• Home
  • History
  • Annotate
Name Date Size #Lines LOC

..--

AsmParser/22-Nov-2023-4,7913,761

Disassembler/22-Nov-2023-4,3173,123

InstPrinter/22-Nov-2023-1,8081,416

MCTargetDesc/22-Nov-2023-5,1903,409

TargetInfo/22-Nov-2023-12271

Utils/22-Nov-2023-825542

Android.mkD22-Nov-20231.8 KiB7658

CMakeLists.txtD22-Nov-20231.3 KiB4843

LLVMBuild.txtD22-Nov-20231 KiB3632

MakefileD22-Nov-2023840 2410

README-FPStack.txtD22-Nov-20232.7 KiB8658

README-MMX.txtD22-Nov-20231.5 KiB7255

README-SSE.txtD22-Nov-202324.5 KiB851653

README-UNIMPLEMENTED.txtD22-Nov-2023679 1512

README-X86-64.txtD22-Nov-20236 KiB185150

README.txtD22-Nov-202347.6 KiB1,8191,422

X86.hD22-Nov-20232.9 KiB7721

X86.tdD22-Nov-202328.1 KiB793729

X86AsmPrinter.cppD22-Nov-202324.8 KiB708552

X86AsmPrinter.hD22-Nov-20234.6 KiB13274

X86CallFrameOptimization.cppD22-Nov-202319.4 KiB559304

X86CallingConv.hD22-Nov-20231.6 KiB4924

X86CallingConv.tdD22-Nov-202333.5 KiB864682

X86ExpandPseudo.cppD22-Nov-20236.8 KiB199148

X86FastISel.cppD22-Nov-2023123.6 KiB3,6092,658

X86FixupLEAs.cppD22-Nov-202313.9 KiB411314

X86FloatingPoint.cppD22-Nov-202359.7 KiB1,6521,065

X86FrameLowering.cppD22-Nov-2023101.8 KiB2,7181,721

X86FrameLowering.hD22-Nov-20238.8 KiB204106

X86ISelDAGToDAG.cppD22-Nov-2023110.8 KiB3,0192,151

X86ISelLowering.cppD22-Nov-20231.1 MiB28,57620,124

X86ISelLowering.hD22-Nov-202344 KiB1,163528

X86Instr3DNow.tdD22-Nov-20234.4 KiB10490

X86InstrAVX512.tdD22-Nov-2023372.2 KiB7,5406,693

X86InstrArithmetic.tdD22-Nov-202364.5 KiB1,3761,229

X86InstrBuilder.hD22-Nov-20236.6 KiB184106

X86InstrCMovSetCC.tdD22-Nov-20235.3 KiB113103

X86InstrCompiler.tdD22-Nov-202382.9 KiB1,8771,668

X86InstrControl.tdD22-Nov-202315.6 KiB330297

X86InstrExtension.tdD22-Nov-20239.3 KiB183166

X86InstrFMA.tdD22-Nov-202321.9 KiB442410

X86InstrFPStack.tdD22-Nov-202336 KiB730670

X86InstrFormats.tdD22-Nov-202341.6 KiB949868

X86InstrFragmentsSIMD.tdD22-Nov-202350.6 KiB1,036892

X86InstrInfo.cppD22-Nov-2023307.4 KiB7,3516,129

X86InstrInfo.hD22-Nov-202326.6 KiB576298

X86InstrInfo.tdD22-Nov-2023141.9 KiB3,0612,687

X86InstrMMX.tdD22-Nov-202330.7 KiB675588

X86InstrMPX.tdD22-Nov-20233.4 KiB7064

X86InstrSGX.tdD22-Nov-2023907 2521

X86InstrSSE.tdD22-Nov-2023419.7 KiB8,9128,009

X86InstrSVM.tdD22-Nov-20232.1 KiB6352

X86InstrShiftRotate.tdD22-Nov-202346 KiB970899

X86InstrSystem.tdD22-Nov-202328.1 KiB603524

X86InstrTSX.tdD22-Nov-20231.9 KiB5140

X86InstrVMX.tdD22-Nov-20233.2 KiB6763

X86InstrXOP.tdD22-Nov-202316.5 KiB345319

X86IntrinsicsInfo.hD22-Nov-2023118.6 KiB1,9241,851

X86MCInstLower.cppD22-Nov-202353.3 KiB1,4271,120

X86MachineFunctionInfo.cppD22-Nov-20231 KiB3420

X86MachineFunctionInfo.hD22-Nov-20236.7 KiB16875

X86OptimizeLEAs.cppD22-Nov-202312.1 KiB327182

X86PadShortFunction.cppD22-Nov-20236.5 KiB214132

X86RegisterInfo.cppD22-Nov-202328.9 KiB826670

X86RegisterInfo.hD22-Nov-20235.6 KiB15465

X86RegisterInfo.tdD22-Nov-202320.3 KiB498434

X86SchedHaswell.tdD22-Nov-202355.4 KiB2,1481,804

X86SchedSandyBridge.tdD22-Nov-20238.1 KiB251218

X86Schedule.tdD22-Nov-202322.2 KiB651585

X86ScheduleAtom.tdD22-Nov-202328.7 KiB550498

X86ScheduleBtVer2.tdD22-Nov-202311.3 KiB342290

X86ScheduleSLM.tdD22-Nov-20237.5 KiB234202

X86SelectionDAGInfo.cppD22-Nov-202310.6 KiB285214

X86SelectionDAGInfo.hD22-Nov-20231.9 KiB5328

X86Subtarget.cppD22-Nov-202311 KiB344226

X86Subtarget.hD22-Nov-202317.6 KiB547305

X86TargetMachine.cppD22-Nov-20239.4 KiB281181

X86TargetMachine.hD22-Nov-20231.5 KiB5026

X86TargetObjectFile.cppD22-Nov-20236.7 KiB176126

X86TargetObjectFile.hD22-Nov-20232.8 KiB6835

X86TargetTransformInfo.cppD22-Nov-202352.9 KiB1,352966

X86TargetTransformInfo.hD22-Nov-20233.7 KiB10460

X86VZeroUpper.cppD22-Nov-202311.5 KiB321191

X86WinEHState.cppD22-Nov-202316.9 KiB457309

README-FPStack.txt

1//===---------------------------------------------------------------------===//
2// Random ideas for the X86 backend: FP stack related stuff
3//===---------------------------------------------------------------------===//
4
5//===---------------------------------------------------------------------===//
6
7Some targets (e.g. athlons) prefer freep to fstp ST(0):
8http://gcc.gnu.org/ml/gcc-patches/2004-04/msg00659.html
9
10//===---------------------------------------------------------------------===//
11
12This should use fiadd on chips where it is profitable:
13double foo(double P, int *I) { return P+*I; }
14
15We have fiadd patterns now but the followings have the same cost and
16complexity. We need a way to specify the later is more profitable.
17
18def FpADD32m  : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
19                    [(set RFP:$dst, (fadd RFP:$src1,
20                                     (extloadf64f32 addr:$src2)))]>;
21                // ST(0) = ST(0) + [mem32]
22
23def FpIADD32m : FpI<(ops RFP:$dst, RFP:$src1, i32mem:$src2), OneArgFPRW,
24                    [(set RFP:$dst, (fadd RFP:$src1,
25                                     (X86fild addr:$src2, i32)))]>;
26                // ST(0) = ST(0) + [mem32int]
27
28//===---------------------------------------------------------------------===//
29
30The FP stackifier should handle simple permutates to reduce number of shuffle
31instructions, e.g. turning:
32
33fld P	->		fld Q
34fld Q			fld P
35fxch
36
37or:
38
39fxch	->		fucomi
40fucomi			jl X
41jg X
42
43Ideas:
44http://gcc.gnu.org/ml/gcc-patches/2004-11/msg02410.html
45
46
47//===---------------------------------------------------------------------===//
48
49Add a target specific hook to DAG combiner to handle SINT_TO_FP and
50FP_TO_SINT when the source operand is already in memory.
51
52//===---------------------------------------------------------------------===//
53
54Open code rint,floor,ceil,trunc:
55http://gcc.gnu.org/ml/gcc-patches/2004-08/msg02006.html
56http://gcc.gnu.org/ml/gcc-patches/2004-08/msg02011.html
57
58Opencode the sincos[f] libcall.
59
60//===---------------------------------------------------------------------===//
61
62None of the FPStack instructions are handled in
63X86RegisterInfo::foldMemoryOperand, which prevents the spiller from
64folding spill code into the instructions.
65
66//===---------------------------------------------------------------------===//
67
68Currently the x86 codegen isn't very good at mixing SSE and FPStack
69code:
70
71unsigned int foo(double x) { return x; }
72
73foo:
74	subl $20, %esp
75	movsd 24(%esp), %xmm0
76	movsd %xmm0, 8(%esp)
77	fldl 8(%esp)
78	fisttpll (%esp)
79	movl (%esp), %eax
80	addl $20, %esp
81	ret
82
83This just requires being smarter when custom expanding fptoui.
84
85//===---------------------------------------------------------------------===//
86

README-MMX.txt

1//===---------------------------------------------------------------------===//
2// Random ideas for the X86 backend: MMX-specific stuff.
3//===---------------------------------------------------------------------===//
4
5//===---------------------------------------------------------------------===//
6
7This:
8
9#include <mmintrin.h>
10
11__v2si qux(int A) {
12  return (__v2si){ 0, A };
13}
14
15is compiled into:
16
17_qux:
18        subl $28, %esp
19        movl 32(%esp), %eax
20        movd %eax, %mm0
21        movq %mm0, (%esp)
22        movl (%esp), %eax
23        movl %eax, 20(%esp)
24        movq %mm0, 8(%esp)
25        movl 12(%esp), %eax
26        movl %eax, 16(%esp)
27        movq 16(%esp), %mm0
28        addl $28, %esp
29        ret
30
31Yuck!
32
33GCC gives us:
34
35_qux:
36        subl    $12, %esp
37        movl    16(%esp), %eax
38        movl    20(%esp), %edx
39        movl    $0, (%eax)
40        movl    %edx, 4(%eax)
41        addl    $12, %esp
42        ret     $4
43
44//===---------------------------------------------------------------------===//
45
46We generate crappy code for this:
47
48__m64 t() {
49  return _mm_cvtsi32_si64(1);
50}
51
52_t:
53	subl	$12, %esp
54	movl	$1, %eax
55	movd	%eax, %mm0
56	movq	%mm0, (%esp)
57	movl	(%esp), %eax
58	movl	4(%esp), %edx
59	addl	$12, %esp
60	ret
61
62The extra stack traffic is covered in the previous entry. But the other reason
63is we are not smart about materializing constants in MMX registers. With -m64
64
65	movl	$1, %eax
66	movd	%eax, %mm0
67	movd	%mm0, %rax
68	ret
69
70We should be using a constantpool load instead:
71	movq	LC0(%rip), %rax
72

