1 //===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass deletes dead arguments from internal functions.  Dead argument
11 // elimination removes arguments which are directly dead, as well as arguments
12 // only passed into function calls as dead arguments of other functions.  This
13 // pass also deletes dead return values in a similar way.
14 //
15 // This pass is often useful as a cleanup pass to run after aggressive
16 // interprocedural passes, which add possibly-dead arguments or return values.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Transforms/IPO.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/DIBuilder.h"
29 #include "llvm/IR/DebugInfo.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include <map>
40 #include <set>
41 #include <tuple>
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "deadargelim"
45 
46 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
47 STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
48 STATISTIC(NumArgumentsReplacedWithUndef,
49           "Number of unread args replaced with undef");
50 namespace {
51   /// DAE - The dead argument elimination pass.
52   ///
53   class DAE : public ModulePass {
54   public:
55 
56     /// Struct that represents (part of) either a return value or a function
57     /// argument.  Used so that arguments and return values can be used
58     /// interchangeably.
59     struct RetOrArg {
RetOrArg__anon021bdbd10111::DAE::RetOrArg60       RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
61                IsArg(IsArg) {}
62       const Function *F;
63       unsigned Idx;
64       bool IsArg;
65 
66       /// Make RetOrArg comparable, so we can put it into a map.
operator <__anon021bdbd10111::DAE::RetOrArg67       bool operator<(const RetOrArg &O) const {
68         return std::tie(F, Idx, IsArg) < std::tie(O.F, O.Idx, O.IsArg);
69       }
70 
71       /// Make RetOrArg comparable, so we can easily iterate the multimap.
operator ==__anon021bdbd10111::DAE::RetOrArg72       bool operator==(const RetOrArg &O) const {
73         return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
74       }
75 
getDescription__anon021bdbd10111::DAE::RetOrArg76       std::string getDescription() const {
77         return (Twine(IsArg ? "Argument #" : "Return value #") + utostr(Idx) +
78                 " of function " + F->getName()).str();
79       }
80     };
81 
82     /// Liveness enum - During our initial pass over the program, we determine
83     /// that things are either alive or maybe alive. We don't mark anything
84     /// explicitly dead (even if we know they are), since anything not alive
85     /// with no registered uses (in Uses) will never be marked alive and will
86     /// thus become dead in the end.
87     enum Liveness { Live, MaybeLive };
88 
89     /// Convenience wrapper
CreateRet(const Function * F,unsigned Idx)90     RetOrArg CreateRet(const Function *F, unsigned Idx) {
91       return RetOrArg(F, Idx, false);
92     }
93     /// Convenience wrapper
CreateArg(const Function * F,unsigned Idx)94     RetOrArg CreateArg(const Function *F, unsigned Idx) {
95       return RetOrArg(F, Idx, true);
96     }
97 
98     typedef std::multimap<RetOrArg, RetOrArg> UseMap;
99     /// This maps a return value or argument to any MaybeLive return values or
100     /// arguments it uses. This allows the MaybeLive values to be marked live
101     /// when any of its users is marked live.
102     /// For example (indices are left out for clarity):
103     ///  - Uses[ret F] = ret G
104     ///    This means that F calls G, and F returns the value returned by G.
105     ///  - Uses[arg F] = ret G
106     ///    This means that some function calls G and passes its result as an
107     ///    argument to F.
108     ///  - Uses[ret F] = arg F
109     ///    This means that F returns one of its own arguments.
110     ///  - Uses[arg F] = arg G
111     ///    This means that G calls F and passes one of its own (G's) arguments
112     ///    directly to F.
113     UseMap Uses;
114 
115     typedef std::set<RetOrArg> LiveSet;
116     typedef std::set<const Function*> LiveFuncSet;
117 
118     /// This set contains all values that have been determined to be live.
119     LiveSet LiveValues;
120     /// This set contains all values that are cannot be changed in any way.
121     LiveFuncSet LiveFunctions;
122 
123     typedef SmallVector<RetOrArg, 5> UseVector;
124 
125   protected:
126     // DAH uses this to specify a different ID.
DAE(char & ID)127     explicit DAE(char &ID) : ModulePass(ID) {}
128 
129   public:
130     static char ID; // Pass identification, replacement for typeid
DAE()131     DAE() : ModulePass(ID) {
132       initializeDAEPass(*PassRegistry::getPassRegistry());
133     }
134 
135     bool runOnModule(Module &M) override;
136 
ShouldHackArguments() const137     virtual bool ShouldHackArguments() const { return false; }
138 
139   private:
140     Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
141     Liveness SurveyUse(const Use *U, UseVector &MaybeLiveUses,
142                        unsigned RetValNum = -1U);
143     Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
144 
145     void SurveyFunction(const Function &F);
146     void MarkValue(const RetOrArg &RA, Liveness L,
147                    const UseVector &MaybeLiveUses);
148     void MarkLive(const RetOrArg &RA);
149     void MarkLive(const Function &F);
150     void PropagateLiveness(const RetOrArg &RA);
151     bool RemoveDeadStuffFromFunction(Function *F);
152     bool DeleteDeadVarargs(Function &Fn);
153     bool RemoveDeadArgumentsFromCallers(Function &Fn);
154   };
155 }
156 
157 
158 char DAE::ID = 0;
159 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
160 
161 namespace {
162   /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
163   /// deletes arguments to functions which are external.  This is only for use
164   /// by bugpoint.
