1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "MCTargetDesc/ARMMCTargetDesc.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "MCTargetDesc/ARMAsmBackend.h"
13 #include "MCTargetDesc/ARMAsmBackendDarwin.h"
14 #include "MCTargetDesc/ARMAsmBackendELF.h"
15 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
16 #include "MCTargetDesc/ARMBaseInfo.h"
17 #include "MCTargetDesc/ARMFixupKinds.h"
18 #include "llvm/ADT/StringSwitch.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAssembler.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDirectives.h"
23 #include "llvm/MC/MCELFObjectWriter.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCMachObjectWriter.h"
27 #include "llvm/MC/MCObjectWriter.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/MC/MCSectionELF.h"
30 #include "llvm/MC/MCSectionMachO.h"
31 #include "llvm/MC/MCSubtargetInfo.h"
32 #include "llvm/MC/MCValue.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ELF.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/MachO.h"
38 #include "llvm/Support/TargetParser.h"
39 #include "llvm/Support/raw_ostream.h"
40 using namespace llvm;
41 
42 namespace {
43 class ARMELFObjectWriter : public MCELFObjectTargetWriter {
44 public:
ARMELFObjectWriter(uint8_t OSABI)45   ARMELFObjectWriter(uint8_t OSABI)
46       : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
47                                 /*HasRelocationAddend*/ false) {}
48 };
49 
getFixupKindInfo(MCFixupKind Kind) const50 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
51   const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
52       // This table *must* be in the order that the fixup_* kinds are defined in
53       // ARMFixupKinds.h.
54       //
55       // Name                      Offset (bits) Size (bits)     Flags
56       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
57       {"fixup_t2_ldst_pcrel_12", 0, 32,
58        MCFixupKindInfo::FKF_IsPCRel |
59            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
60       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
61       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
62       {"fixup_t2_pcrel_10", 0, 32,
63        MCFixupKindInfo::FKF_IsPCRel |
64            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
65       {"fixup_thumb_adr_pcrel_10", 0, 8,
66        MCFixupKindInfo::FKF_IsPCRel |
67            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
68       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
69       {"fixup_t2_adr_pcrel_12", 0, 32,
70        MCFixupKindInfo::FKF_IsPCRel |
71            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
72       {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
73       {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
74       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
75       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
76       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
77       {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
78       {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
79       {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
80       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
81       {"fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
82       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
83       {"fixup_arm_thumb_cp", 0, 8,
84        MCFixupKindInfo::FKF_IsPCRel |
85            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
86       {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
87       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
88       // - 19.
89       {"fixup_arm_movt_hi16", 0, 20, 0},
90       {"fixup_arm_movw_lo16", 0, 20, 0},
91       {"fixup_t2_movt_hi16", 0, 20, 0},
92       {"fixup_t2_movw_lo16", 0, 20, 0},
93   };
94   const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
95       // This table *must* be in the order that the fixup_* kinds are defined in
96       // ARMFixupKinds.h.
97       //
98       // Name                      Offset (bits) Size (bits)     Flags
99       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
100       {"fixup_t2_ldst_pcrel_12", 0, 32,
101        MCFixupKindInfo::FKF_IsPCRel |
102            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
103       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
104       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
105       {"fixup_t2_pcrel_10", 0, 32,
106        MCFixupKindInfo::FKF_IsPCRel |
107            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
108       {"fixup_thumb_adr_pcrel_10", 8, 8,
109        MCFixupKindInfo::FKF_IsPCRel |
110            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
111       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
112       {"fixup_t2_adr_pcrel_12", 0, 32,
113        MCFixupKindInfo::FKF_IsPCRel |
114            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
115       {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
116       {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
117       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
118       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
119       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
120       {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
121       {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
122       {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
123       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
124       {"fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
125       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
126       {"fixup_arm_thumb_cp", 8, 8,
127        MCFixupKindInfo::FKF_IsPCRel |
128            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
129       {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
130       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
131       // - 19.
132       {"fixup_arm_movt_hi16", 12, 20, 0},
133       {"fixup_arm_movw_lo16", 12, 20, 0},
134       {"fixup_t2_movt_hi16", 12, 20, 0},
135       {"fixup_t2_movw_lo16", 12, 20, 0},
136   };
137 
138   if (Kind < FirstTargetFixupKind)
139     return MCAsmBackend::getFixupKindInfo(Kind);
140 
141   assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
142          "Invalid kind!");
143   return (IsLittleEndian ? InfosLE : InfosBE)[Kind - FirstTargetFixupKind];
144 }
145 
handleAssemblerFlag(MCAssemblerFlag Flag)146 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) {
147   switch (Flag) {
148   default:
149     break;
150   case MCAF_Code16:
151     setIsThumb(true);
152     break;
153   case MCAF_Code32:
154     setIsThumb(false);
155     break;
156   }
157 }
158 } // end anonymous namespace
159 
getRelaxedOpcode(unsigned Op) const160 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op) const {
161   bool HasThumb2 = STI->getFeatureBits()[ARM::FeatureThumb2];
162 
163   switch (Op) {
164   default:
165     return Op;
166   case ARM::tBcc:
167     return HasThumb2 ? (unsigned)ARM::t2Bcc : Op;
168   case ARM::tLDRpci:
169     return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op;
170   case ARM::tADR:
171     return HasThumb2 ? (unsigned)ARM::t2ADR : Op;
172   case ARM::tB:
173     return HasThumb2 ? (unsigned)ARM::t2B : Op;
174   case ARM::tCBZ:
175     return ARM::tHINT;
176   case ARM::tCBNZ:
177     return ARM::tHINT;
178   }
179 }
180 
mayNeedRelaxation(const MCInst & Inst) const181 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
182   if (getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode())
183     return true;
184   return false;
185 }
186 
reasonForFixupRelaxation(const MCFixup & Fixup,uint64_t Value) const187 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup,
188                                                     uint64_t Value) const {
189   switch ((unsigned)Fixup.getKind()) {
190   case ARM::fixup_arm_thumb_br: {
191     // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
192     // low bit being an implied zero. There's an implied +4 offset for the
193     // branch, so we adjust the other way here to determine what's
194     // encodable.
