1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the writing of the LLVM IR as a set of C++ calls to the
11 // LLVM IR interface. The input module is assumed to be verified.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CPPTargetMachine.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Config/config.h"
20 #include "llvm/IR/CallingConv.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/InlineAsm.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/LegacyPassManager.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCInstrInfo.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/FormattedStream.h"
35 #include "llvm/Support/TargetRegistry.h"
36 #include <algorithm>
37 #include <cctype>
38 #include <cstdio>
39 #include <map>
40 #include <set>
41 using namespace llvm;
42
43 static cl::opt<std::string>
44 FuncName("cppfname", cl::desc("Specify the name of the generated function"),
45 cl::value_desc("function name"));
46
47 enum WhatToGenerate {
48 GenProgram,
49 GenModule,
50 GenContents,
51 GenFunction,
52 GenFunctions,
53 GenInline,
54 GenVariable,
55 GenType
56 };
57
58 static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
59 cl::desc("Choose what kind of output to generate"),
60 cl::init(GenProgram),
61 cl::values(
62 clEnumValN(GenProgram, "program", "Generate a complete program"),
63 clEnumValN(GenModule, "module", "Generate a module definition"),
64 clEnumValN(GenContents, "contents", "Generate contents of a module"),
65 clEnumValN(GenFunction, "function", "Generate a function definition"),
66 clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
67 clEnumValN(GenInline, "inline", "Generate an inline function"),
68 clEnumValN(GenVariable, "variable", "Generate a variable definition"),
69 clEnumValN(GenType, "type", "Generate a type definition"),
70 clEnumValEnd
71 )
72 );
73
74 static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
75 cl::desc("Specify the name of the thing to generate"),
76 cl::init("!bad!"));
77
LLVMInitializeCppBackendTarget()78 extern "C" void LLVMInitializeCppBackendTarget() {
79 // Register the target.
80 RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
81 }
82
83 namespace {
84 typedef std::vector<Type*> TypeList;
85 typedef std::map<Type*,std::string> TypeMap;
86 typedef std::map<const Value*,std::string> ValueMap;
87 typedef std::set<std::string> NameSet;
88 typedef std::set<Type*> TypeSet;
89 typedef std::set<const Value*> ValueSet;
90 typedef std::map<const Value*,std::string> ForwardRefMap;
91
92 /// CppWriter - This class is the main chunk of code that converts an LLVM
93 /// module to a C++ translation unit.
94 class CppWriter : public ModulePass {
95 std::unique_ptr<formatted_raw_ostream> OutOwner;
96 formatted_raw_ostream &Out;
97 const Module *TheModule;
98 uint64_t uniqueNum;
99 TypeMap TypeNames;
100 ValueMap ValueNames;
101 NameSet UsedNames;
102 TypeSet DefinedTypes;
103 ValueSet DefinedValues;
104 ForwardRefMap ForwardRefs;
105 bool is_inline;
106 unsigned indent_level;
107
108 public:
109 static char ID;
CppWriter(std::unique_ptr<formatted_raw_ostream> o)110 explicit CppWriter(std::unique_ptr<formatted_raw_ostream> o)
111 : ModulePass(ID), OutOwner(std::move(o)), Out(*OutOwner), uniqueNum(0),
112 is_inline(false), indent_level(0) {}
113
getPassName() const114 const char *getPassName() const override { return "C++ backend"; }
115
116 bool runOnModule(Module &M) override;
117
118 void printProgram(const std::string& fname, const std::string& modName );
119 void printModule(const std::string& fname, const std::string& modName );
120 void printContents(const std::string& fname, const std::string& modName );
121 void printFunction(const std::string& fname, const std::string& funcName );
122 void printFunctions();
123 void printInline(const std::string& fname, const std::string& funcName );
124 void printVariable(const std::string& fname, const std::string& varName );
125 void printType(const std::string& fname, const std::string& typeName );
126
127 void error(const std::string& msg);
128
129
130 formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0);
in()131 inline void in() { indent_level++; }
out()132 inline void out() { if (indent_level >0) indent_level--; }
133
134 private:
135 void printLinkageType(GlobalValue::LinkageTypes LT);
136 void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
137 void printDLLStorageClassType(GlobalValue::DLLStorageClassTypes DSCType);
138 void printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM);
139 void printCallingConv(CallingConv::ID cc);
140 void printEscapedString(const std::string& str);
141 void printCFP(const ConstantFP* CFP);
142
143 std::string getCppName(Type* val);
144 inline void printCppName(Type* val);
145
146 std::string getCppName(const Value* val);
147 inline void printCppName(const Value* val);
148
149 void printAttributes(const AttributeSet &PAL, const std::string &name);
150 void printType(Type* Ty);
151 void printTypes(const Module* M);
152
153 void printConstant(const Constant *CPV);
154 void printConstants(const Module* M);
155
156 void printVariableUses(const GlobalVariable *GV);
157 void printVariableHead(const GlobalVariable *GV);
158 void printVariableBody(const GlobalVariable *GV);
159
160 void printFunctionUses(const Function *F);
161 void printFunctionHead(const Function *F);
162 void printFunctionBody(const Function *F);
163 void printInstruction(const Instruction *I, const std::string& bbname);
164 std::string getOpName(const Value*);
165
166 void printModuleBody();
167 };
168 } // end anonymous namespace.
169
nl(formatted_raw_ostream & Out,int delta)170 formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) {
171 Out << '\n';
172 if (delta >= 0 || indent_level >= unsigned(-delta))
173 indent_level += delta;
174 Out.indent(indent_level);
175 return Out;
176 }
177
sanitize(std::string & str)178 static inline void sanitize(std::string &str) {
179 for (size_t i = 0; i < str.length(); ++i)
180 if (!isalnum(str[i]) && str[i] != '_')
181 str[i] = '_';
182 }
183
getTypePrefix(Type * Ty)184 static std::string getTypePrefix(Type *Ty) {
185 switch (Ty->getTypeID()) {
186 case Type::VoidTyID: return "void_";
187 case Type::IntegerTyID:
188 return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_";
189 case Type::FloatTyID: return "float_";
190 case Type::DoubleTyID: return "double_";
191 case Type::LabelTyID: return "label_";
192 case Type::FunctionTyID: return "func_";
193 case Type::StructTyID: return "struct_";
194 case Type::ArrayTyID: return "array_";
195 case Type::PointerTyID: return "ptr_";
196 case Type::VectorTyID: return "packed_";
197 default: return "other_";
198 }
199 }
200
error(const std::string & msg)201 void CppWriter::error(const std::string& msg) {
202 report_fatal_error(msg);
203 }
204
ftostr(const APFloat & V)205 static inline std::string ftostr(const APFloat& V) {
206 std::string Buf;
207 if (&V.getSemantics() == &APFloat::IEEEdouble) {
208 raw_string_ostream(Buf) << V.convertToDouble();
209 return Buf;
210 } else if (&V.getSemantics() == &APFloat::IEEEsingle) {
211 raw_string_ostream(Buf) << (double)V.convertToFloat();
212 return Buf;
213 }
214 return "<unknown format in ftostr>"; // error
215 }
216
217 // printCFP - Print a floating point constant .. very carefully :)
218 // This makes sure that conversion to/from floating yields the same binary
219 // result so that we don't lose precision.
printCFP(const ConstantFP * CFP)220 void CppWriter::printCFP(const ConstantFP *CFP) {
221 bool ignored;
222 APFloat APF = APFloat(CFP->getValueAPF()); // copy
223 if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
224 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
225 Out << "ConstantFP::get(mod->getContext(), ";
226 Out << "APFloat(";
227 #if HAVE_PRINTF_A
228 char Buffer[100];
229 sprintf(Buffer, "%A", APF.convertToDouble());
230 if ((!strncmp(Buffer, "0x", 2) ||
231 !strncmp(Buffer, "-0x", 3) ||
232 !strncmp(Buffer, "+0x", 3)) &&
233 APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
234 if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
235 Out << "BitsToDouble(" << Buffer << ")";
236 else
237 Out << "BitsToFloat((float)" << Buffer << ")";
238 Out << ")";
239 } else {
240 #endif
241 std::string StrVal = ftostr(CFP->getValueAPF());
242
243 while (StrVal[0] == ' ')
244 StrVal.erase(StrVal.begin());
245
246 // Check to make sure that the stringized number is not some string like
247 // "Inf" or NaN. Check that the string matches the "[-+]?[0-9]" regex.
248 if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
249 ((StrVal[0] == '-' || StrVal[0] == '+') &&
250 (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
251 (CFP->isExactlyValue(atof(StrVal.c_str())))) {
252 if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
253 Out << StrVal;
254 else
255 Out << StrVal << "f";
256 } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
257 Out << "BitsToDouble(0x"
258 << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
259 << "ULL) /* " << StrVal << " */";
260 else
261 Out << "BitsToFloat(0x"
262 << utohexstr((uint32_t)CFP->getValueAPF().
263 bitcastToAPInt().getZExtValue())
264 << "U) /* " << StrVal << " */";
265 Out << ")";
266 #if HAVE_PRINTF_A
267 }
268 #endif
269 Out << ")";
270 }
271
printCallingConv(CallingConv::ID cc)272 void CppWriter::printCallingConv(CallingConv::ID cc){
273 // Print the calling convention.
