1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass looks for equivalent functions that are mergable and folds them.
11 //
12 // Order relation is defined on set of functions. It was made through
13 // special function comparison procedure that returns
14 // 0 when functions are equal,
15 // -1 when Left function is less than right function, and
16 // 1 for opposite case. We need total-ordering, so we need to maintain
17 // four properties on the functions set:
18 // a <= a (reflexivity)
19 // if a <= b and b <= a then a = b (antisymmetry)
20 // if a <= b and b <= c then a <= c (transitivity).
21 // for all a and b: a <= b or b <= a (totality).
22 //
23 // Comparison iterates through each instruction in each basic block.
24 // Functions are kept on binary tree. For each new function F we perform
25 // lookup in binary tree.
26 // In practice it works the following way:
27 // -- We define Function* container class with custom "operator<" (FunctionPtr).
28 // -- "FunctionPtr" instances are stored in std::set collection, so every
29 //    std::set::insert operation will give you result in log(N) time.
30 //
31 // As an optimization, a hash of the function structure is calculated first, and
32 // two functions are only compared if they have the same hash. This hash is
33 // cheap to compute, and has the property that if function F == G according to
34 // the comparison function, then hash(F) == hash(G). This consistency property
35 // is critical to ensuring all possible merging opportunities are exploited.
36 // Collisions in the hash affect the speed of the pass but not the correctness
37 // or determinism of the resulting transformation.
38 //
39 // When a match is found the functions are folded. If both functions are
40 // overridable, we move the functionality into a new internal function and
41 // leave two overridable thunks to it.
42 //
43 //===----------------------------------------------------------------------===//
44 //
45 // Future work:
46 //
47 // * virtual functions.
48 //
49 // Many functions have their address taken by the virtual function table for
50 // the object they belong to. However, as long as it's only used for a lookup
51 // and call, this is irrelevant, and we'd like to fold such functions.
52 //
53 // * be smarter about bitcasts.
54 //
55 // In order to fold functions, we will sometimes add either bitcast instructions
56 // or bitcast constant expressions. Unfortunately, this can confound further
57 // analysis since the two functions differ where one has a bitcast and the
58 // other doesn't. We should learn to look through bitcasts.
59 //
60 // * Compare complex types with pointer types inside.
61 // * Compare cross-reference cases.
62 // * Compare complex expressions.
63 //
64 // All the three issues above could be described as ability to prove that
65 // fA == fB == fC == fE == fF == fG in example below:
66 //
67 //  void fA() {
68 //    fB();
69 //  }
70 //  void fB() {
71 //    fA();
72 //  }
73 //
74 //  void fE() {
75 //    fF();
76 //  }
77 //  void fF() {
78 //    fG();
79 //  }
80 //  void fG() {
81 //    fE();
82 //  }
83 //
84 // Simplest cross-reference case (fA <--> fB) was implemented in previous
85 // versions of MergeFunctions, though it presented only in two function pairs
86 // in test-suite (that counts >50k functions)
87 // Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A)
88 // could cover much more cases.
89 //
90 //===----------------------------------------------------------------------===//
91 
92 #include "llvm/Transforms/IPO.h"
93 #include "llvm/ADT/DenseSet.h"
94 #include "llvm/ADT/FoldingSet.h"
95 #include "llvm/ADT/STLExtras.h"
96 #include "llvm/ADT/SmallSet.h"
97 #include "llvm/ADT/Statistic.h"
98 #include "llvm/ADT/Hashing.h"
99 #include "llvm/IR/CallSite.h"
100 #include "llvm/IR/Constants.h"
101 #include "llvm/IR/DataLayout.h"
102 #include "llvm/IR/IRBuilder.h"
103 #include "llvm/IR/InlineAsm.h"
104 #include "llvm/IR/Instructions.h"
105 #include "llvm/IR/LLVMContext.h"
106 #include "llvm/IR/Module.h"
107 #include "llvm/IR/Operator.h"
108 #include "llvm/IR/ValueHandle.h"
109 #include "llvm/IR/ValueMap.h"
110 #include "llvm/Pass.h"
111 #include "llvm/Support/CommandLine.h"
112 #include "llvm/Support/Debug.h"
113 #include "llvm/Support/ErrorHandling.h"
114 #include "llvm/Support/raw_ostream.h"
115 #include <vector>
116 
117 using namespace llvm;
118 
119 #define DEBUG_TYPE "mergefunc"
120 
121 STATISTIC(NumFunctionsMerged, "Number of functions merged");
122 STATISTIC(NumThunksWritten, "Number of thunks generated");
123 STATISTIC(NumAliasesWritten, "Number of aliases generated");
124 STATISTIC(NumDoubleWeak, "Number of new functions created");
125 
126 static cl::opt<unsigned> NumFunctionsForSanityCheck(
127     "mergefunc-sanity",
128     cl::desc("How many functions in module could be used for "
129              "MergeFunctions pass sanity check. "
130              "'0' disables this check. Works only with '-debug' key."),
131     cl::init(0), cl::Hidden);
132 
133 namespace {
134 
135 /// GlobalNumberState assigns an integer to each global value in the program,
136 /// which is used by the comparison routine to order references to globals. This
137 /// state must be preserved throughout the pass, because Functions and other
138 /// globals need to maintain their relative order. Globals are assigned a number
139 /// when they are first visited. This order is deterministic, and so the
140 /// assigned numbers are as well. When two functions are merged, neither number
141 /// is updated. If the symbols are weak, this would be incorrect. If they are
142 /// strong, then one will be replaced at all references to the other, and so
143 /// direct callsites will now see one or the other symbol, and no update is
144 /// necessary. Note that if we were guaranteed unique names, we could just
145 /// compare those, but this would not work for stripped bitcodes or for those
146 /// few symbols without a name.
147 class GlobalNumberState {
148   struct Config : ValueMapConfig<GlobalValue*> {
149     enum { FollowRAUW = false };
150   };
151   // Each GlobalValue is mapped to an identifier. The Config ensures when RAUW
152   // occurs, the mapping does not change. Tracking changes is unnecessary, and
153   // also problematic for weak symbols (which may be overwritten).
154   typedef ValueMap<GlobalValue *, uint64_t, Config> ValueNumberMap;
155   ValueNumberMap GlobalNumbers;
156   // The next unused serial number to assign to a global.
157   uint64_t NextNumber;
158   public:
GlobalNumberState()159     GlobalNumberState() : GlobalNumbers(), NextNumber(0) {}
getNumber(GlobalValue * Global)160     uint64_t getNumber(GlobalValue* Global) {
161       ValueNumberMap::iterator MapIter;
162       bool Inserted;
163       std::tie(MapIter, Inserted) = GlobalNumbers.insert({Global, NextNumber});
164       if (Inserted)
165         NextNumber++;
166       return MapIter->second;
167     }
clear()168     void clear() {
169       GlobalNumbers.clear();
170     }
171 };
172 
173 /// FunctionComparator - Compares two functions to determine whether or not
174 /// they will generate machine code with the same behaviour. DataLayout is
175 /// used if available. The comparator always fails conservatively (erring on the
176 /// side of claiming that two functions are different).
177 class FunctionComparator {
178 public:
FunctionComparator(const Function * F1,const Function * F2,GlobalNumberState * GN)179   FunctionComparator(const Function *F1, const Function *F2,
180                      GlobalNumberState* GN)
181       : FnL(F1), FnR(F2), GlobalNumbers(GN) {}
182 
183   /// Test whether the two functions have equivalent behaviour.
184   int compare();
185   /// Hash a function. Equivalent functions will have the same hash, and unequal
186   /// functions will have different hashes with high probability.
187   typedef uint64_t FunctionHash;
188   static FunctionHash functionHash(Function &);
189 
190 private:
191   /// Test whether two basic blocks have equivalent behaviour.
192   int cmpBasicBlocks(const BasicBlock *BBL, const BasicBlock *BBR);
193 
194   /// Constants comparison.
195   /// Its analog to lexicographical comparison between hypothetical numbers
196   /// of next format:
197   /// <bitcastability-trait><raw-bit-contents>
198   ///
199   /// 1. Bitcastability.
200   /// Check whether L's type could be losslessly bitcasted to R's type.
201   /// On this stage method, in case when lossless bitcast is not possible
202   /// method returns -1 or 1, thus also defining which type is greater in
203   /// context of bitcastability.
204   /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight
205   ///          to the contents comparison.
206   ///          If types differ, remember types comparison result and check
207   ///          whether we still can bitcast types.
208   /// Stage 1: Types that satisfies isFirstClassType conditions are always
209   ///          greater then others.
210   /// Stage 2: Vector is greater then non-vector.
211   ///          If both types are vectors, then vector with greater bitwidth is
212   ///          greater.
213   ///          If both types are vectors with the same bitwidth, then types
214   ///          are bitcastable, and we can skip other stages, and go to contents
215   ///          comparison.