165   struct DAH : public DAE {
166     static char ID;
DAH__anon021bdbd10211::DAH167     DAH() : DAE(ID) {}
168 
ShouldHackArguments__anon021bdbd10211::DAH169     bool ShouldHackArguments() const override { return true; }
170   };
171 }
172 
173 char DAH::ID = 0;
174 INITIALIZE_PASS(DAH, "deadarghaX0r",
175                 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
176                 false, false)
177 
178 /// createDeadArgEliminationPass - This pass removes arguments from functions
179 /// which are not used by the body of the function.
180 ///
createDeadArgEliminationPass()181 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
createDeadArgHackingPass()182 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
183 
184 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
185 /// llvm.vastart is never called, the varargs list is dead for the function.
DeleteDeadVarargs(Function & Fn)186 bool DAE::DeleteDeadVarargs(Function &Fn) {
187   assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
188   if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
189 
190   // Ensure that the function is only directly called.
191   if (Fn.hasAddressTaken())
192     return false;
193 
194   // Don't touch naked functions. The assembly might be using an argument, or
195   // otherwise rely on the frame layout in a way that this analysis will not
196   // see.
197   if (Fn.hasFnAttribute(Attribute::Naked)) {
198     return false;
199   }
200 
201   // Okay, we know we can transform this function if safe.  Scan its body
202   // looking for calls marked musttail or calls to llvm.vastart.
203   for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
204     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
205       CallInst *CI = dyn_cast<CallInst>(I);
206       if (!CI)
207         continue;
208       if (CI->isMustTailCall())
209         return false;
210       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
211         if (II->getIntrinsicID() == Intrinsic::vastart)
212           return false;
213       }
214     }
215   }
216 
217   // If we get here, there are no calls to llvm.vastart in the function body,
218   // remove the "..." and adjust all the calls.
219 
220   // Start by computing a new prototype for the function, which is the same as
221   // the old function, but doesn't have isVarArg set.
222   FunctionType *FTy = Fn.getFunctionType();
223 
224   std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
225   FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
226                                                 Params, false);
227   unsigned NumArgs = Params.size();
228 
229   // Create the new function body and insert it into the module...
230   Function *NF = Function::Create(NFTy, Fn.getLinkage());
231   NF->copyAttributesFrom(&Fn);
232   Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF);
233   NF->takeName(&Fn);
234 
235   // Loop over all of the callers of the function, transforming the call sites
236   // to pass in a smaller number of arguments into the new function.
237   //
238   std::vector<Value*> Args;
239   for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
240     CallSite CS(*I++);
241     if (!CS)
242       continue;
243     Instruction *Call = CS.getInstruction();
244 
245     // Pass all the same arguments.
246     Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
247 
248     // Drop any attributes that were on the vararg arguments.
249     AttributeSet PAL = CS.getAttributes();
250     if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
251       SmallVector<AttributeSet, 8> AttributesVec;
252       for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
253         AttributesVec.push_back(PAL.getSlotAttributes(i));
254       if (PAL.hasAttributes(AttributeSet::FunctionIndex))
255         AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
256                                                   PAL.getFnAttributes()));
257       PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
258     }
259 
260     Instruction *New;
261     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
262       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
263                                Args, "", Call);
264       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
265       cast<InvokeInst>(New)->setAttributes(PAL);
266     } else {
267       New = CallInst::Create(NF, Args, "", Call);
268       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
269       cast<CallInst>(New)->setAttributes(PAL);
270       if (cast<CallInst>(Call)->isTailCall())
271         cast<CallInst>(New)->setTailCall();
272     }
273     New->setDebugLoc(Call->getDebugLoc());
274 
275     Args.clear();
276 
277     if (!Call->use_empty())
278       Call->replaceAllUsesWith(New);
279 
280     New->takeName(Call);
281 
282     // Finally, remove the old call from the program, reducing the use-count of
283     // F.
284     Call->eraseFromParent();
285   }
286 
287   // Since we have now created the new function, splice the body of the old
288   // function right into the new function, leaving the old rotting hulk of the
289   // function empty.
290   NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
291 
292   // Loop over the argument list, transferring uses of the old arguments over to
293   // the new arguments, also transferring over the names as well.  While we're at
294   // it, remove the dead arguments from the DeadArguments list.
295   //
296   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
297        I2 = NF->arg_begin(); I != E; ++I, ++I2) {
298     // Move the name and users over to the new version.
299     I->replaceAllUsesWith(&*I2);
300     I2->takeName(&*I);
301   }
302 
303   // Patch the pointer to LLVM function in debug info descriptor.
304   NF->setSubprogram(Fn.getSubprogram());
305 
306   // Fix up any BlockAddresses that refer to the function.