README-SSE.txt

1//===---------------------------------------------------------------------===//
2// Random ideas for the X86 backend: SSE-specific stuff.
3//===---------------------------------------------------------------------===//
4
5//===---------------------------------------------------------------------===//
6
7SSE Variable shift can be custom lowered to something like this, which uses a
8small table + unaligned load + shuffle instead of going through memory.
9
10__m128i_shift_right:
11	.byte	  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15
12	.byte	 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
13
14...
15__m128i shift_right(__m128i value, unsigned long offset) {
16  return _mm_shuffle_epi8(value,
17               _mm_loadu_si128((__m128 *) (___m128i_shift_right + offset)));
18}
19
20//===---------------------------------------------------------------------===//
21
22SSE has instructions for doing operations on complex numbers, we should pattern
23match them.   For example, this should turn into a horizontal add:
24
25typedef float __attribute__((vector_size(16))) v4f32;
26float f32(v4f32 A) {
27  return A[0]+A[1]+A[2]+A[3];
28}
29
30Instead we get this:
31
32_f32:                                   ## @f32
33	pshufd	$1, %xmm0, %xmm1        ## xmm1 = xmm0[1,0,0,0]
34	addss	%xmm0, %xmm1
35	pshufd	$3, %xmm0, %xmm2        ## xmm2 = xmm0[3,0,0,0]
36	movhlps	%xmm0, %xmm0            ## xmm0 = xmm0[1,1]
37	movaps	%xmm0, %xmm3
38	addss	%xmm1, %xmm3
39	movdqa	%xmm2, %xmm0
40	addss	%xmm3, %xmm0
41	ret
42
43Also, there are cases where some simple local SLP would improve codegen a bit.
44compiling this:
45
46_Complex float f32(_Complex float A, _Complex float B) {
47  return A+B;
48}
49
50into:
51
52_f32:                                   ## @f32
53	movdqa	%xmm0, %xmm2
54	addss	%xmm1, %xmm2
55	pshufd	$1, %xmm1, %xmm1        ## xmm1 = xmm1[1,0,0,0]
56	pshufd	$1, %xmm0, %xmm3        ## xmm3 = xmm0[1,0,0,0]
57	addss	%xmm1, %xmm3
58	movaps	%xmm2, %xmm0
59	unpcklps	%xmm3, %xmm0    ## xmm0 = xmm0[0],xmm3[0],xmm0[1],xmm3[1]
60	ret
61
62seems silly when it could just be one addps.
63
64
65//===---------------------------------------------------------------------===//
66
67Expand libm rounding functions inline:  Significant speedups possible.
68http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00909.html
69
70//===---------------------------------------------------------------------===//
71
72When compiled with unsafemath enabled, "main" should enable SSE DAZ mode and
73other fast SSE modes.
74
75//===---------------------------------------------------------------------===//
76
77Think about doing i64 math in SSE regs on x86-32.
78
79//===---------------------------------------------------------------------===//
80
81This testcase should have no SSE instructions in it, and only one load from
82a constant pool:
83
84double %test3(bool %B) {
85        %C = select bool %B, double 123.412, double 523.01123123
86        ret double %C
87}
88
89Currently, the select is being lowered, which prevents the dag combiner from
90turning 'select (load CPI1), (load CPI2)' -> 'load (select CPI1, CPI2)'
91
92The pattern isel got this one right.
93
94//===---------------------------------------------------------------------===//
95
96Lower memcpy / memset to a series of SSE 128 bit move instructions when it's
97feasible.
98
99//===---------------------------------------------------------------------===//
100
101Codegen:
102  if (copysign(1.0, x) == copysign(1.0, y))
103into:
104  if (x^y & mask)
105when using SSE.
106
107//===---------------------------------------------------------------------===//
108
109Use movhps to update upper 64-bits of a v4sf value. Also movlps on lower half
110of a v4sf value.
111
112//===---------------------------------------------------------------------===//
113
114Better codegen for vector_shuffles like this { x, 0, 0, 0 } or { x, 0, x, 0}.
115Perhaps use pxor / xorp* to clear a XMM register first?
116
117//===---------------------------------------------------------------------===//
118
119External test Nurbs exposed some problems. Look for
120__ZN15Nurbs_SSE_Cubic17TessellateSurfaceE, bb cond_next140. This is what icc
121emits:
122
123        movaps    (%edx), %xmm2                                 #59.21
124        movaps    (%edx), %xmm5                                 #60.21
125        movaps    (%edx), %xmm4                                 #61.21
126        movaps    (%edx), %xmm3                                 #62.21
127        movl      40(%ecx), %ebp                                #69.49
128        shufps    $0, %xmm2, %xmm5                              #60.21
129        movl      100(%esp), %ebx                               #69.20
130        movl      (%ebx), %edi                                  #69.20
131        imull     %ebp, %edi                                    #69.49
132        addl      (%eax), %edi                                  #70.33
133        shufps    $85, %xmm2, %xmm4                             #61.21
134        shufps    $170, %xmm2, %xmm3                            #62.21
135        shufps    $255, %xmm2, %xmm2                            #63.21
136        lea       (%ebp,%ebp,2), %ebx                           #69.49
137        negl      %ebx                                          #69.49
138        lea       -3(%edi,%ebx), %ebx                           #70.33
139        shll      $4, %ebx                                      #68.37
140        addl      32(%ecx), %ebx                                #68.37
141        testb     $15, %bl                                      #91.13
142        jne       L_B1.24       # Prob 5%                       #91.13
143
144This is the llvm code after instruction scheduling:
145
146cond_next140 (0xa910740, LLVM BB @0xa90beb0):
147	%reg1078 = MOV32ri -3
148	%reg1079 = ADD32rm %reg1078, %reg1068, 1, %NOREG, 0
149	%reg1037 = MOV32rm %reg1024, 1, %NOREG, 40
150	%reg1080 = IMUL32rr %reg1079, %reg1037
151	%reg1081 = MOV32rm %reg1058, 1, %NOREG, 0
152	%reg1038 = LEA32r %reg1081, 1, %reg1080, -3
153	%reg1036 = MOV32rm %reg1024, 1, %NOREG, 32
154	%reg1082 = SHL32ri %reg1038, 4
155	%reg1039 = ADD32rr %reg1036, %reg1082
156	%reg1083 = MOVAPSrm %reg1059, 1, %NOREG, 0
157	%reg1034 = SHUFPSrr %reg1083, %reg1083, 170
158	%reg1032 = SHUFPSrr %reg1083, %reg1083, 0
159	%reg1035 = SHUFPSrr %reg1083, %reg1083, 255
160	%reg1033 = SHUFPSrr %reg1083, %reg1083, 85
161	%reg1040 = MOV32rr %reg1039
162	%reg1084 = AND32ri8 %reg1039, 15
163	CMP32ri8 %reg1084, 0
164	JE mbb<cond_next204,0xa914d30>
165
166Still ok. After register allocation:
167
168cond_next140 (0xa910740, LLVM BB @0xa90beb0):
169	%EAX = MOV32ri -3
170	%EDX = MOV32rm <fi#3>, 1, %NOREG, 0
171	ADD32rm %EAX<def&use>, %EDX, 1, %NOREG, 0
172	%EDX = MOV32rm <fi#7>, 1, %NOREG, 0
173	%EDX = MOV32rm %EDX, 1, %NOREG, 40
174	IMUL32rr %EAX<def&use>, %EDX
175	%ESI = MOV32rm <fi#5>, 1, %NOREG, 0
176	%ESI = MOV32rm %ESI, 1, %NOREG, 0
177	MOV32mr <fi#4>, 1, %NOREG, 0, %ESI
178	%EAX = LEA32r %ESI, 1, %EAX, -3
179	%ESI = MOV32rm <fi#7>, 1, %NOREG, 0
180	%ESI = MOV32rm %ESI, 1, %NOREG, 32
181	%EDI = MOV32rr %EAX
182	SHL32ri %EDI<def&use>, 4
183	ADD32rr %EDI<def&use>, %ESI
184	%XMM0 = MOVAPSrm %ECX, 1, %NOREG, 0
185	%XMM1 = MOVAPSrr %XMM0
186	SHUFPSrr %XMM1<def&use>, %XMM1, 170
187	%XMM2 = MOVAPSrr %XMM0
188	SHUFPSrr %XMM2<def&use>, %XMM2, 0
189	%XMM3 = MOVAPSrr %XMM0
190	SHUFPSrr %XMM3<def&use>, %XMM3, 255
191	SHUFPSrr %XMM0<def&use>, %XMM0, 85
192	%EBX = MOV32rr %EDI
193	AND32ri8 %EBX<def&use>, 15
194	CMP32ri8 %EBX, 0
195	JE mbb<cond_next204,0xa914d30>
196
197This looks really bad. The problem is shufps is a destructive opcode. Since it
198appears as operand two in more than one shufps ops. It resulted in a number of
199copies. Note icc also suffers from the same problem. Either the instruction
200selector should select pshufd or The register allocator can made the two-address
201to three-address transformation.
202
203It also exposes some other problems. See MOV32ri -3 and the spills.
204
205//===---------------------------------------------------------------------===//
206
207Consider:
208
209__m128 test(float a) {
210  return _mm_set_ps(0.0, 0.0, 0.0, a*a);
211}
212
213This compiles into:
214
215movss 4(%esp), %xmm1
216mulss %xmm1, %xmm1
217xorps %xmm0, %xmm0
218movss %xmm1, %xmm0
219ret
220
221Because mulss doesn't modify the top 3 elements, the top elements of
222xmm1 are already zero'd.  We could compile this to:
223
224movss 4(%esp), %xmm0
225mulss %xmm0, %xmm0
226ret
227
228//===---------------------------------------------------------------------===//
229
230Here's a sick and twisted idea.  Consider code like this:
231
232__m128 test(__m128 a) {
233  float b = *(float*)&A;
234  ...
235  return _mm_set_ps(0.0, 0.0, 0.0, b);
236}
237
238This might compile to this code:
239
240movaps c(%esp), %xmm1
241xorps %xmm0, %xmm0
242movss %xmm1, %xmm0
243ret
244
245Now consider if the ... code caused xmm1 to get spilled.  This might produce
246this code:
247
248movaps c(%esp), %xmm1
249movaps %xmm1, c2(%esp)
250...
251
252xorps %xmm0, %xmm0
253movaps c2(%esp), %xmm1
254movss %xmm1, %xmm0
255ret
256
257However, since the reload is only used by these instructions, we could
258"fold" it into the uses, producing something like this:
259
260movaps c(%esp), %xmm1
261movaps %xmm1, c2(%esp)
262...
263
264movss c2(%esp), %xmm0
265ret
266
267... saving two instructions.
268
269The basic idea is that a reload from a spill slot, can, if only one 4-byte
270chunk is used, bring in 3 zeros the one element instead of 4 elements.
271This can be used to simplify a variety of shuffle operations, where the
272elements are fixed zeros.
273
274//===---------------------------------------------------------------------===//
275
276This code generates ugly code, probably due to costs being off or something:
277
278define void @test(float* %P, <4 x float>* %P2 ) {
279        %xFloat0.688 = load float* %P
280        %tmp = load <4 x float>* %P2
281        %inFloat3.713 = insertelement <4 x float> %tmp, float 0.0, i32 3
282        store <4 x float> %inFloat3.713, <4 x float>* %P2
283        ret void
284}
285
286Generates:
287
288_test:
289	movl	8(%esp), %eax
290	movaps	(%eax), %xmm0
291	pxor	%xmm1, %xmm1
292	movaps	%xmm0, %xmm2
293	shufps	$50, %xmm1, %xmm2
294	shufps	$132, %xmm2, %xmm0
295	movaps	%xmm0, (%eax)
296	ret
297
298Would it be better to generate:
299
300_test:
301        movl 8(%esp), %ecx
302        movaps (%ecx), %xmm0
303	xor %eax, %eax
304        pinsrw $6, %eax, %xmm0
305        pinsrw $7, %eax, %xmm0
306        movaps %xmm0, (%ecx)
307        ret
308
309?
310
311//===---------------------------------------------------------------------===//
312
313Some useful information in the Apple Altivec / SSE Migration Guide:
314
315http://developer.apple.com/documentation/Performance/Conceptual/
316Accelerate_sse_migration/index.html
317
318e.g. SSE select using and, andnot, or. Various SSE compare translations.
319
320//===---------------------------------------------------------------------===//
321
322Add hooks to commute some CMPP operations.
323
324//===---------------------------------------------------------------------===//
325
326Apply the same transformation that merged four float into a single 128-bit load
327to loads from constant pool.
328
329//===---------------------------------------------------------------------===//
330
331Floating point max / min are commutable when -enable-unsafe-fp-path is
332specified. We should turn int_x86_sse_max_ss and X86ISD::FMIN etc. into other
333nodes which are selected to max / min instructions that are marked commutable.
334
335//===---------------------------------------------------------------------===//
336
337We should materialize vector constants like "all ones" and "signbit" with
338code like:
339
340     cmpeqps xmm1, xmm1   ; xmm1 = all-ones
341
342and:
343     cmpeqps xmm1, xmm1   ; xmm1 = all-ones
344     psrlq   xmm1, 31     ; xmm1 = all 100000000000...
345
346instead of using a load from the constant pool.  The later is important for
347ABS/NEG/copysign etc.
348
349//===---------------------------------------------------------------------===//
350
351These functions:
352
353#include <xmmintrin.h>
354__m128i a;
355void x(unsigned short n) {
356  a = _mm_slli_epi32 (a, n);
357}
358void y(unsigned n) {
359  a = _mm_slli_epi32 (a, n);
360}
361
362compile to ( -O3 -static -fomit-frame-pointer):
363_x:
364        movzwl  4(%esp), %eax
365        movd    %eax, %xmm0
366        movaps  _a, %xmm1
367        pslld   %xmm0, %xmm1
368        movaps  %xmm1, _a
369        ret
370_y:
371        movd    4(%esp), %xmm0
372        movaps  _a, %xmm1
373        pslld   %xmm0, %xmm1
374        movaps  %xmm1, _a
375        ret
376
377"y" looks good, but "x" does silly movzwl stuff around into a GPR.  It seems
378like movd would be sufficient in both cases as the value is already zero
379extended in the 32-bit stack slot IIRC.  For signed short, it should also be
380save, as a really-signed value would be undefined for pslld.
381
382
383//===---------------------------------------------------------------------===//
384
385#include <math.h>
386int t1(double d) { return signbit(d); }
387
388This currently compiles to:
389	subl	$12, %esp
390	movsd	16(%esp), %xmm0
391	movsd	%xmm0, (%esp)
392	movl	4(%esp), %eax
393	shrl	$31, %eax
394	addl	$12, %esp
395	ret
396
397We should use movmskp{s|d} instead.
398
399//===---------------------------------------------------------------------===//
400
401CodeGen/X86/vec_align.ll tests whether we can turn 4 scalar loads into a single
402(aligned) vector load.  This functionality has a couple of problems.