216   /// Stage 3: Pointer types are greater than non-pointers. If both types are
217   ///          pointers of the same address space - go to contents comparison.
218   ///          Different address spaces: pointer with greater address space is
219   ///          greater.
220   /// Stage 4: Types are neither vectors, nor pointers. And they differ.
221   ///          We don't know how to bitcast them. So, we better don't do it,
222   ///          and return types comparison result (so it determines the
223   ///          relationship among constants we don't know how to bitcast).
224   ///
225   /// Just for clearance, let's see how the set of constants could look
226   /// on single dimension axis:
227   ///
228   /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
229   /// Where: NFCT - Not a FirstClassType
230   ///        FCT - FirstClassTyp:
231   ///
232   /// 2. Compare raw contents.
233   /// It ignores types on this stage and only compares bits from L and R.
234   /// Returns 0, if L and R has equivalent contents.
235   /// -1 or 1 if values are different.
236   /// Pretty trivial:
237   /// 2.1. If contents are numbers, compare numbers.
238   ///    Ints with greater bitwidth are greater. Ints with same bitwidths
239   ///    compared by their contents.
240   /// 2.2. "And so on". Just to avoid discrepancies with comments
241   /// perhaps it would be better to read the implementation itself.
242   /// 3. And again about overall picture. Let's look back at how the ordered set
243   /// of constants will look like:
244   /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
245   ///
246   /// Now look, what could be inside [FCT, "others"], for example:
247   /// [FCT, "others"] =
248   /// [
249   ///   [double 0.1], [double 1.23],
250   ///   [i32 1], [i32 2],
251   ///   { double 1.0 },       ; StructTyID, NumElements = 1
252   ///   { i32 1 },            ; StructTyID, NumElements = 1
253   ///   { double 1, i32 1 },  ; StructTyID, NumElements = 2
254   ///   { i32 1, double 1 }   ; StructTyID, NumElements = 2
255   /// ]
256   ///
257   /// Let's explain the order. Float numbers will be less than integers, just
258   /// because of cmpType terms: FloatTyID < IntegerTyID.
259   /// Floats (with same fltSemantics) are sorted according to their value.
260   /// Then you can see integers, and they are, like a floats,
261   /// could be easy sorted among each others.
262   /// The structures. Structures are grouped at the tail, again because of their
263   /// TypeID: StructTyID > IntegerTyID > FloatTyID.
264   /// Structures with greater number of elements are greater. Structures with
265   /// greater elements going first are greater.
266   /// The same logic with vectors, arrays and other possible complex types.
267   ///
268   /// Bitcastable constants.
269   /// Let's assume, that some constant, belongs to some group of
270   /// "so-called-equal" values with different types, and at the same time
271   /// belongs to another group of constants with equal types
272   /// and "really" equal values.
273   ///
274   /// Now, prove that this is impossible:
275   ///
276   /// If constant A with type TyA is bitcastable to B with type TyB, then:
277   /// 1. All constants with equal types to TyA, are bitcastable to B. Since
278   ///    those should be vectors (if TyA is vector), pointers
279   ///    (if TyA is pointer), or else (if TyA equal to TyB), those types should
280   ///    be equal to TyB.
281   /// 2. All constants with non-equal, but bitcastable types to TyA, are
282   ///    bitcastable to B.
283   ///    Once again, just because we allow it to vectors and pointers only.
284   ///    This statement could be expanded as below:
285   /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to
286   ///      vector B, and thus bitcastable to B as well.
287   /// 2.2. All pointers of the same address space, no matter what they point to,
288   ///      bitcastable. So if C is pointer, it could be bitcasted to A and to B.
289   /// So any constant equal or bitcastable to A is equal or bitcastable to B.
290   /// QED.
291   ///
292   /// In another words, for pointers and vectors, we ignore top-level type and
293   /// look at their particular properties (bit-width for vectors, and
294   /// address space for pointers).
295   /// If these properties are equal - compare their contents.
296   int cmpConstants(const Constant *L, const Constant *R);
297 
298   /// Compares two global values by number. Uses the GlobalNumbersState to
299   /// identify the same gobals across function calls.
300   int cmpGlobalValues(GlobalValue *L, GlobalValue *R);
301 
302   /// Assign or look up previously assigned numbers for the two values, and
303   /// return whether the numbers are equal. Numbers are assigned in the order
304   /// visited.
305   /// Comparison order:
306   /// Stage 0: Value that is function itself is always greater then others.
307   ///          If left and right values are references to their functions, then
308   ///          they are equal.
309   /// Stage 1: Constants are greater than non-constants.
310   ///          If both left and right are constants, then the result of
311   ///          cmpConstants is used as cmpValues result.
312   /// Stage 2: InlineAsm instances are greater than others. If both left and
313   ///          right are InlineAsm instances, InlineAsm* pointers casted to
314   ///          integers and compared as numbers.
315   /// Stage 3: For all other cases we compare order we meet these values in
316   ///          their functions. If right value was met first during scanning,
317   ///          then left value is greater.
318   ///          In another words, we compare serial numbers, for more details
319   ///          see comments for sn_mapL and sn_mapR.
320   int cmpValues(const Value *L, const Value *R);
321 
322   /// Compare two Instructions for equivalence, similar to
323   /// Instruction::isSameOperationAs but with modifications to the type
324   /// comparison.
325   /// Stages are listed in "most significant stage first" order:
326   /// On each stage below, we do comparison between some left and right
327   /// operation parts. If parts are non-equal, we assign parts comparison
328   /// result to the operation comparison result and exit from method.
329   /// Otherwise we proceed to the next stage.
330   /// Stages:
331   /// 1. Operations opcodes. Compared as numbers.
332   /// 2. Number of operands.
333   /// 3. Operation types. Compared with cmpType method.
334   /// 4. Compare operation subclass optional data as stream of bytes:
335   /// just convert it to integers and call cmpNumbers.
336   /// 5. Compare in operation operand types with cmpType in
337   /// most significant operand first order.
338   /// 6. Last stage. Check operations for some specific attributes.
339   /// For example, for Load it would be:
340   /// 6.1.Load: volatile (as boolean flag)
341   /// 6.2.Load: alignment (as integer numbers)
342   /// 6.3.Load: synch-scope (as integer numbers)
343   /// 6.4.Load: range metadata (as integer numbers)
344   /// On this stage its better to see the code, since its not more than 10-15
345   /// strings for particular instruction, and could change sometimes.
346   int cmpOperations(const Instruction *L, const Instruction *R) const;
347 
348   /// Compare two GEPs for equivalent pointer arithmetic.
349   /// Parts to be compared for each comparison stage,
350   /// most significant stage first:
351   /// 1. Address space. As numbers.
352   /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method).
353   /// 3. Pointer operand type (using cmpType method).
354   /// 4. Number of operands.
355   /// 5. Compare operands, using cmpValues method.
356   int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR);
cmpGEPs(const GetElementPtrInst * GEPL,const GetElementPtrInst * GEPR)357   int cmpGEPs(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) {
358     return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
359   }
360 
361   /// cmpType - compares two types,
362   /// defines total ordering among the types set.
363   ///
364   /// Return values:
365   /// 0 if types are equal,
366   /// -1 if Left is less than Right,
367   /// +1 if Left is greater than Right.
368   ///
369   /// Description:
370   /// Comparison is broken onto stages. Like in lexicographical comparison
371   /// stage coming first has higher priority.
372   /// On each explanation stage keep in mind total ordering properties.
373   ///
374   /// 0. Before comparison we coerce pointer types of 0 address space to
375   /// integer.
376   /// We also don't bother with same type at left and right, so
377   /// just return 0 in this case.
378   ///
379   /// 1. If types are of different kind (different type IDs).
380   ///    Return result of type IDs comparison, treating them as numbers.
381   /// 2. If types are integers, check that they have the same width. If they
382   /// are vectors, check that they have the same count and subtype.
383   /// 3. Types have the same ID, so check whether they are one of:
384   /// * Void
385   /// * Float
386   /// * Double
387   /// * X86_FP80
388   /// * FP128
389   /// * PPC_FP128
390   /// * Label
391   /// * Metadata
392   /// We can treat these types as equal whenever their IDs are same.
393   /// 4. If Left and Right are pointers, return result of address space
394   /// comparison (numbers comparison). We can treat pointer types of same
395   /// address space as equal.
396   /// 5. If types are complex.
397   /// Then both Left and Right are to be expanded and their element types will
398   /// be checked with the same way. If we get Res != 0 on some stage, return it.
399   /// Otherwise return 0.
400   /// 6. For all other cases put llvm_unreachable.
401   int cmpTypes(Type *TyL, Type *TyR) const;
402 
403   int cmpNumbers(uint64_t L, uint64_t R) const;
404   int cmpAPInts(const APInt &L, const APInt &R) const;
405   int cmpAPFloats(const APFloat &L, const APFloat &R) const;
406   int cmpInlineAsm(const InlineAsm *L, const InlineAsm *R) const;
407   int cmpMem(StringRef L, StringRef R) const;
408   int cmpAttrs(const AttributeSet L, const AttributeSet R) const;
409   int cmpRangeMetadata(const MDNode* L, const MDNode* R) const;
410   int cmpOperandBundlesSchema(const Instruction *L, const Instruction *R) const;
411 
412   // The two functions undergoing comparison.