274 switch (cc) {
275 case CallingConv::C: Out << "CallingConv::C"; break;
276 case CallingConv::Fast: Out << "CallingConv::Fast"; break;
277 case CallingConv::Cold: Out << "CallingConv::Cold"; break;
278 case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
279 default: Out << cc; break;
280 }
281 }
282
printLinkageType(GlobalValue::LinkageTypes LT)283 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
284 switch (LT) {
285 case GlobalValue::InternalLinkage:
286 Out << "GlobalValue::InternalLinkage"; break;
287 case GlobalValue::PrivateLinkage:
288 Out << "GlobalValue::PrivateLinkage"; break;
289 case GlobalValue::AvailableExternallyLinkage:
290 Out << "GlobalValue::AvailableExternallyLinkage "; break;
291 case GlobalValue::LinkOnceAnyLinkage:
292 Out << "GlobalValue::LinkOnceAnyLinkage "; break;
293 case GlobalValue::LinkOnceODRLinkage:
294 Out << "GlobalValue::LinkOnceODRLinkage "; break;
295 case GlobalValue::WeakAnyLinkage:
296 Out << "GlobalValue::WeakAnyLinkage"; break;
297 case GlobalValue::WeakODRLinkage:
298 Out << "GlobalValue::WeakODRLinkage"; break;
299 case GlobalValue::AppendingLinkage:
300 Out << "GlobalValue::AppendingLinkage"; break;
301 case GlobalValue::ExternalLinkage:
302 Out << "GlobalValue::ExternalLinkage"; break;
303 case GlobalValue::ExternalWeakLinkage:
304 Out << "GlobalValue::ExternalWeakLinkage"; break;
305 case GlobalValue::CommonLinkage:
306 Out << "GlobalValue::CommonLinkage"; break;
307 }
308 }
309
printVisibilityType(GlobalValue::VisibilityTypes VisType)310 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
311 switch (VisType) {
312 case GlobalValue::DefaultVisibility:
313 Out << "GlobalValue::DefaultVisibility";
314 break;
315 case GlobalValue::HiddenVisibility:
316 Out << "GlobalValue::HiddenVisibility";
317 break;
318 case GlobalValue::ProtectedVisibility:
319 Out << "GlobalValue::ProtectedVisibility";
320 break;
321 }
322 }
323
printDLLStorageClassType(GlobalValue::DLLStorageClassTypes DSCType)324 void CppWriter::printDLLStorageClassType(
325 GlobalValue::DLLStorageClassTypes DSCType) {
326 switch (DSCType) {
327 case GlobalValue::DefaultStorageClass:
328 Out << "GlobalValue::DefaultStorageClass";
329 break;
330 case GlobalValue::DLLImportStorageClass:
331 Out << "GlobalValue::DLLImportStorageClass";
332 break;
333 case GlobalValue::DLLExportStorageClass:
334 Out << "GlobalValue::DLLExportStorageClass";
335 break;
336 }
337 }
338
printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM)339 void CppWriter::printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM) {
340 switch (TLM) {
341 case GlobalVariable::NotThreadLocal:
342 Out << "GlobalVariable::NotThreadLocal";
343 break;
344 case GlobalVariable::GeneralDynamicTLSModel:
345 Out << "GlobalVariable::GeneralDynamicTLSModel";
346 break;
347 case GlobalVariable::LocalDynamicTLSModel:
348 Out << "GlobalVariable::LocalDynamicTLSModel";
349 break;
350 case GlobalVariable::InitialExecTLSModel:
351 Out << "GlobalVariable::InitialExecTLSModel";
352 break;
353 case GlobalVariable::LocalExecTLSModel:
354 Out << "GlobalVariable::LocalExecTLSModel";
355 break;
356 }
357 }
358
359 // printEscapedString - Print each character of the specified string, escaping
360 // it if it is not printable or if it is an escape char.
printEscapedString(const std::string & Str)361 void CppWriter::printEscapedString(const std::string &Str) {
362 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
363 unsigned char C = Str[i];
364 if (isprint(C) && C != '"' && C != '\\') {
365 Out << C;
366 } else {
367 Out << "\\x"
368 << (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
369 << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
370 }
371 }
372 }
373
getCppName(Type * Ty)374 std::string CppWriter::getCppName(Type* Ty) {
375 switch (Ty->getTypeID()) {
376 default:
377 break;
378 case Type::VoidTyID:
379 return "Type::getVoidTy(mod->getContext())";
380 case Type::IntegerTyID: {
381 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
382 return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")";
383 }
384 case Type::X86_FP80TyID:
385 return "Type::getX86_FP80Ty(mod->getContext())";
386 case Type::FloatTyID:
387 return "Type::getFloatTy(mod->getContext())";
388 case Type::DoubleTyID:
389 return "Type::getDoubleTy(mod->getContext())";
390 case Type::LabelTyID:
391 return "Type::getLabelTy(mod->getContext())";
392 case Type::X86_MMXTyID:
393 return "Type::getX86_MMXTy(mod->getContext())";
394 }
395
396 // Now, see if we've seen the type before and return that
397 TypeMap::iterator I = TypeNames.find(Ty);
398 if (I != TypeNames.end())
399 return I->second;
400
401 // Okay, let's build a new name for this type. Start with a prefix
402 const char* prefix = nullptr;
403 switch (Ty->getTypeID()) {
404 case Type::FunctionTyID: prefix = "FuncTy_"; break;
405 case Type::StructTyID: prefix = "StructTy_"; break;
406 case Type::ArrayTyID: prefix = "ArrayTy_"; break;
407 case Type::PointerTyID: prefix = "PointerTy_"; break;
408 case Type::VectorTyID: prefix = "VectorTy_"; break;
409 default: prefix = "OtherTy_"; break; // prevent breakage
410 }
411
412 // See if the type has a name in the symboltable and build accordingly
413 std::string name;
414 if (StructType *STy = dyn_cast<StructType>(Ty))
415 if (STy->hasName())
416 name = STy->getName();
417
418 if (name.empty())
419 name = utostr(uniqueNum++);
420
421 name = std::string(prefix) + name;
422 sanitize(name);
423
424 // Save the name
425 return TypeNames[Ty] = name;
426 }
427
printCppName(Type * Ty)428 void CppWriter::printCppName(Type* Ty) {
429 printEscapedString(getCppName(Ty));
430 }
431
getCppName(const Value * val)432 std::string CppWriter::getCppName(const Value* val) {
433 std::string name;
434 ValueMap::iterator I = ValueNames.find(val);
435 if (I != ValueNames.end() && I->first == val)
436 return I->second;
437
438 if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
439 name = std::string("gvar_") +
440 getTypePrefix(GV->getType()->getElementType());
441 } else if (isa<Function>(val)) {
442 name = std::string("func_");
443 } else if (const Constant* C = dyn_cast<Constant>(val)) {
444 name = std::string("const_") + getTypePrefix(C->getType());
445 } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
446 if (is_inline) {
447 unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
448 Function::const_arg_iterator(Arg)) + 1;
449 name = std::string("arg_") + utostr(argNum);
450 NameSet::iterator NI = UsedNames.find(name);
451 if (NI != UsedNames.end())
452 name += std::string("_") + utostr(uniqueNum++);
453 UsedNames.insert(name);
454 return ValueNames[val] = name;
455 } else {
456 name = getTypePrefix(val->getType());
457 }
458 } else {
459 name = getTypePrefix(val->getType());
460 }
461 if (val->hasName())
462 name += val->getName();
463 else
464 name += utostr(uniqueNum++);
465 sanitize(name);
466 NameSet::iterator NI = UsedNames.find(name);
467 if (NI != UsedNames.end())
468 name += std::string("_") + utostr(uniqueNum++);
469 UsedNames.insert(name);
470 return ValueNames[val] = name;
471 }
472
printCppName(const Value * val)473 void CppWriter::printCppName(const Value* val) {
474 printEscapedString(getCppName(val));
475 }
476
printAttributes(const AttributeSet & PAL,const std::string & name)477 void CppWriter::printAttributes(const AttributeSet &PAL,
478 const std::string &name) {
479 Out << "AttributeSet " << name << "_PAL;";
480 nl(Out);
481 if (!PAL.isEmpty()) {
482 Out << '{'; in(); nl(Out);
483 Out << "SmallVector<AttributeSet, 4> Attrs;"; nl(Out);
484 Out << "AttributeSet PAS;"; in(); nl(Out);
485 for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
486 unsigned index = PAL.getSlotIndex(i);
487 AttrBuilder attrs(PAL.getSlotAttributes(i), index);
488 Out << "{"; in(); nl(Out);
489 Out << "AttrBuilder B;"; nl(Out);
490
491 #define HANDLE_ATTR(X) \
492 if (attrs.contains(Attribute::X)) { \
493 Out << "B.addAttribute(Attribute::" #X ");"; nl(Out); \
494 attrs.removeAttribute(Attribute::X); \
495 }
496
497 HANDLE_ATTR(SExt);
498 HANDLE_ATTR(ZExt);
499 HANDLE_ATTR(NoReturn);
500 HANDLE_ATTR(InReg);
501 HANDLE_ATTR(StructRet);
502 HANDLE_ATTR(NoUnwind);
503 HANDLE_ATTR(NoAlias);
504 HANDLE_ATTR(ByVal);
505 HANDLE_ATTR(InAlloca);
506 HANDLE_ATTR(Nest);
507 HANDLE_ATTR(ReadNone);
508 HANDLE_ATTR(ReadOnly);
509 HANDLE_ATTR(NoInline);
510 HANDLE_ATTR(AlwaysInline);
511 HANDLE_ATTR(OptimizeNone);
512 HANDLE_ATTR(OptimizeForSize);
513 HANDLE_ATTR(StackProtect);
514 HANDLE_ATTR(StackProtectReq);
515 HANDLE_ATTR(StackProtectStrong);
516 HANDLE_ATTR(SafeStack);
517 HANDLE_ATTR(NoCapture);
518 HANDLE_ATTR(NoRedZone);
519 HANDLE_ATTR(NoImplicitFloat);
520 HANDLE_ATTR(Naked);
521 HANDLE_ATTR(InlineHint);
522 HANDLE_ATTR(ReturnsTwice);
523 HANDLE_ATTR(UWTable);
524 HANDLE_ATTR(NonLazyBind);
525 HANDLE_ATTR(MinSize);
526 #undef HANDLE_ATTR
527
528 if (attrs.contains(Attribute::StackAlignment)) {
529 Out << "B.addStackAlignmentAttr(" << attrs.getStackAlignment()<<')';
530 nl(Out);
531 attrs.removeAttribute(Attribute::StackAlignment);
532 }
533
534 Out << "PAS = AttributeSet::get(mod->getContext(), ";
535 if (index == ~0U)
536 Out << "~0U,";
537 else
538 Out << index << "U,";
539 Out << " B);"; out(); nl(Out);
540 Out << "}"; out(); nl(Out);
541 nl(Out);
542 Out << "Attrs.push_back(PAS);"; nl(Out);
543 }
544 Out << name << "_PAL = AttributeSet::get(mod->getContext(), Attrs);";
545 nl(Out);
546 out(); nl(Out);
547 Out << '}'; nl(Out);
548 }
549 }
550
printType(Type * Ty)551 void CppWriter::printType(Type* Ty) {
552 // We don't print definitions for primitive types
553 if (Ty->isFloatingPointTy() || Ty->isX86_MMXTy() || Ty->isIntegerTy() ||
554 Ty->isLabelTy() || Ty->isMetadataTy() || Ty->isVoidTy() ||
555 Ty->isTokenTy())
556 return;
557
558 // If we already defined this type, we don't need to define it again.
559 if (DefinedTypes.find(Ty) != DefinedTypes.end())
560 return;
561
562 // Everything below needs the name for the type so get it now.