195     //
196     // Relax if the value is too big for a (signed) i8.
197     int64_t Offset = int64_t(Value) - 4;
198     if (Offset > 2046 || Offset < -2048)
199       return "out of range pc-relative fixup value";
200     break;
201   }
202   case ARM::fixup_arm_thumb_bcc: {
203     // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
204     // low bit being an implied zero. There's an implied +4 offset for the
205     // branch, so we adjust the other way here to determine what's
206     // encodable.
207     //
208     // Relax if the value is too big for a (signed) i8.
209     int64_t Offset = int64_t(Value) - 4;
210     if (Offset > 254 || Offset < -256)
211       return "out of range pc-relative fixup value";
212     break;
213   }
214   case ARM::fixup_thumb_adr_pcrel_10:
215   case ARM::fixup_arm_thumb_cp: {
216     // If the immediate is negative, greater than 1020, or not a multiple
217     // of four, the wide version of the instruction must be used.
218     int64_t Offset = int64_t(Value) - 4;
219     if (Offset & 3)
220       return "misaligned pc-relative fixup value";
221     else if (Offset > 1020 || Offset < 0)
222       return "out of range pc-relative fixup value";
223     break;
224   }
225   case ARM::fixup_arm_thumb_cb: {
226     // If we have a Thumb CBZ or CBNZ instruction and its target is the next
227     // instruction it is is actually out of range for the instruction.
228     // It will be changed to a NOP.
229     int64_t Offset = (Value & ~1);
230     if (Offset == 2)
231       return "will be converted to nop";
232     break;
233   }
234   default:
235     llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
236   }
237   return nullptr;
238 }
239 
fixupNeedsRelaxation(const MCFixup & Fixup,uint64_t Value,const MCRelaxableFragment * DF,const MCAsmLayout & Layout) const240 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
241                                          const MCRelaxableFragment *DF,
242                                          const MCAsmLayout &Layout) const {
243   return reasonForFixupRelaxation(Fixup, Value);
244 }
245 
relaxInstruction(const MCInst & Inst,MCInst & Res) const246 void ARMAsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
247   unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
248 
249   // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
250   if (RelaxedOp == Inst.getOpcode()) {
251     SmallString<256> Tmp;
252     raw_svector_ostream OS(Tmp);
253     Inst.dump_pretty(OS);
254     OS << "\n";
255     report_fatal_error("unexpected instruction to relax: " + OS.str());
256   }
257 
258   // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
259   // have to change the operands too.
260   if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
261       RelaxedOp == ARM::tHINT) {
262     Res.setOpcode(RelaxedOp);
263     Res.addOperand(MCOperand::createImm(0));
264     Res.addOperand(MCOperand::createImm(14));
265     Res.addOperand(MCOperand::createReg(0));
266     return;
267   }
268 
269   // The rest of instructions we're relaxing have the same operands.
270   // We just need to update to the proper opcode.
271   Res = Inst;
272   Res.setOpcode(RelaxedOp);
273 }
274 
writeNopData(uint64_t Count,MCObjectWriter * OW) const275 bool ARMAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
276   const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
277   const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
278   const uint32_t ARMv4_NopEncoding = 0xe1a00000;   // using MOV r0,r0
279   const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
280   if (isThumb()) {
281     const uint16_t nopEncoding =
282         hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
283     uint64_t NumNops = Count / 2;
284     for (uint64_t i = 0; i != NumNops; ++i)
285       OW->write16(nopEncoding);
286     if (Count & 1)
287       OW->write8(0);
288     return true;
289   }
290   // ARM mode
291   const uint32_t nopEncoding =
292       hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
293   uint64_t NumNops = Count / 4;
294   for (uint64_t i = 0; i != NumNops; ++i)
295     OW->write32(nopEncoding);
296   // FIXME: should this function return false when unable to write exactly
297   // 'Count' bytes with NOP encodings?
298   switch (Count % 4) {
299   default:
300     break; // No leftover bytes to write
301   case 1:
302     OW->write8(0);
303     break;
304   case 2:
305     OW->write16(0);
306     break;
307   case 3:
308     OW->write16(0);
309     OW->write8(0xa0);
310     break;
311   }
312 
313   return true;
314 }
315 
swapHalfWords(uint32_t Value,bool IsLittleEndian)316 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
317   if (IsLittleEndian) {
318     // Note that the halfwords are stored high first and low second in thumb;
319     // so we need to swap the fixup value here to map properly.
