 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
336 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
337 unsigned OpFlags = MI->getOperand(OpNum).getImm();
338 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
339 }
340 Flags = MI->getOperand(OpNum).getImm();
341
342 // Later code expects OpNum to be pointing at the register rather than
343 // the flags.
344 OpNum += 1;
345 }
346
347 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
348 unsigned RC;
349 InlineAsm::hasRegClassConstraint(Flags, RC);
350 if (RC == ARM::GPRPairRegClassID) {
351 if (NumVals != 1)
352 return true;
353 const MachineOperand &MO = MI->getOperand(OpNum);
354 if (!MO.isReg())
355 return true;
356 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
357 unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ?
358 ARM::gsub_0 : ARM::gsub_1);
359 O << ARMInstPrinter::getRegisterName(Reg);
360 return false;
361 }
362 if (NumVals != 2)
363 return true;
364 unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1;
365 if (RegOp >= MI->getNumOperands())
366 return true;
367 const MachineOperand &MO = MI->getOperand(RegOp);
368 if (!MO.isReg())
369 return true;
370 unsigned Reg = MO.getReg();
371 O << ARMInstPrinter::getRegisterName(Reg);
372 return false;
373 }
374
375 case 'e': // The low doubleword register of a NEON quad register.
376 case 'f': { // The high doubleword register of a NEON quad register.
377 if (!MI->getOperand(OpNum).isReg())
378 return true;
379 unsigned Reg = MI->getOperand(OpNum).getReg();
380 if (!ARM::QPRRegClass.contains(Reg))
381 return true;
382 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
383 unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
384 ARM::dsub_0 : ARM::dsub_1);
385 O << ARMInstPrinter::getRegisterName(SubReg);
386 return false;
387 }
388
389 // This modifier is not yet supported.
390 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
391 return true;
392 case 'H': { // The highest-numbered register of a pair.
393 const MachineOperand &MO = MI->getOperand(OpNum);
394 if (!MO.isReg())
395 return true;
396 const MachineFunction &MF = *MI->getParent()->getParent();
397 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
398 unsigned Reg = MO.getReg();
399 if(!ARM::GPRPairRegClass.contains(Reg))
400 return false;
401 Reg = TRI->getSubReg(Reg, ARM::gsub_1);
402 O << ARMInstPrinter::getRegisterName(Reg);
403 return false;
404 }
405 }
406 }
407
408 printOperand(MI, OpNum, O);
409 return false;
410 }
411
PrintAsmMemoryOperand(const MachineInstr * MI,unsigned OpNum,unsigned AsmVariant,const char * ExtraCode,raw_ostream & O)412 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
413 unsigned OpNum, unsigned AsmVariant,
414 const char *ExtraCode,
415 raw_ostream &O) {
416 // Does this asm operand have a single letter operand modifier?
417 if (ExtraCode && ExtraCode[0]) {
418 if (ExtraCode[1] != 0) return true; // Unknown modifier.
419
420 switch (ExtraCode[0]) {
421 case 'A': // A memory operand for a VLD1/VST1 instruction.
422 default: return true; // Unknown modifier.
423 case 'm': // The base register of a memory operand.
424 if (!MI->getOperand(OpNum).isReg())
425 return true;
426 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
427 return false;
428 }
429 }
430
431 const MachineOperand &MO = MI->getOperand(OpNum);
432 assert(MO.isReg() && "unexpected inline asm memory operand");
433 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
434 return false;
435 }
436
isThumb(const MCSubtargetInfo & STI)437 static bool isThumb(const MCSubtargetInfo& STI) {
438 return STI.getFeatureBits()[ARM::ModeThumb];
439 }
440
emitInlineAsmEnd(const MCSubtargetInfo & StartInfo,const MCSubtargetInfo * EndInfo) const441 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
442 const MCSubtargetInfo *EndInfo) const {
443 // If either end mode is unknown (EndInfo == NULL) or different than
444 // the start mode, then restore the start mode.
445 const bool WasThumb = isThumb(StartInfo);
446 if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
447 OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
448 }
449 }
450
EmitStartOfAsmFile(Module & M)451 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
452 const Triple &TT = TM.getTargetTriple();
453 // Use unified assembler syntax.
454 OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified);
455
456 // Emit ARM Build Attributes
457 if (TT.isOSBinFormatELF())
458 emitAttributes();
459
460 // Use the triple's architecture and subarchitecture to determine
461 // if we're thumb for the purposes of the top level code16 assembler
462 // flag.
463 bool isThumb = TT.getArch() == Triple::thumb ||
464 TT.getArch() == Triple::thumbeb ||
465 TT.getSubArch() == Triple::ARMSubArch_v7m ||
466 TT.getSubArch() == Triple::ARMSubArch_v6m;
467 if (!M.getModuleInlineAsm().empty() && isThumb)
468 OutStreamer->EmitAssemblerFlag(MCAF_Code16);
469 }
470
471 static void
emitNonLazySymbolPointer(MCStreamer & OutStreamer,MCSymbol * StubLabel,MachineModuleInfoImpl::StubValueTy & MCSym)472 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
473 MachineModuleInfoImpl::StubValueTy &MCSym) {
474 // L_foo$stub:
475 OutStreamer.EmitLabel(StubLabel);
476 // .indirect_symbol _foo
477 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
478
479 if (MCSym.getInt())
480 // External to current translation unit.
481 OutStreamer.EmitIntValue(0, 4/*size*/);
482 else
483 // Internal to current translation unit.
484 //
485 // When we place the LSDA into the TEXT section, the type info
486 // pointers need to be indirect and pc-rel. We accomplish this by
487 // using NLPs; however, sometimes the types are local to the file.
488 // We need to fill in the value for the NLP in those cases.
489 OutStreamer.EmitValue(
490 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()),
491 4 /*size*/);
492 }
493
494
EmitEndOfAsmFile(Module & M)495 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
496 const Triple &TT = TM.getTargetTriple();
497 if (TT.isOSBinFormatMachO()) {
498 // All darwin targets use mach-o.
499 const TargetLoweringObjectFileMachO &TLOFMacho =
500 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
501 MachineModuleInfoMachO &MMIMacho =
502 MMI->getObjFileInfo<MachineModuleInfoMachO>();
503
504 // Output non-lazy-pointers for external and common global variables.
505 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
506
507 if (!Stubs.empty()) {
508 // Switch with ".non_lazy_symbol_pointer" directive.
509 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
510 EmitAlignment(2);
511
512 for (auto &Stub : Stubs)
513 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
514
515 Stubs.clear();
516 OutStreamer->AddBlankLine();
517 }
518
519 Stubs = MMIMacho.GetHiddenGVStubList();
520 if (!Stubs.empty()) {
521 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
522 EmitAlignment(2);
523
524 for (auto &Stub : Stubs)
525 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
526
527 Stubs.clear();
528 OutStreamer->AddBlankLine();
529 }
530
531 // Funny Darwin hack: This flag tells the linker that no global symbols
532 // contain code that falls through to other global symbols (e.g. the obvious
533 // implementation of multiple entry points). If this doesn't occur, the
534 // linker can safely perform dead code stripping. Since LLVM never
535 // generates code that does this, it is always safe to set.