563 std::string typeName(getCppName(Ty));
564
565 // Print the type definition
566 switch (Ty->getTypeID()) {
567 case Type::FunctionTyID: {
568 FunctionType* FT = cast<FunctionType>(Ty);
569 Out << "std::vector<Type*>" << typeName << "_args;";
570 nl(Out);
571 FunctionType::param_iterator PI = FT->param_begin();
572 FunctionType::param_iterator PE = FT->param_end();
573 for (; PI != PE; ++PI) {
574 Type* argTy = static_cast<Type*>(*PI);
575 printType(argTy);
576 std::string argName(getCppName(argTy));
577 Out << typeName << "_args.push_back(" << argName;
578 Out << ");";
579 nl(Out);
580 }
581 printType(FT->getReturnType());
582 std::string retTypeName(getCppName(FT->getReturnType()));
583 Out << "FunctionType* " << typeName << " = FunctionType::get(";
584 in(); nl(Out) << "/*Result=*/" << retTypeName;
585 Out << ",";
586 nl(Out) << "/*Params=*/" << typeName << "_args,";
587 nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
588 out();
589 nl(Out);
590 break;
591 }
592 case Type::StructTyID: {
593 StructType* ST = cast<StructType>(Ty);
594 if (!ST->isLiteral()) {
595 Out << "StructType *" << typeName << " = mod->getTypeByName(\"";
596 printEscapedString(ST->getName());
597 Out << "\");";
598 nl(Out);
599 Out << "if (!" << typeName << ") {";
600 nl(Out);
601 Out << typeName << " = ";
602 Out << "StructType::create(mod->getContext(), \"";
603 printEscapedString(ST->getName());
604 Out << "\");";
605 nl(Out);
606 Out << "}";
607 nl(Out);
608 // Indicate that this type is now defined.
609 DefinedTypes.insert(Ty);
610 }
611
612 Out << "std::vector<Type*>" << typeName << "_fields;";
613 nl(Out);
614 StructType::element_iterator EI = ST->element_begin();
615 StructType::element_iterator EE = ST->element_end();
616 for (; EI != EE; ++EI) {
617 Type* fieldTy = static_cast<Type*>(*EI);
618 printType(fieldTy);
619 std::string fieldName(getCppName(fieldTy));
620 Out << typeName << "_fields.push_back(" << fieldName;
621 Out << ");";
622 nl(Out);
623 }
624
625 if (ST->isLiteral()) {
626 Out << "StructType *" << typeName << " = ";
627 Out << "StructType::get(" << "mod->getContext(), ";
628 } else {
629 Out << "if (" << typeName << "->isOpaque()) {";
630 nl(Out);
631 Out << typeName << "->setBody(";
632 }
633
634 Out << typeName << "_fields, /*isPacked=*/"
635 << (ST->isPacked() ? "true" : "false") << ");";
636 nl(Out);
637 if (!ST->isLiteral()) {
638 Out << "}";
639 nl(Out);
640 }
641 break;
642 }
643 case Type::ArrayTyID: {
644 ArrayType* AT = cast<ArrayType>(Ty);
645 Type* ET = AT->getElementType();
646 printType(ET);
647 if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
648 std::string elemName(getCppName(ET));
649 Out << "ArrayType* " << typeName << " = ArrayType::get("
650 << elemName << ", " << AT->getNumElements() << ");";
651 nl(Out);
652 }
653 break;
654 }
655 case Type::PointerTyID: {
656 PointerType* PT = cast<PointerType>(Ty);
657 Type* ET = PT->getElementType();
658 printType(ET);
659 if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
660 std::string elemName(getCppName(ET));
661 Out << "PointerType* " << typeName << " = PointerType::get("
662 << elemName << ", " << PT->getAddressSpace() << ");";
663 nl(Out);
664 }
665 break;
666 }
667 case Type::VectorTyID: {
668 VectorType* PT = cast<VectorType>(Ty);
669 Type* ET = PT->getElementType();
670 printType(ET);
671 if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
672 std::string elemName(getCppName(ET));
673 Out << "VectorType* " << typeName << " = VectorType::get("
674 << elemName << ", " << PT->getNumElements() << ");";
675 nl(Out);
676 }
677 break;
678 }
679 default:
680 error("Invalid TypeID");
681 }
682
683 // Indicate that this type is now defined.
684 DefinedTypes.insert(Ty);
685
686 // Finally, separate the type definition from other with a newline.
687 nl(Out);
688 }
689
printTypes(const Module * M)690 void CppWriter::printTypes(const Module* M) {
691 // Add all of the global variables to the value table.
692 for (Module::const_global_iterator I = TheModule->global_begin(),
693 E = TheModule->global_end(); I != E; ++I) {
694 if (I->hasInitializer())
695 printType(I->getInitializer()->getType());
696 printType(I->getType());
697 }
698
699 // Add all the functions to the table
700 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
701 FI != FE; ++FI) {
702 printType(FI->getReturnType());
703 printType(FI->getFunctionType());
704 // Add all the function arguments
705 for (Function::const_arg_iterator AI = FI->arg_begin(),
706 AE = FI->arg_end(); AI != AE; ++AI) {
707 printType(AI->getType());
708 }
709
710 // Add all of the basic blocks and instructions
711 for (Function::const_iterator BB = FI->begin(),
712 E = FI->end(); BB != E; ++BB) {
713 printType(BB->getType());
714 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
715 ++I) {
716 printType(I->getType());
717 for (unsigned i = 0; i < I->getNumOperands(); ++i)
718 printType(I->getOperand(i)->getType());
719 }
720 }
721 }
722 }
723
724
725 // printConstant - Print out a constant pool entry...
printConstant(const Constant * CV)726 void CppWriter::printConstant(const Constant *CV) {
727 // First, if the constant is actually a GlobalValue (variable or function)
728 // or its already in the constant list then we've printed it already and we
729 // can just return.
730 if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
731 return;
732
733 std::string constName(getCppName(CV));
734 std::string typeName(getCppName(CV->getType()));
735
736 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
737 std::string constValue = CI->getValue().toString(10, true);
738 Out << "ConstantInt* " << constName
739 << " = ConstantInt::get(mod->getContext(), APInt("
740 << cast<IntegerType>(CI->getType())->getBitWidth()
741 << ", StringRef(\"" << constValue << "\"), 10));";
742 } else if (isa<ConstantAggregateZero>(CV)) {
743 Out << "ConstantAggregateZero* " << constName
744 << " = ConstantAggregateZero::get(" << typeName << ");";
745 } else if (isa<ConstantPointerNull>(CV)) {
746 Out << "ConstantPointerNull* " << constName
747 << " = ConstantPointerNull::get(" << typeName << ");";
748 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
749 Out << "ConstantFP* " << constName << " = ";
750 printCFP(CFP);
751 Out << ";";
752 } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
753 Out << "std::vector<Constant*> " << constName << "_elems;";
754 nl(Out);
755 unsigned N = CA->getNumOperands();
756 for (unsigned i = 0; i < N; ++i) {
757 printConstant(CA->getOperand(i)); // recurse to print operands
758 Out << constName << "_elems.push_back("
759 << getCppName(CA->getOperand(i)) << ");";
760 nl(Out);
761 }
762 Out << "Constant* " << constName << " = ConstantArray::get("
763 << typeName << ", " << constName << "_elems);";
764 } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
765 Out << "std::vector<Constant*> " << constName << "_fields;";
766 nl(Out);
767 unsigned N = CS->getNumOperands();
768 for (unsigned i = 0; i < N; i++) {
769 printConstant(CS->getOperand(i));
770 Out << constName << "_fields.push_back("
771 << getCppName(CS->getOperand(i)) << ");";
772 nl(Out);
773 }
774 Out << "Constant* " << constName << " = ConstantStruct::get("
775 << typeName << ", " << constName << "_fields);";
776 } else if (const ConstantVector *CVec = dyn_cast<ConstantVector>(CV)) {
777 Out << "std::vector<Constant*> " << constName << "_elems;";
778 nl(Out);
779 unsigned N = CVec->getNumOperands();
780 for (unsigned i = 0; i < N; ++i) {
781 printConstant(CVec->getOperand(i));
782 Out << constName << "_elems.push_back("
783 << getCppName(CVec->getOperand(i)) << ");";
784 nl(Out);
785 }
786 Out << "Constant* " << constName << " = ConstantVector::get("
787 << typeName << ", " << constName << "_elems);";
788 } else if (isa<UndefValue>(CV)) {
789 Out << "UndefValue* " << constName << " = UndefValue::get("
790 << typeName << ");";
791 } else if (const ConstantDataSequential *CDS =
792 dyn_cast<ConstantDataSequential>(CV)) {
793 if (CDS->isString()) {
794 Out << "Constant *" << constName <<
795 " = ConstantDataArray::getString(mod->getContext(), \"";
796 StringRef Str = CDS->getAsString();
797 bool nullTerminate = false;
798 if (Str.back() == 0) {
799 Str = Str.drop_back();
800 nullTerminate = true;
801 }
802 printEscapedString(Str);
803 // Determine if we want null termination or not.
804 if (nullTerminate)
805 Out << "\", true);";
806 else
807 Out << "\", false);";// No null terminator
808 } else {
809 // TODO: Could generate more efficient code generating CDS calls instead.