413   const Function *FnL, *FnR;
414 
415   /// Assign serial numbers to values from left function, and values from
416   /// right function.
417   /// Explanation:
418   /// Being comparing functions we need to compare values we meet at left and
419   /// right sides.
420   /// Its easy to sort things out for external values. It just should be
421   /// the same value at left and right.
422   /// But for local values (those were introduced inside function body)
423   /// we have to ensure they were introduced at exactly the same place,
424   /// and plays the same role.
425   /// Let's assign serial number to each value when we meet it first time.
426   /// Values that were met at same place will be with same serial numbers.
427   /// In this case it would be good to explain few points about values assigned
428   /// to BBs and other ways of implementation (see below).
429   ///
430   /// 1. Safety of BB reordering.
431   /// It's safe to change the order of BasicBlocks in function.
432   /// Relationship with other functions and serial numbering will not be
433   /// changed in this case.
434   /// As follows from FunctionComparator::compare(), we do CFG walk: we start
435   /// from the entry, and then take each terminator. So it doesn't matter how in
436   /// fact BBs are ordered in function. And since cmpValues are called during
437   /// this walk, the numbering depends only on how BBs located inside the CFG.
438   /// So the answer is - yes. We will get the same numbering.
439   ///
440   /// 2. Impossibility to use dominance properties of values.
441   /// If we compare two instruction operands: first is usage of local
442   /// variable AL from function FL, and second is usage of local variable AR
443   /// from FR, we could compare their origins and check whether they are
444   /// defined at the same place.
445   /// But, we are still not able to compare operands of PHI nodes, since those
446   /// could be operands from further BBs we didn't scan yet.
447   /// So it's impossible to use dominance properties in general.
448   DenseMap<const Value*, int> sn_mapL, sn_mapR;
449 
450   // The global state we will use
451   GlobalNumberState* GlobalNumbers;
452 };
453 
454 class FunctionNode {
455   mutable AssertingVH<Function> F;
456   FunctionComparator::FunctionHash Hash;
457 public:
458   // Note the hash is recalculated potentially multiple times, but it is cheap.
FunctionNode(Function * F)459   FunctionNode(Function *F)
460     : F(F), Hash(FunctionComparator::functionHash(*F))  {}
getFunc() const461   Function *getFunc() const { return F; }
getHash() const462   FunctionComparator::FunctionHash getHash() const { return Hash; }
463 
464   /// Replace the reference to the function F by the function G, assuming their
465   /// implementations are equal.
replaceBy(Function * G) const466   void replaceBy(Function *G) const {
467     F = G;
468   }
469 
release()470   void release() { F = nullptr; }
471 };
472 } // end anonymous namespace
473 
cmpNumbers(uint64_t L,uint64_t R) const474 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
475   if (L < R) return -1;
476   if (L > R) return 1;
477   return 0;
478 }
479 
cmpAPInts(const APInt & L,const APInt & R) const480 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
481   if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
482     return Res;
483   if (L.ugt(R)) return 1;
484   if (R.ugt(L)) return -1;
485   return 0;
486 }
487 
cmpAPFloats(const APFloat & L,const APFloat & R) const488 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
489   // Floats are ordered first by semantics (i.e. float, double, half, etc.),
490   // then by value interpreted as a bitstring (aka APInt).
491   const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
492   if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
493                            APFloat::semanticsPrecision(SR)))
494     return Res;
495   if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
496                            APFloat::semanticsMaxExponent(SR)))
497     return Res;
498   if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
499                            APFloat::semanticsMinExponent(SR)))
500     return Res;
501   if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
502                            APFloat::semanticsSizeInBits(SR)))
503     return Res;
504   return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
505 }
506 
cmpMem(StringRef L,StringRef R) const507 int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
508   // Prevent heavy comparison, compare sizes first.
509   if (int Res = cmpNumbers(L.size(), R.size()))
510     return Res;
511 
512   // Compare strings lexicographically only when it is necessary: only when
513   // strings are equal in size.
514   return L.compare(R);
515 }
516 
cmpAttrs(const AttributeSet L,const AttributeSet R) const517 int FunctionComparator::cmpAttrs(const AttributeSet L,
518                                  const AttributeSet R) const {
519   if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots()))
520     return Res;
521 
522   for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) {
523     AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i),
524                            RE = R.end(i);
525     for (; LI != LE && RI != RE; ++LI, ++RI) {
526       Attribute LA = *LI;
527       Attribute RA = *RI;
528       if (LA < RA)
529         return -1;
530       if (RA < LA)
531         return 1;
532     }
533     if (LI != LE)
534       return 1;
535     if (RI != RE)
536       return -1;
537   }
538   return 0;
539 }
540 
cmpRangeMetadata(const MDNode * L,const MDNode * R) const541 int FunctionComparator::cmpRangeMetadata(const MDNode* L,
542                                          const MDNode* R) const {
543   if (L == R)
544     return 0;
545   if (!L)
546     return -1;
547   if (!R)
548     return 1;
549   // Range metadata is a sequence of numbers. Make sure they are the same
550   // sequence.
551   // TODO: Note that as this is metadata, it is possible to drop and/or merge
552   // this data when considering functions to merge. Thus this comparison would
553   // return 0 (i.e. equivalent), but merging would become more complicated
554   // because the ranges would need to be unioned. It is not likely that
555   // functions differ ONLY in this metadata if they are actually the same
556   // function semantically.
557   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
558     return Res;
559   for (size_t I = 0; I < L->getNumOperands(); ++I) {
560     ConstantInt* LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
561     ConstantInt* RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
562     if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
563       return Res;
564   }
565   return 0;
566 }
567 
cmpOperandBundlesSchema(const Instruction * L,const Instruction * R) const568 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L,
569                                                 const Instruction *R) const {
570   ImmutableCallSite LCS(L);
571   ImmutableCallSite RCS(R);
572 
573   assert(LCS && RCS && "Must be calls or invokes!");
574   assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!");
575 
576   if (int Res =
577           cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
578     return Res;
579 
580   for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) {
581     auto OBL = LCS.getOperandBundleAt(i);
582     auto OBR = RCS.getOperandBundleAt(i);
583 
584     if (int Res = OBL.getTagName().compare(OBR.getTagName()))
585       return Res;
586 
587     if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
588       return Res;
589   }
590 
591   return 0;
592 }
593 
594 /// Constants comparison:
595 /// 1. Check whether type of L constant could be losslessly bitcasted to R
596 /// type.
597 /// 2. Compare constant contents.
598 /// For more details see declaration comments.
cmpConstants(const Constant * L,const Constant * R)599 int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) {
600 
601   Type *TyL = L->getType();
602   Type *TyR = R->getType();
603 
604   // Check whether types are bitcastable. This part is just re-factored
605   // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
606   // we also pack into result which type is "less" for us.
607   int TypesRes = cmpTypes(TyL, TyR);
608   if (TypesRes != 0) {
609     // Types are different, but check whether we can bitcast them.
610     if (!TyL->isFirstClassType()) {
611       if (TyR->isFirstClassType())
612         return -1;
613       // Neither TyL nor TyR are values of first class type. Return the result
614       // of comparing the types
615       return TypesRes;
616     }
617     if (!TyR->isFirstClassType()) {
618       if (TyL->isFirstClassType())
619         return 1;
620       return TypesRes;
621     }
622 
623     // Vector -> Vector conversions are always lossless if the two vector types
624     // have the same size, otherwise not.
625     unsigned TyLWidth = 0;
626     unsigned TyRWidth = 0;
627 
628     if (auto *VecTyL = dyn_cast<VectorType>(TyL))
629       TyLWidth = VecTyL->getBitWidth();
630     if (auto *VecTyR = dyn_cast<VectorType>(TyR))
631       TyRWidth = VecTyR->getBitWidth();
632 
633     if (TyLWidth != TyRWidth)
634       return cmpNumbers(TyLWidth, TyRWidth);
635 
636     // Zero bit-width means neither TyL nor TyR are vectors.
637     if (!TyLWidth) {
638       PointerType *PTyL = dyn_cast<PointerType>(TyL);
639       PointerType *PTyR = dyn_cast<PointerType>(TyR);
640       if (PTyL && PTyR) {
641         unsigned AddrSpaceL = PTyL->getAddressSpace();
642         unsigned AddrSpaceR = PTyR->getAddressSpace();
643         if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
644           return Res;
645       }
646       if (PTyL)
647         return 1;
648       if (PTyR)
649         return -1;
650 
651       // TyL and TyR aren't vectors, nor pointers. We don't know how to
652       // bitcast them.