536 OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
537 }
538
539 // The last attribute to be emitted is ABI_optimization_goals
540 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
541 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
542
543 if (OptimizationGoals > 0 &&
544 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI()))
545 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals);
546 OptimizationGoals = -1;
547
548 ATS.finishAttributeSection();
549 }
550
551 //===----------------------------------------------------------------------===//
552 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
553 // FIXME:
554 // The following seem like one-off assembler flags, but they actually need
555 // to appear in the .ARM.attributes section in ELF.
556 // Instead of subclassing the MCELFStreamer, we do the work here.
557
getArchForCPU(StringRef CPU,const ARMSubtarget * Subtarget)558 static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU,
559 const ARMSubtarget *Subtarget) {
560 if (CPU == "xscale")
561 return ARMBuildAttrs::v5TEJ;
562
563 if (Subtarget->hasV8Ops())
564 return ARMBuildAttrs::v8;
565 else if (Subtarget->hasV7Ops()) {
566 if (Subtarget->isMClass() && Subtarget->hasDSP())
567 return ARMBuildAttrs::v7E_M;
568 return ARMBuildAttrs::v7;
569 } else if (Subtarget->hasV6T2Ops())
570 return ARMBuildAttrs::v6T2;
571 else if (Subtarget->hasV6MOps())
572 return ARMBuildAttrs::v6S_M;
573 else if (Subtarget->hasV6Ops())
574 return ARMBuildAttrs::v6;
575 else if (Subtarget->hasV5TEOps())
576 return ARMBuildAttrs::v5TE;
577 else if (Subtarget->hasV5TOps())
578 return ARMBuildAttrs::v5T;
579 else if (Subtarget->hasV4TOps())
580 return ARMBuildAttrs::v4T;
581 else
582 return ARMBuildAttrs::v4;
583 }
584
emitAttributes()585 void ARMAsmPrinter::emitAttributes() {
586 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
587 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
588
589 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09");
590
591 ATS.switchVendor("aeabi");
592
593 // Compute ARM ELF Attributes based on the default subtarget that
594 // we'd have constructed. The existing ARM behavior isn't LTO clean
595 // anyhow.
596 // FIXME: For ifunc related functions we could iterate over and look
597 // for a feature string that doesn't match the default one.
598 const Triple &TT = TM.getTargetTriple();
599 StringRef CPU = TM.getTargetCPU();
600 StringRef FS = TM.getTargetFeatureString();
601 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
602 if (!FS.empty()) {
603 if (!ArchFS.empty())
604 ArchFS = (Twine(ArchFS) + "," + FS).str();
605 else
606 ArchFS = FS;
607 }
608 const ARMBaseTargetMachine &ATM =
609 static_cast<const ARMBaseTargetMachine &>(TM);
610 const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian());
611
612 std::string CPUString = STI.getCPUString();
613
614 if (CPUString.find("generic") != 0) { //CPUString doesn't start with "generic"
615 // FIXME: remove krait check when GNU tools support krait cpu
616 if (STI.isKrait()) {
617 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9");
618 // We consider krait as a "cortex-a9" + hwdiv CPU
619 // Enable hwdiv through ".arch_extension idiv"
620 if (STI.hasDivide() || STI.hasDivideInARMMode())
621 ATS.emitArchExtension(ARM::AEK_HWDIV | ARM::AEK_HWDIVARM);
622 } else
623 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString);
624 }
625
626 ATS.emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(CPUString, &STI));
627
628 // Tag_CPU_arch_profile must have the default value of 0 when "Architecture
629 // profile is not applicable (e.g. pre v7, or cross-profile code)".
630 if (STI.hasV7Ops()) {
631 if (STI.isAClass()) {
632 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
633 ARMBuildAttrs::ApplicationProfile);
634 } else if (STI.isRClass()) {
635 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
636 ARMBuildAttrs::RealTimeProfile);
637 } else if (STI.isMClass()) {
638 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
639 ARMBuildAttrs::MicroControllerProfile);
640 }
641 }
642
643 ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use,
644 STI.hasARMOps() ? ARMBuildAttrs::Allowed
645 : ARMBuildAttrs::Not_Allowed);
646 if (STI.isThumb1Only()) {
647 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed);
648 } else if (STI.hasThumb2()) {
649 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
650 ARMBuildAttrs::AllowThumb32);
651 }
652
653 if (STI.hasNEON()) {
654 /* NEON is not exactly a VFP architecture, but GAS emit one of
655 * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
656 if (STI.hasFPARMv8()) {
657 if (STI.hasCrypto())
658 ATS.emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8);
659 else
660 ATS.emitFPU(ARM::FK_NEON_FP_ARMV8);
661 } else if (STI.hasVFP4())
662 ATS.emitFPU(ARM::FK_NEON_VFPV4);
663 else
664 ATS.emitFPU(STI.hasFP16() ? ARM::FK_NEON_FP16 : ARM::FK_NEON);
665 // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture
666 if (STI.hasV8Ops())
667 ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
668 STI.hasV8_1aOps() ? ARMBuildAttrs::AllowNeonARMv8_1a:
669 ARMBuildAttrs::AllowNeonARMv8);
670 } else {
671 if (STI.hasFPARMv8())
672 // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one
673 // FPU, but there are two different names for it depending on the CPU.
674 ATS.emitFPU(STI.hasD16()
675 ? (STI.isFPOnlySP() ? ARM::FK_FPV5_SP_D16 : ARM::FK_FPV5_D16)
676 : ARM::FK_FP_ARMV8);
677 else if (STI.hasVFP4())
678 ATS.emitFPU(STI.hasD16()
679 ? (STI.isFPOnlySP() ? ARM::FK_FPV4_SP_D16 : ARM::FK_VFPV4_D16)
680 : ARM::FK_VFPV4);
681 else if (STI.hasVFP3())
682 ATS.emitFPU(STI.hasD16()
683 // +d16
684 ? (STI.isFPOnlySP()
685 ? (STI.hasFP16() ? ARM::FK_VFPV3XD_FP16 : ARM::FK_VFPV3XD)
686 : (STI.hasFP16() ? ARM::FK_VFPV3_D16_FP16 : ARM::FK_VFPV3_D16))
687 // -d16
688 : (STI.hasFP16() ? ARM::FK_VFPV3_FP16 : ARM::FK_VFPV3));
689 else if (STI.hasVFP2())
690 ATS.emitFPU(ARM::FK_VFPV2);
691 }
692
693 if (TM.getRelocationModel() == Reloc::PIC_) {
694 // PIC specific attributes.
695 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
696 ARMBuildAttrs::AddressRWPCRel);
697 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
698 ARMBuildAttrs::AddressROPCRel);
699 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
700 ARMBuildAttrs::AddressGOT);
701 } else {
702 // Allow direct addressing of imported data for all other relocation models.
703 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
704 ARMBuildAttrs::AddressDirect);
705 }
706
707 // Signal various FP modes.