403
4041. The code to infer alignment from loads of globals is in the X86 backend,
405   not the dag combiner.  This is because dagcombine2 needs to be able to see
406   through the X86ISD::Wrapper node, which DAGCombine can't really do.
4072. The code for turning 4 x load into a single vector load is target
408   independent and should be moved to the dag combiner.
4093. The code for turning 4 x load into a vector load can only handle a direct
410   load from a global or a direct load from the stack.  It should be generalized
411   to handle any load from P, P+4, P+8, P+12, where P can be anything.
4124. The alignment inference code cannot handle loads from globals in non-static
413   mode because it doesn't look through the extra dyld stub load.  If you try
414   vec_align.ll without -relocation-model=static, you'll see what I mean.
415
416//===---------------------------------------------------------------------===//
417
418We should lower store(fneg(load p), q) into an integer load+xor+store, which
419eliminates a constant pool load.  For example, consider:
420
421define i64 @ccosf(float %z.0, float %z.1) nounwind readonly  {
422entry:
423 %tmp6 = fsub float -0.000000e+00, %z.1		; <float> [#uses=1]
424 %tmp20 = tail call i64 @ccoshf( float %tmp6, float %z.0 ) nounwind readonly
425 ret i64 %tmp20
426}
427declare i64 @ccoshf(float %z.0, float %z.1) nounwind readonly
428
429This currently compiles to:
430
431LCPI1_0:					#  <4 x float>
432	.long	2147483648	# float -0
433	.long	2147483648	# float -0
434	.long	2147483648	# float -0
435	.long	2147483648	# float -0
436_ccosf:
437	subl	$12, %esp
438	movss	16(%esp), %xmm0
439	movss	%xmm0, 4(%esp)
440	movss	20(%esp), %xmm0
441	xorps	LCPI1_0, %xmm0
442	movss	%xmm0, (%esp)
443	call	L_ccoshf$stub
444	addl	$12, %esp
445	ret
446
447Note the load into xmm0, then xor (to negate), then store.  In PIC mode,
448this code computes the pic base and does two loads to do the constant pool
449load, so the improvement is much bigger.
450
451The tricky part about this xform is that the argument load/store isn't exposed
452until post-legalize, and at that point, the fneg has been custom expanded into
453an X86 fxor.  This means that we need to handle this case in the x86 backend
454instead of in target independent code.
455
456//===---------------------------------------------------------------------===//
457
458Non-SSE4 insert into 16 x i8 is atrociously bad.
459
460//===---------------------------------------------------------------------===//
461
462<2 x i64> extract is substantially worse than <2 x f64>, even if the destination
463is memory.
464
465//===---------------------------------------------------------------------===//
466
467INSERTPS can match any insert (extract, imm1), imm2 for 4 x float, and insert
468any number of 0.0 simultaneously.  Currently we only use it for simple
469insertions.
470
471See comments in LowerINSERT_VECTOR_ELT_SSE4.
472
473//===---------------------------------------------------------------------===//
474
475On a random note, SSE2 should declare insert/extract of 2 x f64 as legal, not
476Custom.  All combinations of insert/extract reg-reg, reg-mem, and mem-reg are
477legal, it'll just take a few extra patterns written in the .td file.
478
479Note: this is not a code quality issue; the custom lowered code happens to be
480right, but we shouldn't have to custom lower anything.  This is probably related
481to <2 x i64> ops being so bad.
482
483//===---------------------------------------------------------------------===//
484
485LLVM currently generates stack realignment code, when it is not necessary
486needed. The problem is that we need to know about stack alignment too early,
487before RA runs.
488
489At that point we don't know, whether there will be vector spill, or not.
490Stack realignment logic is overly conservative here, but otherwise we can
491produce unaligned loads/stores.
492
493Fixing this will require some huge RA changes.
494
495Testcase:
496#include <emmintrin.h>
497
498typedef short vSInt16 __attribute__ ((__vector_size__ (16)));
499
500static const vSInt16 a = {- 22725, - 12873, - 22725, - 12873, - 22725, - 12873,
501- 22725, - 12873};;
502
503vSInt16 madd(vSInt16 b)
504{
505    return _mm_madd_epi16(a, b);
506}
507
508Generated code (x86-32, linux):
509madd:
510        pushl   %ebp
511        movl    %esp, %ebp
512        andl    $-16, %esp
513        movaps  .LCPI1_0, %xmm1
514        pmaddwd %xmm1, %xmm0
515        movl    %ebp, %esp
516        popl    %ebp
517        ret
518
519//===---------------------------------------------------------------------===//
520
521Consider:
522#include <emmintrin.h>
523__m128 foo2 (float x) {
524 return _mm_set_ps (0, 0, x, 0);
525}
526
527In x86-32 mode, we generate this spiffy code:
528
529_foo2:
530	movss	4(%esp), %xmm0
531	pshufd	$81, %xmm0, %xmm0
532	ret
533
534in x86-64 mode, we generate this code, which could be better:
535
536_foo2:
537	xorps	%xmm1, %xmm1
538	movss	%xmm0, %xmm1
539	pshufd	$81, %xmm1, %xmm0
540	ret
541
542In sse4 mode, we could use insertps to make both better.
543
544Here's another testcase that could use insertps [mem]:
545
546#include <xmmintrin.h>
547extern float x2, x3;
548__m128 foo1 (float x1, float x4) {
549 return _mm_set_ps (x2, x1, x3, x4);
550}
551
552gcc mainline compiles it to:
553
554foo1:
555       insertps        $0x10, x2(%rip), %xmm0
556       insertps        $0x10, x3(%rip), %xmm1
557       movaps  %xmm1, %xmm2
558       movlhps %xmm0, %xmm2
559       movaps  %xmm2, %xmm0
560       ret
561
562//===---------------------------------------------------------------------===//
563
564We compile vector multiply-by-constant into poor code:
565
566define <4 x i32> @f(<4 x i32> %i) nounwind  {
567	%A = mul <4 x i32> %i, < i32 10, i32 10, i32 10, i32 10 >
568	ret <4 x i32> %A
569}
570
571On targets without SSE4.1, this compiles into:
572
573LCPI1_0:					##  <4 x i32>
574	.long	10
575	.long	10
576	.long	10
577	.long	10
578	.text
579	.align	4,0x90
580	.globl	_f
581_f:
582	pshufd	$3, %xmm0, %xmm1
583	movd	%xmm1, %eax
584	imull	LCPI1_0+12, %eax
585	movd	%eax, %xmm1
586	pshufd	$1, %xmm0, %xmm2
587	movd	%xmm2, %eax
588	imull	LCPI1_0+4, %eax
589	movd	%eax, %xmm2
590	punpckldq	%xmm1, %xmm2
591	movd	%xmm0, %eax
592	imull	LCPI1_0, %eax
593	movd	%eax, %xmm1
594	movhlps	%xmm0, %xmm0
595	movd	%xmm0, %eax
596	imull	LCPI1_0+8, %eax
597	movd	%eax, %xmm0
598	punpckldq	%xmm0, %xmm1
599	movaps	%xmm1, %xmm0
600	punpckldq	%xmm2, %xmm0
601	ret
602
603It would be better to synthesize integer vector multiplication by constants
604using shifts and adds, pslld and paddd here. And even on targets with SSE4.1,
605simple cases such as multiplication by powers of two would be better as
606vector shifts than as multiplications.
607
608//===---------------------------------------------------------------------===//
609
610We compile this:
611
612__m128i
613foo2 (char x)
614{
615  return _mm_set_epi8 (1, 0, 0, 0, 0, 0, 0, 0, 0, x, 0, 1, 0, 0, 0, 0);
616}
617
618into:
619	movl	$1, %eax
620	xorps	%xmm0, %xmm0
621	pinsrw	$2, %eax, %xmm0
622	movzbl	4(%esp), %eax
623	pinsrw	$3, %eax, %xmm0
624	movl	$256, %eax
625	pinsrw	$7, %eax, %xmm0
626	ret
627
628
629gcc-4.2:
630	subl	$12, %esp
631	movzbl	16(%esp), %eax
632	movdqa	LC0, %xmm0
633	pinsrw	$3, %eax, %xmm0
634	addl	$12, %esp
635	ret
636	.const
637	.align 4
638LC0:
639	.word	0
640	.word	0
641	.word	1
642	.word	0
643	.word	0
644	.word	0
645	.word	0
646	.word	256
647
648With SSE4, it should be
649      movdqa  .LC0(%rip), %xmm0
650      pinsrb  $6, %edi, %xmm0
651
652//===---------------------------------------------------------------------===//
653
654We should transform a shuffle of two vectors of constants into a single vector
655of constants. Also, insertelement of a constant into a vector of constants
656should also result in a vector of constants. e.g. 2008-06-25-VecISelBug.ll.
657
658We compiled it to something horrible:
659
660	.align	4
661LCPI1_1:					##  float
662	.long	1065353216	## float 1
663	.const
664
665	.align	4
666LCPI1_0:					##  <4 x float>
667	.space	4
668	.long	1065353216	## float 1
669	.space	4
670	.long	1065353216	## float 1
671	.text
672	.align	4,0x90
673	.globl	_t
674_t:
675	xorps	%xmm0, %xmm0
676	movhps	LCPI1_0, %xmm0
677	movss	LCPI1_1, %xmm1
678	movaps	%xmm0, %xmm2
679	shufps	$2, %xmm1, %xmm2
680	shufps	$132, %xmm2, %xmm0
681	movaps	%xmm0, 0
682
683//===---------------------------------------------------------------------===//
684rdar://5907648
685
686This function:
687
688float foo(unsigned char x) {
689  return x;
690}
691
692compiles to (x86-32):
693
694define float @foo(i8 zeroext  %x) nounwind  {
695	%tmp12 = uitofp i8 %x to float		; <float> [#uses=1]
696	ret float %tmp12
697}
698
699compiles to:
700
701_foo:
702	subl	$4, %esp
703	movzbl	8(%esp), %eax
704	cvtsi2ss	%eax, %xmm0
705	movss	%xmm0, (%esp)
706	flds	(%esp)
707	addl	$4, %esp
708	ret
709
710We should be able to use:
711  cvtsi2ss 8($esp), %xmm0
712since we know the stack slot is already zext'd.
713
714//===---------------------------------------------------------------------===//
715
716Consider using movlps instead of movsd to implement (scalar_to_vector (loadf64))
717when code size is critical. movlps is slower than movsd on core2 but it's one
718byte shorter.
719
720//===---------------------------------------------------------------------===//
721
722We should use a dynamic programming based approach to tell when using FPStack
723operations is cheaper than SSE.  SciMark montecarlo contains code like this
724for example:
725
726double MonteCarlo_num_flops(int Num_samples) {
727    return ((double) Num_samples)* 4.0;
728}
729
730In fpstack mode, this compiles into:
731
732LCPI1_0:
733	.long	1082130432	## float 4.000000e+00
734_MonteCarlo_num_flops:
735	subl	$4, %esp
736	movl	8(%esp), %eax
737	movl	%eax, (%esp)
738	fildl	(%esp)
739	fmuls	LCPI1_0
740	addl	$4, %esp
741	ret
742
743in SSE mode, it compiles into significantly slower code:
744
745_MonteCarlo_num_flops:
746	subl	$12, %esp
747	cvtsi2sd	16(%esp), %xmm0
748	mulsd	LCPI1_0, %xmm0
749	movsd	%xmm0, (%esp)
750	fldl	(%esp)
751	addl	$12, %esp
752	ret
753
754There are also other cases in scimark where using fpstack is better, it is
755cheaper to do fld1 than load from a constant pool for example, so
756"load, add 1.0, store" is better done in the fp stack, etc.
757
758//===---------------------------------------------------------------------===//
759
760These should compile into the same code (PR6214): Perhaps instcombine should
761canonicalize the former into the later?
762
763define float @foo(float %x) nounwind {
764  %t = bitcast float %x to i32
765  %s = and i32 %t, 2147483647
766  %d = bitcast i32 %s to float
767  ret float %d
768}
769
770declare float @fabsf(float %n)
771define float @bar(float %x) nounwind {
772  %d = call float @fabsf(float %x)
773  ret float %d
774}
775
776//===---------------------------------------------------------------------===//
777
778This IR (from PR6194):
779
780target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
781target triple = "x86_64-apple-darwin10.0.0"
782
783%0 = type { double, double }
784%struct.float3 = type { float, float, float }
785
786define void @test(%0, %struct.float3* nocapture %res) nounwind noinline ssp {
787entry:
788  %tmp18 = extractvalue %0 %0, 0                  ; <double> [#uses=1]
789  %tmp19 = bitcast double %tmp18 to i64           ; <i64> [#uses=1]
790  %tmp20 = zext i64 %tmp19 to i128                ; <i128> [#uses=1]
791  %tmp10 = lshr i128 %tmp20, 32                   ; <i128> [#uses=1]
792  %tmp11 = trunc i128 %tmp10 to i32               ; <i32> [#uses=1]
793  %tmp12 = bitcast i32 %tmp11 to float            ; <float> [#uses=1]
794  %tmp5 = getelementptr inbounds %struct.float3* %res, i64 0, i32 1 ; <float*> [#uses=1]
795  store float %tmp12, float* %tmp5
796  ret void
797}
798
799Compiles to:
800
801_test:                                  ## @test
802	movd	%xmm0, %rax
803	shrq	$32, %rax
804	movl	%eax, 4(%rdi)
805	ret
806
807This would be better kept in the SSE unit by treating XMM0 as a 4xfloat and
808doing a shuffle from v[1] to v[0] then a float store.
809
810//===---------------------------------------------------------------------===//
811
812[UNSAFE FP]
813
814void foo(double, double, double);
815void norm(double x, double y, double z) {
816  double scale = __builtin_sqrt(x*x + y*y + z*z);
817  foo(x/scale, y/scale, z/scale);
818}
819
820We currently generate an sqrtsd and 3 divsd instructions. This is bad, fp div is
821slow and not pipelined. In -ffast-math mode we could compute "1.0/scale" first
822and emit 3 mulsd in place of the divs. This can be done as a target-independent
823transform.
824
825If we're dealing with floats instead of doubles we could even replace the sqrtss
826and inversion with an rsqrtss instruction, which computes 1/sqrt faster at the
827cost of reduced accuracy.
828
829//===---------------------------------------------------------------------===//
830
831This function should be matched to haddpd when the appropriate CPU is enabled:
832
833#include <x86intrin.h>
834double f (__m128d p) {
835  return p[0] + p[1];
836}
837
838similarly, v[0]-v[1] should match to hsubpd, and {v[0]-v[1], w[0]-w[1]} should
839turn into hsubpd also.
840
841//===---------------------------------------------------------------------===//
842
843define <2 x i32> @foo(<2 x double> %in) {
844  %x = fptosi <2 x double> %in to <2 x i32>
845  ret <2 x i32> %x
846}
847
848Should compile into cvttpd2dq instead of being scalarized into 2 cvttsd2si.
849
850//===---------------------------------------------------------------------===//
851