320     uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
321     Swapped |= (Value & 0x0000FFFF) << 16;
322     return Swapped;
323   } else
324     return Value;
325 }
326 
joinHalfWords(uint32_t FirstHalf,uint32_t SecondHalf,bool IsLittleEndian)327 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
328                               bool IsLittleEndian) {
329   uint32_t Value;
330 
331   if (IsLittleEndian) {
332     Value = (SecondHalf & 0xFFFF) << 16;
333     Value |= (FirstHalf & 0xFFFF);
334   } else {
335     Value = (SecondHalf & 0xFFFF);
336     Value |= (FirstHalf & 0xFFFF) << 16;
337   }
338 
339   return Value;
340 }
341 
adjustFixupValue(const MCFixup & Fixup,uint64_t Value,bool IsPCRel,MCContext * Ctx,bool IsLittleEndian,bool IsResolved) const342 unsigned ARMAsmBackend::adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
343                                          bool IsPCRel, MCContext *Ctx,
344                                          bool IsLittleEndian,
345                                          bool IsResolved) const {
346   unsigned Kind = Fixup.getKind();
347   switch (Kind) {
348   default:
349     llvm_unreachable("Unknown fixup kind!");
350   case FK_Data_1:
351   case FK_Data_2:
352   case FK_Data_4:
353     return Value;
354   case FK_SecRel_2:
355     return Value;
356   case FK_SecRel_4:
357     return Value;
358   case ARM::fixup_arm_movt_hi16:
359     if (!IsPCRel)
360       Value >>= 16;
361   // Fallthrough
362   case ARM::fixup_arm_movw_lo16: {
363     unsigned Hi4 = (Value & 0xF000) >> 12;
364     unsigned Lo12 = Value & 0x0FFF;
365     // inst{19-16} = Hi4;
366     // inst{11-0} = Lo12;
367     Value = (Hi4 << 16) | (Lo12);
368     return Value;
369   }
370   case ARM::fixup_t2_movt_hi16:
371     if (!IsPCRel)
372       Value >>= 16;
373   // Fallthrough
374   case ARM::fixup_t2_movw_lo16: {
375     unsigned Hi4 = (Value & 0xF000) >> 12;
376     unsigned i = (Value & 0x800) >> 11;
377     unsigned Mid3 = (Value & 0x700) >> 8;
378     unsigned Lo8 = Value & 0x0FF;
379     // inst{19-16} = Hi4;
380     // inst{26} = i;
381     // inst{14-12} = Mid3;
382     // inst{7-0} = Lo8;
383     Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
384     return swapHalfWords(Value, IsLittleEndian);
385   }
386   case ARM::fixup_arm_ldst_pcrel_12:
387     // ARM PC-relative values are offset by 8.
388     Value -= 4;
389   // FALLTHROUGH
390   case ARM::fixup_t2_ldst_pcrel_12: {
391     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
392     Value -= 4;
393     bool isAdd = true;
394     if ((int64_t)Value < 0) {
395       Value = -Value;
396       isAdd = false;
397     }
398     if (Ctx && Value >= 4096) {
399       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
400       return 0;
401     }
402     Value |= isAdd << 23;
403 
404     // Same addressing mode as fixup_arm_pcrel_10,
405     // but with 16-bit halfwords swapped.
406     if (Kind == ARM::fixup_t2_ldst_pcrel_12)
407       return swapHalfWords(Value, IsLittleEndian);
408 
409     return Value;
410   }
411   case ARM::fixup_arm_adr_pcrel_12: {
412     // ARM PC-relative values are offset by 8.
413     Value -= 8;
414     unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
415     if ((int64_t)Value < 0) {
416       Value = -Value;
417       opc = 2; // 0b0010
418     }
419     if (Ctx && ARM_AM::getSOImmVal(Value) == -1) {
420       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
421       return 0;
422     }
423     // Encode the immediate and shift the opcode into place.
424     return ARM_AM::getSOImmVal(Value) | (opc << 21);
425   }
426 
427   case ARM::fixup_t2_adr_pcrel_12: {
428     Value -= 4;
429     unsigned opc = 0;
430     if ((int64_t)Value < 0) {
431       Value = -Value;
432       opc = 5;
433     }
434 
435     uint32_t out = (opc << 21);
436     out |= (Value & 0x800) << 15;
437     out |= (Value & 0x700) << 4;
438     out |= (Value & 0x0FF);
439 
440     return swapHalfWords(out, IsLittleEndian);
441   }
442 
443   case ARM::fixup_arm_condbranch:
444   case ARM::fixup_arm_uncondbranch:
445   case ARM::fixup_arm_uncondbl:
446   case ARM::fixup_arm_condbl:
447   case ARM::fixup_arm_blx:
448     // These values don't encode the low two bits since they're always zero.
449     // Offset by 8 just as above.