708 if (!TM.Options.UnsafeFPMath) {
709 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
710 ARMBuildAttrs::IEEEDenormals);
711 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed);
712
713 // If the user has permitted this code to choose the IEEE 754
714 // rounding at run-time, emit the rounding attribute.
715 if (TM.Options.HonorSignDependentRoundingFPMathOption)
716 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed);
717 } else {
718 if (!STI.hasVFP2()) {
719 // When the target doesn't have an FPU (by design or
720 // intention), the assumptions made on the software support
721 // mirror that of the equivalent hardware support *if it
722 // existed*. For v7 and better we indicate that denormals are
723 // flushed preserving sign, and for V6 we indicate that
724 // denormals are flushed to positive zero.
725 if (STI.hasV7Ops())
726 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
727 ARMBuildAttrs::PreserveFPSign);
728 } else if (STI.hasVFP3()) {
729 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
730 // the sign bit of the zero matches the sign bit of the input or
731 // result that is being flushed to zero.
732 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
733 ARMBuildAttrs::PreserveFPSign);
734 }
735 // For VFPv2 implementations it is implementation defined as
736 // to whether denormals are flushed to positive zero or to
737 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
738 // LLVM has chosen to flush this to positive zero (most likely for
739 // GCC compatibility), so that's the chosen value here (the
740 // absence of its emission implies zero).
741 }
742
743 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
744 // equivalent of GCC's -ffinite-math-only flag.
745 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
746 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
747 ARMBuildAttrs::Allowed);
748 else
749 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
750 ARMBuildAttrs::AllowIEE754);
751
752 if (STI.allowsUnalignedMem())
753 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
754 ARMBuildAttrs::Allowed);
755 else
756 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
757 ARMBuildAttrs::Not_Allowed);
758
759 // FIXME: add more flags to ARMBuildAttributes.h
760 // 8-bytes alignment stuff.
761 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
762 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
763
764 // ABI_HardFP_use attribute to indicate single precision FP.
765 if (STI.isFPOnlySP())
766 ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use,
767 ARMBuildAttrs::HardFPSinglePrecision);
768
769 // Hard float. Use both S and D registers and conform to AAPCS-VFP.
770 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
771 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
772
773 // FIXME: Should we signal R9 usage?
774
775 if (STI.hasFP16())
776 ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP);
777
778 // FIXME: To support emitting this build attribute as GCC does, the
779 // -mfp16-format option and associated plumbing must be
780 // supported. For now the __fp16 type is exposed by default, so this
781 // attribute should be emitted with value 1.
782 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format,
783 ARMBuildAttrs::FP16FormatIEEE);
784
785 if (STI.hasMPExtension())
786 ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP);
787
788 // Hardware divide in ARM mode is part of base arch, starting from ARMv8.
789 // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M).
790 // It is not possible to produce DisallowDIV: if hwdiv is present in the base
791 // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits.
792 // AllowDIVExt is only emitted if hwdiv isn't available in the base arch;
793 // otherwise, the default value (AllowDIVIfExists) applies.
794 if (STI.hasDivideInARMMode() && !STI.hasV8Ops())
795 ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt);
796
797 if (MMI) {
798 if (const Module *SourceModule = MMI->getModule()) {
799 // ABI_PCS_wchar_t to indicate wchar_t width
800 // FIXME: There is no way to emit value 0 (wchar_t prohibited).
801 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
802 SourceModule->getModuleFlag("wchar_size"))) {
803 int WCharWidth = WCharWidthValue->getZExtValue();
804 assert((WCharWidth == 2 || WCharWidth == 4) &&
805 "wchar_t width must be 2 or 4 bytes");
806 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
807 }
808
809 // ABI_enum_size to indicate enum width
810 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3
811 // (all enums contain a value needing 32 bits to encode).
812 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
813 SourceModule->getModuleFlag("min_enum_size"))) {
814 int EnumWidth = EnumWidthValue->getZExtValue();
815 assert((EnumWidth == 1 || EnumWidth == 4) &&
816 "Minimum enum width must be 1 or 4 bytes");
817 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
818 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
819 }
820 }
821 }
822
823 // TODO: We currently only support either reserving the register, or treating
824 // it as another callee-saved register, but not as SB or a TLS pointer; It
825 // would instead be nicer to push this from the frontend as metadata, as we do
826 // for the wchar and enum size tags
827 if (STI.isR9Reserved())
828 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9Reserved);
829 else
830 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9IsGPR);
831
832 if (STI.hasTrustZone() && STI.hasVirtualization())
833 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
834 ARMBuildAttrs::AllowTZVirtualization);
835 else if (STI.hasTrustZone())
836 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
837 ARMBuildAttrs::AllowTZ);
838 else if (STI.hasVirtualization())
839 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
840 ARMBuildAttrs::AllowVirtualization);
841 }
842
843 //===----------------------------------------------------------------------===//
844
getPICLabel(const char * Prefix,unsigned FunctionNumber,unsigned LabelId,MCContext & Ctx)845 static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber,
846 unsigned LabelId, MCContext &Ctx) {
847
848 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
849 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
850 return Label;
851 }
852
853 static MCSymbolRefExpr::VariantKind
getModifierVariantKind(ARMCP::ARMCPModifier Modifier)854 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
855 switch (Modifier) {
856 case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None;
857 case ARMCP::TLSGD: return MCSymbolRefExpr::VK_TLSGD;
858 case ARMCP::TPOFF: return MCSymbolRefExpr::VK_TPOFF;
859 case ARMCP::GOTTPOFF: return MCSymbolRefExpr::VK_GOTTPOFF;
860 case ARMCP::GOT_PREL: return MCSymbolRefExpr::VK_ARM_GOT_PREL;
861 }
862 llvm_unreachable("Invalid ARMCPModifier!");
863 }
864
GetARMGVSymbol(const GlobalValue * GV,unsigned char TargetFlags)865 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
866 unsigned char TargetFlags) {
867 if (Subtarget->isTargetMachO()) {
868 bool IsIndirect = (TargetFlags & ARMII::MO_NONLAZY) &&
869 Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel());
870
871 if (!IsIndirect)
872 return getSymbol(GV);
873
874 // FIXME: Remove this when Darwin transition to @GOT like syntax.
875 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
876 MachineModuleInfoMachO &MMIMachO =
877 MMI->getObjFileInfo<MachineModuleInfoMachO>();
878 MachineModuleInfoImpl::StubValueTy &StubSym =
879 GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym)
880 : MMIMachO.getGVStubEntry(MCSym);
881 if (!StubSym.getPointer())
882 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
883 !GV->hasInternalLinkage());
884 return MCSym;
885 } else if (Subtarget->isTargetCOFF()) {
886 assert(Subtarget->isTargetWindows() &&
887 "Windows is the only supported COFF target");
888
889 bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT);
890 if (!IsIndirect)
891 return getSymbol(GV);
892
893 SmallString<128> Name;
894 Name = "__imp_";
895 getNameWithPrefix(Name, GV);
896
897 return OutContext.getOrCreateSymbol(Name);
898 } else if (Subtarget->isTargetELF()) {
899 return getSymbol(GV);
900 }
901 llvm_unreachable("unexpected target");
902 }
903
904 void ARMAsmPrinter::
EmitMachineConstantPoolValue(MachineConstantPoolValue * MCPV)905 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
906 const DataLayout &DL = getDataLayout();
907 int Size = DL.getTypeAllocSize(MCPV->getType());
908
909 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
910
911 MCSymbol *MCSym;
912 if (ACPV->isLSDA()) {
913 MCSym = getCurExceptionSym();
914 } else if (ACPV->isBlockAddress()) {
915 const BlockAddress *BA =
916 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
917 MCSym = GetBlockAddressSymbol(BA);
918 } else if (ACPV->isGlobalValue()) {
919 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
920
921 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
922 // flag the global as MO_NONLAZY.