README-UNIMPLEMENTED.txt

1//===---------------------------------------------------------------------===//
2// Testcases that crash the X86 backend because they aren't implemented
3//===---------------------------------------------------------------------===//
4
5These are cases we know the X86 backend doesn't handle.  Patches are welcome
6and appreciated, because no one has signed up to implemented these yet.
7Implementing these would allow elimination of the corresponding intrinsics,
8which would be great.
9
101) vector shifts
112) vector comparisons
123) vector fp<->int conversions: PR2683, PR2684, PR2685, PR2686, PR2688
134) bitcasts from vectors to scalars: PR2804
145) llvm.atomic.cmp.swap.i128.p0i128: PR3462
15

README-X86-64.txt

1//===- README_X86_64.txt - Notes for X86-64 code gen ----------------------===//
2
3AMD64 Optimization Manual 8.2 has some nice information about optimizing integer
4multiplication by a constant. How much of it applies to Intel's X86-64
5implementation? There are definite trade-offs to consider: latency vs. register
6pressure vs. code size.
7
8//===---------------------------------------------------------------------===//
9
10Are we better off using branches instead of cmove to implement FP to
11unsigned i64?
12
13_conv:
14	ucomiss	LC0(%rip), %xmm0
15	cvttss2siq	%xmm0, %rdx
16	jb	L3
17	subss	LC0(%rip), %xmm0
18	movabsq	$-9223372036854775808, %rax
19	cvttss2siq	%xmm0, %rdx
20	xorq	%rax, %rdx
21L3:
22	movq	%rdx, %rax
23	ret
24
25instead of
26
27_conv:
28	movss LCPI1_0(%rip), %xmm1
29	cvttss2siq %xmm0, %rcx
30	movaps %xmm0, %xmm2
31	subss %xmm1, %xmm2
32	cvttss2siq %xmm2, %rax
33	movabsq $-9223372036854775808, %rdx
34	xorq %rdx, %rax
35	ucomiss %xmm1, %xmm0
36	cmovb %rcx, %rax
37	ret
38
39Seems like the jb branch has high likelihood of being taken. It would have
40saved a few instructions.
41
42//===---------------------------------------------------------------------===//
43
44It's not possible to reference AH, BH, CH, and DH registers in an instruction
45requiring REX prefix. However, divb and mulb both produce results in AH. If isel
46emits a CopyFromReg which gets turned into a movb and that can be allocated a
47r8b - r15b.
48
49To get around this, isel emits a CopyFromReg from AX and then right shift it
50down by 8 and truncate it. It's not pretty but it works. We need some register
51allocation magic to make the hack go away (e.g. putting additional constraints
52on the result of the movb).
53
54//===---------------------------------------------------------------------===//
55
56The x86-64 ABI for hidden-argument struct returns requires that the
57incoming value of %rdi be copied into %rax by the callee upon return.
58
59The idea is that it saves callers from having to remember this value,
60which would often require a callee-saved register. Callees usually
61need to keep this value live for most of their body anyway, so it
62doesn't add a significant burden on them.
63
64We currently implement this in codegen, however this is suboptimal
65because it means that it would be quite awkward to implement the
66optimization for callers.
67
68A better implementation would be to relax the LLVM IR rules for sret
69arguments to allow a function with an sret argument to have a non-void
70return type, and to have the front-end to set up the sret argument value
71as the return value of the function. The front-end could more easily
72emit uses of the returned struct value to be in terms of the function's
73lowered return value, and it would free non-C frontends from a
74complication only required by a C-based ABI.
75
76//===---------------------------------------------------------------------===//
77
78We get a redundant zero extension for code like this:
79
80int mask[1000];
81int foo(unsigned x) {
82 if (x < 10)
83   x = x * 45;
84 else
85   x = x * 78;
86 return mask[x];
87}
88
89_foo:
90LBB1_0:	## entry
91	cmpl	$9, %edi
92	jbe	LBB1_3	## bb
93LBB1_1:	## bb1
94	imull	$78, %edi, %eax
95LBB1_2:	## bb2
96	movl	%eax, %eax                    <----
97	movq	_mask@GOTPCREL(%rip), %rcx
98	movl	(%rcx,%rax,4), %eax
99	ret
100LBB1_3:	## bb
101	imull	$45, %edi, %eax
102	jmp	LBB1_2	## bb2
103
104Before regalloc, we have:
105
106        %reg1025<def> = IMUL32rri8 %reg1024, 45, %EFLAGS<imp-def>
107        JMP mbb<bb2,0x203afb0>
108    Successors according to CFG: 0x203afb0 (#3)
109
110bb1: 0x203af60, LLVM BB @0x1e02310, ID#2:
111    Predecessors according to CFG: 0x203aec0 (#0)
112        %reg1026<def> = IMUL32rri8 %reg1024, 78, %EFLAGS<imp-def>
113    Successors according to CFG: 0x203afb0 (#3)
114
115bb2: 0x203afb0, LLVM BB @0x1e02340, ID#3:
116    Predecessors according to CFG: 0x203af10 (#1) 0x203af60 (#2)
117        %reg1027<def> = PHI %reg1025, mbb<bb,0x203af10>,
118                            %reg1026, mbb<bb1,0x203af60>
119        %reg1029<def> = MOVZX64rr32 %reg1027
120
121so we'd have to know that IMUL32rri8 leaves the high word zero extended and to
122be able to recognize the zero extend.  This could also presumably be implemented
123if we have whole-function selectiondags.
124
125//===---------------------------------------------------------------------===//
126
127Take the following code
128(from http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34653):
129extern unsigned long table[];
130unsigned long foo(unsigned char *p) {
131  unsigned long tag = *p;
132  return table[tag >> 4] + table[tag & 0xf];
133}
134
135Current code generated:
136	movzbl	(%rdi), %eax
137	movq	%rax, %rcx
138	andq	$240, %rcx
139	shrq	%rcx
140	andq	$15, %rax
141	movq	table(,%rax,8), %rax
142	addq	table(%rcx), %rax
143	ret
144
145Issues:
1461. First movq should be movl; saves a byte.
1472. Both andq's should be andl; saves another two bytes.  I think this was
148   implemented at one point, but subsequently regressed.
1493. shrq should be shrl; saves another byte.
1504. The first andq can be completely eliminated by using a slightly more
151   expensive addressing mode.
152
153//===---------------------------------------------------------------------===//
154
155Consider the following (contrived testcase, but contains common factors):
156
157#include <stdarg.h>
158int test(int x, ...) {
159  int sum, i;
160  va_list l;
161  va_start(l, x);
162  for (i = 0; i < x; i++)
163    sum += va_arg(l, int);
164  va_end(l);
165  return sum;
166}
167
168Testcase given in C because fixing it will likely involve changing the IR
169generated for it.  The primary issue with the result is that it doesn't do any
170of the optimizations which are possible if we know the address of a va_list
171in the current function is never taken:
1721. We shouldn't spill the XMM registers because we only call va_arg with "int".
1732. It would be nice if we could scalarrepl the va_list.
1743. Probably overkill, but it'd be cool if we could peel off the first five
175iterations of the loop.
176
177Other optimizations involving functions which use va_arg on floats which don't
178have the address of a va_list taken:
1791. Conversely to the above, we shouldn't spill general registers if we only
180   call va_arg on "double".
1812. If we know nothing more than 64 bits wide is read from the XMM registers,
182   we can change the spilling code to reduce the amount of stack used by half.
183
184//===---------------------------------------------------------------------===//
185

