1 //===--- HexagonGenMux.cpp ------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // During instruction selection, MUX instructions are generated for
11 // conditional assignments. Since such assignments often present an
12 // opportunity to predicate instructions, HexagonExpandCondsets
13 // expands MUXes into pairs of conditional transfers, and then proceeds
14 // with predication of the producers/consumers of the registers involved.
15 // This happens after exiting from the SSA form, but before the machine
16 // instruction scheduler. After the scheduler and after the register
17 // allocation there can be cases of pairs of conditional transfers
18 // resulting from a MUX where neither of them was further predicated. If
19 // these transfers are now placed far enough from the instruction defining
20 // the predicate register, they cannot use the .new form. In such cases it
21 // is better to collapse them back to a single MUX instruction.
22 
23 #define DEBUG_TYPE "hexmux"
24 
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "HexagonTargetMachine.h"
30 
31 using namespace llvm;
32 
33 namespace llvm {
34   FunctionPass *createHexagonGenMux();
35   void initializeHexagonGenMuxPass(PassRegistry& Registry);
36 }
37 
38 namespace {
39   class HexagonGenMux : public MachineFunctionPass {
40   public:
41     static char ID;
HexagonGenMux()42     HexagonGenMux() : MachineFunctionPass(ID), HII(0), HRI(0) {
43       initializeHexagonGenMuxPass(*PassRegistry::getPassRegistry());
44     }
getPassName() const45     const char *getPassName() const override {
46       return "Hexagon generate mux instructions";
47     }
getAnalysisUsage(AnalysisUsage & AU) const48     void getAnalysisUsage(AnalysisUsage &AU) const override {
49       MachineFunctionPass::getAnalysisUsage(AU);
50     }
51     bool runOnMachineFunction(MachineFunction &MF) override;
52 
53   private:
54     const HexagonInstrInfo *HII;
55     const HexagonRegisterInfo *HRI;
56 
57     struct CondsetInfo {
58       unsigned PredR;
59       unsigned TrueX, FalseX;
CondsetInfo__anondc5b75df0111::HexagonGenMux::CondsetInfo60       CondsetInfo() : PredR(0), TrueX(UINT_MAX), FalseX(UINT_MAX) {}
61     };
62     struct DefUseInfo {
63       BitVector Defs, Uses;
DefUseInfo__anondc5b75df0111::HexagonGenMux::DefUseInfo64       DefUseInfo() : Defs(), Uses() {}
DefUseInfo__anondc5b75df0111::HexagonGenMux::DefUseInfo65       DefUseInfo(const BitVector &D, const BitVector &U) : Defs(D), Uses(U) {}
66     };
67     struct MuxInfo {
68       MachineBasicBlock::iterator At;
69       unsigned DefR, PredR;
70       MachineOperand *SrcT, *SrcF;
71       MachineInstr *Def1, *Def2;
MuxInfo__anondc5b75df0111::HexagonGenMux::MuxInfo72       MuxInfo(MachineBasicBlock::iterator It, unsigned DR, unsigned PR,
73             MachineOperand *TOp, MachineOperand *FOp,
74             MachineInstr *D1, MachineInstr *D2)
75         : At(It), DefR(DR), PredR(PR), SrcT(TOp), SrcF(FOp), Def1(D1),
76           Def2(D2) {}
77     };
78     typedef DenseMap<MachineInstr*,unsigned> InstrIndexMap;
79     typedef DenseMap<unsigned,DefUseInfo> DefUseInfoMap;
80     typedef SmallVector<MuxInfo,4> MuxInfoList;
81 
isRegPair(unsigned Reg) const82     bool isRegPair(unsigned Reg) const {
83       return Hexagon::DoubleRegsRegClass.contains(Reg);
84     }
85     void getSubRegs(unsigned Reg, BitVector &SRs) const;
86     void expandReg(unsigned Reg, BitVector &Set) const;
87     void getDefsUses(const MachineInstr *MI, BitVector &Defs,
88           BitVector &Uses) const;
89     void buildMaps(MachineBasicBlock &B, InstrIndexMap &I2X,
90           DefUseInfoMap &DUM);
91     bool isCondTransfer(unsigned Opc) const;
92     unsigned getMuxOpcode(const MachineOperand &Src1,
93           const MachineOperand &Src2) const;
94     bool genMuxInBlock(MachineBasicBlock &B);
95   };
96 
97   char HexagonGenMux::ID = 0;
98 }
99 
100 INITIALIZE_PASS(HexagonGenMux, "hexagon-mux",
101   "Hexagon generate mux instructions", false, false)
102 
103 
getSubRegs(unsigned Reg,BitVector & SRs) const104 void HexagonGenMux::getSubRegs(unsigned Reg, BitVector &SRs) const {
105   for (MCSubRegIterator I(Reg, HRI); I.isValid(); ++I)
106     SRs[*I] = true;
107 }
108 
109 
expandReg(unsigned Reg,BitVector & Set) const110 void HexagonGenMux::expandReg(unsigned Reg, BitVector &Set) const {
111   if (isRegPair(Reg))
112     getSubRegs(Reg, Set);
113   else
114     Set[Reg] = true;
115 }
116 
117 
getDefsUses(const MachineInstr * MI,BitVector & Defs,BitVector & Uses) const118 void HexagonGenMux::getDefsUses(const MachineInstr *MI, BitVector &Defs,
119       BitVector &Uses) const {
120   // First, get the implicit defs and uses for this instruction.