923 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
924 MCSym = GetARMGVSymbol(GV, TF);
925 } else if (ACPV->isMachineBasicBlock()) {
926 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
927 MCSym = MBB->getSymbol();
928 } else {
929 assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
930 const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
931 MCSym = GetExternalSymbolSymbol(Sym);
932 }
933
934 // Create an MCSymbol for the reference.
935 const MCExpr *Expr =
936 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()),
937 OutContext);
938
939 if (ACPV->getPCAdjustment()) {
940 MCSymbol *PCLabel =
941 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
942 ACPV->getLabelId(), OutContext);
943 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext);
944 PCRelExpr =
945 MCBinaryExpr::createAdd(PCRelExpr,
946 MCConstantExpr::create(ACPV->getPCAdjustment(),
947 OutContext),
948 OutContext);
949 if (ACPV->mustAddCurrentAddress()) {
950 // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
951 // label, so just emit a local label end reference that instead.
952 MCSymbol *DotSym = OutContext.createTempSymbol();
953 OutStreamer->EmitLabel(DotSym);
954 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
955 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext);
956 }
957 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext);
958 }
959 OutStreamer->EmitValue(Expr, Size);
960 }
961
EmitJumpTableAddrs(const MachineInstr * MI)962 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) {
963 const MachineOperand &MO1 = MI->getOperand(1);
964 unsigned JTI = MO1.getIndex();
965
966 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
967 // ARM mode tables.
968 EmitAlignment(2);
969
970 // Emit a label for the jump table.
971 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
972 OutStreamer->EmitLabel(JTISymbol);
973
974 // Mark the jump table as data-in-code.
975 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
976
977 // Emit each entry of the table.
978 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
979 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
980 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
981
982 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
983 MachineBasicBlock *MBB = JTBBs[i];
984 // Construct an MCExpr for the entry. We want a value of the form:
985 // (BasicBlockAddr - TableBeginAddr)
986 //
987 // For example, a table with entries jumping to basic blocks BB0 and BB1
988 // would look like:
989 // LJTI_0_0:
990 // .word (LBB0 - LJTI_0_0)
991 // .word (LBB1 - LJTI_0_0)
992 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
993
994 if (TM.getRelocationModel() == Reloc::PIC_)
995 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol,
996 OutContext),
997 OutContext);
998 // If we're generating a table of Thumb addresses in static relocation
999 // model, we need to add one to keep interworking correctly.
1000 else if (AFI->isThumbFunction())
1001 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext),
1002 OutContext);
1003 OutStreamer->EmitValue(Expr, 4);
1004 }
1005 // Mark the end of jump table data-in-code region.
1006 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1007 }
1008
EmitJumpTableInsts(const MachineInstr * MI)1009 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) {
1010 const MachineOperand &MO1 = MI->getOperand(1);
1011 unsigned JTI = MO1.getIndex();
1012
1013 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1014 OutStreamer->EmitLabel(JTISymbol);
1015
1016 // Emit each entry of the table.
1017 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1018 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1019 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1020
1021 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
1022 MachineBasicBlock *MBB = JTBBs[i];
1023 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1024 OutContext);
1025 // If this isn't a TBB or TBH, the entries are direct branch instructions.
1026 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B)
1027 .addExpr(MBBSymbolExpr)
1028 .addImm(ARMCC::AL)
1029 .addReg(0));
1030 }
1031 }
1032
EmitJumpTableTBInst(const MachineInstr * MI,unsigned OffsetWidth)1033 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI,
1034 unsigned OffsetWidth) {
1035 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width");
1036 const MachineOperand &MO1 = MI->getOperand(1);
1037 unsigned JTI = MO1.getIndex();
1038
1039 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1040 OutStreamer->EmitLabel(JTISymbol);
1041
1042 // Emit each entry of the table.
1043 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1044 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1045 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1046
1047 // Mark the jump table as data-in-code.
1048 OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8
1049 : MCDR_DataRegionJT16);
1050
1051 for (auto MBB : JTBBs) {
1052 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1053 OutContext);
1054 // Otherwise it's an offset from the dispatch instruction. Construct an
1055 // MCExpr for the entry. We want a value of the form:
1056 // (BasicBlockAddr - TBBInstAddr + 4) / 2
1057 //
1058 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
1059 // would look like:
1060 // LJTI_0_0:
1061 // .byte (LBB0 - (LCPI0_0 + 4)) / 2
1062 // .byte (LBB1 - (LCPI0_0 + 4)) / 2
1063 // where LCPI0_0 is a label defined just before the TBB instruction using
1064 // this table.
1065 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm());
1066 const MCExpr *Expr = MCBinaryExpr::createAdd(
1067 MCSymbolRefExpr::create(TBInstPC, OutContext),
1068 MCConstantExpr::create(4, OutContext), OutContext);
1069 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext);
1070 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext),
1071 OutContext);
1072 OutStreamer->EmitValue(Expr, OffsetWidth);
1073 }
1074 // Mark the end of jump table data-in-code region. 32-bit offsets use
1075 // actual branch instructions here, so we don't mark those as a data-region
1076 // at all.
1077 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1078
1079 // Make sure the next instruction is 2-byte aligned.
1080 EmitAlignment(1);
1081 }
1082
EmitUnwindingInstruction(const MachineInstr * MI)1083 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
1084 assert(MI->getFlag(MachineInstr::FrameSetup) &&
1085 "Only instruction which are involved into frame setup code are allowed");
1086
1087 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1088 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1089 const MachineFunction &MF = *MI->getParent()->getParent();
1090 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
1091 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
1092
1093 unsigned FramePtr = RegInfo->getFrameRegister(MF);
1094 unsigned Opc = MI->getOpcode();
1095 unsigned SrcReg, DstReg;
1096
1097 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
1098 // Two special cases:
1099 // 1) tPUSH does not have src/dst regs.
1100 // 2) for Thumb1 code we sometimes materialize the constant via constpool
1101 // load. Yes, this is pretty fragile, but for now I don't see better
1102 // way... :(
1103 SrcReg = DstReg = ARM::SP;
1104 } else {
1105 SrcReg = MI->getOperand(1).getReg();
1106 DstReg = MI->getOperand(0).getReg();
1107 }
1108
1109 // Try to figure out the unwinding opcode out of src / dst regs.
1110 if (MI->mayStore()) {
1111 // Register saves.