450     if (const MCSymbolRefExpr *SRE =
451             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
452       if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_TLSCALL)
453         return 0;
454     return 0xffffff & ((Value - 8) >> 2);
455   case ARM::fixup_t2_uncondbranch: {
456     Value = Value - 4;
457     Value >>= 1; // Low bit is not encoded.
458 
459     uint32_t out = 0;
460     bool I = Value & 0x800000;
461     bool J1 = Value & 0x400000;
462     bool J2 = Value & 0x200000;
463     J1 ^= I;
464     J2 ^= I;
465 
466     out |= I << 26;                 // S bit
467     out |= !J1 << 13;               // J1 bit
468     out |= !J2 << 11;               // J2 bit
469     out |= (Value & 0x1FF800) << 5; // imm6 field
470     out |= (Value & 0x0007FF);      // imm11 field
471 
472     return swapHalfWords(out, IsLittleEndian);
473   }
474   case ARM::fixup_t2_condbranch: {
475     Value = Value - 4;
476     Value >>= 1; // Low bit is not encoded.
477 
478     uint64_t out = 0;
479     out |= (Value & 0x80000) << 7; // S bit
480     out |= (Value & 0x40000) >> 7; // J2 bit
481     out |= (Value & 0x20000) >> 4; // J1 bit
482     out |= (Value & 0x1F800) << 5; // imm6 field
483     out |= (Value & 0x007FF);      // imm11 field
484 
485     return swapHalfWords(out, IsLittleEndian);
486   }
487   case ARM::fixup_arm_thumb_bl: {
488     // The value doesn't encode the low bit (always zero) and is offset by
489     // four. The 32-bit immediate value is encoded as
490     //   imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
491     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
492     // The value is encoded into disjoint bit positions in the destination
493     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
494     // J = either J1 or J2 bit
495     //
496     //   BL:  xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
497     //
498     // Note that the halfwords are stored high first, low second; so we need
499     // to transpose the fixup value here to map properly.
500     uint32_t offset = (Value - 4) >> 1;
501     uint32_t signBit = (offset & 0x800000) >> 23;
502     uint32_t I1Bit = (offset & 0x400000) >> 22;
503     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
504     uint32_t I2Bit = (offset & 0x200000) >> 21;
505     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
506     uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
507     uint32_t imm11Bits = (offset & 0x000007FF);
508 
509     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
510     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
511                            (uint16_t)imm11Bits);
512     return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian);
513   }
514   case ARM::fixup_arm_thumb_blx: {
515     // The value doesn't encode the low two bits (always zero) and is offset by
516     // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
517     //   imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
518     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
519     // The value is encoded into disjoint bit positions in the destination
520     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
521     // J = either J1 or J2 bit, 0 = zero.
522     //
523     //   BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
524     //
525     // Note that the halfwords are stored high first, low second; so we need
526     // to transpose the fixup value here to map properly.
527     uint32_t offset = (Value - 2) >> 2;
528     if (const MCSymbolRefExpr *SRE =
529             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
530       if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_TLSCALL)
531         offset = 0;
532     uint32_t signBit = (offset & 0x400000) >> 22;
533     uint32_t I1Bit = (offset & 0x200000) >> 21;
534     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
535     uint32_t I2Bit = (offset & 0x100000) >> 20;
536     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
537     uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
538     uint32_t imm10LBits = (offset & 0x3FF);
539 
540     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
541     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
542                            ((uint16_t)imm10LBits) << 1);
543     return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian);
544   }
545   case ARM::fixup_thumb_adr_pcrel_10:
546   case ARM::fixup_arm_thumb_cp:
547     // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
548     // could have an error on our hands.
549     if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) {
550       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
551       if (FixupDiagnostic) {
552         Ctx->reportError(Fixup.getLoc(), FixupDiagnostic);
553         return 0;
554       }
555     }
556     // Offset by 4, and don't encode the low two bits.
557     return ((Value - 4) >> 2) & 0xff;
558   case ARM::fixup_arm_thumb_cb: {
559     // Offset by 4 and don't encode the lower bit, which is always 0.
560     // FIXME: diagnose if no Thumb2
561     uint32_t Binary = (Value - 4) >> 1;
562     return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
563   }
564   case ARM::fixup_arm_thumb_br:
565     // Offset by 4 and don't encode the lower bit, which is always 0.
566     if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2]) {
567       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
568       if (FixupDiagnostic) {
569         Ctx->reportError(Fixup.getLoc(), FixupDiagnostic);
570         return 0;
571       }
572     }
573     return ((Value - 4) >> 1) & 0x7ff;
574   case ARM::fixup_arm_thumb_bcc:
575     // Offset by 4 and don't encode the lower bit, which is always 0.
576     if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2]) {
577       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
578       if (FixupDiagnostic) {
579         Ctx->reportError(Fixup.getLoc(), FixupDiagnostic);
580         return 0;
581       }
582     }
583     return ((Value - 4) >> 1) & 0xff;
584   case ARM::fixup_arm_pcrel_10_unscaled: {
585     Value = Value - 8; // ARM fixups offset by an additional word and don't
586                        // need to adjust for the half-word ordering.
587     bool isAdd = true;
588     if ((int64_t)Value < 0) {
589       Value = -Value;
590       isAdd = false;
591     }
592     // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
593     if (Ctx && Value >= 256) {
594       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
595       return 0;
596     }
597     Value = (Value & 0xf) | ((Value & 0xf0) << 4);
598     return Value | (isAdd << 23);
599   }
600   case ARM::fixup_arm_pcrel_10:
601     Value = Value - 4; // ARM fixups offset by an additional word and don't
602                        // need to adjust for the half-word ordering.