810 Out << "std::vector<Constant*> " << constName << "_elems;";
811 nl(Out);
812 for (unsigned i = 0; i != CDS->getNumElements(); ++i) {
813 Constant *Elt = CDS->getElementAsConstant(i);
814 printConstant(Elt);
815 Out << constName << "_elems.push_back(" << getCppName(Elt) << ");";
816 nl(Out);
817 }
818 Out << "Constant* " << constName;
819
820 if (isa<ArrayType>(CDS->getType()))
821 Out << " = ConstantArray::get(";
822 else
823 Out << " = ConstantVector::get(";
824 Out << typeName << ", " << constName << "_elems);";
825 }
826 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
827 if (CE->getOpcode() == Instruction::GetElementPtr) {
828 Out << "std::vector<Constant*> " << constName << "_indices;";
829 nl(Out);
830 printConstant(CE->getOperand(0));
831 for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
832 printConstant(CE->getOperand(i));
833 Out << constName << "_indices.push_back("
834 << getCppName(CE->getOperand(i)) << ");";
835 nl(Out);
836 }
837 Out << "Constant* " << constName
838 << " = ConstantExpr::getGetElementPtr("
839 << getCppName(CE->getOperand(0)) << ", "
840 << constName << "_indices);";
841 } else if (CE->isCast()) {
842 printConstant(CE->getOperand(0));
843 Out << "Constant* " << constName << " = ConstantExpr::getCast(";
844 switch (CE->getOpcode()) {
845 default: llvm_unreachable("Invalid cast opcode");
846 case Instruction::Trunc: Out << "Instruction::Trunc"; break;
847 case Instruction::ZExt: Out << "Instruction::ZExt"; break;
848 case Instruction::SExt: Out << "Instruction::SExt"; break;
849 case Instruction::FPTrunc: Out << "Instruction::FPTrunc"; break;
850 case Instruction::FPExt: Out << "Instruction::FPExt"; break;
851 case Instruction::FPToUI: Out << "Instruction::FPToUI"; break;
852 case Instruction::FPToSI: Out << "Instruction::FPToSI"; break;
853 case Instruction::UIToFP: Out << "Instruction::UIToFP"; break;
854 case Instruction::SIToFP: Out << "Instruction::SIToFP"; break;
855 case Instruction::PtrToInt: Out << "Instruction::PtrToInt"; break;
856 case Instruction::IntToPtr: Out << "Instruction::IntToPtr"; break;
857 case Instruction::BitCast: Out << "Instruction::BitCast"; break;
858 }
859 Out << ", " << getCppName(CE->getOperand(0)) << ", "
860 << getCppName(CE->getType()) << ");";
861 } else {
862 unsigned N = CE->getNumOperands();
863 for (unsigned i = 0; i < N; ++i ) {
864 printConstant(CE->getOperand(i));
865 }
866 Out << "Constant* " << constName << " = ConstantExpr::";
867 switch (CE->getOpcode()) {
868 case Instruction::Add: Out << "getAdd("; break;
869 case Instruction::FAdd: Out << "getFAdd("; break;
870 case Instruction::Sub: Out << "getSub("; break;
871 case Instruction::FSub: Out << "getFSub("; break;
872 case Instruction::Mul: Out << "getMul("; break;
873 case Instruction::FMul: Out << "getFMul("; break;
874 case Instruction::UDiv: Out << "getUDiv("; break;
875 case Instruction::SDiv: Out << "getSDiv("; break;
876 case Instruction::FDiv: Out << "getFDiv("; break;
877 case Instruction::URem: Out << "getURem("; break;
878 case Instruction::SRem: Out << "getSRem("; break;
879 case Instruction::FRem: Out << "getFRem("; break;
880 case Instruction::And: Out << "getAnd("; break;
881 case Instruction::Or: Out << "getOr("; break;
882 case Instruction::Xor: Out << "getXor("; break;
883 case Instruction::ICmp:
884 Out << "getICmp(ICmpInst::ICMP_";
885 switch (CE->getPredicate()) {
886 case ICmpInst::ICMP_EQ: Out << "EQ"; break;
887 case ICmpInst::ICMP_NE: Out << "NE"; break;
888 case ICmpInst::ICMP_SLT: Out << "SLT"; break;
889 case ICmpInst::ICMP_ULT: Out << "ULT"; break;
890 case ICmpInst::ICMP_SGT: Out << "SGT"; break;
891 case ICmpInst::ICMP_UGT: Out << "UGT"; break;
892 case ICmpInst::ICMP_SLE: Out << "SLE"; break;
893 case ICmpInst::ICMP_ULE: Out << "ULE"; break;
894 case ICmpInst::ICMP_SGE: Out << "SGE"; break;
895 case ICmpInst::ICMP_UGE: Out << "UGE"; break;
896 default: error("Invalid ICmp Predicate");
897 }
898 break;
899 case Instruction::FCmp:
900 Out << "getFCmp(FCmpInst::FCMP_";
901 switch (CE->getPredicate()) {
902 case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
903 case FCmpInst::FCMP_ORD: Out << "ORD"; break;
904 case FCmpInst::FCMP_UNO: Out << "UNO"; break;
905 case FCmpInst::FCMP_OEQ: Out << "OEQ"; break;
906 case FCmpInst::FCMP_UEQ: Out << "UEQ"; break;
907 case FCmpInst::FCMP_ONE: Out << "ONE"; break;
908 case FCmpInst::FCMP_UNE: Out << "UNE"; break;
909 case FCmpInst::FCMP_OLT: Out << "OLT"; break;
910 case FCmpInst::FCMP_ULT: Out << "ULT"; break;
911 case FCmpInst::FCMP_OGT: Out << "OGT"; break;
912 case FCmpInst::FCMP_UGT: Out << "UGT"; break;
913 case FCmpInst::FCMP_OLE: Out << "OLE"; break;
914 case FCmpInst::FCMP_ULE: Out << "ULE"; break;
915 case FCmpInst::FCMP_OGE: Out << "OGE"; break;
916 case FCmpInst::FCMP_UGE: Out << "UGE"; break;
917 case FCmpInst::FCMP_TRUE: Out << "TRUE"; break;
918 default: error("Invalid FCmp Predicate");
919 }
920 break;
921 case Instruction::Shl: Out << "getShl("; break;
922 case Instruction::LShr: Out << "getLShr("; break;
923 case Instruction::AShr: Out << "getAShr("; break;
924 case Instruction::Select: Out << "getSelect("; break;
925 case Instruction::ExtractElement: Out << "getExtractElement("; break;
926 case Instruction::InsertElement: Out << "getInsertElement("; break;
927 case Instruction::ShuffleVector: Out << "getShuffleVector("; break;
928 default:
929 error("Invalid constant expression");
930 break;
931 }
932 Out << getCppName(CE->getOperand(0));
933 for (unsigned i = 1; i < CE->getNumOperands(); ++i)
934 Out << ", " << getCppName(CE->getOperand(i));
935 Out << ");";
936 }
937 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
938 Out << "Constant* " << constName << " = ";
939 Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");";
940 } else {
941 error("Bad Constant");
942 Out << "Constant* " << constName << " = 0; ";
943 }
944 nl(Out);
945 }
946
printConstants(const Module * M)947 void CppWriter::printConstants(const Module* M) {
948 // Traverse all the global variables looking for constant initializers
949 for (Module::const_global_iterator I = TheModule->global_begin(),
950 E = TheModule->global_end(); I != E; ++I)
951 if (I->hasInitializer())
952 printConstant(I->getInitializer());
953
954 // Traverse the LLVM functions looking for constants
955 for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
956 FI != FE; ++FI) {
957 // Add all of the basic blocks and instructions
958 for (Function::const_iterator BB = FI->begin(),
959 E = FI->end(); BB != E; ++BB) {
960 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
961 ++I) {
962 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
963 if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
964 printConstant(C);
965 }
966 }
967 }
968 }
969 }
970 }
971
printVariableUses(const GlobalVariable * GV)972 void CppWriter::printVariableUses(const GlobalVariable *GV) {
973 nl(Out) << "// Type Definitions";
974 nl(Out);
975 printType(GV->getType());
976 if (GV->hasInitializer()) {
977 const Constant *Init = GV->getInitializer();
978 printType(Init->getType());
979 if (const Function *F = dyn_cast<Function>(Init)) {
980 nl(Out)<< "/ Function Declarations"; nl(Out);
981 printFunctionHead(F);
982 } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
983 nl(Out) << "// Global Variable Declarations"; nl(Out);
984 printVariableHead(gv);
985
986 nl(Out) << "// Global Variable Definitions"; nl(Out);
987 printVariableBody(gv);
988 } else {
989 nl(Out) << "// Constant Definitions"; nl(Out);
990 printConstant(Init);
991 }
992 }
993 }
994
printVariableHead(const GlobalVariable * GV)995 void CppWriter::printVariableHead(const GlobalVariable *GV) {
996 nl(Out) << "GlobalVariable* " << getCppName(GV);
997 if (is_inline) {
998 Out << " = mod->getGlobalVariable(mod->getContext(), ";
999 printEscapedString(GV->getName());
1000 Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
1001 nl(Out) << "if (!" << getCppName(GV) << ") {";
1002 in(); nl(Out) << getCppName(GV);
1003 }
1004 Out << " = new GlobalVariable(/*Module=*/*mod, ";
1005 nl(Out) << "/*Type=*/";
1006 printCppName(GV->getType()->getElementType());
1007 Out << ",";
1008 nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
1009 Out << ",";
1010 nl(Out) << "/*Linkage=*/";
1011 printLinkageType(GV->getLinkage());
1012 Out << ",";
1013 nl(Out) << "/*Initializer=*/0, ";
1014 if (GV->hasInitializer()) {
1015 Out << "// has initializer, specified below";
1016 }
1017 nl(Out) << "/*Name=*/\"";
1018 printEscapedString(GV->getName());
1019 Out << "\");";
1020 nl(Out);
1021
1022 if (GV->hasSection()) {
1023 printCppName(GV);
1024 Out << "->setSection(\"";
1025 printEscapedString(GV->getSection());
1026 Out << "\");";
1027 nl(Out);
1028 }
1029 if (GV->getAlignment()) {
1030 printCppName(GV);
1031 Out << "->setAlignment(" << GV->getAlignment() << ");";
1032 nl(Out);
1033 }
1034 if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
1035 printCppName(GV);
1036 Out << "->setVisibility(";
1037 printVisibilityType(GV->getVisibility());
1038 Out << ");";
1039 nl(Out);
1040 }
1041 if (GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) {
1042 printCppName(GV);
1043 Out << "->setDLLStorageClass(";
1044 printDLLStorageClassType(GV->getDLLStorageClass());
1045 Out << ");";
1046 nl(Out);
1047 }
1048 if (GV->isThreadLocal()) {
1049 printCppName(GV);
1050 Out << "->setThreadLocalMode(";
1051 printThreadLocalMode(GV->getThreadLocalMode());
1052 Out << ");";
1053 nl(Out);
1054 }
1055 if (is_inline) {
1056 out(); Out << "}"; nl(Out);
1057 }
1058 }
1059
printVariableBody(const GlobalVariable * GV)1060 void CppWriter::printVariableBody(const GlobalVariable *GV) {
1061 if (GV->hasInitializer()) {
1062 printCppName(GV);
1063 Out << "->setInitializer(";
1064 Out << getCppName(GV->getInitializer()) << ");";
1065 nl(Out);
1066 }
1067 }
1068
getOpName(const Value * V)1069 std::string CppWriter::getOpName(const Value* V) {
1070 if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
1071 return getCppName(V);
1072
1073 // See if its alread in the map of forward references, if so just return the
1074 // name we already set up for it
1075 ForwardRefMap::const_iterator I = ForwardRefs.find(V);
1076 if (I != ForwardRefs.end())
1077 return I->second;
1078
1079 // This is a new forward reference. Generate a unique name for it
1080 std::string result(std::string("fwdref_") + utostr(uniqueNum++));
1081
1082 // Yes, this is a hack. An Argument is the smallest instantiable value that
1083 // we can make as a placeholder for the real value. We'll replace these
1084 // Argument instances later.