1112 assert(DstReg == ARM::SP &&
1113 "Only stack pointer as a destination reg is supported");
1114
1115 SmallVector<unsigned, 4> RegList;
1116 // Skip src & dst reg, and pred ops.
1117 unsigned StartOp = 2 + 2;
1118 // Use all the operands.
1119 unsigned NumOffset = 0;
1120
1121 switch (Opc) {
1122 default:
1123 MI->dump();
1124 llvm_unreachable("Unsupported opcode for unwinding information");
1125 case ARM::tPUSH:
1126 // Special case here: no src & dst reg, but two extra imp ops.
1127 StartOp = 2; NumOffset = 2;
1128 case ARM::STMDB_UPD:
1129 case ARM::t2STMDB_UPD:
1130 case ARM::VSTMDDB_UPD:
1131 assert(SrcReg == ARM::SP &&
1132 "Only stack pointer as a source reg is supported");
1133 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
1134 i != NumOps; ++i) {
1135 const MachineOperand &MO = MI->getOperand(i);
1136 // Actually, there should never be any impdef stuff here. Skip it
1137 // temporary to workaround PR11902.
1138 if (MO.isImplicit())
1139 continue;
1140 RegList.push_back(MO.getReg());
1141 }
1142 break;
1143 case ARM::STR_PRE_IMM:
1144 case ARM::STR_PRE_REG:
1145 case ARM::t2STR_PRE:
1146 assert(MI->getOperand(2).getReg() == ARM::SP &&
1147 "Only stack pointer as a source reg is supported");
1148 RegList.push_back(SrcReg);
1149 break;
1150 }
1151 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM)
1152 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
1153 } else {
1154 // Changes of stack / frame pointer.
1155 if (SrcReg == ARM::SP) {
1156 int64_t Offset = 0;
1157 switch (Opc) {
1158 default:
1159 MI->dump();
1160 llvm_unreachable("Unsupported opcode for unwinding information");
1161 case ARM::MOVr:
1162 case ARM::tMOVr:
1163 Offset = 0;
1164 break;
1165 case ARM::ADDri:
1166 case ARM::t2ADDri:
1167 Offset = -MI->getOperand(2).getImm();
1168 break;
1169 case ARM::SUBri:
1170 case ARM::t2SUBri:
1171 Offset = MI->getOperand(2).getImm();
1172 break;
1173 case ARM::tSUBspi:
1174 Offset = MI->getOperand(2).getImm()*4;
1175 break;
1176 case ARM::tADDspi:
1177 case ARM::tADDrSPi:
1178 Offset = -MI->getOperand(2).getImm()*4;
1179 break;
1180 case ARM::tLDRpci: {
1181 // Grab the constpool index and check, whether it corresponds to
1182 // original or cloned constpool entry.
1183 unsigned CPI = MI->getOperand(1).getIndex();
1184 const MachineConstantPool *MCP = MF.getConstantPool();
1185 if (CPI >= MCP->getConstants().size())
1186 CPI = AFI.getOriginalCPIdx(CPI);
1187 assert(CPI != -1U && "Invalid constpool index");
1188
1189 // Derive the actual offset.
1190 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
1191 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
1192 // FIXME: Check for user, it should be "add" instruction!
1193 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
1194 break;
1195 }
1196 }
1197
1198 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1199 if (DstReg == FramePtr && FramePtr != ARM::SP)
1200 // Set-up of the frame pointer. Positive values correspond to "add"
1201 // instruction.
1202 ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
1203 else if (DstReg == ARM::SP) {
1204 // Change of SP by an offset. Positive values correspond to "sub"
1205 // instruction.
1206 ATS.emitPad(Offset);
1207 } else {
1208 // Move of SP to a register. Positive values correspond to an "add"
1209 // instruction.
1210 ATS.emitMovSP(DstReg, -Offset);
1211 }
1212 }
1213 } else if (DstReg == ARM::SP) {
1214 MI->dump();
1215 llvm_unreachable("Unsupported opcode for unwinding information");
1216 }
1217 else {
1218 MI->dump();
1219 llvm_unreachable("Unsupported opcode for unwinding information");
1220 }
1221 }
1222 }
1223
1224 // Simple pseudo-instructions have their lowering (with expansion to real
1225 // instructions) auto-generated.
1226 #include "ARMGenMCPseudoLowering.inc"
1227
EmitInstruction(const MachineInstr * MI)1228 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
1229 const DataLayout &DL = getDataLayout();
1230
1231 // If we just ended a constant pool, mark it as such.
1232 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
1233 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1234 InConstantPool = false;
1235 }
1236
1237 // Emit unwinding stuff for frame-related instructions
1238 if (Subtarget->isTargetEHABICompatible() &&
1239 MI->getFlag(MachineInstr::FrameSetup))
1240 EmitUnwindingInstruction(MI);
1241
1242 // Do any auto-generated pseudo lowerings.
1243 if (emitPseudoExpansionLowering(*OutStreamer, MI))
1244 return;
1245
1246 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
1247 "Pseudo flag setting opcode should be expanded early");
1248
1249 // Check for manual lowerings.
1250 unsigned Opc = MI->getOpcode();
1251 switch (Opc) {
1252 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
1253 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
1254 case ARM::LEApcrel:
1255 case ARM::tLEApcrel:
1256 case ARM::t2LEApcrel: {
1257 // FIXME: Need to also handle globals and externals
1258 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
1259 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1260 ARM::t2LEApcrel ? ARM::t2ADR
1261 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
1262 : ARM::ADR))
1263 .addReg(MI->getOperand(0).getReg())
1264 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext))
1265 // Add predicate operands.
1266 .addImm(MI->getOperand(2).getImm())
1267 .addReg(MI->getOperand(3).getReg()));
1268 return;
1269 }
1270 case ARM::LEApcrelJT:
1271 case ARM::tLEApcrelJT:
1272 case ARM::t2LEApcrelJT: {
1273 MCSymbol *JTIPICSymbol =
1274 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex());
1275 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1276 ARM::t2LEApcrelJT ? ARM::t2ADR
1277 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
1278 : ARM::ADR))
1279 .addReg(MI->getOperand(0).getReg())
1280 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext))
1281 // Add predicate operands.
1282 .addImm(MI->getOperand(2).getImm())
1283 .addReg(MI->getOperand(3).getReg()));
1284 return;
1285 }
1286 // Darwin call instructions are just normal call instructions with different
1287 // clobber semantics (they clobber R9).
1288 case ARM::BX_CALL: {
1289 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1290 .addReg(ARM::LR)
1291 .addReg(ARM::PC)
1292 // Add predicate operands.
1293 .addImm(ARMCC::AL)
1294 .addReg(0)
1295 // Add 's' bit operand (always reg0 for this)
1296 .addReg(0));
1297
1298 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1299 .addReg(MI->getOperand(0).getReg()));
1300 return;
1301 }
1302 case ARM::tBX_CALL: {
1303 if (Subtarget->hasV5TOps())
1304 llvm_unreachable("Expected BLX to be selected for v5t+");
1305
1306 // On ARM v4t, when doing a call from thumb mode, we need to ensure
1307 // that the saved lr has its LSB set correctly (the arch doesn't
1308 // have blx).
