1 //===-- X86DisassemblerDecoderInternal.h - Disassembler decoder -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is part of the X86 Disassembler. 11 // It contains the public interface of the instruction decoder. 12 // Documentation for the disassembler can be found in X86Disassembler.h. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODER_H 17 #define LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODER_H 18 19 #include "X86DisassemblerDecoderCommon.h" 20 #include "llvm/ADT/ArrayRef.h" 21 22 namespace llvm { 23 namespace X86Disassembler { 24 25 // Accessor functions for various fields of an Intel instruction 26 #define modFromModRM(modRM) (((modRM) & 0xc0) >> 6) 27 #define regFromModRM(modRM) (((modRM) & 0x38) >> 3) 28 #define rmFromModRM(modRM) ((modRM) & 0x7) 29 #define scaleFromSIB(sib) (((sib) & 0xc0) >> 6) 30 #define indexFromSIB(sib) (((sib) & 0x38) >> 3) 31 #define baseFromSIB(sib) ((sib) & 0x7) 32 #define wFromREX(rex) (((rex) & 0x8) >> 3) 33 #define rFromREX(rex) (((rex) & 0x4) >> 2) 34 #define xFromREX(rex) (((rex) & 0x2) >> 1) 35 #define bFromREX(rex) ((rex) & 0x1) 36 37 #define rFromEVEX2of4(evex) (((~(evex)) & 0x80) >> 7) 38 #define xFromEVEX2of4(evex) (((~(evex)) & 0x40) >> 6) 39 #define bFromEVEX2of4(evex) (((~(evex)) & 0x20) >> 5) 40 #define r2FromEVEX2of4(evex) (((~(evex)) & 0x10) >> 4) 41 #define mmFromEVEX2of4(evex) ((evex) & 0x3) 42 #define wFromEVEX3of4(evex) (((evex) & 0x80) >> 7) 43 #define vvvvFromEVEX3of4(evex) (((~(evex)) & 0x78) >> 3) 44 #define ppFromEVEX3of4(evex) ((evex) & 0x3) 45 #define zFromEVEX4of4(evex) (((evex) & 0x80) >> 7) 46 #define l2FromEVEX4of4(evex) (((evex) & 0x40) >> 6) 47 #define lFromEVEX4of4(evex) (((evex) & 0x20) >> 5) 48 #define bFromEVEX4of4(evex) (((evex) & 0x10) >> 4) 49 #define v2FromEVEX4of4(evex) (((~evex) & 0x8) >> 3) 50 #define aaaFromEVEX4of4(evex) ((evex) & 0x7) 51 52 #define rFromVEX2of3(vex) (((~(vex)) & 0x80) >> 7) 53 #define xFromVEX2of3(vex) (((~(vex)) & 0x40) >> 6) 54 #define bFromVEX2of3(vex) (((~(vex)) & 0x20) >> 5) 55 #define mmmmmFromVEX2of3(vex) ((vex) & 0x1f) 56 #define wFromVEX3of3(vex) (((vex) & 0x80) >> 7) 57 #define vvvvFromVEX3of3(vex) (((~(vex)) & 0x78) >> 3) 58 #define lFromVEX3of3(vex) (((vex) & 0x4) >> 2) 59 #define ppFromVEX3of3(vex) ((vex) & 0x3) 60 61 #define rFromVEX2of2(vex) (((~(vex)) & 0x80) >> 7) 62 #define vvvvFromVEX2of2(vex) (((~(vex)) & 0x78) >> 3) 63 #define lFromVEX2of2(vex) (((vex) & 0x4) >> 2) 64 #define ppFromVEX2of2(vex) ((vex) & 0x3) 65 66 #define rFromXOP2of3(xop) (((~(xop)) & 0x80) >> 7) 67 #define xFromXOP2of3(xop) (((~(xop)) & 0x40) >> 6) 68 #define bFromXOP2of3(xop) (((~(xop)) & 0x20) >> 5) 69 #define mmmmmFromXOP2of3(xop) ((xop) & 0x1f) 70 #define wFromXOP3of3(xop) (((xop) & 0x80) >> 7) 71 #define vvvvFromXOP3of3(vex) (((~(vex)) & 0x78) >> 3) 72 #define lFromXOP3of3(xop) (((xop) & 0x4) >> 2) 73 #define ppFromXOP3of3(xop) ((xop) & 0x3) 74 75 // These enums represent Intel registers for use by the decoder. 