653       return TypesRes;
654     }
655   }
656 
657   // OK, types are bitcastable, now check constant contents.
658 
659   if (L->isNullValue() && R->isNullValue())
660     return TypesRes;
661   if (L->isNullValue() && !R->isNullValue())
662     return 1;
663   if (!L->isNullValue() && R->isNullValue())
664     return -1;
665 
666   auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L));
667   auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R));
668   if (GlobalValueL && GlobalValueR) {
669     return cmpGlobalValues(GlobalValueL, GlobalValueR);
670   }
671 
672   if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
673     return Res;
674 
675   if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
676     const auto *SeqR = cast<ConstantDataSequential>(R);
677     // This handles ConstantDataArray and ConstantDataVector. Note that we
678     // compare the two raw data arrays, which might differ depending on the host
679     // endianness. This isn't a problem though, because the endiness of a module
680     // will affect the order of the constants, but this order is the same
681     // for a given input module and host platform.
682     return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
683   }
684 
685   switch (L->getValueID()) {
686   case Value::UndefValueVal:
687   case Value::ConstantTokenNoneVal:
688     return TypesRes;
689   case Value::ConstantIntVal: {
690     const APInt &LInt = cast<ConstantInt>(L)->getValue();
691     const APInt &RInt = cast<ConstantInt>(R)->getValue();
692     return cmpAPInts(LInt, RInt);
693   }
694   case Value::ConstantFPVal: {
695     const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
696     const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
697     return cmpAPFloats(LAPF, RAPF);
698   }
699   case Value::ConstantArrayVal: {
700     const ConstantArray *LA = cast<ConstantArray>(L);
701     const ConstantArray *RA = cast<ConstantArray>(R);
702     uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
703     uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
704     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
705       return Res;
706     for (uint64_t i = 0; i < NumElementsL; ++i) {
707       if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
708                                  cast<Constant>(RA->getOperand(i))))
709         return Res;
710     }
711     return 0;
712   }
713   case Value::ConstantStructVal: {
714     const ConstantStruct *LS = cast<ConstantStruct>(L);
715     const ConstantStruct *RS = cast<ConstantStruct>(R);
716     unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
717     unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
718     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
719       return Res;
720     for (unsigned i = 0; i != NumElementsL; ++i) {
721       if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
722                                  cast<Constant>(RS->getOperand(i))))
723         return Res;
724     }
725     return 0;
726   }
727   case Value::ConstantVectorVal: {
728     const ConstantVector *LV = cast<ConstantVector>(L);
729     const ConstantVector *RV = cast<ConstantVector>(R);
730     unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
731     unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
732     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
733       return Res;
734     for (uint64_t i = 0; i < NumElementsL; ++i) {
735       if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
736                                  cast<Constant>(RV->getOperand(i))))
737         return Res;
738     }
739     return 0;
740   }
741   case Value::ConstantExprVal: {
742     const ConstantExpr *LE = cast<ConstantExpr>(L);
743     const ConstantExpr *RE = cast<ConstantExpr>(R);
744     unsigned NumOperandsL = LE->getNumOperands();
745     unsigned NumOperandsR = RE->getNumOperands();
746     if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
747       return Res;
748     for (unsigned i = 0; i < NumOperandsL; ++i) {
749       if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
750                                  cast<Constant>(RE->getOperand(i))))
751         return Res;
752     }
753     return 0;
754   }
755   case Value::BlockAddressVal: {
756     const BlockAddress *LBA = cast<BlockAddress>(L);
757     const BlockAddress *RBA = cast<BlockAddress>(R);
758     if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
759       return Res;
760     if (LBA->getFunction() == RBA->getFunction()) {
761       // They are BBs in the same function. Order by which comes first in the
762       // BB order of the function. This order is deterministic.
763       Function* F = LBA->getFunction();
764       BasicBlock *LBB = LBA->getBasicBlock();
765       BasicBlock *RBB = RBA->getBasicBlock();
766       if (LBB == RBB)
767         return 0;
768       for(BasicBlock &BB : F->getBasicBlockList()) {
769         if (&BB == LBB) {
770           assert(&BB != RBB);
771           return -1;
772         }
773         if (&BB == RBB)
774           return 1;
775       }
776       llvm_unreachable("Basic Block Address does not point to a basic block in "
777                        "its function.");
778       return -1;
779     } else {
780       // cmpValues said the functions are the same. So because they aren't
781       // literally the same pointer, they must respectively be the left and
782       // right functions.
783       assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
784       // cmpValues will tell us if these are equivalent BasicBlocks, in the
785       // context of their respective functions.
786       return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
787     }
788   }
789   default: // Unknown constant, abort.
790     DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
791     llvm_unreachable("Constant ValueID not recognized.");
792     return -1;
793   }
794 }
795 
cmpGlobalValues(GlobalValue * L,GlobalValue * R)796 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue* R) {
797   return cmpNumbers(GlobalNumbers->getNumber(L), GlobalNumbers->getNumber(R));
798 }
799 
800 /// cmpType - compares two types,
801 /// defines total ordering among the types set.
802 /// See method declaration comments for more details.
cmpTypes(Type * TyL,Type * TyR) const803 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
804   PointerType *PTyL = dyn_cast<PointerType>(TyL);
805   PointerType *PTyR = dyn_cast<PointerType>(TyR);
806 
807   const DataLayout &DL = FnL->getParent()->getDataLayout();
808   if (PTyL && PTyL->getAddressSpace() == 0)
809     TyL = DL.getIntPtrType(TyL);
810   if (PTyR && PTyR->getAddressSpace() == 0)
811     TyR = DL.getIntPtrType(TyR);
812 
813   if (TyL == TyR)
814     return 0;
815 
816   if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
817     return Res;
818 
819   switch (TyL->getTypeID()) {
820   default:
821     llvm_unreachable("Unknown type!");
822     // Fall through in Release mode.
823   case Type::IntegerTyID:
824     return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
825                       cast<IntegerType>(TyR)->getBitWidth());
826   case Type::VectorTyID: {
827     VectorType *VTyL = cast<VectorType>(TyL), *VTyR = cast<VectorType>(TyR);
828     if (int Res = cmpNumbers(VTyL->getNumElements(), VTyR->getNumElements()))
829       return Res;
830     return cmpTypes(VTyL->getElementType(), VTyR->getElementType());
831   }
832   // TyL == TyR would have returned true earlier, because types are uniqued.
833   case Type::VoidTyID:
834   case Type::FloatTyID:
835   case Type::DoubleTyID:
836   case Type::X86_FP80TyID:
837   case Type::FP128TyID:
838   case Type::PPC_FP128TyID:
839   case Type::LabelTyID:
840   case Type::MetadataTyID:
841   case Type::TokenTyID:
842     return 0;
843 
844   case Type::PointerTyID: {
845     assert(PTyL && PTyR && "Both types must be pointers here.");
846     return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
847   }
848 
849   case Type::StructTyID: {
850     StructType *STyL = cast<StructType>(TyL);
851     StructType *STyR = cast<StructType>(TyR);
852     if (STyL->getNumElements() != STyR->getNumElements())
853       return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
854 
855     if (STyL->isPacked() != STyR->isPacked())
856       return cmpNumbers(STyL->isPacked(), STyR->isPacked());
857 
858     for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
859       if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
860         return Res;
861     }
862     return 0;
863   }
864 
865   case Type::FunctionTyID: {
866     FunctionType *FTyL = cast<FunctionType>(TyL);
867     FunctionType *FTyR = cast<FunctionType>(TyR);
868     if (FTyL->getNumParams() != FTyR->getNumParams())
869       return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
870 
871     if (FTyL->isVarArg() != FTyR->isVarArg())
872       return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
873 
874     if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
875       return Res;
876 
877     for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
878       if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
879         return Res;
880     }
881     return 0;
882   }
883 
884   case Type::ArrayTyID: {
885     ArrayType *ATyL = cast<ArrayType>(TyL);
886     ArrayType *ATyR = cast<ArrayType>(TyR);
887     if (ATyL->getNumElements() != ATyR->getNumElements())
888       return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements());
889     return cmpTypes(ATyL->getElementType(), ATyR->getElementType());
890   }
891   }
892 }
893 
894 // Determine whether the two operations are the same except that pointer-to-A
895 // and pointer-to-B are equivalent. This should be kept in sync with
896 // Instruction::isSameOperationAs.
897 // Read method declaration comments for more details.
cmpOperations(const Instruction * L,const Instruction * R) const898 int FunctionComparator::cmpOperations(const Instruction *L,
899                                       const Instruction *R) const {
900   // Differences from Instruction::isSameOperationAs:
901   //  * replace type comparison with calls to isEquivalentType.