307   Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
308   // Delete the bitcast that we just created, so that NF does not
309   // appear to be address-taken.
310   NF->removeDeadConstantUsers();
311   // Finally, nuke the old function.
312   Fn.eraseFromParent();
313   return true;
314 }
315 
316 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any
317 /// arguments that are unused, and changes the caller parameters to be undefined
318 /// instead.
RemoveDeadArgumentsFromCallers(Function & Fn)319 bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
320 {
321   // We cannot change the arguments if this TU does not define the function or
322   // if the linker may choose a function body from another TU, even if the
323   // nominal linkage indicates that other copies of the function have the same
324   // semantics. In the below example, the dead load from %p may not have been
325   // eliminated from the linker-chosen copy of f, so replacing %p with undef
326   // in callers may introduce undefined behavior.
327   //
328   // define linkonce_odr void @f(i32* %p) {
329   //   %v = load i32 %p
330   //   ret void
331   // }
332   if (!Fn.isStrongDefinitionForLinker())
333     return false;
334 
335   // Functions with local linkage should already have been handled, except the
336   // fragile (variadic) ones which we can improve here.
337   if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
338     return false;
339 
340   // Don't touch naked functions. The assembly might be using an argument, or
341   // otherwise rely on the frame layout in a way that this analysis will not
342   // see.
343   if (Fn.hasFnAttribute(Attribute::Naked))
344     return false;
345 
346   if (Fn.use_empty())
347     return false;
348 
349   SmallVector<unsigned, 8> UnusedArgs;
350   for (Argument &Arg : Fn.args()) {
351     if (Arg.use_empty() && !Arg.hasByValOrInAllocaAttr())
352       UnusedArgs.push_back(Arg.getArgNo());
353   }
354 
355   if (UnusedArgs.empty())
356     return false;
357 
358   bool Changed = false;
359 
360   for (Use &U : Fn.uses()) {
361     CallSite CS(U.getUser());
362     if (!CS || !CS.isCallee(&U))
363       continue;
364 
365     // Now go through all unused args and replace them with "undef".
366     for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
367       unsigned ArgNo = UnusedArgs[I];
368 
369       Value *Arg = CS.getArgument(ArgNo);
370       CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
371       ++NumArgumentsReplacedWithUndef;
372       Changed = true;
373     }
374   }
375 
376   return Changed;
377 }
378 
379 /// Convenience function that returns the number of return values. It returns 0
380 /// for void functions and 1 for functions not returning a struct. It returns
381 /// the number of struct elements for functions returning a struct.
NumRetVals(const Function * F)382 static unsigned NumRetVals(const Function *F) {
383   Type *RetTy = F->getReturnType();
384   if (RetTy->isVoidTy())
385     return 0;
386   else if (StructType *STy = dyn_cast<StructType>(RetTy))
387     return STy->getNumElements();
388   else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
389     return ATy->getNumElements();
390   else
391     return 1;
392 }
393 
394 /// Returns the sub-type a function will return at a given Idx. Should
395 /// correspond to the result type of an ExtractValue instruction executed with
396 /// just that one Idx (i.e. only top-level structure is considered).
getRetComponentType(const Function * F,unsigned Idx)397 static Type *getRetComponentType(const Function *F, unsigned Idx) {
398   Type *RetTy = F->getReturnType();
399   assert(!RetTy->isVoidTy() && "void type has no subtype");
400 
401   if (StructType *STy = dyn_cast<StructType>(RetTy))
402     return STy->getElementType(Idx);
403   else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
404     return ATy->getElementType();
405   else
406     return RetTy;
407 }
408 
409 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
410 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
411 /// liveness of Use.
MarkIfNotLive(RetOrArg Use,UseVector & MaybeLiveUses)412 DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
413   // We're live if our use or its Function is already marked as live.
414   if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
415     return Live;
416 
417   // We're maybe live otherwise, but remember that we must become live if
418   // Use becomes live.
419   MaybeLiveUses.push_back(Use);
420   return MaybeLive;
421 }
422 
423 
424 /// SurveyUse - This looks at a single use of an argument or return value
425 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
426 /// if it causes the used value to become MaybeLive.
427 ///
428 /// RetValNum is the return value number to use when this use is used in a
429 /// return instruction. This is used in the recursion, you should always leave
430 /// it at 0.
SurveyUse(const Use * U,UseVector & MaybeLiveUses,unsigned RetValNum)431 DAE::Liveness DAE::SurveyUse(const Use *U,
432                              UseVector &MaybeLiveUses, unsigned RetValNum) {
433     const User *V = U->getUser();
434     if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
435       // The value is returned from a function. It's only live when the
436       // function's return value is live. We use RetValNum here, for the case
437       // that U is really a use of an insertvalue instruction that uses the
438       // original Use.
439       const Function *F = RI->getParent()->getParent();
440       if (RetValNum != -1U) {
441         RetOrArg Use = CreateRet(F, RetValNum);
442         // We might be live, depending on the liveness of Use.