76 #define REGS_8BIT \ 77 ENTRY(AL) \ 78 ENTRY(CL) \ 79 ENTRY(DL) \ 80 ENTRY(BL) \ 81 ENTRY(AH) \ 82 ENTRY(CH) \ 83 ENTRY(DH) \ 84 ENTRY(BH) \ 85 ENTRY(R8B) \ 86 ENTRY(R9B) \ 87 ENTRY(R10B) \ 88 ENTRY(R11B) \ 89 ENTRY(R12B) \ 90 ENTRY(R13B) \ 91 ENTRY(R14B) \ 92 ENTRY(R15B) \ 93 ENTRY(SPL) \ 94 ENTRY(BPL) \ 95 ENTRY(SIL) \ 96 ENTRY(DIL) 97 98 #define EA_BASES_16BIT \ 99 ENTRY(BX_SI) \ 100 ENTRY(BX_DI) \ 101 ENTRY(BP_SI) \ 102 ENTRY(BP_DI) \ 103 ENTRY(SI) \ 104 ENTRY(DI) \ 105 ENTRY(BP) \ 106 ENTRY(BX) \ 107 ENTRY(R8W) \ 108 ENTRY(R9W) \ 109 ENTRY(R10W) \ 110 ENTRY(R11W) \ 111 ENTRY(R12W) \ 112 ENTRY(R13W) \ 113 ENTRY(R14W) \ 114 ENTRY(R15W) 115 116 #define REGS_16BIT \ 117 ENTRY(AX) \ 118 ENTRY(CX) \ 119 ENTRY(DX) \ 120 ENTRY(BX) \ 121 ENTRY(SP) \ 122 ENTRY(BP) \ 123 ENTRY(SI) \ 124 ENTRY(DI) \ 125 ENTRY(R8W) \ 126 ENTRY(R9W) \ 127 ENTRY(R10W) \ 128 ENTRY(R11W) \ 129 ENTRY(R12W) \ 130 ENTRY(R13W) \ 131 ENTRY(R14W) \ 132 ENTRY(R15W) 133 134 #define EA_BASES_32BIT \ 135 ENTRY(EAX) \ 136 ENTRY(ECX) \ 137 ENTRY(EDX) \ 138 ENTRY(EBX) \ 139 ENTRY(sib) \ 140 ENTRY(EBP) \ 141 ENTRY(ESI) \ 142 ENTRY(EDI) \ 143 ENTRY(R8D) \ 144 ENTRY(R9D) \ 145 ENTRY(R10D) \ 146 ENTRY(R11D) \ 147 ENTRY(R12D) \ 148 ENTRY(R13D) \ 149 ENTRY(R14D) \ 150 ENTRY(R15D) 151 152 #define REGS_32BIT \ 153 ENTRY(EAX) \ 154 ENTRY(ECX) \ 155 ENTRY(EDX) \ 156 ENTRY(EBX) \ 157 ENTRY(ESP) \ 158 ENTRY(EBP) \ 159 ENTRY(ESI) \ 160 ENTRY(EDI) \ 161 ENTRY(R8D) \ 162 ENTRY(R9D) \ 163 ENTRY(R10D) \ 164 ENTRY(R11D) \ 165 ENTRY(R12D) \ 166 ENTRY(R13D) \ 167 ENTRY(R14D) \ 168 ENTRY(R15D) 169 170 #define EA_BASES_64BIT \ 171 ENTRY(RAX) \ 172 ENTRY(RCX) \ 173 ENTRY(RDX) \ 174 ENTRY(RBX) \ 175 ENTRY(sib64) \ 176 ENTRY(RBP) \ 177 ENTRY(RSI) \ 178 ENTRY(RDI) \ 179 ENTRY(R8) \ 180 ENTRY(R9) \ 181 ENTRY(R10) \ 182 ENTRY(R11) \ 183 ENTRY(R12) \ 184 ENTRY(R13) \ 185 ENTRY(R14) \ 186 ENTRY(R15) 187 188 #define REGS_64BIT \ 189 ENTRY(RAX) \ 190 ENTRY(RCX) \ 191 ENTRY(RDX) \ 192 ENTRY(RBX) \ 193 ENTRY(RSP) \ 194 ENTRY(RBP) \ 195 ENTRY(RSI) \ 196 ENTRY(RDI) \ 197 ENTRY(R8) \ 198 ENTRY(R9) \ 199 ENTRY(R10) \ 200 ENTRY(R11) \ 201 ENTRY(R12) \ 202 ENTRY(R13) \ 203 ENTRY(R14) \ 204 ENTRY(R15) 205 206 #define REGS_MMX \ 207 ENTRY(MM0) \ 208 ENTRY(MM1) \ 209 ENTRY(MM2) \ 210 ENTRY(MM3) \ 211 ENTRY(MM4) \ 212 ENTRY(MM5) \ 213 ENTRY(MM6) \ 214 ENTRY(MM7) 215 216 #define REGS_XMM \ 217 ENTRY(XMM0) \ 218 ENTRY(XMM1) \ 219 ENTRY(XMM2) \ 220 ENTRY(XMM3) \ 221 ENTRY(XMM4) \ 222 ENTRY(XMM5) \ 223 ENTRY(XMM6) \ 224 ENTRY(XMM7) \ 225 ENTRY(XMM8) \ 226 ENTRY(XMM9) \ 227 ENTRY(XMM10) \ 228 ENTRY(XMM11) \ 229 ENTRY(XMM12) \ 230 ENTRY(XMM13) \ 231 ENTRY(XMM14) \ 232 ENTRY(XMM15) \ 233 ENTRY(XMM16) \ 234 ENTRY(XMM17) \ 235 ENTRY(XMM18) \ 236 ENTRY(XMM19) \ 237 ENTRY(XMM20) \ 238 ENTRY(XMM21) \ 239 ENTRY(XMM22) \ 240 ENTRY(XMM23) \ 241 ENTRY(XMM24) \ 242 ENTRY(XMM25) \ 243 ENTRY(XMM26) \ 244 ENTRY(XMM27) \ 245 ENTRY(XMM28) \ 246 