603                        // Fall through.
604   case ARM::fixup_t2_pcrel_10: {
605     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
606     Value = Value - 4;
607     bool isAdd = true;
608     if ((int64_t)Value < 0) {
609       Value = -Value;
610       isAdd = false;
611     }
612     // These values don't encode the low two bits since they're always zero.
613     Value >>= 2;
614     if (Ctx && Value >= 256) {
615       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
616       return 0;
617     }
618     Value |= isAdd << 23;
619 
620     // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
621     // swapped.
622     if (Kind == ARM::fixup_t2_pcrel_10)
623       return swapHalfWords(Value, IsLittleEndian);
624 
625     return Value;
626   }
627   }
628 }
629 
processFixupValue(const MCAssembler & Asm,const MCAsmLayout & Layout,const MCFixup & Fixup,const MCFragment * DF,const MCValue & Target,uint64_t & Value,bool & IsResolved)630 void ARMAsmBackend::processFixupValue(const MCAssembler &Asm,
631                                       const MCAsmLayout &Layout,
632                                       const MCFixup &Fixup,
633                                       const MCFragment *DF,
634                                       const MCValue &Target, uint64_t &Value,
635                                       bool &IsResolved) {
636   const MCSymbolRefExpr *A = Target.getSymA();
637   const MCSymbol *Sym = A ? &A->getSymbol() : nullptr;
638   // Some fixups to thumb function symbols need the low bit (thumb bit)
639   // twiddled.
640   if ((unsigned)Fixup.getKind() != ARM::fixup_arm_ldst_pcrel_12 &&
641       (unsigned)Fixup.getKind() != ARM::fixup_t2_ldst_pcrel_12 &&
642       (unsigned)Fixup.getKind() != ARM::fixup_arm_adr_pcrel_12 &&
643       (unsigned)Fixup.getKind() != ARM::fixup_thumb_adr_pcrel_10 &&
644       (unsigned)Fixup.getKind() != ARM::fixup_t2_adr_pcrel_12 &&
645       (unsigned)Fixup.getKind() != ARM::fixup_arm_thumb_cp) {
646     if (Sym) {
647       if (Asm.isThumbFunc(Sym))
648         Value |= 1;
649     }
650   }
651   if (IsResolved && (unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_bl) {
652     assert(Sym && "How did we resolve this?");
653 
654     // If the symbol is external the linker will handle it.
655     // FIXME: Should we handle it as an optimization?
656 
657     // If the symbol is out of range, produce a relocation and hope the
658     // linker can handle it. GNU AS produces an error in this case.
659     if (Sym->isExternal() || Value >= 0x400004)
660       IsResolved = false;
661   }
662   // We must always generate a relocation for BL/BLX instructions if we have
663   // a symbol to reference, as the linker relies on knowing the destination
664   // symbol's thumb-ness to get interworking right.
665   if (A && ((unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_blx ||
666             (unsigned)Fixup.getKind() == ARM::fixup_arm_blx ||
667             (unsigned)Fixup.getKind() == ARM::fixup_arm_uncondbl ||
668             (unsigned)Fixup.getKind() == ARM::fixup_arm_condbl))
669     IsResolved = false;
670 
671   // Try to get the encoded value for the fixup as-if we're mapping it into
672   // the instruction. This allows adjustFixupValue() to issue a diagnostic
673   // if the value aren't invalid.
674   (void)adjustFixupValue(Fixup, Value, false, &Asm.getContext(),
675                          IsLittleEndian, IsResolved);
676 }
677 
678 /// getFixupKindNumBytes - The number of bytes the fixup may change.
getFixupKindNumBytes(unsigned Kind)679 static unsigned getFixupKindNumBytes(unsigned Kind) {
680   switch (Kind) {
681   default:
682     llvm_unreachable("Unknown fixup kind!");
683 
684   case FK_Data_1:
685   case ARM::fixup_arm_thumb_bcc:
686   case ARM::fixup_arm_thumb_cp:
687   case ARM::fixup_thumb_adr_pcrel_10:
688     return 1;
689 
690   case FK_Data_2:
691   case ARM::fixup_arm_thumb_br:
692   case ARM::fixup_arm_thumb_cb:
693     return 2;
694 
695   case ARM::fixup_arm_pcrel_10_unscaled:
696   case ARM::fixup_arm_ldst_pcrel_12:
697   case ARM::fixup_arm_pcrel_10:
698   case ARM::fixup_arm_adr_pcrel_12:
699   case ARM::fixup_arm_uncondbl:
700   case ARM::fixup_arm_condbl:
701   case ARM::fixup_arm_blx:
702   case ARM::fixup_arm_condbranch:
703   case ARM::fixup_arm_uncondbranch:
704     return 3;
705 
706   case FK_Data_4:
707   case ARM::fixup_t2_ldst_pcrel_12:
708   case ARM::fixup_t2_condbranch:
709   case ARM::fixup_t2_uncondbranch:
710   case ARM::fixup_t2_pcrel_10:
711   case ARM::fixup_t2_adr_pcrel_12:
712   case ARM::fixup_arm_thumb_bl:
713   case ARM::fixup_arm_thumb_blx:
714   case ARM::fixup_arm_movt_hi16:
715   case ARM::fixup_arm_movw_lo16:
716   case ARM::fixup_t2_movt_hi16:
717   case ARM::fixup_t2_movw_lo16:
718     return 4;
719 
720   case FK_SecRel_2:
721     return 2;
722   case FK_SecRel_4:
723     return 4;
724   }
725 }
726 
727 /// getFixupKindContainerSizeBytes - The number of bytes of the
728 /// container involved in big endian.