902   //  * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
903   //  * because of the above, we don't test for the tail bit on calls later on
904   if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
905     return Res;
906 
907   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
908     return Res;
909 
910   if (int Res = cmpTypes(L->getType(), R->getType()))
911     return Res;
912 
913   if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
914                            R->getRawSubclassOptionalData()))
915     return Res;
916 
917   if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
918     if (int Res = cmpTypes(AI->getAllocatedType(),
919                            cast<AllocaInst>(R)->getAllocatedType()))
920       return Res;
921     if (int Res =
922             cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment()))
923       return Res;
924   }
925 
926   // We have two instructions of identical opcode and #operands.  Check to see
927   // if all operands are the same type
928   for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
929     if (int Res =
930             cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
931       return Res;
932   }
933 
934   // Check special state that is a part of some instructions.
935   if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
936     if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
937       return Res;
938     if (int Res =
939             cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
940       return Res;
941     if (int Res =
942             cmpNumbers(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
943       return Res;
944     if (int Res =
945             cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope()))
946       return Res;
947     return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range),
948         cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
949   }
950   if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
951     if (int Res =
952             cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
953       return Res;
954     if (int Res =
955             cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
956       return Res;
957     if (int Res =
958             cmpNumbers(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
959       return Res;
960     return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope());
961   }
962   if (const CmpInst *CI = dyn_cast<CmpInst>(L))
963     return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
964   if (const CallInst *CI = dyn_cast<CallInst>(L)) {
965     if (int Res = cmpNumbers(CI->getCallingConv(),
966                              cast<CallInst>(R)->getCallingConv()))
967       return Res;
968     if (int Res =
969             cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes()))
970       return Res;
971     if (int Res = cmpOperandBundlesSchema(CI, R))
972       return Res;
973     return cmpRangeMetadata(
974         CI->getMetadata(LLVMContext::MD_range),
975         cast<CallInst>(R)->getMetadata(LLVMContext::MD_range));
976   }
977   if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) {
978     if (int Res = cmpNumbers(II->getCallingConv(),
979                              cast<InvokeInst>(R)->getCallingConv()))
980       return Res;
981     if (int Res =
982             cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes()))
983       return Res;
984     if (int Res = cmpOperandBundlesSchema(II, R))
985       return Res;
986     return cmpRangeMetadata(
987         II->getMetadata(LLVMContext::MD_range),
988         cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range));
989   }
990   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
991     ArrayRef<unsigned> LIndices = IVI->getIndices();
992     ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
993     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
994       return Res;
995     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
996       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
997         return Res;
998     }
999   }
1000   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
1001     ArrayRef<unsigned> LIndices = EVI->getIndices();
1002     ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
1003     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
1004       return Res;
1005     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
1006       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
1007         return Res;
1008     }
1009   }
1010   if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
1011     if (int Res =
1012             cmpNumbers(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
1013       return Res;
1014     return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope());
1015   }
1016 
1017   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
1018     if (int Res = cmpNumbers(CXI->isVolatile(),
1019                              cast<AtomicCmpXchgInst>(R)->isVolatile()))
1020       return Res;
1021     if (int Res = cmpNumbers(CXI->isWeak(),
1022                              cast<AtomicCmpXchgInst>(R)->isWeak()))
1023       return Res;
1024     if (int Res = cmpNumbers(CXI->getSuccessOrdering(),
1025                              cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
1026       return Res;
1027     if (int Res = cmpNumbers(CXI->getFailureOrdering(),
1028                              cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
1029       return Res;
1030     return cmpNumbers(CXI->getSynchScope(),
1031                       cast<AtomicCmpXchgInst>(R)->getSynchScope());
1032   }
1033   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
1034     if (int Res = cmpNumbers(RMWI->getOperation(),
1035                              cast<AtomicRMWInst>(R)->getOperation()))
1036       return Res;
1037     if (int Res = cmpNumbers(RMWI->isVolatile(),
1038                              cast<AtomicRMWInst>(R)->isVolatile()))
1039       return Res;
1040     if (int Res = cmpNumbers(RMWI->getOrdering(),
1041                              cast<AtomicRMWInst>(R)->getOrdering()))
1042       return Res;
1043     return cmpNumbers(RMWI->getSynchScope(),
1044                       cast<AtomicRMWInst>(R)->getSynchScope());
1045   }
1046   return 0;
1047 }
1048 
1049 // Determine whether two GEP operations perform the same underlying arithmetic.
1050 // Read method declaration comments for more details.
cmpGEPs(const GEPOperator * GEPL,const GEPOperator * GEPR)1051 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
1052                                const GEPOperator *GEPR) {
1053 
1054   unsigned int ASL = GEPL->getPointerAddressSpace();
1055   unsigned int ASR = GEPR->getPointerAddressSpace();
1056 
1057   if (int Res = cmpNumbers(ASL, ASR))
1058     return Res;
1059 
1060   // When we have target data, we can reduce the GEP down to the value in bytes
1061   // added to the address.
1062   const DataLayout &DL = FnL->getParent()->getDataLayout();
1063   unsigned BitWidth = DL.getPointerSizeInBits(ASL);
1064   APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
1065   if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
1066       GEPR->accumulateConstantOffset(DL, OffsetR))
1067     return cmpAPInts(OffsetL, OffsetR);
1068   if (int Res = cmpTypes(GEPL->getSourceElementType(),
1069                          GEPR->getSourceElementType()))
1070     return Res;
1071 
1072   if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
1073     return Res;
1074 
1075   for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
1076     if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
1077       return Res;
1078   }
1079 
1080   return 0;
1081 }
1082 
cmpInlineAsm(const InlineAsm * L,const InlineAsm * R) const1083 int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
1084                                      const InlineAsm *R) const {
1085   // InlineAsm's are uniqued. If they are the same pointer, obviously they are
1086   // the same, otherwise compare the fields.
1087   if (L == R)
1088     return 0;
1089   if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
1090     return Res;
1091   if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
1092     return Res;
1093   if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
1094     return Res;
1095   if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
1096     return Res;
1097   if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
1098     return Res;
1099   if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
1100     return Res;
1101   llvm_unreachable("InlineAsm blocks were not uniqued.");
1102   return 0;
1103 }
1104 
1105 /// Compare two values used by the two functions under pair-wise comparison. If
1106 /// this is the first time the values are seen, they're added to the mapping so
1107 /// that we will detect mismatches on next use.
1108 /// See comments in declaration for more details.
cmpValues(const Value * L,const Value * R)1109 int FunctionComparator::cmpValues(const Value *L, const Value *R) {
1110   // Catch self-reference case.
1111   if (L == FnL) {
1112     if (R == FnR)
1113       return 0;
1114     return -1;
1115   }
1116   if (R == FnR) {
1117     if (L == FnL)
1118       return 0;
1119     return 1;
1120   }
1121 
1122   const Constant *ConstL = dyn_cast<Constant>(L);
1123   const Constant *ConstR = dyn_cast<Constant>(R);
1124   if (ConstL && ConstR) {
1125     if (L == R)
1126       return 0;
1127     return cmpConstants(ConstL, ConstR);
1128   }
1129 
1130   if (ConstL)
1131     return 1;
1132   if (ConstR)
1133     return -1;
1134 
1135   const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
1136   const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
1137 
1138   if (InlineAsmL && InlineAsmR)
1139     return cmpInlineAsm(InlineAsmL, InlineAsmR);
1140   if (InlineAsmL)
1141     return 1;
1142   if (InlineAsmR)
1143     return -1;
1144 
1145   auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
1146        RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
1147 
1148   return cmpNumbers(LeftSN.first->second, RightSN.first->second);
1149 }
1150 // Test whether two basic blocks have equivalent behaviour.
cmpBasicBlocks(const BasicBlock * BBL,const BasicBlock * BBR)1151 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
1152                                        const BasicBlock *BBR) {
1153   BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
1154   BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
1155 
1156   do {
1157     if (int Res = cmpValues(&*InstL, &*InstR))
1158       return Res;
1159 
1160     const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL);
1161     const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR);
1162 
1163     if (GEPL && !GEPR)
1164       return 1;
1165     if (GEPR && !GEPL)
1166       return -1;
1167 
1168     if (GEPL && GEPR) {
1169       if (int Res =
1170               cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
1171         return Res;
1172       if (int Res = cmpGEPs(GEPL, GEPR))
1173         return Res;
1174     } else {
1175       if (int Res = cmpOperations(&*InstL, &*InstR))
1176         return Res;
1177       assert(InstL->getNumOperands() == InstR->getNumOperands());
1178 
1179       for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
1180         Value *OpL = InstL->getOperand(i);
1181         Value *OpR = InstR->getOperand(i);
1182         if (int Res = cmpValues(OpL, OpR))
1183           return Res;
1184         // cmpValues should ensure this is true.