ENTRY(XMM29) \ 247 ENTRY(XMM30) \ 248 ENTRY(XMM31) 249 250 #define REGS_YMM \ 251 ENTRY(YMM0) \ 252 ENTRY(YMM1) \ 253 ENTRY(YMM2) \ 254 ENTRY(YMM3) \ 255 ENTRY(YMM4) \ 256 ENTRY(YMM5) \ 257 ENTRY(YMM6) \ 258 ENTRY(YMM7) \ 259 ENTRY(YMM8) \ 260 ENTRY(YMM9) \ 261 ENTRY(YMM10) \ 262 ENTRY(YMM11) \ 263 ENTRY(YMM12) \ 264 ENTRY(YMM13) \ 265 ENTRY(YMM14) \ 266 ENTRY(YMM15) \ 267 ENTRY(YMM16) \ 268 ENTRY(YMM17) \ 269 ENTRY(YMM18) \ 270 ENTRY(YMM19) \ 271 ENTRY(YMM20) \ 272 ENTRY(YMM21) \ 273 ENTRY(YMM22) \ 274 ENTRY(YMM23) \ 275 ENTRY(YMM24) \ 276 ENTRY(YMM25) \ 277 ENTRY(YMM26) \ 278 ENTRY(YMM27) \ 279 ENTRY(YMM28) \ 280 ENTRY(YMM29) \ 281 ENTRY(YMM30) \ 282 ENTRY(YMM31) 283 284 #define REGS_ZMM \ 285 ENTRY(ZMM0) \ 286 ENTRY(ZMM1) \ 287 ENTRY(ZMM2) \ 288 ENTRY(ZMM3) \ 289 ENTRY(ZMM4) \ 290 ENTRY(ZMM5) \ 291 ENTRY(ZMM6) \ 292 ENTRY(ZMM7) \ 293 ENTRY(ZMM8) \ 294 ENTRY(ZMM9) \ 295 ENTRY(ZMM10) \ 296 ENTRY(ZMM11) \ 297 ENTRY(ZMM12) \ 298 ENTRY(ZMM13) \ 299 ENTRY(ZMM14) \ 300 ENTRY(ZMM15) \ 301 ENTRY(ZMM16) \ 302 ENTRY(ZMM17) \ 303 ENTRY(ZMM18) \ 304 ENTRY(ZMM19) \ 305 ENTRY(ZMM20) \ 306 ENTRY(ZMM21) \ 307 ENTRY(ZMM22) \ 308 ENTRY(ZMM23) \ 309 ENTRY(ZMM24) \ 310 ENTRY(ZMM25) \ 311 ENTRY(ZMM26) \ 312 ENTRY(ZMM27) \ 313 ENTRY(ZMM28) \ 314 ENTRY(ZMM29) \ 315 ENTRY(ZMM30) \ 316 ENTRY(ZMM31) 317 318 #define REGS_MASKS \ 319 ENTRY(K0) \ 320 ENTRY(K1) \ 321 ENTRY(K2) \ 322 ENTRY(K3) \ 323 ENTRY(K4) \ 324 ENTRY(K5) \ 325 ENTRY(K6) \ 326 ENTRY(K7) 327 328 #define REGS_SEGMENT \ 329 ENTRY(ES) \ 330 ENTRY(CS) \ 331 ENTRY(SS) \ 332 ENTRY(DS) \ 333 ENTRY(FS) \ 334 ENTRY(GS) 335 336 #define REGS_DEBUG \ 337 ENTRY(DR0) \ 338 ENTRY(DR1) \ 339 ENTRY(DR2) \ 340 ENTRY(DR3) \ 341 ENTRY(DR4) \ 342 ENTRY(DR5) \ 343 ENTRY(DR6) \ 344 ENTRY(DR7) \ 345 ENTRY(DR8) \ 346 ENTRY(DR9) \ 347 ENTRY(DR10) \ 348 ENTRY(DR11) \ 349 ENTRY(DR12) \ 350 ENTRY(DR13) \ 351 ENTRY(DR14) \ 352 ENTRY(DR15) 353 354 #define REGS_CONTROL \ 355 ENTRY(CR0) \ 356 ENTRY(CR1) \ 357 ENTRY(CR2) \ 358 ENTRY(CR3) \ 359 ENTRY(CR4) \ 360 ENTRY(CR5) \ 361 ENTRY(CR6) \ 362 ENTRY(CR7) \ 363 ENTRY(CR8) \ 364 ENTRY(CR9) \ 365 ENTRY(CR10) \ 366 ENTRY(CR11) \ 367 ENTRY(CR12) \ 368 ENTRY(CR13) \ 369 ENTRY(CR14) \ 370 ENTRY(CR15) 371 372 #define ALL_EA_BASES \ 373 EA_BASES_16BIT \ 374 EA_BASES_32BIT \ 375 EA_BASES_64BIT 376 377 #define ALL_SIB_BASES \ 378 REGS_32BIT \ 379 REGS_64BIT 380 381 #define ALL_REGS \ 382 REGS_8BIT \ 383 REGS_16BIT \ 384 REGS_32BIT \ 385 REGS_64BIT \ 386 REGS_MMX \ 387 REGS_XMM \ 388 REGS_YMM \ 389 REGS_ZMM \ 390 REGS_MASKS \ 391 REGS_SEGMENT \ 392 REGS_DEBUG \ 393 REGS_CONTROL \ 394 ENTRY(RIP) 395 396 /// \brief All possible values of the base field for effective-address 397 /// computations, a.k.a. the Mod and R/M fields of the ModR/M byte. 398 /// We distinguish between bases (EA_BASE_*) and registers that just happen 399 /// to be referred to when Mod == 0b11 (EA_REG_*). 