README.txt

1//===---------------------------------------------------------------------===//
2// Random ideas for the X86 backend.
3//===---------------------------------------------------------------------===//
4
5Improvements to the multiply -> shift/add algorithm:
6http://gcc.gnu.org/ml/gcc-patches/2004-08/msg01590.html
7
8//===---------------------------------------------------------------------===//
9
10Improve code like this (occurs fairly frequently, e.g. in LLVM):
11long long foo(int x) { return 1LL << x; }
12
13http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01109.html
14http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01128.html
15http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01136.html
16
17Another useful one would be  ~0ULL >> X and ~0ULL << X.
18
19One better solution for 1LL << x is:
20        xorl    %eax, %eax
21        xorl    %edx, %edx
22        testb   $32, %cl
23        sete    %al
24        setne   %dl
25        sall    %cl, %eax
26        sall    %cl, %edx
27
28But that requires good 8-bit subreg support.
29
30Also, this might be better.  It's an extra shift, but it's one instruction
31shorter, and doesn't stress 8-bit subreg support.
32(From http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01148.html,
33but without the unnecessary and.)
34        movl %ecx, %eax
35        shrl $5, %eax
36        movl %eax, %edx
37        xorl $1, %edx
38        sall %cl, %eax
39        sall %cl. %edx
40
4164-bit shifts (in general) expand to really bad code.  Instead of using
42cmovs, we should expand to a conditional branch like GCC produces.
43
44//===---------------------------------------------------------------------===//
45
46Some isel ideas:
47
481. Dynamic programming based approach when compile time is not an
49   issue.
502. Code duplication (addressing mode) during isel.
513. Other ideas from "Register-Sensitive Selection, Duplication, and
52   Sequencing of Instructions".
534. Scheduling for reduced register pressure.  E.g. "Minimum Register
54   Instruction Sequence Problem: Revisiting Optimal Code Generation for DAGs"
55   and other related papers.
56   http://citeseer.ist.psu.edu/govindarajan01minimum.html
57
58//===---------------------------------------------------------------------===//
59
60Should we promote i16 to i32 to avoid partial register update stalls?
61
62//===---------------------------------------------------------------------===//
63
64Leave any_extend as pseudo instruction and hint to register
65allocator. Delay codegen until post register allocation.
66Note. any_extend is now turned into an INSERT_SUBREG. We still need to teach
67the coalescer how to deal with it though.
68
69//===---------------------------------------------------------------------===//
70
71It appears icc use push for parameter passing. Need to investigate.
72
73//===---------------------------------------------------------------------===//
74
75The instruction selector sometimes misses folding a load into a compare.  The
76pattern is written as (cmp reg, (load p)).  Because the compare isn't
77commutative, it is not matched with the load on both sides.  The dag combiner
78should be made smart enough to canonicalize the load into the RHS of a compare
79when it can invert the result of the compare for free.
80
81//===---------------------------------------------------------------------===//
82
83In many cases, LLVM generates code like this:
84
85_test:
86        movl 8(%esp), %eax
87        cmpl %eax, 4(%esp)
88        setl %al
89        movzbl %al, %eax
90        ret
91
92on some processors (which ones?), it is more efficient to do this:
93
94_test:
95        movl 8(%esp), %ebx
96        xor  %eax, %eax
97        cmpl %ebx, 4(%esp)
98        setl %al
99        ret
100
101Doing this correctly is tricky though, as the xor clobbers the flags.
102
103//===---------------------------------------------------------------------===//
104
105We should generate bts/btr/etc instructions on targets where they are cheap or
106when codesize is important.  e.g., for:
107
108void setbit(int *target, int bit) {
109    *target |= (1 << bit);
110}
111void clearbit(int *target, int bit) {
112    *target &= ~(1 << bit);
113}
114
115//===---------------------------------------------------------------------===//
116
117Instead of the following for memset char*, 1, 10:
118
119	movl $16843009, 4(%edx)
120	movl $16843009, (%edx)
121	movw $257, 8(%edx)
122
123It might be better to generate
124
125	movl $16843009, %eax
126	movl %eax, 4(%edx)
127	movl %eax, (%edx)
128	movw al, 8(%edx)
129
130when we can spare a register. It reduces code size.
131
132//===---------------------------------------------------------------------===//
133
134Evaluate what the best way to codegen sdiv X, (2^C) is.  For X/8, we currently
135get this:
136
137define i32 @test1(i32 %X) {
138    %Y = sdiv i32 %X, 8
139    ret i32 %Y
140}
141
142_test1:
143        movl 4(%esp), %eax
144        movl %eax, %ecx
145        sarl $31, %ecx
146        shrl $29, %ecx
147        addl %ecx, %eax
148        sarl $3, %eax
149        ret
150
151GCC knows several different ways to codegen it, one of which is this:
152
153_test1:
154        movl    4(%esp), %eax
155        cmpl    $-1, %eax
156        leal    7(%eax), %ecx
157        cmovle  %ecx, %eax
158        sarl    $3, %eax
159        ret
160
161which is probably slower, but it's interesting at least :)
162
163//===---------------------------------------------------------------------===//
164
165We are currently lowering large (1MB+) memmove/memcpy to rep/stosl and rep/movsl
166We should leave these as libcalls for everything over a much lower threshold,
167since libc is hand tuned for medium and large mem ops (avoiding RFO for large
168stores, TLB preheating, etc)
169
170//===---------------------------------------------------------------------===//
171
172Optimize this into something reasonable:
173 x * copysign(1.0, y) * copysign(1.0, z)
174
175//===---------------------------------------------------------------------===//
176
177Optimize copysign(x, *y) to use an integer load from y.
178
179//===---------------------------------------------------------------------===//
180
181The following tests perform worse with LSR:
182
183lambda, siod, optimizer-eval, ackermann, hash2, nestedloop, strcat, and Treesor.
184
185//===---------------------------------------------------------------------===//
186
187Adding to the list of cmp / test poor codegen issues:
188
189int test(__m128 *A, __m128 *B) {
190  if (_mm_comige_ss(*A, *B))
191    return 3;
192  else
193    return 4;
194}
195
196_test:
197	movl 8(%esp), %eax
198	movaps (%eax), %xmm0
199	movl 4(%esp), %eax
200	movaps (%eax), %xmm1
201	comiss %xmm0, %xmm1
202	setae %al
203	movzbl %al, %ecx
204	movl $3, %eax
205	movl $4, %edx
206	cmpl $0, %ecx
207	cmove %edx, %eax
208	ret
209
210Note the setae, movzbl, cmpl, cmove can be replaced with a single cmovae. There
211are a number of issues. 1) We are introducing a setcc between the result of the
212intrisic call and select. 2) The intrinsic is expected to produce a i32 value
213so a any extend (which becomes a zero extend) is added.
214
215We probably need some kind of target DAG combine hook to fix this.
216
217//===---------------------------------------------------------------------===//
218
219We generate significantly worse code for this than GCC:
220http://gcc.gnu.org/bugzilla/show_bug.cgi?id=21150
221http://gcc.gnu.org/bugzilla/attachment.cgi?id=8701
222
223There is also one case we do worse on PPC.
224
225//===---------------------------------------------------------------------===//
226
227For this:
228
229int test(int a)
230{
231  return a * 3;
232}
233
234We currently emits
235	imull $3, 4(%esp), %eax
236
237Perhaps this is what we really should generate is? Is imull three or four
238cycles? Note: ICC generates this:
239	movl	4(%esp), %eax
240	leal	(%eax,%eax,2), %eax
241
242The current instruction priority is based on pattern complexity. The former is
243more "complex" because it folds a load so the latter will not be emitted.
244
245Perhaps we should use AddedComplexity to give LEA32r a higher priority? We
246should always try to match LEA first since the LEA matching code does some
247estimate to determine whether the match is profitable.
248
249However, if we care more about code size, then imull is better. It's two bytes
250shorter than movl + leal.
251
252On a Pentium M, both variants have the same characteristics with regard
253to throughput; however, the multiplication has a latency of four cycles, as
254opposed to two cycles for the movl+lea variant.
255
256//===---------------------------------------------------------------------===//
257
258It appears gcc place string data with linkonce linkage in
259.section __TEXT,__const_coal,coalesced instead of
260.section __DATA,__const_coal,coalesced.
261Take a look at darwin.h, there are other Darwin assembler directives that we
262do not make use of.
263
264//===---------------------------------------------------------------------===//
265
266define i32 @foo(i32* %a, i32 %t) {
267entry:
268	br label %cond_true
269
270cond_true:		; preds = %cond_true, %entry
271	%x.0.0 = phi i32 [ 0, %entry ], [ %tmp9, %cond_true ]		; <i32> [#uses=3]
272	%t_addr.0.0 = phi i32 [ %t, %entry ], [ %tmp7, %cond_true ]		; <i32> [#uses=1]
273	%tmp2 = getelementptr i32* %a, i32 %x.0.0		; <i32*> [#uses=1]
274	%tmp3 = load i32* %tmp2		; <i32> [#uses=1]
275	%tmp5 = add i32 %t_addr.0.0, %x.0.0		; <i32> [#uses=1]
276	%tmp7 = add i32 %tmp5, %tmp3		; <i32> [#uses=2]
277	%tmp9 = add i32 %x.0.0, 1		; <i32> [#uses=2]
278	%tmp = icmp sgt i32 %tmp9, 39		; <i1> [#uses=1]
279	br i1 %tmp, label %bb12, label %cond_true
280
281bb12:		; preds = %cond_true
282	ret i32 %tmp7
283}
284is pessimized by -loop-reduce and -indvars
285
286//===---------------------------------------------------------------------===//
287
288u32 to float conversion improvement:
289
290float uint32_2_float( unsigned u ) {
291  float fl = (int) (u & 0xffff);
292  float fh = (int) (u >> 16);
293  fh *= 0x1.0p16f;
294  return fh + fl;
295}
296
29700000000        subl    $0x04,%esp
29800000003        movl    0x08(%esp,1),%eax
29900000007        movl    %eax,%ecx
30000000009        shrl    $0x10,%ecx
3010000000c        cvtsi2ss        %ecx,%xmm0
30200000010        andl    $0x0000ffff,%eax
30300000015        cvtsi2ss        %eax,%xmm1
30400000019        mulss   0x00000078,%xmm0
30500000021        addss   %xmm1,%xmm0
30600000025        movss   %xmm0,(%esp,1)
3070000002a        flds    (%esp,1)
3080000002d        addl    $0x04,%esp
30900000030        ret
310
311//===---------------------------------------------------------------------===//
312
313When using fastcc abi, align stack slot of argument of type double on 8 byte
314boundary to improve performance.
315
316//===---------------------------------------------------------------------===//
317
318GCC's ix86_expand_int_movcc function (in i386.c) has a ton of interesting
319simplifications for integer "x cmp y ? a : b".
320
321//===---------------------------------------------------------------------===//
322
323Consider the expansion of:
324
325define i32 @test3(i32 %X) {
326        %tmp1 = urem i32 %X, 255
327        ret i32 %tmp1
328}
329
330Currently it compiles to:
331
332...
333        movl $2155905153, %ecx
334        movl 8(%esp), %esi
335        movl %esi, %eax
336        mull %ecx
337...
338
339This could be "reassociated" into:
340
341        movl $2155905153, %eax
342        movl 8(%esp), %ecx
343        mull %ecx
344
345to avoid the copy.  In fact, the existing two-address stuff would do this
346except that mul isn't a commutative 2-addr instruction.  I guess this has
347to be done at isel time based on the #uses to mul?
348
349//===---------------------------------------------------------------------===//
350
351Make sure the instruction which starts a loop does not cross a cacheline
352boundary. This requires knowning the exact length of each machine instruction.
353That is somewhat complicated, but doable. Example 256.bzip2:
354
355In the new trace, the hot loop has an instruction which crosses a cacheline
356boundary.  In addition to potential cache misses, this can't help decoding as I
357imagine there has to be some kind of complicated decoder reset and realignment
358to grab the bytes from the next cacheline.
359
360532  532 0x3cfc movb     (1809(%esp, %esi), %bl   <<<--- spans 2 64 byte lines
361942  942 0x3d03 movl     %dh, (1809(%esp, %esi)
362937  937 0x3d0a incl     %esi
3633    3   0x3d0b cmpb     %bl, %dl
36427   27  0x3d0d jnz      0x000062db <main+11707>
365
366//===---------------------------------------------------------------------===//
367
368In c99 mode, the preprocessor doesn't like assembly comments like #TRUNCATE.
369
370//===---------------------------------------------------------------------===//
371
372This could be a single 16-bit load.
373
374int f(char *p) {
375    if ((p[0] == 1) & (p[1] == 2)) return 1;
376    return 0;
377}
378
379//===---------------------------------------------------------------------===//
380
381We should inline lrintf and probably other libc functions.
382
383//===---------------------------------------------------------------------===//
384
385This code:
386
387void test(int X) {
388  if (X) abort();
389}
390
391is currently compiled to:
392
393_test:
394        subl $12, %esp
395        cmpl $0, 16(%esp)
396        jne LBB1_1
397        addl $12, %esp
398        ret
399LBB1_1:
400        call L_abort$stub
401
402It would be better to produce:
403
404_test:
405        subl $12, %esp
406        cmpl $0, 16(%esp)
407        jne L_abort$stub