getFixupKindContainerSizeBytes(unsigned Kind)729 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
730   switch (Kind) {
731   default:
732     llvm_unreachable("Unknown fixup kind!");
733 
734   case FK_Data_1:
735     return 1;
736   case FK_Data_2:
737     return 2;
738   case FK_Data_4:
739     return 4;
740 
741   case ARM::fixup_arm_thumb_bcc:
742   case ARM::fixup_arm_thumb_cp:
743   case ARM::fixup_thumb_adr_pcrel_10:
744   case ARM::fixup_arm_thumb_br:
745   case ARM::fixup_arm_thumb_cb:
746     // Instruction size is 2 bytes.
747     return 2;
748 
749   case ARM::fixup_arm_pcrel_10_unscaled:
750   case ARM::fixup_arm_ldst_pcrel_12:
751   case ARM::fixup_arm_pcrel_10:
752   case ARM::fixup_arm_adr_pcrel_12:
753   case ARM::fixup_arm_uncondbl:
754   case ARM::fixup_arm_condbl:
755   case ARM::fixup_arm_blx:
756   case ARM::fixup_arm_condbranch:
757   case ARM::fixup_arm_uncondbranch:
758   case ARM::fixup_t2_ldst_pcrel_12:
759   case ARM::fixup_t2_condbranch:
760   case ARM::fixup_t2_uncondbranch:
761   case ARM::fixup_t2_pcrel_10:
762   case ARM::fixup_t2_adr_pcrel_12:
763   case ARM::fixup_arm_thumb_bl:
764   case ARM::fixup_arm_thumb_blx:
765   case ARM::fixup_arm_movt_hi16:
766   case ARM::fixup_arm_movw_lo16:
767   case ARM::fixup_t2_movt_hi16:
768   case ARM::fixup_t2_movw_lo16:
769     // Instruction size is 4 bytes.
770     return 4;
771   }
772 }
773 
applyFixup(const MCFixup & Fixup,char * Data,unsigned DataSize,uint64_t Value,bool IsPCRel) const774 void ARMAsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
775                                unsigned DataSize, uint64_t Value,
776                                bool IsPCRel) const {
777   unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
778   Value =
779       adjustFixupValue(Fixup, Value, IsPCRel, nullptr, IsLittleEndian, true);
780   if (!Value)
781     return; // Doesn't change encoding.
782 
783   unsigned Offset = Fixup.getOffset();
784   assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!");
785 
786   // Used to point to big endian bytes.
787   unsigned FullSizeBytes;
788   if (!IsLittleEndian) {
789     FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind());
790     assert((Offset + FullSizeBytes) <= DataSize && "Invalid fixup size!");
791     assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
792   }
793 
794   // For each byte of the fragment that the fixup touches, mask in the bits from
795   // the fixup value. The Value has been "split up" into the appropriate
796   // bitfields above.
797   for (unsigned i = 0; i != NumBytes; ++i) {
798     unsigned Idx = IsLittleEndian ? i : (FullSizeBytes - 1 - i);
799     Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
800   }
801 }
802 
803 namespace CU {
804 
805 /// \brief Compact unwind encoding values.
806 enum CompactUnwindEncodings {
807   UNWIND_ARM_MODE_MASK                         = 0x0F000000,
808   UNWIND_ARM_MODE_FRAME                        = 0x01000000,
809   UNWIND_ARM_MODE_FRAME_D                      = 0x02000000,
810   UNWIND_ARM_MODE_DWARF                        = 0x04000000,
811 
812   UNWIND_ARM_FRAME_STACK_ADJUST_MASK           = 0x00C00000,
813 
814   UNWIND_ARM_FRAME_FIRST_PUSH_R4               = 0x00000001,
815   UNWIND_ARM_FRAME_FIRST_PUSH_R5               = 0x00000002,
816   UNWIND_ARM_FRAME_FIRST_PUSH_R6               = 0x00000004,
817 
818   UNWIND_ARM_FRAME_SECOND_PUSH_R8              = 0x00000008,
819   UNWIND_ARM_FRAME_SECOND_PUSH_R9              = 0x00000010,
820   UNWIND_ARM_FRAME_SECOND_PUSH_R10             = 0x00000020,
821   UNWIND_ARM_FRAME_SECOND_PUSH_R11             = 0x00000040,
822   UNWIND_ARM_FRAME_SECOND_PUSH_R12             = 0x00000080,
823 
824   UNWIND_ARM_FRAME_D_REG_COUNT_MASK            = 0x00000F00,
825 
826   UNWIND_ARM_DWARF_SECTION_OFFSET              = 0x00FFFFFF
827 };
828 
829 } // end CU namespace
830 
831 /// Generate compact unwind encoding for the function based on the CFI
832 /// instructions. If the CFI instructions describe a frame that cannot be
833 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
834 /// tells the runtime to fallback and unwind using dwarf.
generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const835 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
836     ArrayRef<MCCFIInstruction> Instrs) const {
837   DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
838   // Only armv7k uses CFI based unwinding.