400 enum EABase { 401 EA_BASE_NONE, 402 #define ENTRY(x) EA_BASE_##x, 403 ALL_EA_BASES 404 #undef ENTRY 405 #define ENTRY(x) EA_REG_##x, 406 ALL_REGS 407 #undef ENTRY 408 EA_max 409 }; 410 411 /// \brief All possible values of the SIB index field. 412 /// borrows entries from ALL_EA_BASES with the special case that 413 /// sib is synonymous with NONE. 414 /// Vector SIB: index can be XMM or YMM. 415 enum SIBIndex { 416 SIB_INDEX_NONE, 417 #define ENTRY(x) SIB_INDEX_##x, 418 ALL_EA_BASES 419 REGS_XMM 420 REGS_YMM 421 REGS_ZMM 422 #undef ENTRY 423 SIB_INDEX_max 424 }; 425 426 /// \brief All possible values of the SIB base field. 427 enum SIBBase { 428 SIB_BASE_NONE, 429 #define ENTRY(x) SIB_BASE_##x, 430 ALL_SIB_BASES 431 #undef ENTRY 432 SIB_BASE_max 433 }; 434 435 /// \brief Possible displacement types for effective-address computations. 436 typedef enum { 437 EA_DISP_NONE, 438 EA_DISP_8, 439 EA_DISP_16, 440 EA_DISP_32 441 } EADisplacement; 442 443 /// \brief All possible values of the reg field in the ModR/M byte. 444 enum Reg { 445 #define ENTRY(x) MODRM_REG_##x, 446 ALL_REGS 447 #undef ENTRY 448 MODRM_REG_max 449 }; 450 451 /// \brief All possible segment overrides. 452 enum SegmentOverride { 453 SEG_OVERRIDE_NONE, 454 SEG_OVERRIDE_CS, 455 SEG_OVERRIDE_SS, 456 SEG_OVERRIDE_DS, 457 SEG_OVERRIDE_ES, 458 SEG_OVERRIDE_FS, 459 SEG_OVERRIDE_GS, 460 SEG_OVERRIDE_max 461 }; 462 463 /// \brief Possible values for the VEX.m-mmmm field 464 enum VEXLeadingOpcodeByte { 465 VEX_LOB_0F = 0x1, 466 VEX_LOB_0F38 = 0x2, 467 VEX_LOB_0F3A = 0x3 468 }; 469 470 enum XOPMapSelect { 471 XOP_MAP_SELECT_8 = 0x8, 472 XOP_MAP_SELECT_9 = 0x9, 473 XOP_MAP_SELECT_A = 0xA 474 }; 475 476 /// \brief Possible values for the VEX.pp/EVEX.pp field 477 enum VEXPrefixCode { 478 VEX_PREFIX_NONE = 0x0, 479 VEX_PREFIX_66 = 0x1, 480 VEX_PREFIX_F3 = 0x2, 481 VEX_PREFIX_F2 = 0x3 482 }; 483 484 enum VectorExtensionType { 485 TYPE_NO_VEX_XOP = 0x0, 486 TYPE_VEX_2B = 0x1, 487 TYPE_VEX_3B = 0x2, 488 TYPE_EVEX = 0x3, 489 TYPE_XOP = 0x4 490 }; 491 492 /// \brief Type for the byte reader that the consumer must provide to 493 /// the decoder. Reads a single byte from the instruction's address space. 494 /// \param arg A baton that the consumer can associate with any internal 495 /// state that it needs. 496 /// \param byte A pointer to a single byte in memory that should be set to 497 /// contain the value at address. 498 /// \param address The address in the instruction's address space that should 499 /// be read from. 500 /// \return -1 if the byte cannot be read for any reason; 0 otherwise. 501 typedef int (*byteReader_t)(const void *arg, uint8_t *byte, uint64_t address); 502 503 /// \brief Type for the logging function that the consumer can provide to 504 /// get debugging output from the decoder. 505 /// \param arg A baton that the consumer can associate with any internal 506 /// state that it needs. 507 /// \param log A string that contains the message. Will be reused after 508 /// the logger returns. 