408        addl $12, %esp
409        ret
410
411This can be applied to any no-return function call that takes no arguments etc.
412Alternatively, the stack save/restore logic could be shrink-wrapped, producing
413something like this:
414
415_test:
416        cmpl $0, 4(%esp)
417        jne LBB1_1
418        ret
419LBB1_1:
420        subl $12, %esp
421        call L_abort$stub
422
423Both are useful in different situations.  Finally, it could be shrink-wrapped
424and tail called, like this:
425
426_test:
427        cmpl $0, 4(%esp)
428        jne LBB1_1
429        ret
430LBB1_1:
431        pop %eax   # realign stack.
432        call L_abort$stub
433
434Though this probably isn't worth it.
435
436//===---------------------------------------------------------------------===//
437
438Sometimes it is better to codegen subtractions from a constant (e.g. 7-x) with
439a neg instead of a sub instruction.  Consider:
440
441int test(char X) { return 7-X; }
442
443we currently produce:
444_test:
445        movl $7, %eax
446        movsbl 4(%esp), %ecx
447        subl %ecx, %eax
448        ret
449
450We would use one fewer register if codegen'd as:
451
452        movsbl 4(%esp), %eax
453	neg %eax
454        add $7, %eax
455        ret
456
457Note that this isn't beneficial if the load can be folded into the sub.  In
458this case, we want a sub:
459
460int test(int X) { return 7-X; }
461_test:
462        movl $7, %eax
463        subl 4(%esp), %eax
464        ret
465
466//===---------------------------------------------------------------------===//
467
468Leaf functions that require one 4-byte spill slot have a prolog like this:
469
470_foo:
471        pushl   %esi
472        subl    $4, %esp
473...
474and an epilog like this:
475        addl    $4, %esp
476        popl    %esi
477        ret
478
479It would be smaller, and potentially faster, to push eax on entry and to
480pop into a dummy register instead of using addl/subl of esp.  Just don't pop
481into any return registers :)
482
483//===---------------------------------------------------------------------===//
484
485The X86 backend should fold (branch (or (setcc, setcc))) into multiple
486branches.  We generate really poor code for:
487
488double testf(double a) {
489       return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0);
490}
491
492For example, the entry BB is:
493
494_testf:
495        subl    $20, %esp
496        pxor    %xmm0, %xmm0
497        movsd   24(%esp), %xmm1
498        ucomisd %xmm0, %xmm1
499        setnp   %al
500        sete    %cl
501        testb   %cl, %al
502        jne     LBB1_5  # UnifiedReturnBlock
503LBB1_1: # cond_true
504
505
506it would be better to replace the last four instructions with:
507
508	jp LBB1_1
509	je LBB1_5
510LBB1_1:
511
512We also codegen the inner ?: into a diamond:
513
514       cvtss2sd        LCPI1_0(%rip), %xmm2
515        cvtss2sd        LCPI1_1(%rip), %xmm3
516        ucomisd %xmm1, %xmm0
517        ja      LBB1_3  # cond_true
518LBB1_2: # cond_true
519        movapd  %xmm3, %xmm2
520LBB1_3: # cond_true
521        movapd  %xmm2, %xmm0
522        ret
523
524We should sink the load into xmm3 into the LBB1_2 block.  This should
525be pretty easy, and will nuke all the copies.
526
527//===---------------------------------------------------------------------===//
528
529This:
530        #include <algorithm>
531        inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b)
532        { return std::make_pair(a + b, a + b < a); }
533        bool no_overflow(unsigned a, unsigned b)
534        { return !full_add(a, b).second; }
535
536Should compile to:
537	addl	%esi, %edi
538	setae	%al
539	movzbl	%al, %eax
540	ret
541
542on x86-64, instead of the rather stupid-looking:
543	addl	%esi, %edi
544	setb	%al
545	xorb	$1, %al
546	movzbl	%al, %eax
547	ret
548
549
550//===---------------------------------------------------------------------===//
551
552The following code:
553
554bb114.preheader:		; preds = %cond_next94
555	%tmp231232 = sext i16 %tmp62 to i32		; <i32> [#uses=1]
556	%tmp233 = sub i32 32, %tmp231232		; <i32> [#uses=1]
557	%tmp245246 = sext i16 %tmp65 to i32		; <i32> [#uses=1]
558	%tmp252253 = sext i16 %tmp68 to i32		; <i32> [#uses=1]
559	%tmp254 = sub i32 32, %tmp252253		; <i32> [#uses=1]
560	%tmp553554 = bitcast i16* %tmp37 to i8*		; <i8*> [#uses=2]
561	%tmp583584 = sext i16 %tmp98 to i32		; <i32> [#uses=1]
562	%tmp585 = sub i32 32, %tmp583584		; <i32> [#uses=1]
563	%tmp614615 = sext i16 %tmp101 to i32		; <i32> [#uses=1]
564	%tmp621622 = sext i16 %tmp104 to i32		; <i32> [#uses=1]
565	%tmp623 = sub i32 32, %tmp621622		; <i32> [#uses=1]
566	br label %bb114
567
568produces:
569
570LBB3_5:	# bb114.preheader
571	movswl	-68(%ebp), %eax
572	movl	$32, %ecx
573	movl	%ecx, -80(%ebp)
574	subl	%eax, -80(%ebp)
575	movswl	-52(%ebp), %eax
576	movl	%ecx, -84(%ebp)
577	subl	%eax, -84(%ebp)
578	movswl	-70(%ebp), %eax
579	movl	%ecx, -88(%ebp)
580	subl	%eax, -88(%ebp)
581	movswl	-50(%ebp), %eax
582	subl	%eax, %ecx
583	movl	%ecx, -76(%ebp)
584	movswl	-42(%ebp), %eax
585	movl	%eax, -92(%ebp)
586	movswl	-66(%ebp), %eax
587	movl	%eax, -96(%ebp)
588	movw	$0, -98(%ebp)
589
590This appears to be bad because the RA is not folding the store to the stack
591slot into the movl.  The above instructions could be:
592	movl    $32, -80(%ebp)
593...
594	movl    $32, -84(%ebp)
595...
596This seems like a cross between remat and spill folding.
597
598This has redundant subtractions of %eax from a stack slot. However, %ecx doesn't
599change, so we could simply subtract %eax from %ecx first and then use %ecx (or
600vice-versa).
601
602//===---------------------------------------------------------------------===//
603
604This code:
605
606	%tmp659 = icmp slt i16 %tmp654, 0		; <i1> [#uses=1]
607	br i1 %tmp659, label %cond_true662, label %cond_next715
608
609produces this:
610
611	testw	%cx, %cx
612	movswl	%cx, %esi
613	jns	LBB4_109	# cond_next715
614
615Shark tells us that using %cx in the testw instruction is sub-optimal. It
616suggests using the 32-bit register (which is what ICC uses).
617
618//===---------------------------------------------------------------------===//
619
620We compile this:
621
622void compare (long long foo) {
623  if (foo < 4294967297LL)
624    abort();
625}
626
627to:
628
629compare:
630        subl    $4, %esp
631        cmpl    $0, 8(%esp)
632        setne   %al
633        movzbw  %al, %ax
634        cmpl    $1, 12(%esp)
635        setg    %cl
636        movzbw  %cl, %cx
637        cmove   %ax, %cx
638        testb   $1, %cl
639        jne     .LBB1_2 # UnifiedReturnBlock
640.LBB1_1:        # ifthen
641        call    abort
642.LBB1_2:        # UnifiedReturnBlock
643        addl    $4, %esp
644        ret
645
646(also really horrible code on ppc).  This is due to the expand code for 64-bit
647compares.  GCC produces multiple branches, which is much nicer:
648
649compare:
650        subl    $12, %esp
651        movl    20(%esp), %edx
652        movl    16(%esp), %eax
653        decl    %edx
654        jle     .L7
655.L5:
656        addl    $12, %esp
657        ret
658        .p2align 4,,7
659.L7:
660        jl      .L4
661        cmpl    $0, %eax
662        .p2align 4,,8
663        ja      .L5
664.L4:
665        .p2align 4,,9
666        call    abort
667
668//===---------------------------------------------------------------------===//
669
670Tail call optimization improvements: Tail call optimization currently
671pushes all arguments on the top of the stack (their normal place for
672non-tail call optimized calls) that source from the callers arguments
673or  that source from a virtual register (also possibly sourcing from
674callers arguments).
675This is done to prevent overwriting of parameters (see example
676below) that might be used later.
677
678example:
679
680int callee(int32, int64);
681int caller(int32 arg1, int32 arg2) {
682  int64 local = arg2 * 2;
683  return callee(arg2, (int64)local);
684}
685
686[arg1]          [!arg2 no longer valid since we moved local onto it]
687[arg2]      ->  [(int64)
688[RETADDR]        local  ]
689
690Moving arg1 onto the stack slot of callee function would overwrite
691arg2 of the caller.
692
693Possible optimizations:
694
695
696 - Analyse the actual parameters of the callee to see which would
697   overwrite a caller parameter which is used by the callee and only
698   push them onto the top of the stack.
699
700   int callee (int32 arg1, int32 arg2);
701   int caller (int32 arg1, int32 arg2) {
702       return callee(arg1,arg2);
703   }
704
705   Here we don't need to write any variables to the top of the stack
706   since they don't overwrite each other.
707
708   int callee (int32 arg1, int32 arg2);
709   int caller (int32 arg1, int32 arg2) {
710       return callee(arg2,arg1);
711   }
712
713   Here we need to push the arguments because they overwrite each
714   other.
715
716//===---------------------------------------------------------------------===//
717
718main ()
719{
720  int i = 0;
721  unsigned long int z = 0;
722
723  do {
724    z -= 0x00004000;
725    i++;
726    if (i > 0x00040000)
727      abort ();
728  } while (z > 0);
729  exit (0);
730}
731
732gcc compiles this to:
733
734_main:
735	subl	$28, %esp
736	xorl	%eax, %eax
737	jmp	L2
738L3:
739	cmpl	$262144, %eax
740	je	L10
741L2:
742	addl	$1, %eax
743	cmpl	$262145, %eax
744	jne	L3
745	call	L_abort$stub
746L10:
747	movl	$0, (%esp)
748	call	L_exit$stub
749
750llvm:
751
752_main:
753	subl	$12, %esp
754	movl	$1, %eax
755	movl	$16384, %ecx
756LBB1_1:	# bb
757	cmpl	$262145, %eax
758	jge	LBB1_4	# cond_true
759LBB1_2:	# cond_next
760	incl	%eax
761	addl	$4294950912, %ecx
762	cmpl	$16384, %ecx
763	jne	LBB1_1	# bb
764LBB1_3:	# bb11
765	xorl	%eax, %eax
766	addl	$12, %esp
767	ret
768LBB1_4:	# cond_true
769	call	L_abort$stub
770
7711. LSR should rewrite the first cmp with induction variable %ecx.
7722. DAG combiner should fold
773        leal    1(%eax), %edx
774        cmpl    $262145, %edx
775   =>
776        cmpl    $262144, %eax
777
778//===---------------------------------------------------------------------===//
779
780define i64 @test(double %X) {
781	%Y = fptosi double %X to i64
782	ret i64 %Y
783}
784
785compiles to:
786
787_test:
788	subl	$20, %esp
789	movsd	24(%esp), %xmm0
790	movsd	%xmm0, 8(%esp)
791	fldl	8(%esp)
792	fisttpll	(%esp)
793	movl	4(%esp), %edx
794	movl	(%esp), %eax
795	addl	$20, %esp
796	#FP_REG_KILL
797	ret
798
799This should just fldl directly from the input stack slot.
800
801//===---------------------------------------------------------------------===//
802
803This code:
804int foo (int x) { return (x & 65535) | 255; }
805
806Should compile into:
807
808_foo:
809        movzwl  4(%esp), %eax
810        orl     $255, %eax
811        ret
812
813instead of:
814_foo:
815	movl	$65280, %eax
816	andl	4(%esp), %eax
817	orl	$255, %eax
818	ret
819
820//===---------------------------------------------------------------------===//
821
822We're codegen'ing multiply of long longs inefficiently:
823
824unsigned long long LLM(unsigned long long arg1, unsigned long long arg2) {
825  return arg1 *  arg2;
826}
827
828We compile to (fomit-frame-pointer):
829
830_LLM:
831	pushl	%esi
832	movl	8(%esp), %ecx
833	movl	16(%esp), %esi
834	movl	%esi, %eax
835	mull	%ecx
836	imull	12(%esp), %esi
837	addl	%edx, %esi
838	imull	20(%esp), %ecx
839	movl	%esi, %edx
840	addl	%ecx, %edx
841	popl	%esi
842	ret
843
844This looks like a scheduling deficiency and lack of remat of the load from
845the argument area.  ICC apparently produces:
846
847        movl      8(%esp), %ecx
848        imull     12(%esp), %ecx
849        movl      16(%esp), %eax
850        imull     4(%esp), %eax
851        addl      %eax, %ecx
852        movl      4(%esp), %eax
853        mull      12(%esp)
854        addl      %ecx, %edx
855        ret
856
857Note that it remat'd loads from 4(esp) and 12(esp).  See this GCC PR:
858http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17236
859
860//===---------------------------------------------------------------------===//
861
862We can fold a store into "zeroing a reg".  Instead of:
863
864xorl    %eax, %eax
865movl    %eax, 124(%esp)
866
867we should get:
868
869movl    $0, 124(%esp)
870
871if the flags of the xor are dead.
872
873Likewise, we isel "x<<1" into "add reg,reg".  If reg is spilled, this should
874be folded into: shl [mem], 1
875
876//===---------------------------------------------------------------------===//
877
878In SSE mode, we turn abs and neg into a load from the constant pool plus a xor
879or and instruction, for example:
880
881	xorpd	LCPI1_0, %xmm2
882
883However, if xmm2 gets spilled, we end up with really ugly code like this:
884
885	movsd	(%esp), %xmm0
886	xorpd	LCPI1_0, %xmm0
887	movsd	%xmm0, (%esp)
888
889Since we 'know' that this is a 'neg', we can actually "fold" the spill into
890the neg/abs instruction, turning it into an *integer* operation, like this:
891
892	xorl 2147483648, [mem+4]     ## 2147483648 = (1 << 31)
893
894you could also use xorb, but xorl is less likely to lead to a partial register
895stall.  Here is a contrived testcase:
896
897double a, b, c;
898void test(double *P) {
899  double X = *P;
900  a = X;
901  bar();
902  X = -X;
903  b = X;
904  bar();
905  c = X;
906}
907
908//===---------------------------------------------------------------------===//
909
910The generated code on x86 for checking for signed overflow on a multiply the
911obvious way is much longer than it needs to be.
912
913int x(int a, int b) {
914  long long prod = (long long)a*b;
915  return  prod > 0x7FFFFFFF || prod < (-0x7FFFFFFF-1);
916}
917
918See PR2053 for more details.
919
920//===---------------------------------------------------------------------===//