839   if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K)
840     return 0;
841   // No .cfi directives means no frame.
842   if (Instrs.empty())
843     return 0;
844   // Start off assuming CFA is at SP+0.
845   int CFARegister = ARM::SP;
846   int CFARegisterOffset = 0;
847   // Mark savable registers as initially unsaved
848   DenseMap<unsigned, int> RegOffsets;
849   int FloatRegCount = 0;
850   // Process each .cfi directive and build up compact unwind info.
851   for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
852     int Reg;
853     const MCCFIInstruction &Inst = Instrs[i];
854     switch (Inst.getOperation()) {
855     case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa
856       CFARegisterOffset = -Inst.getOffset();
857       CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
858       break;
859     case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset
860       CFARegisterOffset = -Inst.getOffset();
861       break;
862     case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register
863       CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
864       break;
865     case MCCFIInstruction::OpOffset: // DW_CFA_offset
866       Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
867       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
868         RegOffsets[Reg] = Inst.getOffset();
869       else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
870         RegOffsets[Reg] = Inst.getOffset();
871         ++FloatRegCount;
872       } else {
873         DEBUG_WITH_TYPE("compact-unwind",
874                         llvm::dbgs() << ".cfi_offset on unknown register="
875                                      << Inst.getRegister() << "\n");
876         return CU::UNWIND_ARM_MODE_DWARF;
877       }
878       break;
879     case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc
880       // Ignore
881       break;
882     default:
883       // Directive not convertable to compact unwind, bail out.
884       DEBUG_WITH_TYPE("compact-unwind",
885                       llvm::dbgs()
886                           << "CFI directive not compatiable with comact "
887                              "unwind encoding, opcode=" << Inst.getOperation()
888                           << "\n");
889       return CU::UNWIND_ARM_MODE_DWARF;
890       break;
891     }
892   }
893 
894   // If no frame set up, return no unwind info.
895   if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0))
896     return 0;
897 
898   // Verify standard frame (lr/r7) was used.
899   if (CFARegister != ARM::R7) {
900     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
901                                                    << CFARegister
902                                                    << " instead of r7\n");
903     return CU::UNWIND_ARM_MODE_DWARF;
904   }
905   int StackAdjust = CFARegisterOffset - 8;
906   if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) {
907     DEBUG_WITH_TYPE("compact-unwind",
908                     llvm::dbgs()
909                         << "LR not saved as standard frame, StackAdjust="
910                         << StackAdjust
911                         << ", CFARegisterOffset=" << CFARegisterOffset
912                         << ", lr save at offset=" << RegOffsets[14] << "\n");
913     return CU::UNWIND_ARM_MODE_DWARF;
914   }
915   if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) {
916     DEBUG_WITH_TYPE("compact-unwind",
917                     llvm::dbgs() << "r7 not saved as standard frame\n");
918     return CU::UNWIND_ARM_MODE_DWARF;
919   }
920   uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME;
921 
922   // If var-args are used, there may be a stack adjust required.
923   switch (StackAdjust) {
924   case 0:
925     break;
926   case 4:
927     CompactUnwindEncoding |= 0x00400000;
928     break;
929   case 8:
930     CompactUnwindEncoding |= 0x00800000;
931     break;
932   case 12:
933     CompactUnwindEncoding |= 0x00C00000;
934     break;
935   default:
936     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
937                                           << ".cfi_def_cfa stack adjust ("
938                                           << StackAdjust << ") out of range\n");
939     return CU::UNWIND_ARM_MODE_DWARF;
940   }
941 
942   // If r6 is saved, it must be right below r7.
943   static struct {
944     unsigned Reg;
945     unsigned Encoding;
946   } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6},
947                    {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5},
948                    {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4},
949                    {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12},
950                    {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11},
951                    {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10},
952                    {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9},
953                    {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}};
954 
955   int CurOffset = -8 - StackAdjust;
956   for (auto CSReg : GPRCSRegs) {
957     auto Offset = RegOffsets.find(CSReg.Reg);
958     if (Offset == RegOffsets.end())
959       continue;
960 
961     int RegOffset = Offset->second;
962     if (RegOffset != CurOffset - 4) {
963       DEBUG_WITH_TYPE("compact-unwind",
964                       llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at "
965                                    << RegOffset << " but only supported at "
966                                    << CurOffset << "\n");
967       return CU::UNWIND_ARM_MODE_DWARF;
968     }
969     CompactUnwindEncoding |= CSReg.Encoding;
970     CurOffset -= 4;
971   }
972 
973   // If no floats saved, we are done.
974   if (FloatRegCount == 0)
975     return CompactUnwindEncoding;
976 
977   // Switch mode to include D register saving.
978   CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK;
979   CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D;
980 
981   // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
982   // but needs coordination with the linker and libunwind.