443         return MarkIfNotLive(Use, MaybeLiveUses);
444       } else {
445         DAE::Liveness Result = MaybeLive;
446         for (unsigned i = 0; i < NumRetVals(F); ++i) {
447           RetOrArg Use = CreateRet(F, i);
448           // We might be live, depending on the liveness of Use. If any
449           // sub-value is live, then the entire value is considered live. This
450           // is a conservative choice, and better tracking is possible.
451           DAE::Liveness SubResult = MarkIfNotLive(Use, MaybeLiveUses);
452           if (Result != Live)
453             Result = SubResult;
454         }
455         return Result;
456       }
457     }
458     if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
459       if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
460           && IV->hasIndices())
461         // The use we are examining is inserted into an aggregate. Our liveness
462         // depends on all uses of that aggregate, but if it is used as a return
463         // value, only index at which we were inserted counts.
464         RetValNum = *IV->idx_begin();
465 
466       // Note that if we are used as the aggregate operand to the insertvalue,
467       // we don't change RetValNum, but do survey all our uses.
468 
469       Liveness Result = MaybeLive;
470       for (const Use &UU : IV->uses()) {
471         Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
472         if (Result == Live)
473           break;
474       }
475       return Result;
476     }
477 
478     if (auto CS = ImmutableCallSite(V)) {
479       const Function *F = CS.getCalledFunction();
480       if (F) {
481         // Used in a direct call.
482 
483         // Find the argument number. We know for sure that this use is an
484         // argument, since if it was the function argument this would be an
485         // indirect call and the we know can't be looking at a value of the
486         // label type (for the invoke instruction).
487         unsigned ArgNo = CS.getArgumentNo(U);
488 
489         if (ArgNo >= F->getFunctionType()->getNumParams())
490           // The value is passed in through a vararg! Must be live.
491           return Live;
492 
493         assert(CS.getArgument(ArgNo)
494                == CS->getOperand(U->getOperandNo())
495                && "Argument is not where we expected it");
496 
497         // Value passed to a normal call. It's only live when the corresponding
498         // argument to the called function turns out live.
499         RetOrArg Use = CreateArg(F, ArgNo);
500         return MarkIfNotLive(Use, MaybeLiveUses);
501       }
502     }
503     // Used in any other way? Value must be live.
504     return Live;
505 }
506 
507 /// SurveyUses - This looks at all the uses of the given value
508 /// Returns the Liveness deduced from the uses of this value.
509 ///
510 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
511 /// the result is Live, MaybeLiveUses might be modified but its content should
512 /// be ignored (since it might not be complete).
SurveyUses(const Value * V,UseVector & MaybeLiveUses)513 DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
514   // Assume it's dead (which will only hold if there are no uses at all..).
515   Liveness Result = MaybeLive;
516   // Check each use.
517   for (const Use &U : V->uses()) {
518     Result = SurveyUse(&U, MaybeLiveUses);
519     if (Result == Live)
520       break;
521   }
522   return Result;
523 }
524 
525 // SurveyFunction - This performs the initial survey of the specified function,
526 // checking out whether or not it uses any of its incoming arguments or whether
527 // any callers use the return value.  This fills in the LiveValues set and Uses
528 // map.
529 //
530 // We consider arguments of non-internal functions to be intrinsically alive as
531 // well as arguments to functions which have their "address taken".
532 //
SurveyFunction(const Function & F)533 void DAE::SurveyFunction(const Function &F) {
534   // Functions with inalloca parameters are expecting args in a particular
535   // register and memory layout.
536   if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) {
537     MarkLive(F);
538     return;
539   }
540 
541   // Don't touch naked functions. The assembly might be using an argument, or
542   // otherwise rely on the frame layout in a way that this analysis will not
543   // see.
544   if (F.hasFnAttribute(Attribute::Naked)) {
545     MarkLive(F);
546     return;
547   }
548 
549   unsigned RetCount = NumRetVals(&F);
550   // Assume all return values are dead
551   typedef SmallVector<Liveness, 5> RetVals;
552   RetVals RetValLiveness(RetCount, MaybeLive);
553 
554   typedef SmallVector<UseVector, 5> RetUses;
555   // These vectors map each return value to the uses that make it MaybeLive, so
556   // we can add those to the Uses map if the return value really turns out to be
557   // MaybeLive. Initialized to a list of RetCount empty lists.
558   RetUses MaybeLiveRetUses(RetCount);
559 
560   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
561     if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
562       if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
563           != F.getFunctionType()->getReturnType()) {
564         // We don't support old style multiple return values.
565         MarkLive(F);
566         return;
567       }
568 
569   if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
570     MarkLive(F);
571     return;
572   }
573 
574   DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
575   // Keep track of the number of live retvals, so we can skip checks once all
576   // of them turn out to be live.
577   unsigned NumLiveRetVals = 0;
578   // Loop all uses of the function.
579   for (const Use &U : F.uses()) {
580     // If the function is PASSED IN as an argument, its address has been
581     // taken.
582     ImmutableCallSite CS(U.getUser());
583     if (!CS || !CS.isCallee(&U)) {
584       MarkLive(F);
585       return;
586     }
587 
588     // If this use is anything other than a call site, the function is alive.