1309 // So here we generate a bl to a small jump pad that does bx rN.
1310 // The jump pads are emitted after the function body.
1311
1312 unsigned TReg = MI->getOperand(0).getReg();
1313 MCSymbol *TRegSym = nullptr;
1314 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
1315 if (ThumbIndirectPads[i].first == TReg) {
1316 TRegSym = ThumbIndirectPads[i].second;
1317 break;
1318 }
1319 }
1320
1321 if (!TRegSym) {
1322 TRegSym = OutContext.createTempSymbol();
1323 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
1324 }
1325
1326 // Create a link-saving branch to the Reg Indirect Jump Pad.
1327 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL)
1328 // Predicate comes first here.
1329 .addImm(ARMCC::AL).addReg(0)
1330 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext)));
1331 return;
1332 }
1333 case ARM::BMOVPCRX_CALL: {
1334 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1335 .addReg(ARM::LR)
1336 .addReg(ARM::PC)
1337 // Add predicate operands.
1338 .addImm(ARMCC::AL)
1339 .addReg(0)
1340 // Add 's' bit operand (always reg0 for this)
1341 .addReg(0));
1342
1343 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1344 .addReg(ARM::PC)
1345 .addReg(MI->getOperand(0).getReg())
1346 // Add predicate operands.
1347 .addImm(ARMCC::AL)
1348 .addReg(0)
1349 // Add 's' bit operand (always reg0 for this)
1350 .addReg(0));
1351 return;
1352 }
1353 case ARM::BMOVPCB_CALL: {
1354 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1355 .addReg(ARM::LR)
1356 .addReg(ARM::PC)
1357 // Add predicate operands.
1358 .addImm(ARMCC::AL)
1359 .addReg(0)
1360 // Add 's' bit operand (always reg0 for this)
1361 .addReg(0));
1362
1363 const MachineOperand &Op = MI->getOperand(0);
1364 const GlobalValue *GV = Op.getGlobal();
1365 const unsigned TF = Op.getTargetFlags();
1366 MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1367 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1368 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc)
1369 .addExpr(GVSymExpr)
1370 // Add predicate operands.
1371 .addImm(ARMCC::AL)
1372 .addReg(0));
1373 return;
1374 }
1375 case ARM::MOVi16_ga_pcrel:
1376 case ARM::t2MOVi16_ga_pcrel: {
1377 MCInst TmpInst;
1378 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
1379 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1380
1381 unsigned TF = MI->getOperand(1).getTargetFlags();
1382 const GlobalValue *GV = MI->getOperand(1).getGlobal();
1383 MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1384 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1385
1386 MCSymbol *LabelSym =
1387 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1388 MI->getOperand(2).getImm(), OutContext);
1389 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1390 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
1391 const MCExpr *PCRelExpr =
1392 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr,
1393 MCBinaryExpr::createAdd(LabelSymExpr,
1394 MCConstantExpr::create(PCAdj, OutContext),
1395 OutContext), OutContext), OutContext);
1396 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1397
1398 // Add predicate operands.
1399 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1400 TmpInst.addOperand(MCOperand::createReg(0));
1401 // Add 's' bit operand (always reg0 for this)
1402 TmpInst.addOperand(MCOperand::createReg(0));
1403 EmitToStreamer(*OutStreamer, TmpInst);
1404 return;
1405 }
1406 case ARM::MOVTi16_ga_pcrel:
1407 case ARM::t2MOVTi16_ga_pcrel: {
1408 MCInst TmpInst;
1409 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
1410 ? ARM::MOVTi16 : ARM::t2MOVTi16);
1411 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1412 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1413
1414 unsigned TF = MI->getOperand(2).getTargetFlags();
1415 const GlobalValue *GV = MI->getOperand(2).getGlobal();
1416 MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1417 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1418
1419 MCSymbol *LabelSym =
1420 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1421 MI->getOperand(3).getImm(), OutContext);
1422 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1423 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
1424 const MCExpr *PCRelExpr =
1425 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr,
1426 MCBinaryExpr::createAdd(LabelSymExpr,
1427 MCConstantExpr::create(PCAdj, OutContext),
1428 OutContext), OutContext), OutContext);
1429 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1430 // Add predicate operands.
1431 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1432 TmpInst.addOperand(MCOperand::createReg(0));
1433 // Add 's' bit operand (always reg0 for this)
1434 TmpInst.addOperand(MCOperand::createReg(0));
1435 EmitToStreamer(*OutStreamer, TmpInst);
1436 return;
1437 }
1438 case ARM::tPICADD: {
1439 // This is a pseudo op for a label + instruction sequence, which looks like:
1440 // LPC0:
1441 // add r0, pc
1442 // This adds the address of LPC0 to r0.
1443
1444 // Emit the label.
1445 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1446 getFunctionNumber(),
1447 MI->getOperand(2).getImm(), OutContext));
1448
1449 // Form and emit the add.
1450 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1451 .addReg(MI->getOperand(0).getReg())
1452 .addReg(MI->getOperand(0).getReg())
1453 .addReg(ARM::PC)
1454 // Add predicate operands.
1455 .addImm(ARMCC::AL)
1456 .addReg(0));
1457 return;
1458 }
1459 case ARM::PICADD: {
1460 // This is a pseudo op for a label + instruction sequence, which looks like:
1461 // LPC0:
1462 // add r0, pc, r0
1463 // This adds the address of LPC0 to r0.
1464
1465 // Emit the label.
1466 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1467 getFunctionNumber(),
1468 MI->getOperand(2).getImm(), OutContext));
1469
1470 // Form and emit the add.
1471 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1472 .addReg(MI->getOperand(0).getReg())
1473 .addReg(ARM::PC)
1474 .addReg(MI->getOperand(1).getReg())
1475 // Add predicate operands.
1476 .addImm(MI->getOperand(3).getImm())
1477 .addReg(MI->getOperand(4).getReg())
1478 // Add 's' bit operand (always reg0 for this)
1479 .addReg(0));
1480 return;
1481 }
1482 case ARM::PICSTR:
1483 case ARM::PICSTRB:
1484 case ARM::PICSTRH:
1485 case ARM::PICLDR:
1486 case ARM::PICLDRB:
1487 case ARM::PICLDRH:
1488 case ARM::PICLDRSB:
1489 case ARM::PICLDRSH: {
1490 // This is a pseudo op for a label + instruction sequence, which looks like:
1491 // LPC0:
1492 // OP r0, [pc, r0]
1493 // The LCP0 label is referenced by a constant pool entry in order to get
1494 // a PC-relative address at the ldr instruction.
1495
1496 // Emit the label.