121   unsigned Opc = MI->getOpcode();
122   const MCInstrDesc &D = HII->get(Opc);
123   if (const MCPhysReg *R = D.ImplicitDefs)
124     while (*R)
125       expandReg(*R++, Defs);
126   if (const MCPhysReg *R = D.ImplicitUses)
127     while (*R)
128       expandReg(*R++, Uses);
129 
130   // Look over all operands, and collect explicit defs and uses.
131   for (ConstMIOperands Mo(MI); Mo.isValid(); ++Mo) {
132     if (!Mo->isReg() || Mo->isImplicit())
133       continue;
134     unsigned R = Mo->getReg();
135     BitVector &Set = Mo->isDef() ? Defs : Uses;
136     expandReg(R, Set);
137   }
138 }
139 
140 
buildMaps(MachineBasicBlock & B,InstrIndexMap & I2X,DefUseInfoMap & DUM)141 void HexagonGenMux::buildMaps(MachineBasicBlock &B, InstrIndexMap &I2X,
142       DefUseInfoMap &DUM) {
143   unsigned Index = 0;
144   unsigned NR = HRI->getNumRegs();
145   BitVector Defs(NR), Uses(NR);
146 
147   for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
148     MachineInstr *MI = &*I;
149     I2X.insert(std::make_pair(MI, Index));
150     Defs.reset();
151     Uses.reset();
152     getDefsUses(MI, Defs, Uses);
153     DUM.insert(std::make_pair(Index, DefUseInfo(Defs, Uses)));
154     Index++;
155   }
156 }
157 
158 
isCondTransfer(unsigned Opc) const159 bool HexagonGenMux::isCondTransfer(unsigned Opc) const {
160   switch (Opc) {
161     case Hexagon::A2_tfrt:
162     case Hexagon::A2_tfrf:
163     case Hexagon::C2_cmoveit:
164     case Hexagon::C2_cmoveif:
165       return true;
166   }
167   return false;
168 }
169 
170 
getMuxOpcode(const MachineOperand & Src1,const MachineOperand & Src2) const171 unsigned HexagonGenMux::getMuxOpcode(const MachineOperand &Src1,
172       const MachineOperand &Src2) const {
173   bool IsReg1 = Src1.isReg(), IsReg2 = Src2.isReg();
174   if (IsReg1)
175     return IsReg2 ? Hexagon::C2_mux : Hexagon::C2_muxir;
176   if (IsReg2)
177     return Hexagon::C2_muxri;
178 
179   // Neither is a register. The first source is extendable, but the second
180   // is not (s8).
181   if (Src2.isImm() && isInt<8>(Src2.getImm()))
182     return Hexagon::C2_muxii;
183 
184   return 0;
185 }
186 
187 
genMuxInBlock(MachineBasicBlock & B)188 bool HexagonGenMux::genMuxInBlock(MachineBasicBlock &B) {
189   bool Changed = false;
190   InstrIndexMap I2X;
191   DefUseInfoMap DUM;
192   buildMaps(B, I2X, DUM);
193 
194   typedef DenseMap<unsigned,CondsetInfo> CondsetMap;
195   CondsetMap CM;
196   MuxInfoList ML;
197 
198   MachineBasicBlock::iterator NextI, End = B.end();
199   for (MachineBasicBlock::iterator I = B.begin(); I != End; I = NextI) {
200     MachineInstr *MI = &*I;
201     NextI = std::next(I);
202     unsigned Opc = MI->getOpcode();
203     if (!isCondTransfer(Opc))
204       continue;
205     unsigned DR = MI->getOperand(0).getReg();
206     if (isRegPair(DR))
207       continue;
208 
209     unsigned PR = MI->getOperand(1).getReg();
210     unsigned Idx = I2X.lookup(MI);
211     CondsetMap::iterator F = CM.find(DR);
212     bool IfTrue = HII->isPredicatedTrue(Opc);
213 
214     // If there is no record of a conditional transfer for this register,
215     // or the predicate register differs, create a new record for it.