921
922We should investigate using cdq/ctld (effect: edx = sar eax, 31)
923more aggressively; it should cost the same as a move+shift on any modern
924processor, but it's a lot shorter. Downside is that it puts more
925pressure on register allocation because it has fixed operands.
926
927Example:
928int abs(int x) {return x < 0 ? -x : x;}
929
930gcc compiles this to the following when using march/mtune=pentium2/3/4/m/etc.:
931abs:
932        movl    4(%esp), %eax
933        cltd
934        xorl    %edx, %eax
935        subl    %edx, %eax
936        ret
937
938//===---------------------------------------------------------------------===//
939
940Take the following code (from
941http://gcc.gnu.org/bugzilla/show_bug.cgi?id=16541):
942
943extern unsigned char first_one[65536];
944int FirstOnet(unsigned long long arg1)
945{
946  if (arg1 >> 48)
947    return (first_one[arg1 >> 48]);
948  return 0;
949}
950
951
952The following code is currently generated:
953FirstOnet:
954        movl    8(%esp), %eax
955        cmpl    $65536, %eax
956        movl    4(%esp), %ecx
957        jb      .LBB1_2 # UnifiedReturnBlock
958.LBB1_1:        # ifthen
959        shrl    $16, %eax
960        movzbl  first_one(%eax), %eax
961        ret
962.LBB1_2:        # UnifiedReturnBlock
963        xorl    %eax, %eax
964        ret
965
966We could change the "movl 8(%esp), %eax" into "movzwl 10(%esp), %eax"; this
967lets us change the cmpl into a testl, which is shorter, and eliminate the shift.
968
969//===---------------------------------------------------------------------===//
970
971We compile this function:
972
973define i32 @foo(i32 %a, i32 %b, i32 %c, i8 zeroext  %d) nounwind  {
974entry:
975	%tmp2 = icmp eq i8 %d, 0		; <i1> [#uses=1]
976	br i1 %tmp2, label %bb7, label %bb
977
978bb:		; preds = %entry
979	%tmp6 = add i32 %b, %a		; <i32> [#uses=1]
980	ret i32 %tmp6
981
982bb7:		; preds = %entry
983	%tmp10 = sub i32 %a, %c		; <i32> [#uses=1]
984	ret i32 %tmp10
985}
986
987to:
988
989foo:                                    # @foo
990# BB#0:                                 # %entry
991	movl	4(%esp), %ecx
992	cmpb	$0, 16(%esp)
993	je	.LBB0_2
994# BB#1:                                 # %bb
995	movl	8(%esp), %eax
996	addl	%ecx, %eax
997	ret
998.LBB0_2:                                # %bb7
999	movl	12(%esp), %edx
1000	movl	%ecx, %eax
1001	subl	%edx, %eax
1002	ret
1003
1004There's an obviously unnecessary movl in .LBB0_2, and we could eliminate a
1005couple more movls by putting 4(%esp) into %eax instead of %ecx.
1006
1007//===---------------------------------------------------------------------===//
1008
1009See rdar://4653682.
1010
1011From flops:
1012
1013LBB1_15:        # bb310
1014        cvtss2sd        LCPI1_0, %xmm1
1015        addsd   %xmm1, %xmm0
1016        movsd   176(%esp), %xmm2
1017        mulsd   %xmm0, %xmm2
1018        movapd  %xmm2, %xmm3
1019        mulsd   %xmm3, %xmm3
1020        movapd  %xmm3, %xmm4
1021        mulsd   LCPI1_23, %xmm4
1022        addsd   LCPI1_24, %xmm4
1023        mulsd   %xmm3, %xmm4
1024        addsd   LCPI1_25, %xmm4
1025        mulsd   %xmm3, %xmm4
1026        addsd   LCPI1_26, %xmm4
1027        mulsd   %xmm3, %xmm4
1028        addsd   LCPI1_27, %xmm4
1029        mulsd   %xmm3, %xmm4
1030        addsd   LCPI1_28, %xmm4
1031        mulsd   %xmm3, %xmm4
1032        addsd   %xmm1, %xmm4
1033        mulsd   %xmm2, %xmm4
1034        movsd   152(%esp), %xmm1
1035        addsd   %xmm4, %xmm1
1036        movsd   %xmm1, 152(%esp)
1037        incl    %eax
1038        cmpl    %eax, %esi
1039        jge     LBB1_15 # bb310
1040LBB1_16:        # bb358.loopexit
1041        movsd   152(%esp), %xmm0
1042        addsd   %xmm0, %xmm0
1043        addsd   LCPI1_22, %xmm0
1044        movsd   %xmm0, 152(%esp)
1045
1046Rather than spilling the result of the last addsd in the loop, we should have
1047insert a copy to split the interval (one for the duration of the loop, one
1048extending to the fall through). The register pressure in the loop isn't high
1049enough to warrant the spill.
1050
1051Also check why xmm7 is not used at all in the function.
1052
1053//===---------------------------------------------------------------------===//
1054
1055Take the following:
1056
1057target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128-S128"
1058target triple = "i386-apple-darwin8"
1059@in_exit.4870.b = internal global i1 false		; <i1*> [#uses=2]
1060define fastcc void @abort_gzip() noreturn nounwind  {
1061entry:
1062	%tmp.b.i = load i1* @in_exit.4870.b		; <i1> [#uses=1]
1063	br i1 %tmp.b.i, label %bb.i, label %bb4.i
1064bb.i:		; preds = %entry
1065	tail call void @exit( i32 1 ) noreturn nounwind
1066	unreachable
1067bb4.i:		; preds = %entry
1068	store i1 true, i1* @in_exit.4870.b
1069	tail call void @exit( i32 1 ) noreturn nounwind
1070	unreachable
1071}
1072declare void @exit(i32) noreturn nounwind
1073
1074This compiles into:
1075_abort_gzip:                            ## @abort_gzip
1076## BB#0:                                ## %entry
1077	subl	$12, %esp
1078	movb	_in_exit.4870.b, %al
1079	cmpb	$1, %al
1080	jne	LBB0_2
1081
1082We somehow miss folding the movb into the cmpb.
1083
1084//===---------------------------------------------------------------------===//
1085
1086We compile:
1087
1088int test(int x, int y) {
1089  return x-y-1;
1090}
1091
1092into (-m64):
1093
1094_test:
1095	decl	%edi
1096	movl	%edi, %eax
1097	subl	%esi, %eax
1098	ret
1099
1100it would be better to codegen as: x+~y  (notl+addl)
1101
1102//===---------------------------------------------------------------------===//
1103
1104This code:
1105
1106int foo(const char *str,...)
1107{
1108 __builtin_va_list a; int x;
1109 __builtin_va_start(a,str); x = __builtin_va_arg(a,int); __builtin_va_end(a);
1110 return x;
1111}
1112
1113gets compiled into this on x86-64:
1114	subq    $200, %rsp
1115        movaps  %xmm7, 160(%rsp)
1116        movaps  %xmm6, 144(%rsp)
1117        movaps  %xmm5, 128(%rsp)
1118        movaps  %xmm4, 112(%rsp)
1119        movaps  %xmm3, 96(%rsp)
1120        movaps  %xmm2, 80(%rsp)
1121        movaps  %xmm1, 64(%rsp)
1122        movaps  %xmm0, 48(%rsp)
1123        movq    %r9, 40(%rsp)
1124        movq    %r8, 32(%rsp)
1125        movq    %rcx, 24(%rsp)
1126        movq    %rdx, 16(%rsp)
1127        movq    %rsi, 8(%rsp)
1128        leaq    (%rsp), %rax
1129        movq    %rax, 192(%rsp)
1130        leaq    208(%rsp), %rax
1131        movq    %rax, 184(%rsp)
1132        movl    $48, 180(%rsp)
1133        movl    $8, 176(%rsp)
1134        movl    176(%rsp), %eax
1135        cmpl    $47, %eax
1136        jbe     .LBB1_3 # bb
1137.LBB1_1:        # bb3
1138        movq    184(%rsp), %rcx
1139        leaq    8(%rcx), %rax
1140        movq    %rax, 184(%rsp)
1141.LBB1_2:        # bb4
1142        movl    (%rcx), %eax
1143        addq    $200, %rsp
1144        ret
1145.LBB1_3:        # bb
1146        movl    %eax, %ecx
1147        addl    $8, %eax
1148        addq    192(%rsp), %rcx
1149        movl    %eax, 176(%rsp)
1150        jmp     .LBB1_2 # bb4
1151
1152gcc 4.3 generates:
1153	subq    $96, %rsp
1154.LCFI0:
1155        leaq    104(%rsp), %rax
1156        movq    %rsi, -80(%rsp)
1157        movl    $8, -120(%rsp)
1158        movq    %rax, -112(%rsp)
1159        leaq    -88(%rsp), %rax
1160        movq    %rax, -104(%rsp)
1161        movl    $8, %eax
1162        cmpl    $48, %eax
1163        jb      .L6
1164        movq    -112(%rsp), %rdx
1165        movl    (%rdx), %eax
1166        addq    $96, %rsp
1167        ret
1168        .p2align 4,,10
1169        .p2align 3
1170.L6:
1171        mov     %eax, %edx
1172        addq    -104(%rsp), %rdx
1173        addl    $8, %eax
1174        movl    %eax, -120(%rsp)
1175        movl    (%rdx), %eax
1176        addq    $96, %rsp
1177        ret
1178
1179and it gets compiled into this on x86:
1180	pushl   %ebp
1181        movl    %esp, %ebp
1182        subl    $4, %esp
1183        leal    12(%ebp), %eax
1184        movl    %eax, -4(%ebp)
1185        leal    16(%ebp), %eax
1186        movl    %eax, -4(%ebp)
1187        movl    12(%ebp), %eax
1188        addl    $4, %esp
1189        popl    %ebp
1190        ret
1191
1192gcc 4.3 generates:
1193	pushl   %ebp
1194        movl    %esp, %ebp
1195        movl    12(%ebp), %eax
1196        popl    %ebp
1197        ret
1198
1199//===---------------------------------------------------------------------===//
1200
1201Teach tblgen not to check bitconvert source type in some cases. This allows us
1202to consolidate the following patterns in X86InstrMMX.td:
1203
1204def : Pat<(v2i32 (bitconvert (i64 (vector_extract (v2i64 VR128:$src),
1205                                                  (iPTR 0))))),
1206          (v2i32 (MMX_MOVDQ2Qrr VR128:$src))>;
1207def : Pat<(v4i16 (bitconvert (i64 (vector_extract (v2i64 VR128:$src),
1208                                                  (iPTR 0))))),
1209          (v4i16 (MMX_MOVDQ2Qrr VR128:$src))>;
1210def : Pat<(v8i8 (bitconvert (i64 (vector_extract (v2i64 VR128:$src),
1211                                                  (iPTR 0))))),
1212          (v8i8 (MMX_MOVDQ2Qrr VR128:$src))>;
1213
1214There are other cases in various td files.
1215
1216//===---------------------------------------------------------------------===//
1217
1218Take something like the following on x86-32:
1219unsigned a(unsigned long long x, unsigned y) {return x % y;}
1220
1221We currently generate a libcall, but we really shouldn't: the expansion is
1222shorter and likely faster than the libcall.  The expected code is something
1223like the following:
1224
1225	movl	12(%ebp), %eax
1226	movl	16(%ebp), %ecx
1227	xorl	%edx, %edx
1228	divl	%ecx
1229	movl	8(%ebp), %eax
1230	divl	%ecx
1231	movl	%edx, %eax
1232	ret
1233
1234A similar code sequence works for division.
1235
1236//===---------------------------------------------------------------------===//
1237
1238We currently compile this:
1239
1240define i32 @func1(i32 %v1, i32 %v2) nounwind {
1241entry:
1242  %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
1243  %sum = extractvalue {i32, i1} %t, 0
1244  %obit = extractvalue {i32, i1} %t, 1
1245  br i1 %obit, label %overflow, label %normal
1246normal:
1247  ret i32 %sum
1248overflow:
1249  call void @llvm.trap()
1250  unreachable
1251}
1252declare {i32, i1} @llvm.sadd.with.overflow.i32(i32, i32)
1253declare void @llvm.trap()
1254
1255to:
1256
1257_func1:
1258	movl	4(%esp), %eax
1259	addl	8(%esp), %eax
1260	jo	LBB1_2	## overflow
1261LBB1_1:	## normal
1262	ret
1263LBB1_2:	## overflow
1264	ud2
1265
1266it would be nice to produce "into" someday.
1267
1268//===---------------------------------------------------------------------===//
1269
1270Test instructions can be eliminated by using EFLAGS values from arithmetic
1271instructions. This is currently not done for mul, and, or, xor, neg, shl,
1272sra, srl, shld, shrd, atomic ops, and others. It is also currently not done
1273for read-modify-write instructions. It is also current not done if the
1274OF or CF flags are needed.
1275
1276The shift operators have the complication that when the shift count is
1277zero, EFLAGS is not set, so they can only subsume a test instruction if
1278the shift count is known to be non-zero. Also, using the EFLAGS value
1279from a shift is apparently very slow on some x86 implementations.
1280
1281In read-modify-write instructions, the root node in the isel match is
1282the store, and isel has no way for the use of the EFLAGS result of the
1283arithmetic to be remapped to the new node.
1284
1285Add and subtract instructions set OF on signed overflow and CF on unsiged
1286overflow, while test instructions always clear OF and CF. In order to
1287replace a test with an add or subtract in a situation where OF or CF is
1288needed, codegen must be able to prove that the operation cannot see
1289signed or unsigned overflow, respectively.
1290
1291//===---------------------------------------------------------------------===//
1292
1293memcpy/memmove do not lower to SSE copies when possible.  A silly example is:
1294define <16 x float> @foo(<16 x float> %A) nounwind {
1295	%tmp = alloca <16 x float>, align 16
1296	%tmp2 = alloca <16 x float>, align 16
1297	store <16 x float> %A, <16 x float>* %tmp
1298	%s = bitcast <16 x float>* %tmp to i8*
1299	%s2 = bitcast <16 x float>* %tmp2 to i8*
1300	call void @llvm.memcpy.i64(i8* %s, i8* %s2, i64 64, i32 16)
1301	%R = load <16 x float>* %tmp2
1302	ret <16 x float> %R
1303}
1304
1305declare void @llvm.memcpy.i64(i8* nocapture, i8* nocapture, i64, i32) nounwind
1306
1307which compiles to:
1308
1309_foo:
1310	subl	$140, %esp
1311	movaps	%xmm3, 112(%esp)
1312	movaps	%xmm2, 96(%esp)
1313	movaps	%xmm1, 80(%esp)
1314	movaps	%xmm0, 64(%esp)
1315	movl	60(%esp), %eax
1316	movl	%eax, 124(%esp)
1317	movl	56(%esp), %eax
1318	movl	%eax, 120(%esp)
1319	movl	52(%esp), %eax
1320        <many many more 32-bit copies>
1321      	movaps	(%esp), %xmm0
1322	movaps	16(%esp), %xmm1
1323	movaps	32(%esp), %xmm2
1324	movaps	48(%esp), %xmm3
1325	addl	$140, %esp
1326	ret
1327
1328On Nehalem, it may even be cheaper to just use movups when unaligned than to
1329fall back to lower-granularity chunks.
1330
1331//===---------------------------------------------------------------------===//
1332
1333Implement processor-specific optimizations for parity with GCC on these
1334processors.  GCC does two optimizations:
1335
13361. ix86_pad_returns inserts a noop before ret instructions if immediately
1337   preceded by a conditional branch or is the target of a jump.
13382. ix86_avoid_jump_misspredicts inserts noops in cases where a 16-byte block of
1339   code contains more than 3 branches.