1085 Out << "Argument* " << result << " = new Argument("
1086 << getCppName(V->getType()) << ");";
1087 nl(Out);
1088 ForwardRefs[V] = result;
1089 return result;
1090 }
1091
ConvertAtomicOrdering(AtomicOrdering Ordering)1092 static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering) {
1093 switch (Ordering) {
1094 case NotAtomic: return "NotAtomic";
1095 case Unordered: return "Unordered";
1096 case Monotonic: return "Monotonic";
1097 case Acquire: return "Acquire";
1098 case Release: return "Release";
1099 case AcquireRelease: return "AcquireRelease";
1100 case SequentiallyConsistent: return "SequentiallyConsistent";
1101 }
1102 llvm_unreachable("Unknown ordering");
1103 }
1104
ConvertAtomicSynchScope(SynchronizationScope SynchScope)1105 static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope) {
1106 switch (SynchScope) {
1107 case SingleThread: return "SingleThread";
1108 case CrossThread: return "CrossThread";
1109 }
1110 llvm_unreachable("Unknown synch scope");
1111 }
1112
1113 // printInstruction - This member is called for each Instruction in a function.
printInstruction(const Instruction * I,const std::string & bbname)1114 void CppWriter::printInstruction(const Instruction *I,
1115 const std::string& bbname) {
1116 std::string iName(getCppName(I));
1117
1118 // Before we emit this instruction, we need to take care of generating any
1119 // forward references. So, we get the names of all the operands in advance
1120 const unsigned Ops(I->getNumOperands());
1121 std::string* opNames = new std::string[Ops];
1122 for (unsigned i = 0; i < Ops; i++)
1123 opNames[i] = getOpName(I->getOperand(i));
1124
1125 switch (I->getOpcode()) {
1126 default:
1127 error("Invalid instruction");
1128 break;
1129
1130 case Instruction::Ret: {
1131 const ReturnInst* ret = cast<ReturnInst>(I);
1132 Out << "ReturnInst::Create(mod->getContext(), "
1133 << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
1134 break;
1135 }
1136 case Instruction::Br: {
1137 const BranchInst* br = cast<BranchInst>(I);
1138 Out << "BranchInst::Create(" ;
1139 if (br->getNumOperands() == 3) {
1140 Out << opNames[2] << ", "
1141 << opNames[1] << ", "
1142 << opNames[0] << ", ";
1143
1144 } else if (br->getNumOperands() == 1) {
1145 Out << opNames[0] << ", ";
1146 } else {
1147 error("Branch with 2 operands?");
1148 }
1149 Out << bbname << ");";
1150 break;
1151 }
1152 case Instruction::Switch: {
1153 const SwitchInst *SI = cast<SwitchInst>(I);
1154 Out << "SwitchInst* " << iName << " = SwitchInst::Create("
1155 << getOpName(SI->getCondition()) << ", "
1156 << getOpName(SI->getDefaultDest()) << ", "
1157 << SI->getNumCases() << ", " << bbname << ");";
1158 nl(Out);
1159 for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end();
1160 i != e; ++i) {
1161 const ConstantInt* CaseVal = i.getCaseValue();
1162 const BasicBlock *BB = i.getCaseSuccessor();
1163 Out << iName << "->addCase("
1164 << getOpName(CaseVal) << ", "
1165 << getOpName(BB) << ");";
1166 nl(Out);
1167 }
1168 break;
1169 }
1170 case Instruction::IndirectBr: {
1171 const IndirectBrInst *IBI = cast<IndirectBrInst>(I);
1172 Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create("
1173 << opNames[0] << ", " << IBI->getNumDestinations() << ");";
1174 nl(Out);
1175 for (unsigned i = 1; i != IBI->getNumOperands(); ++i) {
1176 Out << iName << "->addDestination(" << opNames[i] << ");";
1177 nl(Out);
1178 }
1179 break;
1180 }
1181 case Instruction::Resume: {
1182 Out << "ResumeInst::Create(" << opNames[0] << ", " << bbname << ");";
1183 break;
1184 }
1185 case Instruction::Invoke: {
1186 const InvokeInst* inv = cast<InvokeInst>(I);
1187 Out << "std::vector<Value*> " << iName << "_params;";
1188 nl(Out);
1189 for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) {
1190 Out << iName << "_params.push_back("
1191 << getOpName(inv->getArgOperand(i)) << ");";
1192 nl(Out);
1193 }
1194 // FIXME: This shouldn't use magic numbers -3, -2, and -1.
1195 Out << "InvokeInst *" << iName << " = InvokeInst::Create("
1196 << getOpName(inv->getCalledValue()) << ", "
1197 << getOpName(inv->getNormalDest()) << ", "
1198 << getOpName(inv->getUnwindDest()) << ", "
1199 << iName << "_params, \"";
1200 printEscapedString(inv->getName());
1201 Out << "\", " << bbname << ");";
1202 nl(Out) << iName << "->setCallingConv(";
1203 printCallingConv(inv->getCallingConv());
1204 Out << ");";
1205 printAttributes(inv->getAttributes(), iName);
1206 Out << iName << "->setAttributes(" << iName << "_PAL);";
1207 nl(Out);
1208 break;
1209 }
1210 case Instruction::Unreachable: {
1211 Out << "new UnreachableInst("
1212 << "mod->getContext(), "
1213 << bbname << ");";
1214 break;
1215 }
1216 case Instruction::Add:
1217 case Instruction::FAdd:
1218 case Instruction::Sub:
1219 case Instruction::FSub:
1220 case Instruction::Mul:
1221 case Instruction::FMul:
1222 case Instruction::UDiv:
1223 case Instruction::SDiv:
1224 case Instruction::FDiv:
1225 case Instruction::URem:
1226 case Instruction::SRem:
1227 case Instruction::FRem:
1228 case Instruction::And:
1229 case Instruction::Or:
1230 case Instruction::Xor:
1231 case Instruction::Shl:
1232 case Instruction::LShr:
1233 case Instruction::AShr:{
1234 Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
1235 switch (I->getOpcode()) {
1236 case Instruction::Add: Out << "Instruction::Add"; break;
1237 case Instruction::FAdd: Out << "Instruction::FAdd"; break;
1238 case Instruction::Sub: Out << "Instruction::Sub"; break;
1239 case Instruction::FSub: Out << "Instruction::FSub"; break;
1240 case Instruction::Mul: Out << "Instruction::Mul"; break;
1241 case Instruction::FMul: Out << "Instruction::FMul"; break;
1242 case Instruction::UDiv:Out << "Instruction::UDiv"; break;
1243 case Instruction::SDiv:Out << "Instruction::SDiv"; break;
1244 case Instruction::FDiv:Out << "Instruction::FDiv"; break;
1245 case Instruction::URem:Out << "Instruction::URem"; break;
1246 case Instruction::SRem:Out << "Instruction::SRem"; break;
1247 case Instruction::FRem:Out << "Instruction::FRem"; break;
1248 case Instruction::And: Out << "Instruction::And"; break;
1249 case Instruction::Or: Out << "Instruction::Or"; break;
1250 case Instruction::Xor: Out << "Instruction::Xor"; break;
1251 case Instruction::Shl: Out << "Instruction::Shl"; break;
1252 case Instruction::LShr:Out << "Instruction::LShr"; break;
1253 case Instruction::AShr:Out << "Instruction::AShr"; break;
1254 default: Out << "Instruction::BadOpCode"; break;
1255 }
1256 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1257 printEscapedString(I->getName());
1258 Out << "\", " << bbname << ");";
1259 break;
1260 }
1261 case Instruction::FCmp: {
1262 Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
1263 switch (cast<FCmpInst>(I)->getPredicate()) {
1264 case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
1265 case FCmpInst::FCMP_OEQ : Out << "FCmpInst::FCMP_OEQ"; break;
1266 case FCmpInst::FCMP_OGT : Out << "FCmpInst::FCMP_OGT"; break;
1267 case FCmpInst::FCMP_OGE : Out << "FCmpInst::FCMP_OGE"; break;
1268 case FCmpInst::FCMP_OLT : Out << "FCmpInst::FCMP_OLT"; break;
1269 case FCmpInst::FCMP_OLE : Out << "FCmpInst::FCMP_OLE"; break;
1270 case FCmpInst::FCMP_ONE : Out << "FCmpInst::FCMP_ONE"; break;
1271 case FCmpInst::FCMP_ORD : Out << "FCmpInst::FCMP_ORD"; break;
1272 case FCmpInst::FCMP_UNO : Out << "FCmpInst::FCMP_UNO"; break;
1273 case FCmpInst::FCMP_UEQ : Out << "FCmpInst::FCMP_UEQ"; break;
1274 case FCmpInst::FCMP_UGT : Out << "FCmpInst::FCMP_UGT"; break;
1275 case FCmpInst::FCMP_UGE : Out << "FCmpInst::FCMP_UGE"; break;
1276 case FCmpInst::FCMP_ULT : Out << "FCmpInst::FCMP_ULT"; break;
1277 case FCmpInst::FCMP_ULE : Out << "FCmpInst::FCMP_ULE"; break;
1278 case FCmpInst::FCMP_UNE : Out << "FCmpInst::FCMP_UNE"; break;
1279 case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
1280 default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
1281 }
1282 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1283 printEscapedString(I->getName());
1284 Out << "\");";
1285 break;
1286 }
1287 case Instruction::ICmp: {
1288 Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
1289 switch (cast<ICmpInst>(I)->getPredicate()) {
1290 case ICmpInst::ICMP_EQ: Out << "ICmpInst::ICMP_EQ"; break;
1291 case ICmpInst::ICMP_NE: Out << "ICmpInst::ICMP_NE"; break;
1292 case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
1293 case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
1294 case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
1295 case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
1296 case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
1297 case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
1298 case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
1299 case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
1300 default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
1301 }
1302 Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1303 printEscapedString(I->getName());
1304 Out << "\");";
1305 break;
1306 }
1307 case Instruction::Alloca: {
1308 const AllocaInst* allocaI = cast<AllocaInst>(I);
1309 Out << "AllocaInst* " << iName << " = new AllocaInst("
1310 << getCppName(allocaI->getAllocatedType()) << ", ";
1311 if (allocaI->isArrayAllocation())
1312 Out << opNames[0] << ", ";
1313 Out << "\"";
1314 printEscapedString(allocaI->getName());
1315 Out << "\", " << bbname << ");";
1316 if (allocaI->getAlignment())
1317 nl(Out) << iName << "->setAlignment("
1318 << allocaI->getAlignment() << ");";
1319 break;
1320 }
1321 case Instruction::Load: {
1322 const LoadInst* load = cast<LoadInst>(I);
1323 Out << "LoadInst* " << iName << " = new LoadInst("
1324 << opNames[0] << ", \"";
1325 printEscapedString(load->getName());
1326 Out << "\", " << (load->isVolatile() ? "true" : "false" )
1327 << ", " << bbname << ");";
1328 if (load->getAlignment())
1329 nl(Out) << iName << "->setAlignment("
1330 << load->getAlignment() << ");";
1331 if (load->isAtomic()) {
1332 StringRef Ordering = ConvertAtomicOrdering(load->getOrdering());