589     const Instruction *TheCall = CS.getInstruction();
590     if (!TheCall) {   // Not a direct call site?
591       MarkLive(F);
592       return;
593     }
594 
595     // If we end up here, we are looking at a direct call to our function.
596 
597     // Now, check how our return value(s) is/are used in this caller. Don't
598     // bother checking return values if all of them are live already.
599     if (NumLiveRetVals == RetCount)
600       continue;
601 
602     // Check all uses of the return value.
603     for (const Use &U : TheCall->uses()) {
604       if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
605         // This use uses a part of our return value, survey the uses of
606         // that part and store the results for this index only.
607         unsigned Idx = *Ext->idx_begin();
608         if (RetValLiveness[Idx] != Live) {
609           RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
610           if (RetValLiveness[Idx] == Live)
611             NumLiveRetVals++;
612         }
613       } else {
614         // Used by something else than extractvalue. Survey, but assume that the
615         // result applies to all sub-values.
616         UseVector MaybeLiveAggregateUses;
617         if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
618           NumLiveRetVals = RetCount;
619           RetValLiveness.assign(RetCount, Live);
620           break;
621         } else {
622           for (unsigned i = 0; i != RetCount; ++i) {
623             if (RetValLiveness[i] != Live)
624               MaybeLiveRetUses[i].append(MaybeLiveAggregateUses.begin(),
625                                          MaybeLiveAggregateUses.end());
626           }
627         }
628       }
629     }
630   }
631 
632   // Now we've inspected all callers, record the liveness of our return values.
633   for (unsigned i = 0; i != RetCount; ++i)
634     MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
635 
636   DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
637 
638   // Now, check all of our arguments.
639   unsigned i = 0;
640   UseVector MaybeLiveArgUses;
641   for (Function::const_arg_iterator AI = F.arg_begin(),
642        E = F.arg_end(); AI != E; ++AI, ++i) {
643     Liveness Result;
644     if (F.getFunctionType()->isVarArg()) {
645       // Variadic functions will already have a va_arg function expanded inside
646       // them, making them potentially very sensitive to ABI changes resulting
647       // from removing arguments entirely, so don't. For example AArch64 handles
648       // register and stack HFAs very differently, and this is reflected in the
649       // IR which has already been generated.
650       Result = Live;
651     } else {
652       // See what the effect of this use is (recording any uses that cause
653       // MaybeLive in MaybeLiveArgUses).
654       Result = SurveyUses(&*AI, MaybeLiveArgUses);
655     }
656 
657     // Mark the result.
658     MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
659     // Clear the vector again for the next iteration.
660     MaybeLiveArgUses.clear();
661   }
662 }
663 
664 /// MarkValue - This function marks the liveness of RA depending on L. If L is
665 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
666 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
667 /// live later on.
MarkValue(const RetOrArg & RA,Liveness L,const UseVector & MaybeLiveUses)668 void DAE::MarkValue(const RetOrArg &RA, Liveness L,
669                     const UseVector &MaybeLiveUses) {
670   switch (L) {
671     case Live: MarkLive(RA); break;
672     case MaybeLive:
673     {
674       // Note any uses of this value, so this return value can be
675       // marked live whenever one of the uses becomes live.
676       for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
677            UE = MaybeLiveUses.end(); UI != UE; ++UI)
678         Uses.insert(std::make_pair(*UI, RA));
679       break;
680     }
681   }
682 }
683 
684 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
685 /// changed in any way. Additionally,
686 /// mark any values that are used as this function's parameters or by its return
687 /// values (according to Uses) live as well.
MarkLive(const Function & F)688 void DAE::MarkLive(const Function &F) {
689   DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
690   // Mark the function as live.
691   LiveFunctions.insert(&F);
692   // Mark all arguments as live.
693   for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
694     PropagateLiveness(CreateArg(&F, i));
695   // Mark all return values as live.
696   for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
697     PropagateLiveness(CreateRet(&F, i));
698 }
699 
700 /// MarkLive - Mark the given return value or argument as live. Additionally,
701 /// mark any values that are used by this value (according to Uses) live as
702 /// well.
MarkLive(const RetOrArg & RA)703 void DAE::MarkLive(const RetOrArg &RA) {
704   if (LiveFunctions.count(RA.F))
705     return; // Function was already marked Live.
706 
707   if (!LiveValues.insert(RA).second)
708     return; // We were already marked Live.
709 
710   DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
711   PropagateLiveness(RA);
712 }
713 
714 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
715 /// to any other values it uses (according to Uses).
PropagateLiveness(const RetOrArg & RA)716 void DAE::PropagateLiveness(const RetOrArg &RA) {
717   // We don't use upper_bound (or equal_range) here, because our recursive call
718   // to ourselves is likely to cause the upper_bound (which is the first value
719   // not belonging to RA) to become erased and the iterator invalidated.
720   UseMap::iterator Begin = Uses.lower_bound(RA);
721   UseMap::iterator E = Uses.end();
722   UseMap::iterator I;
723   for (I = Begin; I != E && I->first == RA; ++I)
724     MarkLive(I->second);
725 
726   // Erase RA from the Uses map (from the lower bound to wherever we ended up
727   // after the loop).