1340
1341The first one is done for all AMDs, Core2, and "Generic"
1342The second one is done for: Atom, Pentium Pro, all AMDs, Pentium 4, Nocona,
1343  Core 2, and "Generic"
1344
1345//===---------------------------------------------------------------------===//
1346Testcase:
1347int x(int a) { return (a&0xf0)>>4; }
1348
1349Current output:
1350	movl	4(%esp), %eax
1351	shrl	$4, %eax
1352	andl	$15, %eax
1353	ret
1354
1355Ideal output:
1356	movzbl	4(%esp), %eax
1357	shrl	$4, %eax
1358	ret
1359
1360//===---------------------------------------------------------------------===//
1361
1362Re-implement atomic builtins __sync_add_and_fetch() and __sync_sub_and_fetch
1363properly.
1364
1365When the return value is not used (i.e. only care about the value in the
1366memory), x86 does not have to use add to implement these. Instead, it can use
1367add, sub, inc, dec instructions with the "lock" prefix.
1368
1369This is currently implemented using a bit of instruction selection trick. The
1370issue is the target independent pattern produces one output and a chain and we
1371want to map it into one that just output a chain. The current trick is to select
1372it into a MERGE_VALUES with the first definition being an implicit_def. The
1373proper solution is to add new ISD opcodes for the no-output variant. DAG
1374combiner can then transform the node before it gets to target node selection.
1375
1376Problem #2 is we are adding a whole bunch of x86 atomic instructions when in
1377fact these instructions are identical to the non-lock versions. We need a way to
1378add target specific information to target nodes and have this information
1379carried over to machine instructions. Asm printer (or JIT) can use this
1380information to add the "lock" prefix.
1381
1382//===---------------------------------------------------------------------===//
1383
1384struct B {
1385  unsigned char y0 : 1;
1386};
1387
1388int bar(struct B* a) { return a->y0; }
1389
1390define i32 @bar(%struct.B* nocapture %a) nounwind readonly optsize {
1391  %1 = getelementptr inbounds %struct.B* %a, i64 0, i32 0
1392  %2 = load i8* %1, align 1
1393  %3 = and i8 %2, 1
1394  %4 = zext i8 %3 to i32
1395  ret i32 %4
1396}
1397
1398bar:                                    # @bar
1399# BB#0:
1400        movb    (%rdi), %al
1401        andb    $1, %al
1402        movzbl  %al, %eax
1403        ret
1404
1405Missed optimization: should be movl+andl.
1406
1407//===---------------------------------------------------------------------===//
1408
1409The x86_64 abi says:
1410
1411Booleans, when stored in a memory object, are stored as single byte objects the
1412value of which is always 0 (false) or 1 (true).
1413
1414We are not using this fact:
1415
1416int bar(_Bool *a) { return *a; }
1417
1418define i32 @bar(i8* nocapture %a) nounwind readonly optsize {
1419  %1 = load i8* %a, align 1, !tbaa !0
1420  %tmp = and i8 %1, 1
1421  %2 = zext i8 %tmp to i32
1422  ret i32 %2
1423}
1424
1425bar:
1426        movb    (%rdi), %al
1427        andb    $1, %al
1428        movzbl  %al, %eax
1429        ret
1430
1431GCC produces
1432
1433bar:
1434        movzbl  (%rdi), %eax
1435        ret
1436
1437//===---------------------------------------------------------------------===//
1438
1439Consider the following two functions compiled with clang:
1440_Bool foo(int *x) { return !(*x & 4); }
1441unsigned bar(int *x) { return !(*x & 4); }
1442
1443foo:
1444	movl	4(%esp), %eax
1445	testb	$4, (%eax)
1446	sete	%al
1447	movzbl	%al, %eax
1448	ret
1449
1450bar:
1451	movl	4(%esp), %eax
1452	movl	(%eax), %eax
1453	shrl	$2, %eax
1454	andl	$1, %eax
1455	xorl	$1, %eax
1456	ret
1457
1458The second function generates more code even though the two functions are
1459are functionally identical.
1460
1461//===---------------------------------------------------------------------===//
1462
1463Take the following C code:
1464int f(int a, int b) { return (unsigned char)a == (unsigned char)b; }
1465
1466We generate the following IR with clang:
1467define i32 @f(i32 %a, i32 %b) nounwind readnone {
1468entry:
1469  %tmp = xor i32 %b, %a                           ; <i32> [#uses=1]
1470  %tmp6 = and i32 %tmp, 255                       ; <i32> [#uses=1]
1471  %cmp = icmp eq i32 %tmp6, 0                     ; <i1> [#uses=1]
1472  %conv5 = zext i1 %cmp to i32                    ; <i32> [#uses=1]
1473  ret i32 %conv5
1474}
1475
1476And the following x86 code:
1477	xorl	%esi, %edi
1478	testb	$-1, %dil
1479	sete	%al
1480	movzbl	%al, %eax
1481	ret
1482
1483A cmpb instead of the xorl+testb would be one instruction shorter.
1484
1485//===---------------------------------------------------------------------===//
1486
1487Given the following C code:
1488int f(int a, int b) { return (signed char)a == (signed char)b; }
1489
1490We generate the following IR with clang:
1491define i32 @f(i32 %a, i32 %b) nounwind readnone {
1492entry:
1493  %sext = shl i32 %a, 24                          ; <i32> [#uses=1]
1494  %conv1 = ashr i32 %sext, 24                     ; <i32> [#uses=1]
1495  %sext6 = shl i32 %b, 24                         ; <i32> [#uses=1]
1496  %conv4 = ashr i32 %sext6, 24                    ; <i32> [#uses=1]
1497  %cmp = icmp eq i32 %conv1, %conv4               ; <i1> [#uses=1]
1498  %conv5 = zext i1 %cmp to i32                    ; <i32> [#uses=1]
1499  ret i32 %conv5
1500}
1501
1502And the following x86 code:
1503	movsbl	%sil, %eax
1504	movsbl	%dil, %ecx
1505	cmpl	%eax, %ecx
1506	sete	%al
1507	movzbl	%al, %eax
1508	ret
1509
1510
1511It should be possible to eliminate the sign extensions.
1512
1513//===---------------------------------------------------------------------===//
1514
1515LLVM misses a load+store narrowing opportunity in this code:
1516
1517%struct.bf = type { i64, i16, i16, i32 }
1518
1519@bfi = external global %struct.bf*                ; <%struct.bf**> [#uses=2]
1520
1521define void @t1() nounwind ssp {
1522entry:
1523  %0 = load %struct.bf** @bfi, align 8            ; <%struct.bf*> [#uses=1]
1524  %1 = getelementptr %struct.bf* %0, i64 0, i32 1 ; <i16*> [#uses=1]
1525  %2 = bitcast i16* %1 to i32*                    ; <i32*> [#uses=2]
1526  %3 = load i32* %2, align 1                      ; <i32> [#uses=1]
1527  %4 = and i32 %3, -65537                         ; <i32> [#uses=1]
1528  store i32 %4, i32* %2, align 1
1529  %5 = load %struct.bf** @bfi, align 8            ; <%struct.bf*> [#uses=1]
1530  %6 = getelementptr %struct.bf* %5, i64 0, i32 1 ; <i16*> [#uses=1]
1531  %7 = bitcast i16* %6 to i32*                    ; <i32*> [#uses=2]
1532  %8 = load i32* %7, align 1                      ; <i32> [#uses=1]
1533  %9 = and i32 %8, -131073                        ; <i32> [#uses=1]
1534  store i32 %9, i32* %7, align 1
1535  ret void
1536}
1537
1538LLVM currently emits this:
1539
1540  movq  bfi(%rip), %rax
1541  andl  $-65537, 8(%rax)
1542  movq  bfi(%rip), %rax
1543  andl  $-131073, 8(%rax)
1544  ret
1545
1546It could narrow the loads and stores to emit this:
1547
1548  movq  bfi(%rip), %rax
1549  andb  $-2, 10(%rax)
1550  movq  bfi(%rip), %rax
1551  andb  $-3, 10(%rax)
1552  ret
1553
1554The trouble is that there is a TokenFactor between the store and the
1555load, making it non-trivial to determine if there's anything between
1556the load and the store which would prohibit narrowing.
1557
1558//===---------------------------------------------------------------------===//
1559
1560This code:
1561void foo(unsigned x) {
1562  if (x == 0) bar();
1563  else if (x == 1) qux();
1564}
1565
1566currently compiles into:
1567_foo:
1568	movl	4(%esp), %eax
1569	cmpl	$1, %eax
1570	je	LBB0_3
1571	testl	%eax, %eax
1572	jne	LBB0_4
1573
1574the testl could be removed:
1575_foo:
1576	movl	4(%esp), %eax
1577	cmpl	$1, %eax
1578	je	LBB0_3
1579	jb	LBB0_4
1580
15810 is the only unsigned number < 1.
1582
1583//===---------------------------------------------------------------------===//
1584
1585This code:
1586
1587%0 = type { i32, i1 }
1588
1589define i32 @add32carry(i32 %sum, i32 %x) nounwind readnone ssp {
1590entry:
1591  %uadd = tail call %0 @llvm.uadd.with.overflow.i32(i32 %sum, i32 %x)
1592  %cmp = extractvalue %0 %uadd, 1
1593  %inc = zext i1 %cmp to i32
1594  %add = add i32 %x, %sum
1595  %z.0 = add i32 %add, %inc
1596  ret i32 %z.0
1597}
1598
1599declare %0 @llvm.uadd.with.overflow.i32(i32, i32) nounwind readnone
1600
1601compiles to:
1602
1603_add32carry:                            ## @add32carry
1604	addl	%esi, %edi
1605	sbbl	%ecx, %ecx
1606	movl	%edi, %eax
1607	subl	%ecx, %eax
1608	ret
1609
1610But it could be:
1611
1612_add32carry:
1613	leal	(%rsi,%rdi), %eax
1614	cmpl	%esi, %eax
1615	adcl	$0, %eax
1616	ret
1617
1618//===---------------------------------------------------------------------===//
1619
1620The hot loop of 256.bzip2 contains code that looks a bit like this:
1621
1622int foo(char *P, char *Q, int x, int y) {
1623  if (P[0] != Q[0])
1624     return P[0] < Q[0];
1625  if (P[1] != Q[1])
1626     return P[1] < Q[1];
1627  if (P[2] != Q[2])
1628     return P[2] < Q[2];
1629   return P[3] < Q[3];
1630}
1631
1632In the real code, we get a lot more wrong than this.  However, even in this
1633code we generate:
1634
1635_foo:                                   ## @foo
1636## BB#0:                                ## %entry
1637	movb	(%rsi), %al
1638	movb	(%rdi), %cl
1639	cmpb	%al, %cl
1640	je	LBB0_2
1641LBB0_1:                                 ## %if.then
1642	cmpb	%al, %cl
1643	jmp	LBB0_5
1644LBB0_2:                                 ## %if.end
1645	movb	1(%rsi), %al
1646	movb	1(%rdi), %cl
1647	cmpb	%al, %cl
1648	jne	LBB0_1
1649## BB#3:                                ## %if.end38
1650	movb	2(%rsi), %al
1651	movb	2(%rdi), %cl
1652	cmpb	%al, %cl
1653	jne	LBB0_1
1654## BB#4:                                ## %if.end60
1655	movb	3(%rdi), %al
1656	cmpb	3(%rsi), %al
1657LBB0_5:                                 ## %if.end60
1658	setl	%al
1659	movzbl	%al, %eax
1660	ret
1661
1662Note that we generate jumps to LBB0_1 which does a redundant compare.  The
1663redundant compare also forces the register values to be live, which prevents
1664folding one of the loads into the compare.  In contrast, GCC 4.2 produces:
1665
1666_foo:
1667	movzbl	(%rsi), %eax
1668	cmpb	%al, (%rdi)
1669	jne	L10
1670L12:
1671	movzbl	1(%rsi), %eax
1672	cmpb	%al, 1(%rdi)
1673	jne	L10
1674	movzbl	2(%rsi), %eax
1675	cmpb	%al, 2(%rdi)
1676	jne	L10
1677	movzbl	3(%rdi), %eax
1678	cmpb	3(%rsi), %al
1679L10:
1680	setl	%al
1681	movzbl	%al, %eax
1682	ret
1683
1684which is "perfect".
1685
1686//===---------------------------------------------------------------------===//
1687
1688For the branch in the following code:
1689int a();
1690int b(int x, int y) {
1691  if (x & (1<<(y&7)))
1692    return a();
1693  return y;
1694}
1695
1696We currently generate:
1697	movb	%sil, %al
1698	andb	$7, %al
1699	movzbl	%al, %eax
1700	btl	%eax, %edi
1701	jae	.LBB0_2
1702
1703movl+andl would be shorter than the movb+andb+movzbl sequence.
1704
1705//===---------------------------------------------------------------------===//
1706
1707For the following:
1708struct u1 {
1709    float x, y;
1710};
1711float foo(struct u1 u) {
1712    return u.x + u.y;
1713}
1714
1715We currently generate:
1716	movdqa	%xmm0, %xmm1
1717	pshufd	$1, %xmm0, %xmm0        # xmm0 = xmm0[1,0,0,0]
1718	addss	%xmm1, %xmm0
1719	ret
1720
1721We could save an instruction here by commuting the addss.
1722
1723//===---------------------------------------------------------------------===//
1724
1725This (from PR9661):
1726
1727float clamp_float(float a) {
1728        if (a > 1.0f)
1729                return 1.0f;
1730        else if (a < 0.0f)
1731                return 0.0f;
1732        else
1733                return a;
1734}
1735
1736Could compile to:
1737
1738clamp_float:                            # @clamp_float
1739        movss   .LCPI0_0(%rip), %xmm1
1740        minss   %xmm1, %xmm0
1741        pxor    %xmm1, %xmm1
1742        maxss   %xmm1, %xmm0
1743        ret
1744
1745with -ffast-math.
1746
1747//===---------------------------------------------------------------------===//
1748
1749This function (from PR9803):
1750
1751int clamp2(int a) {
1752        if (a > 5)
1753                a = 5;
1754        if (a < 0)
1755                return 0;
1756        return a;
1757}
1758
1759Compiles to:
1760
1761_clamp2:                                ## @clamp2
1762        pushq   %rbp
1763        movq    %rsp, %rbp
1764        cmpl    $5, %edi
1765        movl    $5, %ecx
1766        cmovlel %edi, %ecx
1767        testl   %ecx, %ecx
1768        movl    $0, %eax
1769        cmovnsl %ecx, %eax
1770        popq    %rbp
1771        ret
1772
1773The move of 0 could be scheduled above the test to make it is xor reg,reg.
1774
1775//===---------------------------------------------------------------------===//
1776
1777GCC PR48986.  We currently compile this:
1778
1779void bar(void);
1780void yyy(int* p) {
1781    if (__sync_fetch_and_add(p, -1) == 1)
1782      bar();
1783}
1784
1785into:
1786	movl	$-1, %eax
1787	lock
1788	xaddl	%eax, (%rdi)
1789	cmpl	$1, %eax
1790	je	LBB0_2
1791
1792Instead we could generate:
1793
1794	lock
1795	dec %rdi
1796	je LBB0_2
1797
1798The trick is to match "fetch_and_add(X, -C) == C".
1799
1800//===---------------------------------------------------------------------===//
1801
1802unsigned t(unsigned a, unsigned b) {
1803  return a <= b ? 5 : -5;
1804}
1805
1806We generate:
1807	movl	$5, %ecx
1808	cmpl	%esi, %edi
1809	movl	$-5, %eax
1810	cmovbel	%ecx, %eax
1811
1812GCC:
1813	cmpl	%edi, %esi
1814	sbbl	%eax, %eax
1815	andl	$-10, %eax
1816	addl	$5, %eax
1817
1818//===---------------------------------------------------------------------===//
1819