1333 StringRef CrossThread = ConvertAtomicSynchScope(load->getSynchScope());
1334 nl(Out) << iName << "->setAtomic("
1335 << Ordering << ", " << CrossThread << ");";
1336 }
1337 break;
1338 }
1339 case Instruction::Store: {
1340 const StoreInst* store = cast<StoreInst>(I);
1341 Out << "StoreInst* " << iName << " = new StoreInst("
1342 << opNames[0] << ", "
1343 << opNames[1] << ", "
1344 << (store->isVolatile() ? "true" : "false")
1345 << ", " << bbname << ");";
1346 if (store->getAlignment())
1347 nl(Out) << iName << "->setAlignment("
1348 << store->getAlignment() << ");";
1349 if (store->isAtomic()) {
1350 StringRef Ordering = ConvertAtomicOrdering(store->getOrdering());
1351 StringRef CrossThread = ConvertAtomicSynchScope(store->getSynchScope());
1352 nl(Out) << iName << "->setAtomic("
1353 << Ordering << ", " << CrossThread << ");";
1354 }
1355 break;
1356 }
1357 case Instruction::GetElementPtr: {
1358 const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
1359 Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
1360 << getCppName(gep->getSourceElementType()) << ", " << opNames[0] << ", {";
1361 in();
1362 for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
1363 if (i != 1) {
1364 Out << ", ";
1365 }
1366 nl(Out);
1367 Out << opNames[i];
1368 }
1369 out();
1370 nl(Out) << "}, \"";
1371 printEscapedString(gep->getName());
1372 Out << "\", " << bbname << ");";
1373 break;
1374 }
1375 case Instruction::PHI: {
1376 const PHINode* phi = cast<PHINode>(I);
1377
1378 Out << "PHINode* " << iName << " = PHINode::Create("
1379 << getCppName(phi->getType()) << ", "
1380 << phi->getNumIncomingValues() << ", \"";
1381 printEscapedString(phi->getName());
1382 Out << "\", " << bbname << ");";
1383 nl(Out);
1384 for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
1385 Out << iName << "->addIncoming("
1386 << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", "
1387 << getOpName(phi->getIncomingBlock(i)) << ");";
1388 nl(Out);
1389 }
1390 break;
1391 }
1392 case Instruction::Trunc:
1393 case Instruction::ZExt:
1394 case Instruction::SExt:
1395 case Instruction::FPTrunc:
1396 case Instruction::FPExt:
1397 case Instruction::FPToUI:
1398 case Instruction::FPToSI:
1399 case Instruction::UIToFP:
1400 case Instruction::SIToFP:
1401 case Instruction::PtrToInt:
1402 case Instruction::IntToPtr:
1403 case Instruction::BitCast: {
1404 const CastInst* cst = cast<CastInst>(I);
1405 Out << "CastInst* " << iName << " = new ";
1406 switch (I->getOpcode()) {
1407 case Instruction::Trunc: Out << "TruncInst"; break;
1408 case Instruction::ZExt: Out << "ZExtInst"; break;
1409 case Instruction::SExt: Out << "SExtInst"; break;
1410 case Instruction::FPTrunc: Out << "FPTruncInst"; break;
1411 case Instruction::FPExt: Out << "FPExtInst"; break;
1412 case Instruction::FPToUI: Out << "FPToUIInst"; break;
1413 case Instruction::FPToSI: Out << "FPToSIInst"; break;
1414 case Instruction::UIToFP: Out << "UIToFPInst"; break;
1415 case Instruction::SIToFP: Out << "SIToFPInst"; break;
1416 case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
1417 case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
1418 case Instruction::BitCast: Out << "BitCastInst"; break;
1419 default: llvm_unreachable("Unreachable");
1420 }
1421 Out << "(" << opNames[0] << ", "
1422 << getCppName(cst->getType()) << ", \"";
1423 printEscapedString(cst->getName());
1424 Out << "\", " << bbname << ");";
1425 break;
1426 }
1427 case Instruction::Call: {
1428 const CallInst* call = cast<CallInst>(I);
1429 if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
1430 Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
1431 << getCppName(ila->getFunctionType()) << ", \""
1432 << ila->getAsmString() << "\", \""
1433 << ila->getConstraintString() << "\","
1434 << (ila->hasSideEffects() ? "true" : "false") << ");";
1435 nl(Out);
1436 }
1437 if (call->getNumArgOperands() > 1) {
1438 Out << "std::vector<Value*> " << iName << "_params;";
1439 nl(Out);
1440 for (unsigned i = 0; i < call->getNumArgOperands(); ++i) {
1441 Out << iName << "_params.push_back(" << opNames[i] << ");";
1442 nl(Out);
1443 }
1444 Out << "CallInst* " << iName << " = CallInst::Create("
1445 << opNames[call->getNumArgOperands()] << ", "
1446 << iName << "_params, \"";
1447 } else if (call->getNumArgOperands() == 1) {
1448 Out << "CallInst* " << iName << " = CallInst::Create("
1449 << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \"";
1450 } else {
1451 Out << "CallInst* " << iName << " = CallInst::Create("
1452 << opNames[call->getNumArgOperands()] << ", \"";
1453 }
1454 printEscapedString(call->getName());
1455 Out << "\", " << bbname << ");";
1456 nl(Out) << iName << "->setCallingConv(";
1457 printCallingConv(call->getCallingConv());
1458 Out << ");";
1459 nl(Out) << iName << "->setTailCall("
1460 << (call->isTailCall() ? "true" : "false");
1461 Out << ");";
1462 nl(Out);
1463 printAttributes(call->getAttributes(), iName);
1464 Out << iName << "->setAttributes(" << iName << "_PAL);";
1465 nl(Out);
1466 break;
1467 }
1468 case Instruction::Select: {
1469 const SelectInst* sel = cast<SelectInst>(I);
1470 Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
1471 Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1472 printEscapedString(sel->getName());
1473 Out << "\", " << bbname << ");";
1474 break;
1475 }
1476 case Instruction::UserOp1:
1477 /// FALL THROUGH
1478 case Instruction::UserOp2: {
1479 /// FIXME: What should be done here?
1480 break;
1481 }
1482 case Instruction::VAArg: {
1483 const VAArgInst* va = cast<VAArgInst>(I);
1484 Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
1485 << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
1486 printEscapedString(va->getName());
1487 Out << "\", " << bbname << ");";
1488 break;
1489 }
1490 case Instruction::ExtractElement: {
1491 const ExtractElementInst* eei = cast<ExtractElementInst>(I);
1492 Out << "ExtractElementInst* " << getCppName(eei)
1493 << " = new ExtractElementInst(" << opNames[0]
1494 << ", " << opNames[1] << ", \"";
1495 printEscapedString(eei->getName());
1496 Out << "\", " << bbname << ");";
1497 break;
1498 }
1499 case Instruction::InsertElement: {
1500 const InsertElementInst* iei = cast<InsertElementInst>(I);
1501 Out << "InsertElementInst* " << getCppName(iei)
1502 << " = InsertElementInst::Create(" << opNames[0]
1503 << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1504 printEscapedString(iei->getName());
1505 Out << "\", " << bbname << ");";
1506 break;
1507 }
1508 case Instruction::ShuffleVector: {
1509 const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
1510 Out << "ShuffleVectorInst* " << getCppName(svi)
1511 << " = new ShuffleVectorInst(" << opNames[0]
1512 << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1513 printEscapedString(svi->getName());
1514 Out << "\", " << bbname << ");";
1515 break;
1516 }
1517 case Instruction::ExtractValue: {
1518 const ExtractValueInst *evi = cast<ExtractValueInst>(I);
1519 Out << "std::vector<unsigned> " << iName << "_indices;";
1520 nl(Out);
1521 for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
1522 Out << iName << "_indices.push_back("
1523 << evi->idx_begin()[i] << ");";
1524 nl(Out);
1525 }
1526 Out << "ExtractValueInst* " << getCppName(evi)
1527 << " = ExtractValueInst::Create(" << opNames[0]
1528 << ", "
1529 << iName << "_indices, \"";
1530 printEscapedString(evi->getName());
1531 Out << "\", " << bbname << ");";
1532 break;
1533 }
1534 case Instruction::InsertValue: {
1535 const InsertValueInst *ivi = cast<InsertValueInst>(I);
1536 Out << "std::vector<unsigned> " << iName << "_indices;";
1537 nl(Out);
1538 for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
1539 Out << iName << "_indices.push_back("
1540 << ivi->idx_begin()[i] << ");";
1541 nl(Out);
1542 }
1543 Out << "InsertValueInst* " << getCppName(ivi)
1544 << " = InsertValueInst::Create(" << opNames[0]
1545 << ", " << opNames[1] << ", "
1546 << iName << "_indices, \"";
1547 printEscapedString(ivi->getName());
1548 Out << "\", " << bbname << ");";
1549 break;
1550 }
1551 case Instruction::Fence: {
1552 const FenceInst *fi = cast<FenceInst>(I);
1553 StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering());
1554 StringRef CrossThread = ConvertAtomicSynchScope(fi->getSynchScope());
1555 Out << "FenceInst* " << iName
1556 << " = new FenceInst(mod->getContext(), "
1557 << Ordering << ", " << CrossThread << ", " << bbname
1558 << ");";
1559 break;
1560 }
1561 case Instruction::AtomicCmpXchg: {
1562 const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I);
1563 StringRef SuccessOrdering =
1564 ConvertAtomicOrdering(cxi->getSuccessOrdering());
1565 StringRef FailureOrdering =
1566 ConvertAtomicOrdering(cxi->getFailureOrdering());
1567 StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope());
1568 Out << "AtomicCmpXchgInst* " << iName
1569 << " = new AtomicCmpXchgInst("
1570 << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", "
1571 << SuccessOrdering << ", " << FailureOrdering << ", "
1572 << CrossThread << ", " << bbname
1573 << ");";
1574 nl(Out) << iName << "->setName(\"";
1575 printEscapedString(cxi->getName());
1576 Out << "\");";
1577 nl(Out) << iName << "->setVolatile("
1578 << (cxi->isVolatile() ? "true" : "false") << ");";
1579 nl(Out) << iName << "->setWeak("
1580 << (cxi->isWeak() ? "true" : "false") << ");";
1581 break;
1582 }
1583 case Instruction::AtomicRMW: {
1584 const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I);
1585 StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering());
1586 StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope());
1587 StringRef Operation;
1588 switch (rmwi->getOperation()) {
1589 case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break;
1590 case AtomicRMWInst::Add: Operation = "AtomicRMWInst::Add"; break;
1591 case AtomicRMWInst::Sub: Operation = "AtomicRMWInst::Sub"; break;
1592 case AtomicRMWInst::And: Operation = "AtomicRMWInst::And"; break;
1593 case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break;