1497 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1498 getFunctionNumber(),
1499 MI->getOperand(2).getImm(), OutContext));
1500
1501 // Form and emit the load
1502 unsigned Opcode;
1503 switch (MI->getOpcode()) {
1504 default:
1505 llvm_unreachable("Unexpected opcode!");
1506 case ARM::PICSTR: Opcode = ARM::STRrs; break;
1507 case ARM::PICSTRB: Opcode = ARM::STRBrs; break;
1508 case ARM::PICSTRH: Opcode = ARM::STRH; break;
1509 case ARM::PICLDR: Opcode = ARM::LDRrs; break;
1510 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break;
1511 case ARM::PICLDRH: Opcode = ARM::LDRH; break;
1512 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
1513 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
1514 }
1515 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode)
1516 .addReg(MI->getOperand(0).getReg())
1517 .addReg(ARM::PC)
1518 .addReg(MI->getOperand(1).getReg())
1519 .addImm(0)
1520 // Add predicate operands.
1521 .addImm(MI->getOperand(3).getImm())
1522 .addReg(MI->getOperand(4).getReg()));
1523
1524 return;
1525 }
1526 case ARM::CONSTPOOL_ENTRY: {
1527 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
1528 /// in the function. The first operand is the ID# for this instruction, the
1529 /// second is the index into the MachineConstantPool that this is, the third
1530 /// is the size in bytes of this constant pool entry.
1531 /// The required alignment is specified on the basic block holding this MI.
1532 unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
1533 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
1534
1535 // If this is the first entry of the pool, mark it.
1536 if (!InConstantPool) {
1537 OutStreamer->EmitDataRegion(MCDR_DataRegion);
1538 InConstantPool = true;
1539 }
1540
1541 OutStreamer->EmitLabel(GetCPISymbol(LabelId));
1542
1543 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
1544 if (MCPE.isMachineConstantPoolEntry())
1545 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
1546 else
1547 EmitGlobalConstant(DL, MCPE.Val.ConstVal);
1548 return;
1549 }
1550 case ARM::JUMPTABLE_ADDRS:
1551 EmitJumpTableAddrs(MI);
1552 return;
1553 case ARM::JUMPTABLE_INSTS:
1554 EmitJumpTableInsts(MI);
1555 return;
1556 case ARM::JUMPTABLE_TBB:
1557 case ARM::JUMPTABLE_TBH:
1558 EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2);
1559 return;
1560 case ARM::t2BR_JT: {
1561 // Lower and emit the instruction itself, then the jump table following it.
1562 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1563 .addReg(ARM::PC)
1564 .addReg(MI->getOperand(0).getReg())
1565 // Add predicate operands.
1566 .addImm(ARMCC::AL)
1567 .addReg(0));
1568 return;
1569 }
1570 case ARM::t2TBB_JT:
1571 case ARM::t2TBH_JT: {
1572 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH;
1573 // Lower and emit the PC label, then the instruction itself.
1574 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1575 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1576 .addReg(MI->getOperand(0).getReg())
1577 .addReg(MI->getOperand(1).getReg())
1578 // Add predicate operands.
1579 .addImm(ARMCC::AL)
1580 .addReg(0));
1581 return;
1582 }
1583 case ARM::tBR_JTr:
1584 case ARM::BR_JTr: {
1585 // Lower and emit the instruction itself, then the jump table following it.
1586 // mov pc, target
1587 MCInst TmpInst;
1588 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
1589 ARM::MOVr : ARM::tMOVr;
1590 TmpInst.setOpcode(Opc);
1591 TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1592 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1593 // Add predicate operands.
1594 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1595 TmpInst.addOperand(MCOperand::createReg(0));
1596 // Add 's' bit operand (always reg0 for this)
1597 if (Opc == ARM::MOVr)
1598 TmpInst.addOperand(MCOperand::createReg(0));
1599 EmitToStreamer(*OutStreamer, TmpInst);
1600 return;
1601 }
1602 case ARM::BR_JTm: {
1603 // Lower and emit the instruction itself, then the jump table following it.
1604 // ldr pc, target
1605 MCInst TmpInst;
1606 if (MI->getOperand(1).getReg() == 0) {
1607 // literal offset
1608 TmpInst.setOpcode(ARM::LDRi12);
1609 TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1610 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1611 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1612 } else {
1613 TmpInst.setOpcode(ARM::LDRrs);
1614 TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1615 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1616 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1617 TmpInst.addOperand(MCOperand::createImm(0));
1618 }
1619 // Add predicate operands.
1620 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1621 TmpInst.addOperand(MCOperand::createReg(0));
1622 EmitToStreamer(*OutStreamer, TmpInst);
1623 return;
1624 }
1625 case ARM::BR_JTadd: {
1626 // Lower and emit the instruction itself, then the jump table following it.
1627 // add pc, target, idx
1628 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1629 .addReg(ARM::PC)
1630 .addReg(MI->getOperand(0).getReg())
1631 .addReg(MI->getOperand(1).getReg())
1632 // Add predicate operands.
1633 .addImm(ARMCC::AL)
1634 .addReg(0)
1635 // Add 's' bit operand (always reg0 for this)
1636 .addReg(0));
1637 return;
1638 }
1639 case ARM::SPACE:
1640 OutStreamer->EmitZeros(MI->getOperand(1).getImm());
1641 return;
1642 case ARM::TRAP: {
1643 // Non-Darwin binutils don't yet support the "trap" mnemonic.
1644 // FIXME: Remove this special case when they do.
1645 if (!Subtarget->isTargetMachO()) {
1646 //.long 0xe7ffdefe @ trap
1647 uint32_t Val = 0xe7ffdefeUL;
1648 OutStreamer->AddComment("trap");
1649 OutStreamer->EmitIntValue(Val, 4);
1650 return;
1651 }
1652 break;
1653 }
1654 case ARM::TRAPNaCl: {
1655 //.long 0xe7fedef0 @ trap
1656 uint32_t Val = 0xe7fedef0UL;
1657 OutStreamer->AddComment("trap");
1658 OutStreamer->EmitIntValue(Val, 4);
1659 return;
1660 }
1661 case ARM::tTRAP: {
1662 // Non-Darwin binutils don't yet support the "trap" mnemonic.
1663 // FIXME: Remove this special case when they do.
1664 if (!Subtarget->isTargetMachO()) {
1665 //.short 57086 @ trap
1666 uint16_t Val = 0xdefe;
1667 OutStreamer->AddComment("trap");
1668 OutStreamer->EmitIntValue(Val, 2);
1669 return;
1670 }
1671 break;
1672 }
1673 case ARM::t2Int_eh_sjlj_setjmp:
1674 case ARM::t2Int_eh_sjlj_setjmp_nofp:
1675 case ARM::tInt_eh_sjlj_setjmp: {
1676 // Two incoming args: GPR:$src, GPR:$val
1677 // mov $val, pc
1678 // adds $val, #7
1679 // str $val, [$src, #4]
1680 // movs r0, #0
1681 // b LSJLJEH
1682 // movs r0, #1
1683 // LSJLJEH:
1684 unsigned SrcReg = MI->getOperand(0).getReg();
1685 unsigned ValReg = MI->getOperand(1).getReg();
1686 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true);
1687 OutStreamer->AddComment("eh_setjmp begin");
1688 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1689 .addReg(ValReg)
1690 .addReg(ARM::PC)
1691 // Predicate.