216     if (F != CM.end() && F->second.PredR != PR) {
217       CM.erase(F);
218       F = CM.end();
219     }
220     if (F == CM.end()) {
221       auto It = CM.insert(std::make_pair(DR, CondsetInfo()));
222       F = It.first;
223       F->second.PredR = PR;
224     }
225     CondsetInfo &CI = F->second;
226     if (IfTrue)
227       CI.TrueX = Idx;
228     else
229       CI.FalseX = Idx;
230     if (CI.TrueX == UINT_MAX || CI.FalseX == UINT_MAX)
231       continue;
232 
233     // There is now a complete definition of DR, i.e. we have the predicate
234     // register, the definition if-true, and definition if-false.
235 
236     // First, check if both definitions are far enough from the definition
237     // of the predicate register.
238     unsigned MinX = std::min(CI.TrueX, CI.FalseX);
239     unsigned MaxX = std::max(CI.TrueX, CI.FalseX);
240     unsigned SearchX = (MaxX > 4) ? MaxX-4 : 0;
241     bool NearDef = false;
242     for (unsigned X = SearchX; X < MaxX; ++X) {
243       const DefUseInfo &DU = DUM.lookup(X);
244       if (!DU.Defs[PR])
245         continue;
246       NearDef = true;
247       break;
248     }
249     if (NearDef)
250       continue;
251 
252     // The predicate register is not defined in the last few instructions.
253     // Check if the conversion to MUX is possible (either "up", i.e. at the
254     // place of the earlier partial definition, or "down", where the later
255     // definition is located). Examine all defs and uses between these two
256     // definitions.
257     // SR1, SR2 - source registers from the first and the second definition.
258     MachineBasicBlock::iterator It1 = B.begin(), It2 = B.begin();
259     std::advance(It1, MinX);
260     std::advance(It2, MaxX);
261     MachineInstr *Def1 = It1, *Def2 = It2;
262     MachineOperand *Src1 = &Def1->getOperand(2), *Src2 = &Def2->getOperand(2);
263     unsigned SR1 = Src1->isReg() ? Src1->getReg() : 0;
264     unsigned SR2 = Src2->isReg() ? Src2->getReg() : 0;
265     bool Failure = false, CanUp = true, CanDown = true;
266     for (unsigned X = MinX+1; X < MaxX; X++) {
267       const DefUseInfo &DU = DUM.lookup(X);
268       if (DU.Defs[PR] || DU.Defs[DR] || DU.Uses[DR]) {
269         Failure = true;
270         break;
271       }
272       if (CanDown && DU.Defs[SR1])
273         CanDown = false;
274       if (CanUp && DU.Defs[SR2])
275         CanUp = false;
276     }
277     if (Failure || (!CanUp && !CanDown))
278       continue;
279 
280     MachineOperand *SrcT = (MinX == CI.TrueX) ? Src1 : Src2;
281     MachineOperand *SrcF = (MinX == CI.FalseX) ? Src1 : Src2;
282     // Prefer "down", since this will move the MUX farther away from the
283     // predicate definition.
284     MachineBasicBlock::iterator At = CanDown ? Def2 : Def1;
285     ML.push_back(MuxInfo(At, DR, PR, SrcT, SrcF, Def1, Def2));
286   }
287 
288   for (unsigned I = 0, N = ML.size(); I < N; ++I) {
289     MuxInfo &MX = ML[I];
290     MachineBasicBlock &B = *MX.At->getParent();
291     DebugLoc DL = MX.At->getDebugLoc();
292     unsigned MxOpc = getMuxOpcode(*MX.SrcT, *MX.SrcF);
293     if (!MxOpc)
294       continue;
295     BuildMI(B, MX.At, DL, HII->get(MxOpc), MX.DefR)
296       .addReg(MX.PredR)
297       .addOperand(*MX.SrcT)
298       .addOperand(*MX.SrcF);
299     B.erase(MX.Def1);
300     B.erase(MX.Def2);
301     Changed = true;
302   }
303 
304   return Changed;
305 }
306 
runOnMachineFunction(MachineFunction & MF)307 bool HexagonGenMux::runOnMachineFunction(MachineFunction &MF) {
308   HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
309   HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
310   bool Changed = false;
311   for (auto &I : MF)
312     Changed |= genMuxInBlock(I);
313   return Changed;
314 }
315 
createHexagonGenMux()316 FunctionPass *llvm::createHexagonGenMux() {
317   return new HexagonGenMux();
318 }
319 
320