1185         assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
1186       }
1187     }
1188 
1189     ++InstL, ++InstR;
1190   } while (InstL != InstLE && InstR != InstRE);
1191 
1192   if (InstL != InstLE && InstR == InstRE)
1193     return 1;
1194   if (InstL == InstLE && InstR != InstRE)
1195     return -1;
1196   return 0;
1197 }
1198 
1199 // Test whether the two functions have equivalent behaviour.
compare()1200 int FunctionComparator::compare() {
1201   sn_mapL.clear();
1202   sn_mapR.clear();
1203 
1204   if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
1205     return Res;
1206 
1207   if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
1208     return Res;
1209 
1210   if (FnL->hasGC()) {
1211     if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
1212       return Res;
1213   }
1214 
1215   if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
1216     return Res;
1217 
1218   if (FnL->hasSection()) {
1219     if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
1220       return Res;
1221   }
1222 
1223   if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
1224     return Res;
1225 
1226   // TODO: if it's internal and only used in direct calls, we could handle this
1227   // case too.
1228   if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
1229     return Res;
1230 
1231   if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
1232     return Res;
1233 
1234   assert(FnL->arg_size() == FnR->arg_size() &&
1235          "Identically typed functions have different numbers of args!");
1236 
1237   // Visit the arguments so that they get enumerated in the order they're
1238   // passed in.
1239   for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
1240                                     ArgRI = FnR->arg_begin(),
1241                                     ArgLE = FnL->arg_end();
1242        ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
1243     if (cmpValues(&*ArgLI, &*ArgRI) != 0)
1244       llvm_unreachable("Arguments repeat!");
1245   }
1246 
1247   // We do a CFG-ordered walk since the actual ordering of the blocks in the
1248   // linked list is immaterial. Our walk starts at the entry block for both
1249   // functions, then takes each block from each terminator in order. As an
1250   // artifact, this also means that unreachable blocks are ignored.
1251   SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
1252   SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
1253 
1254   FnLBBs.push_back(&FnL->getEntryBlock());
1255   FnRBBs.push_back(&FnR->getEntryBlock());
1256 
1257   VisitedBBs.insert(FnLBBs[0]);
1258   while (!FnLBBs.empty()) {
1259     const BasicBlock *BBL = FnLBBs.pop_back_val();
1260     const BasicBlock *BBR = FnRBBs.pop_back_val();
1261 
1262     if (int Res = cmpValues(BBL, BBR))
1263       return Res;
1264 
1265     if (int Res = cmpBasicBlocks(BBL, BBR))
1266       return Res;
1267 
1268     const TerminatorInst *TermL = BBL->getTerminator();
1269     const TerminatorInst *TermR = BBR->getTerminator();
1270 
1271     assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
1272     for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
1273       if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
1274         continue;
1275 
1276       FnLBBs.push_back(TermL->getSuccessor(i));
1277       FnRBBs.push_back(TermR->getSuccessor(i));
1278     }
1279   }
1280   return 0;
1281 }
1282 
1283 namespace {
1284 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a
1285 // hash of a sequence of 64bit ints, but the entire input does not need to be
1286 // available at once. This interface is necessary for functionHash because it
1287 // needs to accumulate the hash as the structure of the function is traversed
1288 // without saving these values to an intermediate buffer. This form of hashing
1289 // is not often needed, as usually the object to hash is just read from a
1290 // buffer.
1291 class HashAccumulator64 {
1292   uint64_t Hash;
1293 public:
1294   // Initialize to random constant, so the state isn't zero.
HashAccumulator64()1295   HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
add(uint64_t V)1296   void add(uint64_t V) {
1297      Hash = llvm::hashing::detail::hash_16_bytes(Hash, V);
1298   }
1299   // No finishing is required, because the entire hash value is used.
getHash()1300   uint64_t getHash() { return Hash; }
1301 };
1302 } // end anonymous namespace
1303 
1304 // A function hash is calculated by considering only the number of arguments and
1305 // whether a function is varargs, the order of basic blocks (given by the
1306 // successors of each basic block in depth first order), and the order of
1307 // opcodes of each instruction within each of these basic blocks. This mirrors
1308 // the strategy compare() uses to compare functions by walking the BBs in depth
1309 // first order and comparing each instruction in sequence. Because this hash
1310 // does not look at the operands, it is insensitive to things such as the
1311 // target of calls and the constants used in the function, which makes it useful
1312 // when possibly merging functions which are the same modulo constants and call
1313 // targets.
functionHash(Function & F)1314 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
1315   HashAccumulator64 H;
1316   H.add(F.isVarArg());
1317   H.add(F.arg_size());
1318 
1319   SmallVector<const BasicBlock *, 8> BBs;
1320   SmallSet<const BasicBlock *, 16> VisitedBBs;
1321 
1322   // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
1323   // accumulating the hash of the function "structure." (BB and opcode sequence)
1324   BBs.push_back(&F.getEntryBlock());
1325   VisitedBBs.insert(BBs[0]);
1326   while (!BBs.empty()) {
1327     const BasicBlock *BB = BBs.pop_back_val();
1328     // This random value acts as a block header, as otherwise the partition of
1329     // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
1330     H.add(45798);
1331     for (auto &Inst : *BB) {
1332       H.add(Inst.getOpcode());
1333     }
1334     const TerminatorInst *Term = BB->getTerminator();
1335     for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
1336       if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
1337         continue;
1338       BBs.push_back(Term->getSuccessor(i));
1339     }
1340   }
1341   return H.getHash();
1342 }
1343 
1344 
1345 namespace {
1346 
1347 /// MergeFunctions finds functions which will generate identical machine code,
1348 /// by considering all pointer types to be equivalent. Once identified,
1349 /// MergeFunctions will fold them by replacing a call to one to a call to a
1350 /// bitcast of the other.
1351 ///
1352 class MergeFunctions : public ModulePass {
1353 public:
1354   static char ID;
MergeFunctions()1355   MergeFunctions()
1356     : ModulePass(ID), FnTree(FunctionNodeCmp(&GlobalNumbers)), FNodesInTree(),
1357       HasGlobalAliases(false) {
1358     initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
1359   }
1360 
1361   bool runOnModule(Module &M) override;
1362 
1363 private:
1364   // The function comparison operator is provided here so that FunctionNodes do
1365   // not need to become larger with another pointer.
1366   class FunctionNodeCmp {
1367     GlobalNumberState* GlobalNumbers;
1368   public:
FunctionNodeCmp(GlobalNumberState * GN)1369     FunctionNodeCmp(GlobalNumberState* GN) : GlobalNumbers(GN) {}
operator ()(const FunctionNode & LHS,const FunctionNode & RHS) const1370     bool operator()(const FunctionNode &LHS, const FunctionNode &RHS) const {
1371       // Order first by hashes, then full function comparison.
1372       if (LHS.getHash() != RHS.getHash())
1373         return LHS.getHash() < RHS.getHash();
1374       FunctionComparator FCmp(LHS.getFunc(), RHS.getFunc(), GlobalNumbers);
1375       return FCmp.compare() == -1;
1376     }
1377   };
1378   typedef std::set<FunctionNode, FunctionNodeCmp> FnTreeType;
1379 
1380   GlobalNumberState GlobalNumbers;
1381 
1382   /// A work queue of functions that may have been modified and should be
1383   /// analyzed again.
1384   std::vector<WeakVH> Deferred;
1385 
1386   /// Checks the rules of order relation introduced among functions set.
1387   /// Returns true, if sanity check has been passed, and false if failed.
1388   bool doSanityCheck(std::vector<WeakVH> &Worklist);
1389 
1390   /// Insert a ComparableFunction into the FnTree, or merge it away if it's
1391   /// equal to one that's already present.
1392   bool insert(Function *NewFunction);
1393 
1394   /// Remove a Function from the FnTree and queue it up for a second sweep of
1395   /// analysis.
1396   void remove(Function *F);
1397 
1398   /// Find the functions that use this Value and remove them from FnTree and
1399   /// queue the functions.
1400   void removeUsers(Value *V);
1401 
1402   /// Replace all direct calls of Old with calls of New. Will bitcast New if
1403   /// necessary to make types match.
1404   void replaceDirectCallers(Function *Old, Function *New);
1405 
1406   /// Merge two equivalent functions. Upon completion, G may be deleted, or may
1407   /// be converted into a thunk. In either case, it should never be visited
1408   /// again.
1409   void mergeTwoFunctions(Function *F, Function *G);
1410 
1411   /// Replace G with a thunk or an alias to F. Deletes G.
1412   void writeThunkOrAlias(Function *F, Function *G);
1413 
1414   /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
1415   /// of G with bitcast(F). Deletes G.
1416   void writeThunk(Function *F, Function *G);
1417 
1418   /// Replace G with an alias to F. Deletes G.
1419   void writeAlias(Function *F, Function *G);
1420 
1421   /// Replace function F with function G in the function tree.
1422   void replaceFunctionInTree(const FunctionNode &FN, Function *G);
1423 
1424   /// The set of all distinct functions. Use the insert() and remove() methods
1425   /// to modify it. The map allows efficient lookup and deferring of Functions.