983   if (FloatRegCount > 4) {
984     DEBUG_WITH_TYPE("compact-unwind",
985                     llvm::dbgs() << "unsupported number of D registers saved ("
986                                  << FloatRegCount << ")\n");
987       return CU::UNWIND_ARM_MODE_DWARF;
988   }
989 
990   // Floating point registers must either be saved sequentially, or we defer to
991   // DWARF. No gaps allowed here so check that each saved d-register is
992   // precisely where it should be.
993   static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 };
994   for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) {
995     auto Offset = RegOffsets.find(FPRCSRegs[Idx]);
996     if (Offset == RegOffsets.end()) {
997       DEBUG_WITH_TYPE("compact-unwind",
998                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
999                                    << MRI.getName(FPRCSRegs[Idx])
1000                                    << " not saved\n");
1001       return CU::UNWIND_ARM_MODE_DWARF;
1002     } else if (Offset->second != CurOffset - 8) {
1003       DEBUG_WITH_TYPE("compact-unwind",
1004                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1005                                    << MRI.getName(FPRCSRegs[Idx])
1006                                    << " saved at " << Offset->second
1007                                    << ", expected at " << CurOffset - 8
1008                                    << "\n");
1009       return CU::UNWIND_ARM_MODE_DWARF;
1010     }
1011     CurOffset -= 8;
1012   }
1013 
1014   return CompactUnwindEncoding | ((FloatRegCount - 1) << 8);
1015 }
1016 
getMachOSubTypeFromArch(StringRef Arch)1017 static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) {
1018   unsigned AK = ARM::parseArch(Arch);
1019   switch (AK) {
1020   default:
1021     return MachO::CPU_SUBTYPE_ARM_V7;
1022   case ARM::AK_ARMV4T:
1023     return MachO::CPU_SUBTYPE_ARM_V4T;
1024   case ARM::AK_ARMV5T:
1025   case ARM::AK_ARMV5TE:
1026   case ARM::AK_ARMV5TEJ:
1027     return MachO::CPU_SUBTYPE_ARM_V5;
1028   case ARM::AK_ARMV6:
1029   case ARM::AK_ARMV6K:
1030     return MachO::CPU_SUBTYPE_ARM_V6;
1031   case ARM::AK_ARMV7A:
1032     return MachO::CPU_SUBTYPE_ARM_V7;
1033   case ARM::AK_ARMV7S:
1034     return MachO::CPU_SUBTYPE_ARM_V7S;
1035   case ARM::AK_ARMV7K:
1036     return MachO::CPU_SUBTYPE_ARM_V7K;
1037   case ARM::AK_ARMV6M:
1038     return MachO::CPU_SUBTYPE_ARM_V6M;
1039   case ARM::AK_ARMV7M:
1040     return MachO::CPU_SUBTYPE_ARM_V7M;
1041   case ARM::AK_ARMV7EM:
1042     return MachO::CPU_SUBTYPE_ARM_V7EM;
1043   }
1044 }
1045 
createARMAsmBackend(const Target & T,const MCRegisterInfo & MRI,const Triple & TheTriple,StringRef CPU,bool isLittle)1046 MCAsmBackend *llvm::createARMAsmBackend(const Target &T,
1047                                         const MCRegisterInfo &MRI,
1048                                         const Triple &TheTriple, StringRef CPU,
1049                                         bool isLittle) {
1050   switch (TheTriple.getObjectFormat()) {
1051   default:
1052     llvm_unreachable("unsupported object format");
1053   case Triple::MachO: {
1054     MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName());
1055     return new ARMAsmBackendDarwin(T, TheTriple, MRI, CS);
1056   }
1057   case Triple::COFF:
1058     assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
1059     return new ARMAsmBackendWinCOFF(T, TheTriple);
1060   case Triple::ELF:
1061     assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
1062     uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
1063     return new ARMAsmBackendELF(T, TheTriple, OSABI, isLittle);
1064   }
1065 }
1066 
createARMLEAsmBackend(const Target & T,const MCRegisterInfo & MRI,const Triple & TT,StringRef CPU)1067 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
1068                                           const MCRegisterInfo &MRI,
1069                                           const Triple &TT, StringRef CPU) {
1070   return createARMAsmBackend(T, MRI, TT, CPU, true);
1071 }
1072 
createARMBEAsmBackend(const Target & T,const MCRegisterInfo & MRI,const Triple & TT,StringRef CPU)1073 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
1074                                           const MCRegisterInfo &MRI,
1075                                           const Triple &TT, StringRef CPU) {
1076   return createARMAsmBackend(T, MRI, TT, CPU, false);
1077 }
1078 
createThumbLEAsmBackend(const Target & T,const MCRegisterInfo & MRI,const Triple & TT,StringRef CPU)1079 MCAsmBackend *llvm::createThumbLEAsmBackend(const Target &T,
1080                                             const MCRegisterInfo &MRI,
1081                                             const Triple &TT, StringRef CPU) {
1082   return createARMAsmBackend(T, MRI, TT, CPU, true);
1083 }
1084 
createThumbBEAsmBackend(const Target & T,const MCRegisterInfo & MRI,const Triple & TT,StringRef CPU)1085 MCAsmBackend *llvm::createThumbBEAsmBackend(const Target &T,
1086                                             const MCRegisterInfo &MRI,
1087                                             const Triple &TT, StringRef CPU) {
1088   return createARMAsmBackend(T, MRI, TT, CPU, false);
1089 }
1090