728   Uses.erase(Begin, I);
729 }
730 
731 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
732 // that are not in LiveValues. Transform the function and all of the callees of
733 // the function to not have these arguments and return values.
734 //
RemoveDeadStuffFromFunction(Function * F)735 bool DAE::RemoveDeadStuffFromFunction(Function *F) {
736   // Don't modify fully live functions
737   if (LiveFunctions.count(F))
738     return false;
739 
740   // Start by computing a new prototype for the function, which is the same as
741   // the old function, but has fewer arguments and a different return type.
742   FunctionType *FTy = F->getFunctionType();
743   std::vector<Type*> Params;
744 
745   // Keep track of if we have a live 'returned' argument
746   bool HasLiveReturnedArg = false;
747 
748   // Set up to build a new list of parameter attributes.
749   SmallVector<AttributeSet, 8> AttributesVec;
750   const AttributeSet &PAL = F->getAttributes();
751 
752   // Remember which arguments are still alive.
753   SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
754   // Construct the new parameter list from non-dead arguments. Also construct
755   // a new set of parameter attributes to correspond. Skip the first parameter
756   // attribute, since that belongs to the return value.
757   unsigned i = 0;
758   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
759        I != E; ++I, ++i) {
760     RetOrArg Arg = CreateArg(F, i);
761     if (LiveValues.erase(Arg)) {
762       Params.push_back(I->getType());
763       ArgAlive[i] = true;
764 
765       // Get the original parameter attributes (skipping the first one, that is
766       // for the return value.
767       if (PAL.hasAttributes(i + 1)) {
768         AttrBuilder B(PAL, i + 1);
769         if (B.contains(Attribute::Returned))
770           HasLiveReturnedArg = true;
771         AttributesVec.
772           push_back(AttributeSet::get(F->getContext(), Params.size(), B));
773       }
774     } else {
775       ++NumArgumentsEliminated;
776       DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
777             << ") from " << F->getName() << "\n");
778     }
779   }
780 
781   // Find out the new return value.
782   Type *RetTy = FTy->getReturnType();
783   Type *NRetTy = nullptr;
784   unsigned RetCount = NumRetVals(F);
785 
786   // -1 means unused, other numbers are the new index
787   SmallVector<int, 5> NewRetIdxs(RetCount, -1);
788   std::vector<Type*> RetTypes;
789 
790   // If there is a function with a live 'returned' argument but a dead return
791   // value, then there are two possible actions:
792   // 1) Eliminate the return value and take off the 'returned' attribute on the
793   //    argument.
794   // 2) Retain the 'returned' attribute and treat the return value (but not the
795   //    entire function) as live so that it is not eliminated.
796   //
797   // It's not clear in the general case which option is more profitable because,
798   // even in the absence of explicit uses of the return value, code generation
799   // is free to use the 'returned' attribute to do things like eliding
800   // save/restores of registers across calls. Whether or not this happens is
801   // target and ABI-specific as well as depending on the amount of register
802   // pressure, so there's no good way for an IR-level pass to figure this out.
803   //
804   // Fortunately, the only places where 'returned' is currently generated by
805   // the FE are places where 'returned' is basically free and almost always a
806   // performance win, so the second option can just be used always for now.
807   //
808   // This should be revisited if 'returned' is ever applied more liberally.
809   if (RetTy->isVoidTy() || HasLiveReturnedArg) {
810     NRetTy = RetTy;
811   } else {
812     // Look at each of the original return values individually.
813     for (unsigned i = 0; i != RetCount; ++i) {
814       RetOrArg Ret = CreateRet(F, i);
815       if (LiveValues.erase(Ret)) {
816         RetTypes.push_back(getRetComponentType(F, i));
817         NewRetIdxs[i] = RetTypes.size() - 1;
818       } else {
819         ++NumRetValsEliminated;
820         DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
821               << F->getName() << "\n");
822       }
823     }
824     if (RetTypes.size() > 1) {
825       // More than one return type? Reduce it down to size.
826       if (StructType *STy = dyn_cast<StructType>(RetTy)) {
827         // Make the new struct packed if we used to return a packed struct
828         // already.
829         NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
830       } else {
831         assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
832         NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
833       }
834     } else if (RetTypes.size() == 1)
835       // One return type? Just a simple value then, but only if we didn't use to
836       // return a struct with that simple value before.
837       NRetTy = RetTypes.front();
838     else if (RetTypes.size() == 0)
839       // No return types? Make it void, but only if we didn't use to return {}.
840       NRetTy = Type::getVoidTy(F->getContext());
841   }
842 
843   assert(NRetTy && "No new return type found?");
844 
845   // The existing function return attributes.
846   AttributeSet RAttrs = PAL.getRetAttributes();
847 
848   // Remove any incompatible attributes, but only if we removed all return
849   // values. Otherwise, ensure that we don't have any conflicting attributes
850   // here. Currently, this should not be possible, but special handling might be
851   // required when new return value attributes are added.