1594 case AtomicRMWInst::Or: Operation = "AtomicRMWInst::Or"; break;
1595 case AtomicRMWInst::Xor: Operation = "AtomicRMWInst::Xor"; break;
1596 case AtomicRMWInst::Max: Operation = "AtomicRMWInst::Max"; break;
1597 case AtomicRMWInst::Min: Operation = "AtomicRMWInst::Min"; break;
1598 case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break;
1599 case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break;
1600 case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation");
1601 }
1602 Out << "AtomicRMWInst* " << iName
1603 << " = new AtomicRMWInst("
1604 << Operation << ", "
1605 << opNames[0] << ", " << opNames[1] << ", "
1606 << Ordering << ", " << CrossThread << ", " << bbname
1607 << ");";
1608 nl(Out) << iName << "->setName(\"";
1609 printEscapedString(rmwi->getName());
1610 Out << "\");";
1611 nl(Out) << iName << "->setVolatile("
1612 << (rmwi->isVolatile() ? "true" : "false") << ");";
1613 break;
1614 }
1615 case Instruction::LandingPad: {
1616 const LandingPadInst *lpi = cast<LandingPadInst>(I);
1617 Out << "LandingPadInst* " << iName << " = LandingPadInst::Create(";
1618 printCppName(lpi->getType());
1619 Out << ", " << opNames[0] << ", " << lpi->getNumClauses() << ", \"";
1620 printEscapedString(lpi->getName());
1621 Out << "\", " << bbname << ");";
1622 nl(Out) << iName << "->setCleanup("
1623 << (lpi->isCleanup() ? "true" : "false")
1624 << ");";
1625 for (unsigned i = 0, e = lpi->getNumClauses(); i != e; ++i)
1626 nl(Out) << iName << "->addClause(" << opNames[i+1] << ");";
1627 break;
1628 }
1629 }
1630 DefinedValues.insert(I);
1631 nl(Out);
1632 delete [] opNames;
1633 }
1634
1635 // Print out the types, constants and declarations needed by one function
printFunctionUses(const Function * F)1636 void CppWriter::printFunctionUses(const Function* F) {
1637 nl(Out) << "// Type Definitions"; nl(Out);
1638 if (!is_inline) {
1639 // Print the function's return type
1640 printType(F->getReturnType());
1641
1642 // Print the function's function type
1643 printType(F->getFunctionType());
1644
1645 // Print the types of each of the function's arguments
1646 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1647 AI != AE; ++AI) {
1648 printType(AI->getType());
1649 }
1650 }
1651
1652 // Print type definitions for every type referenced by an instruction and
1653 // make a note of any global values or constants that are referenced
1654 SmallPtrSet<GlobalValue*,64> gvs;
1655 SmallPtrSet<Constant*,64> consts;
1656 for (Function::const_iterator BB = F->begin(), BE = F->end();
1657 BB != BE; ++BB){
1658 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1659 I != E; ++I) {
1660 // Print the type of the instruction itself
1661 printType(I->getType());
1662
1663 // Print the type of each of the instruction's operands
1664 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1665 Value* operand = I->getOperand(i);
1666 printType(operand->getType());
1667
1668 // If the operand references a GVal or Constant, make a note of it
1669 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1670 gvs.insert(GV);
1671 if (GenerationType != GenFunction)
1672 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1673 if (GVar->hasInitializer())
1674 consts.insert(GVar->getInitializer());
1675 } else if (Constant* C = dyn_cast<Constant>(operand)) {
1676 consts.insert(C);
1677 for (Value* operand : C->operands()) {
1678 // If the operand references a GVal or Constant, make a note of it
1679 printType(operand->getType());
1680 if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1681 gvs.insert(GV);
1682 if (GenerationType != GenFunction)
1683 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1684 if (GVar->hasInitializer())
1685 consts.insert(GVar->getInitializer());
1686 }
1687 }
1688 }
1689 }
1690 }
1691 }
1692
1693 // Print the function declarations for any functions encountered
1694 nl(Out) << "// Function Declarations"; nl(Out);
1695 for (auto *GV : gvs) {
1696 if (Function *Fun = dyn_cast<Function>(GV)) {
1697 if (!is_inline || Fun != F)
1698 printFunctionHead(Fun);
1699 }
1700 }
1701
1702 // Print the global variable declarations for any variables encountered
1703 nl(Out) << "// Global Variable Declarations"; nl(Out);
1704 for (auto *GV : gvs) {
1705 if (GlobalVariable *F = dyn_cast<GlobalVariable>(GV))
1706 printVariableHead(F);
1707 }
1708
1709 // Print the constants found
1710 nl(Out) << "// Constant Definitions"; nl(Out);
1711 for (const auto *C : consts) {
1712 printConstant(C);
1713 }
1714
1715 // Process the global variables definitions now that all the constants have
1716 // been emitted. These definitions just couple the gvars with their constant
1717 // initializers.
1718 if (GenerationType != GenFunction) {
1719 nl(Out) << "// Global Variable Definitions"; nl(Out);
1720 for (auto *GV : gvs) {
1721 if (GlobalVariable *Var = dyn_cast<GlobalVariable>(GV))
1722 printVariableBody(Var);
1723 }
1724 }
1725 }
1726
printFunctionHead(const Function * F)1727 void CppWriter::printFunctionHead(const Function* F) {
1728 nl(Out) << "Function* " << getCppName(F);
1729 Out << " = mod->getFunction(\"";
1730 printEscapedString(F->getName());
1731 Out << "\");";
1732 nl(Out) << "if (!" << getCppName(F) << ") {";
1733 nl(Out) << getCppName(F);
1734
1735 Out<< " = Function::Create(";
1736 nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
1737 nl(Out) << "/*Linkage=*/";
1738 printLinkageType(F->getLinkage());
1739 Out << ",";
1740 nl(Out) << "/*Name=*/\"";
1741 printEscapedString(F->getName());
1742 Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
1743 nl(Out,-1);
1744 printCppName(F);
1745 Out << "->setCallingConv(";
1746 printCallingConv(F->getCallingConv());
1747 Out << ");";
1748 nl(Out);
1749 if (F->hasSection()) {
1750 printCppName(F);
1751 Out << "->setSection(\"" << F->getSection() << "\");";
1752 nl(Out);
1753 }
1754 if (F->getAlignment()) {
1755 printCppName(F);
1756 Out << "->setAlignment(" << F->getAlignment() << ");";
1757 nl(Out);
1758 }
1759 if (F->getVisibility() != GlobalValue::DefaultVisibility) {
1760 printCppName(F);
1761 Out << "->setVisibility(";
1762 printVisibilityType(F->getVisibility());
1763 Out << ");";
1764 nl(Out);
1765 }
1766 if (F->getDLLStorageClass() != GlobalValue::DefaultStorageClass) {
1767 printCppName(F);
1768 Out << "->setDLLStorageClass(";
1769 printDLLStorageClassType(F->getDLLStorageClass());
1770 Out << ");";
1771 nl(Out);
1772 }
1773 if (F->hasGC()) {
1774 printCppName(F);
1775 Out << "->setGC(\"" << F->getGC() << "\");";
1776 nl(Out);
1777 }
1778 Out << "}";
1779 nl(Out);
1780 printAttributes(F->getAttributes(), getCppName(F));
1781 printCppName(F);
1782 Out << "->setAttributes(" << getCppName(F) << "_PAL);";
1783 nl(Out);
1784 }
1785
printFunctionBody(const Function * F)1786 void CppWriter::printFunctionBody(const Function *F) {
1787 if (F->isDeclaration())
1788 return; // external functions have no bodies.
1789
1790 // Clear the DefinedValues and ForwardRefs maps because we can't have
1791 // cross-function forward refs
1792 ForwardRefs.clear();
1793 DefinedValues.clear();
1794
1795 // Create all the argument values
1796 if (!is_inline) {
1797 if (!F->arg_empty()) {
1798 Out << "Function::arg_iterator args = " << getCppName(F)
1799 << "->arg_begin();";
1800 nl(Out);
1801 }
1802 for (const Argument &AI : F->args()) {
1803 Out << "Value* " << getCppName(&AI) << " = args++;";
1804 nl(Out);
1805 if (AI.hasName()) {
1806 Out << getCppName(&AI) << "->setName(\"";
1807 printEscapedString(AI.getName());
1808 Out << "\");";
1809 nl(Out);
1810 }
1811 }
1812 }
1813
1814 // Create all the basic blocks
1815 nl(Out);
1816 for (const BasicBlock &BI : *F) {
1817 std::string bbname(getCppName(&BI));
1818 Out << "BasicBlock* " << bbname <<
1819 " = BasicBlock::Create(mod->getContext(), \"";
1820 if (BI.hasName())
1821 printEscapedString(BI.getName());
1822 Out << "\"," << getCppName(BI.getParent()) << ",0);";
1823 nl(Out);
1824 }
1825
1826 // Output all of its basic blocks... for the function
1827 for (const BasicBlock &BI : *F) {
1828 std::string bbname(getCppName(&BI));
1829 nl(Out) << "// Block " << BI.getName() << " (" << bbname << ")";
1830 nl(Out);
1831
1832 // Output all of the instructions in the basic block...
1833 for (const Instruction &I : BI)
1834 printInstruction(&I, bbname);
1835 }
1836
1837 // Loop over the ForwardRefs and resolve them now that all instructions
1838 // are generated.
1839 if (!ForwardRefs.empty()) {
1840 nl(Out) << "// Resolve Forward References";
1841 nl(Out);
1842 }
1843
1844 while (!ForwardRefs.empty()) {
1845 ForwardRefMap::iterator I = ForwardRefs.begin();
1846 Out << I->second << "->replaceAllUsesWith("
1847 << getCppName(I->first) << "); delete " << I->second << ";";
1848 nl(Out);
1849 ForwardRefs.erase(I);
1850 }
1851 }
1852
printInline(const std::string & fname,const std::string & func)1853 void CppWriter::printInline(const std::string& fname,
1854 const std::string& func) {
1855 const Function* F = TheModule->getFunction(func);
1856 if (!F) {
1857 error(std::string("Function '") + func + "' not found in input module");
1858 return;
1859 }
1860 if (F->isDeclaration()) {
1861 error(std::string("Function '") + func + "' is external!");
1862 return;
1863 }
1864 nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
1865 << getCppName(F);
1866 unsigned arg_count = 1;
1867 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1868 AI != AE; ++AI) {
1869 Out << ", Value* arg_" << arg_count++;
1870 }
1871 Out << ") {";
1872 nl(Out);
1873 is_inline = true;
1874 printFunctionUses(F);
1875 printFunctionBody(F);
1876 is_inline = false;
1877 Out << "return " << getCppName(&F->front()) << ";";
1878 nl(Out) << "}";
1879 nl(Out);
1880 }
1881
printModuleBody()1882 void CppWriter::printModuleBody() {
1883 // Print out all the type definitions
1884 nl(Out) << "// Type Definitions"; nl(Out);
1885 printTypes(TheModule);
1886
1887 // Functions can call each other and global variables can reference them so
1888 // define all the functions first before emitting their function bodies.