1692 .addImm(ARMCC::AL)
1693 .addReg(0));
1694
1695 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3)
1696 .addReg(ValReg)
1697 // 's' bit operand
1698 .addReg(ARM::CPSR)
1699 .addReg(ValReg)
1700 .addImm(7)
1701 // Predicate.
1702 .addImm(ARMCC::AL)
1703 .addReg(0));
1704
1705 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi)
1706 .addReg(ValReg)
1707 .addReg(SrcReg)
1708 // The offset immediate is #4. The operand value is scaled by 4 for the
1709 // tSTR instruction.
1710 .addImm(1)
1711 // Predicate.
1712 .addImm(ARMCC::AL)
1713 .addReg(0));
1714
1715 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1716 .addReg(ARM::R0)
1717 .addReg(ARM::CPSR)
1718 .addImm(0)
1719 // Predicate.
1720 .addImm(ARMCC::AL)
1721 .addReg(0));
1722
1723 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext);
1724 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB)
1725 .addExpr(SymbolExpr)
1726 .addImm(ARMCC::AL)
1727 .addReg(0));
1728
1729 OutStreamer->AddComment("eh_setjmp end");
1730 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1731 .addReg(ARM::R0)
1732 .addReg(ARM::CPSR)
1733 .addImm(1)
1734 // Predicate.
1735 .addImm(ARMCC::AL)
1736 .addReg(0));
1737
1738 OutStreamer->EmitLabel(Label);
1739 return;
1740 }
1741
1742 case ARM::Int_eh_sjlj_setjmp_nofp:
1743 case ARM::Int_eh_sjlj_setjmp: {
1744 // Two incoming args: GPR:$src, GPR:$val
1745 // add $val, pc, #8
1746 // str $val, [$src, #+4]
1747 // mov r0, #0
1748 // add pc, pc, #0
1749 // mov r0, #1
1750 unsigned SrcReg = MI->getOperand(0).getReg();
1751 unsigned ValReg = MI->getOperand(1).getReg();
1752
1753 OutStreamer->AddComment("eh_setjmp begin");
1754 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1755 .addReg(ValReg)
1756 .addReg(ARM::PC)
1757 .addImm(8)
1758 // Predicate.
1759 .addImm(ARMCC::AL)
1760 .addReg(0)
1761 // 's' bit operand (always reg0 for this).
1762 .addReg(0));
1763
1764 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12)
1765 .addReg(ValReg)
1766 .addReg(SrcReg)
1767 .addImm(4)
1768 // Predicate.
1769 .addImm(ARMCC::AL)
1770 .addReg(0));
1771
1772 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1773 .addReg(ARM::R0)
1774 .addImm(0)
1775 // Predicate.
1776 .addImm(ARMCC::AL)
1777 .addReg(0)
1778 // 's' bit operand (always reg0 for this).
1779 .addReg(0));
1780
1781 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1782 .addReg(ARM::PC)
1783 .addReg(ARM::PC)
1784 .addImm(0)
1785 // Predicate.
1786 .addImm(ARMCC::AL)
1787 .addReg(0)
1788 // 's' bit operand (always reg0 for this).
1789 .addReg(0));
1790
1791 OutStreamer->AddComment("eh_setjmp end");
1792 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1793 .addReg(ARM::R0)
1794 .addImm(1)
1795 // Predicate.
1796 .addImm(ARMCC::AL)
1797 .addReg(0)
1798 // 's' bit operand (always reg0 for this).
1799 .addReg(0));
1800 return;
1801 }
1802 case ARM::Int_eh_sjlj_longjmp: {
1803 // ldr sp, [$src, #8]
1804 // ldr $scratch, [$src, #4]
1805 // ldr r7, [$src]
1806 // bx $scratch
1807 unsigned SrcReg = MI->getOperand(0).getReg();
1808 unsigned ScratchReg = MI->getOperand(1).getReg();
1809 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1810 .addReg(ARM::SP)
1811 .addReg(SrcReg)
1812 .addImm(8)
1813 // Predicate.
1814 .addImm(ARMCC::AL)
1815 .addReg(0));
1816
1817 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1818 .addReg(ScratchReg)
1819 .addReg(SrcReg)
1820 .addImm(4)
1821 // Predicate.
1822 .addImm(ARMCC::AL)
1823 .addReg(0));
1824
1825 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1826 .addReg(ARM::R7)
1827 .addReg(SrcReg)
1828 .addImm(0)
1829 // Predicate.
1830 .addImm(ARMCC::AL)
1831 .addReg(0));
1832
1833 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1834 .addReg(ScratchReg)
1835 // Predicate.
1836 .addImm(ARMCC::AL)
1837 .addReg(0));
1838 return;
1839 }
1840 case ARM::tInt_eh_sjlj_longjmp: {
1841 // ldr $scratch, [$src, #8]
1842 // mov sp, $scratch
1843 // ldr $scratch, [$src, #4]
1844 // ldr r7, [$src]
1845 // bx $scratch
1846 unsigned SrcReg = MI->getOperand(0).getReg();
1847 unsigned ScratchReg = MI->getOperand(1).getReg();
1848 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1849 .addReg(ScratchReg)
1850 .addReg(SrcReg)
1851 // The offset immediate is #8. The operand value is scaled by 4 for the
1852 // tLDR instruction.
1853 .addImm(2)
1854 // Predicate.
1855 .addImm(ARMCC::AL)
1856 .addReg(0));
1857
1858 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1859 .addReg(ARM::SP)
1860 .addReg(ScratchReg)
1861 // Predicate.
1862 .addImm(ARMCC::AL)
1863 .addReg(0));
1864
1865 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1866 .addReg(ScratchReg)
1867 .addReg(SrcReg)
1868 .addImm(1)
1869 // Predicate.
1870 .addImm(ARMCC::AL)
1871 .addReg(0));
1872
1873 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
1874 .addReg(ARM::R7)
1875 .addReg(SrcReg)
1876 .addImm(0)
1877 // Predicate.
1878 .addImm(ARMCC::AL)
1879 .addReg(0));
1880
1881 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
1882 .addReg(ScratchReg)
1883 // Predicate.
1884 .addImm(ARMCC::AL)
1885 .addReg(0));
1886 return;
1887 }
1888 }
1889
1890 MCInst TmpInst;
1891 LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
1892
1893 EmitToStreamer(*OutStreamer, TmpInst);
1894 }
1895
1896 //===----------------------------------------------------------------------===//
1897 // Target Registry Stuff
1898 //===----------------------------------------------------------------------===//
1899
1900 // Force static initialization.
LLVMInitializeARMAsmPrinter()1901 extern "C" void LLVMInitializeARMAsmPrinter() {
1902 RegisterAsmPrinter<ARMAsmPrinter> X(TheARMLETarget);
1903 RegisterAsmPrinter<ARMAsmPrinter> Y(TheARMBETarget);
1904 RegisterAsmPrinter<ARMAsmPrinter> A(TheThumbLETarget);
1905 RegisterAsmPrinter<ARMAsmPrinter> B(TheThumbBETarget);
1906 }
1907