509 typedef void (*dlog_t)(void *arg, const char *log); 510 511 /// The specification for how to extract and interpret a full instruction and 512 /// its operands. 513 struct InstructionSpecifier { 514 uint16_t operands; 515 }; 516 517 /// The x86 internal instruction, which is produced by the decoder. 518 struct InternalInstruction { 519 // Reader interface (C) 520 byteReader_t reader; 521 // Opaque value passed to the reader 522 const void* readerArg; 523 // The address of the next byte to read via the reader 524 uint64_t readerCursor; 525 526 // Logger interface (C) 527 dlog_t dlog; 528 // Opaque value passed to the logger 529 void* dlogArg; 530 531 // General instruction information 532 533 // The mode to disassemble for (64-bit, protected, real) 534 DisassemblerMode mode; 535 // The start of the instruction, usable with the reader 536 uint64_t startLocation; 537 // The length of the instruction, in bytes 538 size_t length; 539 540 // Prefix state 541 542 // 1 if the prefix byte corresponding to the entry is present; 0 if not 543 uint8_t prefixPresent[0x100]; 544 // contains the location (for use with the reader) of the prefix byte 545 uint64_t prefixLocations[0x100]; 546 // The value of the vector extension prefix(EVEX/VEX/XOP), if present 547 uint8_t vectorExtensionPrefix[4]; 548 // The type of the vector extension prefix 549 VectorExtensionType vectorExtensionType; 550 // The value of the REX prefix, if present 551 uint8_t rexPrefix; 552 // The location where a mandatory prefix would have to be (i.e., right before 553 // the opcode, or right before the REX prefix if one is present). 554 uint64_t necessaryPrefixLocation; 555 // The segment override type 556 SegmentOverride segmentOverride; 557 // 1 if the prefix byte, 0xf2 or 0xf3 is xacquire or xrelease 558 bool xAcquireRelease; 559 560 // Sizes of various critical pieces of data, in bytes 561 uint8_t registerSize; 562 uint8_t addressSize; 563 uint8_t displacementSize; 564 uint8_t immediateSize; 565 566 // Offsets from the start of the instruction to the pieces of data, which is 567 // needed to find relocation entries for adding symbolic operands. 568 uint8_t displacementOffset; 569 uint8_t immediateOffset; 570 571 // opcode state 572 573 // The last byte of the opcode, not counting any ModR/M extension 574 uint8_t opcode; 575 576 // decode state 577 578 // The type of opcode, used for indexing into the array of decode tables 579 OpcodeType opcodeType; 580 // The instruction ID, extracted from the decode table 581 uint16_t instructionID; 582 // The specifier for the instruction, from the instruction info table 583 const InstructionSpecifier *spec; 584 585 // state for additional bytes, consumed during operand decode. Pattern: 586 // consumed___ indicates that the byte was already consumed and does not 587 // need to be consumed again. 588 589 // The VEX.vvvv field, which contains a third register operand for some AVX 590 // instructions. 