1889 nl(Out) << "// Function Declarations"; nl(Out);
1890 for (const Function &I : *TheModule)
1891 printFunctionHead(&I);
1892
1893 // Process the global variables declarations. We can't initialze them until
1894 // after the constants are printed so just print a header for each global
1895 nl(Out) << "// Global Variable Declarations\n"; nl(Out);
1896 for (const GlobalVariable &I : TheModule->globals())
1897 printVariableHead(&I);
1898
1899 // Print out all the constants definitions. Constants don't recurse except
1900 // through GlobalValues. All GlobalValues have been declared at this point
1901 // so we can proceed to generate the constants.
1902 nl(Out) << "// Constant Definitions"; nl(Out);
1903 printConstants(TheModule);
1904
1905 // Process the global variables definitions now that all the constants have
1906 // been emitted. These definitions just couple the gvars with their constant
1907 // initializers.
1908 nl(Out) << "// Global Variable Definitions"; nl(Out);
1909 for (const GlobalVariable &I : TheModule->globals())
1910 printVariableBody(&I);
1911
1912 // Finally, we can safely put out all of the function bodies.
1913 nl(Out) << "// Function Definitions"; nl(Out);
1914 for (const Function &I : *TheModule) {
1915 if (!I.isDeclaration()) {
1916 nl(Out) << "// Function: " << I.getName() << " (" << getCppName(&I)
1917 << ")";
1918 nl(Out) << "{";
1919 nl(Out,1);
1920 printFunctionBody(&I);
1921 nl(Out,-1) << "}";
1922 nl(Out);
1923 }
1924 }
1925 }
1926
printProgram(const std::string & fname,const std::string & mName)1927 void CppWriter::printProgram(const std::string& fname,
1928 const std::string& mName) {
1929 Out << "#include <llvm/Pass.h>\n";
1930
1931 Out << "#include <llvm/ADT/SmallVector.h>\n";
1932 Out << "#include <llvm/Analysis/Verifier.h>\n";
1933 Out << "#include <llvm/IR/BasicBlock.h>\n";
1934 Out << "#include <llvm/IR/CallingConv.h>\n";
1935 Out << "#include <llvm/IR/Constants.h>\n";
1936 Out << "#include <llvm/IR/DerivedTypes.h>\n";
1937 Out << "#include <llvm/IR/Function.h>\n";
1938 Out << "#include <llvm/IR/GlobalVariable.h>\n";
1939 Out << "#include <llvm/IR/IRPrintingPasses.h>\n";
1940 Out << "#include <llvm/IR/InlineAsm.h>\n";
1941 Out << "#include <llvm/IR/Instructions.h>\n";
1942 Out << "#include <llvm/IR/LLVMContext.h>\n";
1943 Out << "#include <llvm/IR/LegacyPassManager.h>\n";
1944 Out << "#include <llvm/IR/Module.h>\n";
1945 Out << "#include <llvm/Support/FormattedStream.h>\n";
1946 Out << "#include <llvm/Support/MathExtras.h>\n";
1947 Out << "#include <algorithm>\n";
1948 Out << "using namespace llvm;\n\n";
1949 Out << "Module* " << fname << "();\n\n";
1950 Out << "int main(int argc, char**argv) {\n";
1951 Out << " Module* Mod = " << fname << "();\n";
1952 Out << " verifyModule(*Mod, PrintMessageAction);\n";
1953 Out << " PassManager PM;\n";
1954 Out << " PM.add(createPrintModulePass(&outs()));\n";
1955 Out << " PM.run(*Mod);\n";
1956 Out << " return 0;\n";
1957 Out << "}\n\n";
1958 printModule(fname,mName);
1959 }
1960
printModule(const std::string & fname,const std::string & mName)1961 void CppWriter::printModule(const std::string& fname,
1962 const std::string& mName) {
1963 nl(Out) << "Module* " << fname << "() {";
1964 nl(Out,1) << "// Module Construction";
1965 nl(Out) << "Module* mod = new Module(\"";
1966 printEscapedString(mName);
1967 Out << "\", getGlobalContext());";
1968 if (!TheModule->getTargetTriple().empty()) {
1969 nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayoutStr()
1970 << "\");";
1971 }
1972 if (!TheModule->getTargetTriple().empty()) {
1973 nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
1974 << "\");";
1975 }
1976
1977 if (!TheModule->getModuleInlineAsm().empty()) {
1978 nl(Out) << "mod->setModuleInlineAsm(\"";
1979 printEscapedString(TheModule->getModuleInlineAsm());
1980 Out << "\");";
1981 }
1982 nl(Out);
1983
1984 printModuleBody();
1985 nl(Out) << "return mod;";
1986 nl(Out,-1) << "}";
1987 nl(Out);
1988 }
1989
printContents(const std::string & fname,const std::string & mName)1990 void CppWriter::printContents(const std::string& fname,
1991 const std::string& mName) {
1992 Out << "\nModule* " << fname << "(Module *mod) {\n";
1993 Out << "\nmod->setModuleIdentifier(\"";
1994 printEscapedString(mName);
1995 Out << "\");\n";
1996 printModuleBody();
1997 Out << "\nreturn mod;\n";
1998 Out << "\n}\n";
1999 }
2000
printFunction(const std::string & fname,const std::string & funcName)2001 void CppWriter::printFunction(const std::string& fname,
2002 const std::string& funcName) {
2003 const Function* F = TheModule->getFunction(funcName);
2004 if (!F) {
2005 error(std::string("Function '") + funcName + "' not found in input module");
2006 return;
2007 }
2008 Out << "\nFunction* " << fname << "(Module *mod) {\n";
2009 printFunctionUses(F);
2010 printFunctionHead(F);
2011 printFunctionBody(F);
2012 Out << "return " << getCppName(F) << ";\n";
2013 Out << "}\n";
2014 }
2015
printFunctions()2016 void CppWriter::printFunctions() {
2017 const Module::FunctionListType &funcs = TheModule->getFunctionList();
2018 Module::const_iterator I = funcs.begin();
2019 Module::const_iterator IE = funcs.end();
2020
2021 for (; I != IE; ++I) {
2022 const Function &func = *I;
2023 if (!func.isDeclaration()) {
2024 std::string name("define_");
2025 name += func.getName();
2026 printFunction(name, func.getName());
2027 }
2028 }
2029 }
2030
printVariable(const std::string & fname,const std::string & varName)2031 void CppWriter::printVariable(const std::string& fname,
2032 const std::string& varName) {
2033 const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
2034
2035 if (!GV) {
2036 error(std::string("Variable '") + varName + "' not found in input module");
2037 return;
2038 }
2039 Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
2040 printVariableUses(GV);
2041 printVariableHead(GV);
2042 printVariableBody(GV);
2043 Out << "return " << getCppName(GV) << ";\n";
2044 Out << "}\n";
2045 }
2046
printType(const std::string & fname,const std::string & typeName)2047 void CppWriter::printType(const std::string &fname,
2048 const std::string &typeName) {
2049 Type* Ty = TheModule->getTypeByName(typeName);
2050 if (!Ty) {
2051 error(std::string("Type '") + typeName + "' not found in input module");
2052 return;
2053 }
2054 Out << "\nType* " << fname << "(Module *mod) {\n";
2055 printType(Ty);
2056 Out << "return " << getCppName(Ty) << ";\n";
2057 Out << "}\n";
2058 }
2059
runOnModule(Module & M)2060 bool CppWriter::runOnModule(Module &M) {
2061 TheModule = &M;
2062
2063 // Emit a header
2064 Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
2065
2066 // Get the name of the function we're supposed to generate
2067 std::string fname = FuncName.getValue();
2068
2069 // Get the name of the thing we are to generate
2070 std::string tgtname = NameToGenerate.getValue();
2071 if (GenerationType == GenModule ||
2072 GenerationType == GenContents ||
2073 GenerationType == GenProgram ||
2074 GenerationType == GenFunctions) {
2075 if (tgtname == "!bad!") {
2076 if (M.getModuleIdentifier() == "-")
2077 tgtname = "<stdin>";
2078 else
2079 tgtname = M.getModuleIdentifier();
2080 }
2081 } else if (tgtname == "!bad!")
2082 error("You must use the -for option with -gen-{function,variable,type}");
2083
2084 switch (WhatToGenerate(GenerationType)) {
2085 case GenProgram:
2086 if (fname.empty())
2087 fname = "makeLLVMModule";
2088 printProgram(fname,tgtname);
2089 break;
2090 case GenModule:
2091 if (fname.empty())
2092 fname = "makeLLVMModule";
2093 printModule(fname,tgtname);
2094 break;
2095 case GenContents:
2096 if (fname.empty())
2097 fname = "makeLLVMModuleContents";
2098 printContents(fname,tgtname);
2099 break;
2100 case GenFunction:
2101 if (fname.empty())
2102 fname = "makeLLVMFunction";
2103 printFunction(fname,tgtname);
2104 break;
2105 case GenFunctions:
2106 printFunctions();
2107 break;
2108 case GenInline:
2109 if (fname.empty())
2110 fname = "makeLLVMInline";
2111 printInline(fname,tgtname);
2112 break;
2113 case GenVariable:
2114 if (fname.empty())
2115 fname = "makeLLVMVariable";
2116 printVariable(fname,tgtname);
2117 break;
2118 case GenType:
2119 if (fname.empty())
2120 fname = "makeLLVMType";
2121 printType(fname,tgtname);
2122 break;
2123 }
2124
2125 return false;
2126 }
2127
2128 char CppWriter::ID = 0;
2129
2130 //===----------------------------------------------------------------------===//
2131 // External Interface declaration
2132 //===----------------------------------------------------------------------===//
2133
addPassesToEmitFile(PassManagerBase & PM,raw_pwrite_stream & o,CodeGenFileType FileType,bool DisableVerify,AnalysisID StartBefore,AnalysisID StartAfter,AnalysisID StopAfter,MachineFunctionInitializer * MFInitializer)2134 bool CPPTargetMachine::addPassesToEmitFile(
2135 PassManagerBase &PM, raw_pwrite_stream &o, CodeGenFileType FileType,
2136 bool DisableVerify, AnalysisID StartBefore, AnalysisID StartAfter,
2137 AnalysisID StopAfter, MachineFunctionInitializer *MFInitializer) {
2138 if (FileType != TargetMachine::CGFT_AssemblyFile)
2139 return true;
2140 auto FOut = llvm::make_unique<formatted_raw_ostream>(o);
2141 PM.add(new CppWriter(std::move(FOut)));
2142 return false;
2143 }
2144