852   if (NRetTy->isVoidTy())
853     RAttrs = RAttrs.removeAttributes(NRetTy->getContext(),
854                                      AttributeSet::ReturnIndex,
855                                      AttributeFuncs::typeIncompatible(NRetTy));
856   else
857     assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
858              overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
859            "Return attributes no longer compatible?");
860 
861   if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
862     AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
863 
864   if (PAL.hasAttributes(AttributeSet::FunctionIndex))
865     AttributesVec.push_back(AttributeSet::get(F->getContext(),
866                                               PAL.getFnAttributes()));
867 
868   // Reconstruct the AttributesList based on the vector we constructed.
869   AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
870 
871   // Create the new function type based on the recomputed parameters.
872   FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
873 
874   // No change?
875   if (NFTy == FTy)
876     return false;
877 
878   // Create the new function body and insert it into the module...
879   Function *NF = Function::Create(NFTy, F->getLinkage());
880   NF->copyAttributesFrom(F);
881   NF->setAttributes(NewPAL);
882   // Insert the new function before the old function, so we won't be processing
883   // it again.
884   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
885   NF->takeName(F);
886 
887   // Loop over all of the callers of the function, transforming the call sites
888   // to pass in a smaller number of arguments into the new function.
889   //
890   std::vector<Value*> Args;
891   while (!F->use_empty()) {
892     CallSite CS(F->user_back());
893     Instruction *Call = CS.getInstruction();
894 
895     AttributesVec.clear();
896     const AttributeSet &CallPAL = CS.getAttributes();
897 
898     // The call return attributes.
899     AttributeSet RAttrs = CallPAL.getRetAttributes();
900 
901     // Adjust in case the function was changed to return void.
902     RAttrs = RAttrs.removeAttributes(NRetTy->getContext(),
903                                      AttributeSet::ReturnIndex,
904                         AttributeFuncs::typeIncompatible(NF->getReturnType()));
905     if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
906       AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
907 
908     // Declare these outside of the loops, so we can reuse them for the second
909     // loop, which loops the varargs.
910     CallSite::arg_iterator I = CS.arg_begin();
911     unsigned i = 0;
912     // Loop over those operands, corresponding to the normal arguments to the
913     // original function, and add those that are still alive.
914     for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
915       if (ArgAlive[i]) {
916         Args.push_back(*I);
917         // Get original parameter attributes, but skip return attributes.
918         if (CallPAL.hasAttributes(i + 1)) {
919           AttrBuilder B(CallPAL, i + 1);
920           // If the return type has changed, then get rid of 'returned' on the
921           // call site. The alternative is to make all 'returned' attributes on
922           // call sites keep the return value alive just like 'returned'
923           // attributes on function declaration but it's less clearly a win
924           // and this is not an expected case anyway
925           if (NRetTy != RetTy && B.contains(Attribute::Returned))
926             B.removeAttribute(Attribute::Returned);
927           AttributesVec.
928             push_back(AttributeSet::get(F->getContext(), Args.size(), B));
929         }
930       }
931 
932     // Push any varargs arguments on the list. Don't forget their attributes.
933     for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
934       Args.push_back(*I);
935       if (CallPAL.hasAttributes(i + 1)) {
936         AttrBuilder B(CallPAL, i + 1);
937         AttributesVec.
938           push_back(AttributeSet::get(F->getContext(), Args.size(), B));
939       }
940     }
941 
942     if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
943       AttributesVec.push_back(AttributeSet::get(Call->getContext(),
944                                                 CallPAL.getFnAttributes()));
945 
946     // Reconstruct the AttributesList based on the vector we constructed.
947     AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
948 
949     Instruction *New;
950     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
951       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
952                                Args, "", Call->getParent());
953       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
954       cast<InvokeInst>(New)->setAttributes(NewCallPAL);
955     } else {
956       New = CallInst::Create(NF, Args, "", Call);
957       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
958       cast<CallInst>(New)->setAttributes(NewCallPAL);
959       if (cast<CallInst>(Call)->isTailCall())
960         cast<CallInst>(New)->setTailCall();
961     }
962     New->setDebugLoc(Call->getDebugLoc());
963 
964     Args.clear();
965 
966     if (!Call->use_empty()) {
967       if (New->getType() == Call->getType()) {
968         // Return type not changed? Just replace users then.
969         Call->replaceAllUsesWith(New);
970         New->takeName(Call);
971       } else if (New->getType()->isVoidTy()) {
972         // Our return value has uses, but they will get removed later on.
973         // Replace by null for now.
974         if (!Call->getType()->isX86_MMXTy())
975           Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
976       } else {
977         assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
978                "Return type changed, but not into a void. The old return type"
979                " must have been a struct or an array!");
980         Instruction *InsertPt = Call;
981         if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
982           BasicBlock *NewEdge = SplitEdge(New->getParent(), II->getNormalDest());
983           InsertPt = &*NewEdge->getFirstInsertionPt();
984         }
985 
986         // We used to return a struct or array. Instead of doing smart stuff
987         // with all the uses, we will just rebuild it using extract/insertvalue
988         // chaining and let instcombine clean that up.