1426   FnTreeType FnTree;
1427   // Map functions to the iterators of the FunctionNode which contains them
1428   // in the FnTree. This must be updated carefully whenever the FnTree is
1429   // modified, i.e. in insert(), remove(), and replaceFunctionInTree(), to avoid
1430   // dangling iterators into FnTree. The invariant that preserves this is that
1431   // there is exactly one mapping F -> FN for each FunctionNode FN in FnTree.
1432   ValueMap<Function*, FnTreeType::iterator> FNodesInTree;
1433 
1434   /// Whether or not the target supports global aliases.
1435   bool HasGlobalAliases;
1436 };
1437 
1438 } // end anonymous namespace
1439 
1440 char MergeFunctions::ID = 0;
1441 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
1442 
createMergeFunctionsPass()1443 ModulePass *llvm::createMergeFunctionsPass() {
1444   return new MergeFunctions();
1445 }
1446 
doSanityCheck(std::vector<WeakVH> & Worklist)1447 bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) {
1448   if (const unsigned Max = NumFunctionsForSanityCheck) {
1449     unsigned TripleNumber = 0;
1450     bool Valid = true;
1451 
1452     dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n";
1453 
1454     unsigned i = 0;
1455     for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end();
1456          I != E && i < Max; ++I, ++i) {
1457       unsigned j = i;
1458       for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) {
1459         Function *F1 = cast<Function>(*I);
1460         Function *F2 = cast<Function>(*J);
1461         int Res1 = FunctionComparator(F1, F2, &GlobalNumbers).compare();
1462         int Res2 = FunctionComparator(F2, F1, &GlobalNumbers).compare();
1463 
1464         // If F1 <= F2, then F2 >= F1, otherwise report failure.
1465         if (Res1 != -Res2) {
1466           dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber
1467                  << "\n";
1468           F1->dump();
1469           F2->dump();
1470           Valid = false;
1471         }
1472 
1473         if (Res1 == 0)
1474           continue;
1475 
1476         unsigned k = j;
1477         for (std::vector<WeakVH>::iterator K = J; K != E && k < Max;
1478              ++k, ++K, ++TripleNumber) {
1479           if (K == J)
1480             continue;
1481 
1482           Function *F3 = cast<Function>(*K);
1483           int Res3 = FunctionComparator(F1, F3, &GlobalNumbers).compare();
1484           int Res4 = FunctionComparator(F2, F3, &GlobalNumbers).compare();
1485 
1486           bool Transitive = true;
1487 
1488           if (Res1 != 0 && Res1 == Res4) {
1489             // F1 > F2, F2 > F3 => F1 > F3
1490             Transitive = Res3 == Res1;
1491           } else if (Res3 != 0 && Res3 == -Res4) {
1492             // F1 > F3, F3 > F2 => F1 > F2
1493             Transitive = Res3 == Res1;
1494           } else if (Res4 != 0 && -Res3 == Res4) {
1495             // F2 > F3, F3 > F1 => F2 > F1
1496             Transitive = Res4 == -Res1;
1497           }
1498 
1499           if (!Transitive) {
1500             dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: "
1501                    << TripleNumber << "\n";
1502             dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", "
1503                    << Res4 << "\n";
1504             F1->dump();
1505             F2->dump();
1506             F3->dump();
1507             Valid = false;
1508           }
1509         }
1510       }
1511     }
1512 
1513     dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n";
1514     return Valid;
1515   }
1516   return true;
1517 }
1518 
runOnModule(Module & M)1519 bool MergeFunctions::runOnModule(Module &M) {
1520   bool Changed = false;
1521 
1522   // All functions in the module, ordered by hash. Functions with a unique
1523   // hash value are easily eliminated.
1524   std::vector<std::pair<FunctionComparator::FunctionHash, Function *>>
1525     HashedFuncs;
1526   for (Function &Func : M) {
1527     if (!Func.isDeclaration() && !Func.hasAvailableExternallyLinkage()) {
1528       HashedFuncs.push_back({FunctionComparator::functionHash(Func), &Func});
1529     }
1530   }
1531 
1532   std::stable_sort(
1533       HashedFuncs.begin(), HashedFuncs.end(),
1534       [](const std::pair<FunctionComparator::FunctionHash, Function *> &a,
1535          const std::pair<FunctionComparator::FunctionHash, Function *> &b) {
1536         return a.first < b.first;
1537       });
1538 
1539   auto S = HashedFuncs.begin();
1540   for (auto I = HashedFuncs.begin(), IE = HashedFuncs.end(); I != IE; ++I) {
1541     // If the hash value matches the previous value or the next one, we must
1542     // consider merging it. Otherwise it is dropped and never considered again.
1543     if ((I != S && std::prev(I)->first == I->first) ||
1544         (std::next(I) != IE && std::next(I)->first == I->first) ) {
1545       Deferred.push_back(WeakVH(I->second));
1546     }
1547   }
1548 
1549   do {
1550     std::vector<WeakVH> Worklist;
1551     Deferred.swap(Worklist);
1552 
1553     DEBUG(doSanityCheck(Worklist));
1554 
1555     DEBUG(dbgs() << "size of module: " << M.size() << '\n');
1556     DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
1557 
1558     // Insert only strong functions and merge them. Strong function merging
1559     // always deletes one of them.
1560     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
1561            E = Worklist.end(); I != E; ++I) {
1562       if (!*I) continue;
1563       Function *F = cast<Function>(*I);
1564       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
1565           !F->mayBeOverridden()) {
1566         Changed |= insert(F);
1567       }
1568     }
1569 
1570     // Insert only weak functions and merge them. By doing these second we
1571     // create thunks to the strong function when possible. When two weak
1572     // functions are identical, we create a new strong function with two weak
1573     // weak thunks to it which are identical but not mergable.
1574     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
1575            E = Worklist.end(); I != E; ++I) {
1576       if (!*I) continue;
1577       Function *F = cast<Function>(*I);
1578       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
1579           F->mayBeOverridden()) {
1580         Changed |= insert(F);
1581       }
1582     }
1583     DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n');
1584   } while (!Deferred.empty());
1585 
1586   FnTree.clear();
1587   GlobalNumbers.clear();
1588 
1589   return Changed;
1590 }
1591 
1592 // Replace direct callers of Old with New.
replaceDirectCallers(Function * Old,Function * New)1593 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
1594   Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
1595   for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) {
1596     Use *U = &*UI;
1597     ++UI;
1598     CallSite CS(U->getUser());
1599     if (CS && CS.isCallee(U)) {
1600       // Transfer the called function's attributes to the call site. Due to the
1601       // bitcast we will 'lose' ABI changing attributes because the 'called
1602       // function' is no longer a Function* but the bitcast. Code that looks up
1603       // the attributes from the called function will fail.
1604 
1605       // FIXME: This is not actually true, at least not anymore. The callsite
1606       // will always have the same ABI affecting attributes as the callee,
1607       // because otherwise the original input has UB. Note that Old and New
1608       // always have matching ABI, so no attributes need to be changed.
1609       // Transferring other attributes may help other optimizations, but that
1610       // should be done uniformly and not in this ad-hoc way.
1611       auto &Context = New->getContext();
1612       auto NewFuncAttrs = New->getAttributes();
1613       auto CallSiteAttrs = CS.getAttributes();
1614 
1615       CallSiteAttrs = CallSiteAttrs.addAttributes(
1616           Context, AttributeSet::ReturnIndex, NewFuncAttrs.getRetAttributes());
1617 
1618       for (unsigned argIdx = 0; argIdx < CS.arg_size(); argIdx++) {
1619         AttributeSet Attrs = NewFuncAttrs.getParamAttributes(argIdx);
1620         if (Attrs.getNumSlots())
1621           CallSiteAttrs = CallSiteAttrs.addAttributes(Context, argIdx, Attrs);
1622       }
1623 
1624       CS.setAttributes(CallSiteAttrs);
1625 
1626       remove(CS.getInstruction()->getParent()->getParent());
1627       U->set(BitcastNew);
1628     }
1629   }
1630 }
1631 
1632 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
writeThunkOrAlias(Function * F,Function * G)1633 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
1634   if (HasGlobalAliases && G->hasUnnamedAddr()) {
1635     if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
1636         G->hasWeakLinkage()) {
1637       writeAlias(F, G);
1638       return;
1639     }
1640   }
1641 
1642   writeThunk(F, G);
1643 }
1644 
1645 // Helper for writeThunk,
1646 // Selects proper bitcast operation,
1647 // but a bit simpler then CastInst::getCastOpcode.
createCast(IRBuilder<false> & Builder,Value * V,Type * DestTy)1648 static Value *createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) {
1649   Type *SrcTy = V->getType();
1650   if (SrcTy->isStructTy()) {
1651     assert(DestTy->isStructTy());
1652     assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
1653     Value *Result = UndefValue::get(DestTy);
1654     for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
1655       Value *Element = createCast(
1656           Builder, Builder.CreateExtractValue(V, makeArrayRef(I)),
1657           DestTy->getStructElementType(I));
1658 
1659       Result =
1660           Builder.CreateInsertValue(Result, Element, makeArrayRef(I));
1661     }
1662     return Result;
1663   }
1664   assert(!DestTy->isStructTy());
1665   if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
1666     return Builder.CreateIntToPtr(V, DestTy);
1667   else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
1668     return Builder.CreatePtrToInt(V, DestTy);
1669   else
1670     return Builder.CreateBitCast(V, DestTy);
1671 }
1672 
1673 // Replace G with a simple tail call to bitcast(F). Also replace direct uses
1674 // of G with bitcast(F). Deletes G.
writeThunk(Function * F,Function * G)1675 void MergeFunctions::writeThunk(Function *F, Function *G) {
1676   if (!G->mayBeOverridden()) {
1677     // Redirect direct callers of G to F.