591 Reg vvvv; 592 593 // The writemask for AVX-512 instructions which is contained in EVEX.aaa 594 Reg writemask; 595 596 // The ModR/M byte, which contains most register operands and some portion of 597 // all memory operands. 598 bool consumedModRM; 599 uint8_t modRM; 600 601 // The SIB byte, used for more complex 32- or 64-bit memory operands 602 bool consumedSIB; 603 uint8_t sib; 604 605 // The displacement, used for memory operands 606 bool consumedDisplacement; 607 int32_t displacement; 608 609 // Immediates. There can be two in some cases 610 uint8_t numImmediatesConsumed; 611 uint8_t numImmediatesTranslated; 612 uint64_t immediates[2]; 613 614 // A register or immediate operand encoded into the opcode 615 Reg opcodeRegister; 616 617 // Portions of the ModR/M byte 618 619 // These fields determine the allowable values for the ModR/M fields, which 620 // depend on operand and address widths. 621 EABase eaBaseBase; 622 EABase eaRegBase; 623 Reg regBase; 624 625 // The Mod and R/M fields can encode a base for an effective address, or a 626 // register. These are separated into two fields here. 627 EABase eaBase; 628 EADisplacement eaDisplacement; 629 // The reg field always encodes a register 630 Reg reg; 631 632 // SIB state 633 SIBIndex sibIndex; 634 uint8_t sibScale; 635 SIBBase sibBase; 636 637 ArrayRef<OperandSpecifier> operands; 638 }; 639 640 /// \brief Decode one instruction and store the decoding results in 641 /// a buffer provided by the consumer. 642 /// \param insn The buffer to store the instruction in. Allocated by the 643 /// consumer. 644 /// \param reader The byteReader_t for the bytes to be read. 645 /// \param readerArg An argument to pass to the reader for storing context 646 /// specific to the consumer. May be NULL. 647 /// \param logger The dlog_t to be used in printing status messages from the 648 /// disassembler. May be NULL. 649 /// \param loggerArg An argument to pass to the logger for storing context 650 /// specific to the logger. May be NULL. 651 /// \param startLoc The address (in the reader's address space) of the first 652 /// byte in the instruction. 653 /// \param mode The mode (16-bit, 32-bit, 64-bit) to decode in. 654 /// \return Nonzero if there was an error during decode, 0 otherwise. 655 int decodeInstruction(InternalInstruction *insn, 656 byteReader_t reader, 657 const void *readerArg, 658 dlog_t logger, 659 void *loggerArg, 660 const void *miiArg, 661 uint64_t startLoc, 662 DisassemblerMode mode); 663 664 /// \brief Print a message to debugs() 665 /// \param file The name of the file printing the debug message. 666 /// \param line The line number that printed the debug message. 667 /// \param s The message to print. 668 void Debug(const char *file, unsigned line, const char *s); 669 670 const char *GetInstrName(unsigned Opcode, const void *mii); 671 672 } // namespace X86Disassembler 673 } // namespace llvm 674 675 #endif 676