989         //
990         // Start out building up our return value from undef
991         Value *RetVal = UndefValue::get(RetTy);
992         for (unsigned i = 0; i != RetCount; ++i)
993           if (NewRetIdxs[i] != -1) {
994             Value *V;
995             if (RetTypes.size() > 1)
996               // We are still returning a struct, so extract the value from our
997               // return value
998               V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
999                                            InsertPt);
1000             else
1001               // We are now returning a single element, so just insert that
1002               V = New;
1003             // Insert the value at the old position
1004             RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
1005           }
1006         // Now, replace all uses of the old call instruction with the return
1007         // struct we built
1008         Call->replaceAllUsesWith(RetVal);
1009         New->takeName(Call);
1010       }
1011     }
1012 
1013     // Finally, remove the old call from the program, reducing the use-count of
1014     // F.
1015     Call->eraseFromParent();
1016   }
1017 
1018   // Since we have now created the new function, splice the body of the old
1019   // function right into the new function, leaving the old rotting hulk of the
1020   // function empty.
1021   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
1022 
1023   // Loop over the argument list, transferring uses of the old arguments over to
1024   // the new arguments, also transferring over the names as well.
1025   i = 0;
1026   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1027        I2 = NF->arg_begin(); I != E; ++I, ++i)
1028     if (ArgAlive[i]) {
1029       // If this is a live argument, move the name and users over to the new
1030       // version.
1031       I->replaceAllUsesWith(&*I2);
1032       I2->takeName(&*I);
1033       ++I2;
1034     } else {
1035       // If this argument is dead, replace any uses of it with null constants
1036       // (these are guaranteed to become unused later on).
1037       if (!I->getType()->isX86_MMXTy())
1038         I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
1039     }
1040 
1041   // If we change the return value of the function we must rewrite any return
1042   // instructions.  Check this now.
1043   if (F->getReturnType() != NF->getReturnType())
1044     for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
1045       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1046         Value *RetVal;
1047 
1048         if (NFTy->getReturnType()->isVoidTy()) {
1049           RetVal = nullptr;
1050         } else {
1051           assert(RetTy->isStructTy() || RetTy->isArrayTy());
1052           // The original return value was a struct or array, insert
1053           // extractvalue/insertvalue chains to extract only the values we need
1054           // to return and insert them into our new result.
1055           // This does generate messy code, but we'll let it to instcombine to
1056           // clean that up.
1057           Value *OldRet = RI->getOperand(0);
1058           // Start out building up our return value from undef
1059           RetVal = UndefValue::get(NRetTy);
1060           for (unsigned i = 0; i != RetCount; ++i)
1061             if (NewRetIdxs[i] != -1) {
1062               ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
1063                                                               "oldret", RI);
1064               if (RetTypes.size() > 1) {
1065                 // We're still returning a struct, so reinsert the value into
1066                 // our new return value at the new index
1067 
1068                 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
1069                                                  "newret", RI);
1070               } else {
1071                 // We are now only returning a simple value, so just return the
1072                 // extracted value.
1073                 RetVal = EV;
1074               }
1075             }
1076         }
1077         // Replace the return instruction with one returning the new return
1078         // value (possibly 0 if we became void).
1079         ReturnInst::Create(F->getContext(), RetVal, RI);
1080         BB->getInstList().erase(RI);
1081       }
1082 
1083   // Patch the pointer to LLVM function in debug info descriptor.
1084   NF->setSubprogram(F->getSubprogram());
1085 
1086   // Now that the old function is dead, delete it.
1087   F->eraseFromParent();
1088 
1089   return true;
1090 }
1091 
runOnModule(Module & M)1092 bool DAE::runOnModule(Module &M) {
1093   bool Changed = false;
1094 
1095   // First pass: Do a simple check to see if any functions can have their "..."
1096   // removed.  We can do this if they never call va_start.  This loop cannot be
1097   // fused with the next loop, because deleting a function invalidates
1098   // information computed while surveying other functions.
1099   DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
1100   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1101     Function &F = *I++;
1102     if (F.getFunctionType()->isVarArg())
1103       Changed |= DeleteDeadVarargs(F);
1104   }
1105 
1106   // Second phase:loop through the module, determining which arguments are live.
1107   // We assume all arguments are dead unless proven otherwise (allowing us to
1108   // determine that dead arguments passed into recursive functions are dead).
1109   //
1110   DEBUG(dbgs() << "DAE - Determining liveness\n");
1111   for (auto &F : M)
1112     SurveyFunction(F);
1113 
1114   // Now, remove all dead arguments and return values from each function in
1115   // turn.
1116   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1117     // Increment now, because the function will probably get removed (ie.
1118     // replaced by a new one).
1119     Function *F = &*I++;
1120     Changed |= RemoveDeadStuffFromFunction(F);
1121   }
1122 
1123   // Finally, look for any unused parameters in functions with non-local
1124   // linkage and replace the passed in parameters with undef.
1125   for (auto &F : M)
1126     Changed |= RemoveDeadArgumentsFromCallers(F);
1127 
1128   return Changed;
1129 }
1130