1678     replaceDirectCallers(G, F);
1679   }
1680 
1681   // If G was internal then we may have replaced all uses of G with F. If so,
1682   // stop here and delete G. There's no need for a thunk.
1683   if (G->hasLocalLinkage() && G->use_empty()) {
1684     G->eraseFromParent();
1685     return;
1686   }
1687 
1688   Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
1689                                     G->getParent());
1690   BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
1691   IRBuilder<false> Builder(BB);
1692 
1693   SmallVector<Value *, 16> Args;
1694   unsigned i = 0;
1695   FunctionType *FFTy = F->getFunctionType();
1696   for (Argument & AI : NewG->args()) {
1697     Args.push_back(createCast(Builder, &AI, FFTy->getParamType(i)));
1698     ++i;
1699   }
1700 
1701   CallInst *CI = Builder.CreateCall(F, Args);
1702   CI->setTailCall();
1703   CI->setCallingConv(F->getCallingConv());
1704   CI->setAttributes(F->getAttributes());
1705   if (NewG->getReturnType()->isVoidTy()) {
1706     Builder.CreateRetVoid();
1707   } else {
1708     Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType()));
1709   }
1710 
1711   NewG->copyAttributesFrom(G);
1712   NewG->takeName(G);
1713   removeUsers(G);
1714   G->replaceAllUsesWith(NewG);
1715   G->eraseFromParent();
1716 
1717   DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
1718   ++NumThunksWritten;
1719 }
1720 
1721 // Replace G with an alias to F and delete G.
writeAlias(Function * F,Function * G)1722 void MergeFunctions::writeAlias(Function *F, Function *G) {
1723   auto *GA = GlobalAlias::create(G->getLinkage(), "", F);
1724   F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
1725   GA->takeName(G);
1726   GA->setVisibility(G->getVisibility());
1727   removeUsers(G);
1728   G->replaceAllUsesWith(GA);
1729   G->eraseFromParent();
1730 
1731   DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
1732   ++NumAliasesWritten;
1733 }
1734 
1735 // Merge two equivalent functions. Upon completion, Function G is deleted.
mergeTwoFunctions(Function * F,Function * G)1736 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
1737   if (F->mayBeOverridden()) {
1738     assert(G->mayBeOverridden());
1739 
1740     // Make them both thunks to the same internal function.
1741     Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
1742                                    F->getParent());
1743     H->copyAttributesFrom(F);
1744     H->takeName(F);
1745     removeUsers(F);
1746     F->replaceAllUsesWith(H);
1747 
1748     unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
1749 
1750     if (HasGlobalAliases) {
1751       writeAlias(F, G);
1752       writeAlias(F, H);
1753     } else {
1754       writeThunk(F, G);
1755       writeThunk(F, H);
1756     }
1757 
1758     F->setAlignment(MaxAlignment);
1759     F->setLinkage(GlobalValue::PrivateLinkage);
1760     ++NumDoubleWeak;
1761   } else {
1762     writeThunkOrAlias(F, G);
1763   }
1764 
1765   ++NumFunctionsMerged;
1766 }
1767 
1768 /// Replace function F by function G.
replaceFunctionInTree(const FunctionNode & FN,Function * G)1769 void MergeFunctions::replaceFunctionInTree(const FunctionNode &FN,
1770                                            Function *G) {
1771   Function *F = FN.getFunc();
1772   assert(FunctionComparator(F, G, &GlobalNumbers).compare() == 0 &&
1773          "The two functions must be equal");
1774 
1775   auto I = FNodesInTree.find(F);
1776   assert(I != FNodesInTree.end() && "F should be in FNodesInTree");
1777   assert(FNodesInTree.count(G) == 0 && "FNodesInTree should not contain G");
1778 
1779   FnTreeType::iterator IterToFNInFnTree = I->second;
1780   assert(&(*IterToFNInFnTree) == &FN && "F should map to FN in FNodesInTree.");
1781   // Remove F -> FN and insert G -> FN
1782   FNodesInTree.erase(I);
1783   FNodesInTree.insert({G, IterToFNInFnTree});
1784   // Replace F with G in FN, which is stored inside the FnTree.
1785   FN.replaceBy(G);
1786 }
1787 
1788 // Insert a ComparableFunction into the FnTree, or merge it away if equal to one
1789 // that was already inserted.
insert(Function * NewFunction)1790 bool MergeFunctions::insert(Function *NewFunction) {
1791   std::pair<FnTreeType::iterator, bool> Result =
1792       FnTree.insert(FunctionNode(NewFunction));
1793 
1794   if (Result.second) {
1795     assert(FNodesInTree.count(NewFunction) == 0);
1796     FNodesInTree.insert({NewFunction, Result.first});
1797     DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n');
1798     return false;
1799   }
1800 
1801   const FunctionNode &OldF = *Result.first;
1802 
1803   // Don't merge tiny functions, since it can just end up making the function
1804   // larger.
1805   // FIXME: Should still merge them if they are unnamed_addr and produce an
1806   // alias.
1807   if (NewFunction->size() == 1) {
1808     if (NewFunction->front().size() <= 2) {
1809       DEBUG(dbgs() << NewFunction->getName()
1810                    << " is to small to bother merging\n");
1811       return false;
1812     }
1813   }
1814 
1815   // Impose a total order (by name) on the replacement of functions. This is
1816   // important when operating on more than one module independently to prevent
1817   // cycles of thunks calling each other when the modules are linked together.
1818   //
1819   // When one function is weak and the other is strong there is an order imposed
1820   // already. We process strong functions before weak functions.
1821   if ((OldF.getFunc()->mayBeOverridden() && NewFunction->mayBeOverridden()) ||
1822       (!OldF.getFunc()->mayBeOverridden() && !NewFunction->mayBeOverridden()))
1823     if (OldF.getFunc()->getName() > NewFunction->getName()) {
1824       // Swap the two functions.
1825       Function *F = OldF.getFunc();
1826       replaceFunctionInTree(*Result.first, NewFunction);
1827       NewFunction = F;
1828       assert(OldF.getFunc() != F && "Must have swapped the functions.");
1829     }
1830 
1831   // Never thunk a strong function to a weak function.
1832   assert(!OldF.getFunc()->mayBeOverridden() || NewFunction->mayBeOverridden());
1833 
1834   DEBUG(dbgs() << "  " << OldF.getFunc()->getName()
1835                << " == " << NewFunction->getName() << '\n');
1836 
1837   Function *DeleteF = NewFunction;
1838   mergeTwoFunctions(OldF.getFunc(), DeleteF);
1839   return true;
1840 }
1841 
1842 // Remove a function from FnTree. If it was already in FnTree, add
1843 // it to Deferred so that we'll look at it in the next round.
remove(Function * F)1844 void MergeFunctions::remove(Function *F) {
1845   auto I = FNodesInTree.find(F);
1846   if (I != FNodesInTree.end()) {
1847     DEBUG(dbgs() << "Deferred " << F->getName()<< ".\n");
1848     FnTree.erase(I->second);
1849     // I->second has been invalidated, remove it from the FNodesInTree map to
1850     // preserve the invariant.
1851     FNodesInTree.erase(I);
1852     Deferred.emplace_back(F);
1853   }
1854 }
1855 
1856 // For each instruction used by the value, remove() the function that contains
1857 // the instruction. This should happen right before a call to RAUW.
removeUsers(Value * V)1858 void MergeFunctions::removeUsers(Value *V) {
1859   std::vector<Value *> Worklist;
1860   Worklist.push_back(V);
1861   SmallSet<Value*, 8> Visited;
1862   Visited.insert(V);
1863   while (!Worklist.empty()) {
1864     Value *V = Worklist.back();
1865     Worklist.pop_back();
1866 
1867     for (User *U : V->users()) {
1868       if (Instruction *I = dyn_cast<Instruction>(U)) {
1869         remove(I->getParent()->getParent());
1870       } else if (isa<GlobalValue>(U)) {
1871         // do nothing
1872       } else if (Constant *C = dyn_cast<Constant>(U)) {
1873         for (User *UU : C->users()) {
1874           if (!Visited.insert(UU).second)
1875             Worklist.push_back(UU);
1876         }
1877       }
1878     }
1879   }
1880 }
1881